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ABSTRACT

This paper describes some explicit constructions for reconfigurable array architec-
tures. Given a working architecture (application graph), we add redundant hardware to
increase reliability. The degree of reconfigurability, DR, of a redundant graph is a measure
of the cost of reconfiguration after failures. When DR is independent of the size of the
application graph, we say the graph is finitely reconfigurable, F'R. We present a class of
simple layered graphs with a logarithmic number of redundant edges, which can maintain
both finite reconfigurability and a fixed level of reliability for a wide class of application
graphs. By sacrificing finite reconfigurability, we show that by using expanders we can
construct highly reliable structures with the asymptotically optimal number of edges for

one-dimensional and tree-like array architectures.

tThis work was supported in part by NSF Grant MIP-8912100, and U. S. Army Research Office-
Durham Grant DAAL03-89-K-0074.



1 Introduction

The need for very high throughput in regular scientific computations has led to the
study of highly parallel pipelined structures, such as linear arrays, trees, meshes, and
multiple pipelines (see, for example, [HKu, SKu, ASAP]). As the degree of parallelism gets
large, and the number of processors grows, the reliability problem becomes increasingly
important. When high throughput applications involve real-time signal processing, the

reliability issue becomes especially critical.

In most of the literature on fault tolerance [ChLeRo, KuLa, GrGa, SaSt], faults are
confined to processing elements (PE’s). When the number of switches and connections
becomes large, this assumption becomes invalid, and in this paper we use a graph model
that takes into account failures of switches and interconnection wires as well. PE’s and
switches will be represented by nodes of the graph in the obvious way, and a connection
between two elements in the computational structure will be represented by a node
inserted in the edge between the appropriate two nodes in the graph model. Each node
of the graph will have associated with it a (uniform) probability of failure ¢, and nodes

fail independently.

To achieve fault tolerance, we add redundancy to the system. After a failure the
original working architecture (application graph) is reconfigured by replacing some nodes
that were being used by redundant nodes. We adopt the same model and definitions as
we did in [ShSt], using the notion of degree of reconfigurability, DR, a measure of the
cost of reconfiguration after failures have occurred. When DR is independent of the size
of the system, it represents the situation when the amount of change necessary to repair
the system depends only on the number of failed nodes, but not on the size of the system.

In this case, we say the graph is finitely reconfigurable.

We will emphasize on-line reconfiguration of run-time errors, as in [KuJeCh], instead

of fabrication-time reconfiguration [LeLe, GrGa]. This is accomplished by using a simple



layered graph. Nodes will be replaced only by nodes in the same layer. After definitions
in section 2, we present in section 3 a practical structure based on layered graphs which
can maintain both finite reconfigurability and any fixed level of reliability for any appli-
cation graphs with bounded degree. This structure uses a linear number of nodes and a

logarithmic number of redundant edges.

An interesting question is how much redundant hardware is needed to maintain reli-
able operation in the presence of failures. Lower and upper bounds are given in [DoCrl,
DoCr2, Pi, PiStTs| for computing a Boolean function with noisy gates. They show that
©(nlog n) noisy gates are necessary and sufficient for computing a Boolean function that
can be computed with n noiseless gates. The previous work by Alon, Chung [AICh],
and Friedman and Pippenger [FrPi], gives strong theoretical results for maintaining reli-
ability of linear arrays and trees, without giving explicit construction or reconfiguration
algorithms after failures. Leighton and Leiserson [LeLe] also show how to embed linear
arrays and two-dimensional meshes in two-dimensional redundant meshes at the fabrica-
tion level. We consider here the problem of designing reliable and general architectures
which have the asymptotically optimal number of edges, and can at the same time be

easily reconfigured.

In section 4, by sacrificing finite reconfigurability, we present fault-tolerant structures
for one-dimensional pipelines and tree-like array architectures which are optimal in the
sense of using only a linear number of nodes and edges. This follows the work of Leighton
and Maggs [LeMa], which uses expanders on butterfly networks. Since our fault-tolerant
structure is based on layered graphs, the construction and reconfiguration is simpler. Qur
results apply to a class of graphs with bounded tree weight and bounded degree, which

includes tree-like structures and one-dimensional dynamic graphs [Or].



2 Definitions and Preliminaries

A VLSI/WSI array architecture is represented by a graph G' = (V, E); each node of
(G is regarded as a processor, and each edge as a connection between two processors.
We assume that nodes fail independently, each with (uniform) probability e. As men-
tioned above, a node in our graph model can represent a PE, a switch, or interprocessor

connection.

Real working architectures are considered to be a family of graphs, G,, called appli-
cation graphs; G = (Vi, E!) denotes the ith application graph of G,. In this paper the
index ¢ will always be the number of nodes in G*. For example, G, can be a family of
n-node linear arrays. We always assume that each G is connected. Since we need to
add redundant nodes or edges to increase reliability, the embedding structures, G,, called
redundant graphs, are also represented as a family of graphs; G = (V, E’) denotes the
1th redundant graph of G,.

Given two isomorphic graphs Gy = (V4, Ey) and Gy = (V, E3), define the isomorphism
function p: Vi — V; such that (vi, v;) € Ey if and only if (u(v;), p(v;)) € Ea. Let u(Vy)
be the image of Vi. Given an isomorphism function p : Vi — V3, let the mapping set
S(p) be the set of pairs, {(v, p(v))|v € V4}. Thus, S(u) — S(u') represents the difference

between two isomorphism functions g and p'.

Given G, and G,, the following function determines which graph in G, will be the
redundant graph that corresponds to the ith application graph.

Definition 2.1 An Embedding Strategy for G, and G, is a function ES : G, — G,, i.e.,
if ES(G,) = Gi, Gi is the redundant graph for G:.

If ES(G,) = GI, and k nodes of GI have failed, the failed nodes and all the edges
incident to them will be removed and G? becomes a new subgraph CS’% = (T;}J . E}ﬁ’ ). The

procedure for finding a new isomorphism function ui: Vi — Vi is called reconfiguration.
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Definition 2.2 Given G,, G, and ES, the mazimum fault-tolerance of G, MFT(G"),
is the mazimum number of nodes that are allowed to fail arbitrarily in ES(G') such that
ES(GY) can still find a subgraph isomorphic to G. In addition, FT(GY) is given which
is some fized number < MFT(G") for each 1.

Definition 2.3 Given G,, G,, ES and Fault Tolerance FT(G.) < MFT(G") for each i,
the quadruple (G,,G,, ES, FT) is called an Embedding Architecture, EA.

For simplicity, if the context is clear, we will always assume the ¢th application graph
maps to the ith redundant graph, i.e., ES(G%) = G. Let ui : Gi — G, be the initial

isomorphism function for the ith application graph G.

Definition 2.4 Given an Embedding Architecture, define the Initial Embedding, IE, to
be a set of ui for all G in the family.

Given an embedding architecture for a G, after k nodes have failed, obviously there
may be many different isomorphism functions uj’s. But, the difference between S(pu})

and S(u}) should be as small as possible for the purpose of real-time fault-tolerance.

Suppose that the number of nodes in G% is n. Given EA, IE and that k < FT(G")
nodes have failed, let the cost of reconfiguration of Gi, A(k,n), be the minimum of
|S (1) — S(ui)| over all the possible isomorphism functions pi, i.e.,

A(k,n) = min |S(ug) — S(p)l-

K

When there is no pj,, A(k,n) = co. Under a given EA and I'E, let DR(k, n), the Degree
of Reconfigurability for Gi , be the maximum of A(k,n) over all possible k failures in
Gi, k< FT(GY); ie.,

DR(k, n) = max Ak, n).
failures of k nodes
E<FT(G:)



Definition 2.5 An Embedding Architecture, EA is finitely reconfigurable, if there exists
an Initial Embedding, IE, such that for all the G € G,, DR(k,n), can be bounded from

above by a function of k but not n.

3 A General Construction for Graphs with Bounded

Degree

In this section we restrict attention to epplication graphs with bounded degree, graphs
where the node degrees cannot grow indefinitely as the number of nodes increases. This
class includes common array architectures, such as pipelines or meshes. The constructed
redundant graphs will be layer-like. The problem will be how to add redundancy to
achieve a fixed level of reliability, which is equivalent to the problem of choosing a good
embedding architecture. We say a graph G, can simultaneously realize n G,’s if there are
n edge- and node-disjoint isomorphic G,’s in G,. The following is the main result of this
section. Actually this theorem can be easily generalized to other classes of graphs by

modifying the number of redundant edges allowed.

Theorem 3.1 For every n-node application graph GG, with bounded degree, we can con-
struct an O(n log n)-node redundant graph with degree O(log n), that can simultaneously
realize O(logn) G,’s with a given fixed level of reliability, while at the same time being

finitely reconfigurable. O

To illustrate the construction, we first consider the case when G, is a family of linear
arrays. A layered graph is one where the nodes are partitioned into levels, and edges
can only connect nodes in two consecutive levels. The redundant graphs, G, are layered
graphs, and the N-th redundant graph G¥ has N levels, each with m nodes (see figure 1).
(In this paper N will always be the number of levels, and m the number of nodes in each
level). Each level will be considered one stage in the pipeline, and the interconnection

between levels in GV is complete. That is, each node in level i is connected to every
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igure 1: Our fault-tolerant layered graph

node in level : + 1,2 = 0... N — 2. Our initial embedding is to embed the node at stage
¢ of the pipeline G¥ into an arbitrary node in level i of GY. At any point, after possible
failures, the node at stage i of GYY will be mapped to one of the m nodes in level i of GV

Finally, we will let the fault tolerance FT(GY) be m.

Having described the embedding architecture, we would like to show that we can
maintain any given fixed level of reliability with a value of m that is not too large. We

can show:

Lemma 3.2 Let the application graph GY be an N-node linear array, let the redundant
graph GV be as shown in figure 1, and let the embedding strategy be as described above.

Then we can maintain both finite reconfigurability and any fixed level of reliability if

m = O(log N) nodes in each level of GV.

Proof: Because two consecutive levels are fully connected, only one node needs to be

changed after a node fails, DR(k, n) = k, and the graph is finitely reconfigurable.

Let € be the probability of failure of one node. We know that the reliability of each

stage = Prob [there exists at least one good node] = 1 —e™. Therefore, the reliability of
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N levels = (1—&™)N > exp(—e™Nc), where c is a constant. We want this to be bounded

from below by the desired reliability 3, leading to the condition
—&™Ne > log

or
log N + log ¢ — log(—log 3)
m >
- —loge

So, m = O(log N) and the total number of nodes is O(N log N). O

Actually, we can improve this result by embedding more than one pipeline in G¥. In

the following lemma, we allow O(m) nodes in G to be working simultaneously.

Lemma 3.3 The redundant graph GV in figure 1 can maintain finite reconfigurability,

any fixed level of reliability, and can simultaneously realize at least (1 — a)m pipelines,

if m = O(log N) and a > ¢.

Proof: Let the random variable X be the number of faulty nodes in any one level. The
reliability of one level = Prob| there are at least (1 —a)m good nodes] = Prob[ X < am],
which is explicitly
= af e s T
i=0

This can be approximated by the integral of the normal distribution [Me]
1 /7”5:(_::1-) e—t2/2 dt
v 21 J-o
Bounding the tail of the normal distribution from above [Fe], we can write

1 — Prob[X < am] < L ymel=c) exp (_1(0__.3)3 m)

Ver ma—e) 2 g(1—¢)

Since a > ¢, the upper bound on the right-hand-side is positive. Letting A = 712—1; ;&:3

and B = éﬁ%, we can write this more compactly as

A
1 — Prob[X < am] < -—\/;exp(—Bm)
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The reliability of NV levels is

>(1- %exp(—Bm))N > exp (—-% exp(—Bm)N)

1 .
This can be lower-bounded by 2 by choosing m = (InA + In N — In(In E)) /B, which
results in m = O(log N). O

Consider a concrete example, with a desired reliability of 3. To satisfy the conditions

of the preceding lemma, it turns out to be sufficient to choose the number of nodes

1 g(l —e¢)
V21 /m(a —¢)
.IHfe=01,a=03 N=2% and f=1-10"8, then m = 131 is sufficient

and

in each level to be m = (InN + In A — In(In %))/B, where A =

_ (a= e)?
"~ 2¢(1 —¢)
to satisfy the given reliability criterion with finite reconfigurability. This means we have

0.7 x 131 > 91 parallel 2'®-node pipelines. Ife = 0.1, a = 0.5, N =2, and  =1-10"8,

then m can be as low as 28, with 14 parallel pipelines.

We can connect many simultaneously realized pipelines together into one long pipeline,

in a snake-ike fashion, and if we do that we get the following result.

Theorem 3.4 There exists a two-dimensional layered graph which can maintain an
O(N log N)-node linear array with a fixed level of reliability, and local reconfigurabil-
ity, by using O(N log N) nodes of degree O(log N).

Proof: From the previous lemma, we know the graph G¥ in figure 1 realizes O(log N)
parallel linear arrays with any fixed level reliability. Add two more levels, one before the
first level and one after the last, and completely connect these two extra levels with their
adjacent levels. This preserves the property of finite reconfigurability. These two levels
can be used to stitch together those O(log N) parallel linear arrays into one linear array

of length O(Nlog N). O

For example, if ¢ = 0.1, @ = 0.5, N = 2%, 8 =1 — 1078, then from lemma 3.3, m
can be set to 28. We can therefore construct a linear array of length of 14 x 2'° nodes

with the desired reliability and the property of finite reconfigurability. If we include the
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N levels

degree = d
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node i is connected to node ( i+j mode m), j= 0,...d-1

Figure 2: A graph with reduced degree

number of edges in the calculation of cost, the total hardware cost is O(N log? N) for

constructing an O(N log N)-node linear array.

Actually, we can easily decrease the degree of each node from m to am, where a > ¢,
and since ¢ is usually small, this gives us a relatively better result, even though am is
still O(log N). We can do this by constructing a layered graph in which node i is only
connected to nodes (i + j) modm, j = 0,...,d — 1 in the next level, as shown in figure
2. The following lemma shows that there exists a bipartite matching between surviving
good nodes in adjacent levels, provided that fewer than d nodes have failed in each level,

where d is the degree of each node.

Lemma 3.5 Let A and B be two adjacent levels of the redundant graph G¥. If fewer

than d nodes have failed in each of A and B, there still exists a matching between those
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O O

Figure 3: An example of an application graph

two levels with m — d + 1 edges.

Proof: Denote by I'(X) the set of nodes in B which are incident to at least one of the
nodes in X, X C A. We consider only the case of matchings with m — d + 1 edges
(not perfect matchings). We know from [HaVa, LoPl], that |I'(X)| > | X| for all subsets
X C A with |X| £ m —d+ 1, if and only if there is a matching with m — d + 1 edges.
Therefore, if there does not exist a matching of size at least m — d + 1, there must be a
subset X of good nodes in A, with |T'(X)| < |X|. According to the connection pattern,
we know that |[I'(X)| > |X| + d — 1 before any nodes have failed. But by hypothesis
at most d — 1 nodes fail in B, so after failures |['(X)| > | X|, which is a contradiction. O

This shows we can use the lemma above and set d = am to construct a layered graph
that maintains a given level of reliability. But now the degree of reconfigurability is not
finite, since our pipeline is connected by bipartite matchings between adjacent levels,
and we may need to change the entire structure to reconfigure after a failure. We further
exploit this idea for maintaining reliable structures using bipartite matchings in the next

section.

Lemma 3.3 is generalized to more general structures as follows. Given an N-node
graph G with bounded degree, we construct a new graph GN by substituting a column
of O(log N) nodes for each node of GYY and fully connecting this column with the adjacent
columns. Figures 3 and 4 show an example. This gives the main theorem at the beginning

of this section.
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Figure 4: The redundant graph for the previous graph

Proof of Theorem 3.1 : The calculation of the reliability of G, is exactly the same
as in the proof of lemma 3.3. Thus, both finite reconfigurability and any fixed level of
reliability can be maintained by choosing columns of size O(log N). If d is the maximum
degree of any node in the original application graph G,, the degree of each node is then

at most dx O(log N) = O(log N). O

When the application graph is a k-dimensional dynamic graph [Or], the reliable re-
dundant graph is a (k + 1)-dimensional graph that realizes O(logN) parallel dynamic
graphs, where N is the number of nodes. As in the one-dimensional case (see the proof
of theorem 3.4) we can add two k-dimensional hyperplanes at the front and back along
any one of the (k + 1) dimensions, and use those new levels to connect the O(logN)
parallel application graphs together. For example, in the proof of 3.4, the application
graph is a linear array, and two columns of nodes are added. In this way, we get the
asymptotically minimum number of nodes in the reliable system, but the degree of each
node is still not a constant. In the next section, we present optimal redundant graphs

for tree-like application graphs which do achieve a constant degree.

4 An Optimal Construction for Tree-like Graphs

In the past few years, the use of expanders has led to new theoretical results on the

existence and construction of linear-sized redundant networks for maintaining reliable
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linear arrays and trees. Alon and Chung [AICh] proved that we can maintain reliable
n-node linear-array application graphs using fault tolerant graphs with only O(n) edges.
Later, Friedman and Pippenger [FrPi| generalized this to a similar result for trees, also
using linear-sized fault-tolerant networks. Their results are stronger, since they are not
based on a probabilistic model, and allow any portion of nodes to be deleted. But their
results do not show how to find an isomorphic application graph in polynomial time, nor

how to do reconfiguration after nodes have failed.

Leighton and Leiserson [LeLe] show that under a probabilistic model, with high prob-
ability 1 — O(1/n), we can connect any constant fraction (less than 1) of the nonfaulty
nodes of an O(n)-sized two-dimensional mesh to be a linear array. This shows the exis-

tence of a small two-dimensional dynamic graph that can maintain reliable linear arrays.

In this section we follow Leighton and Maggs [LLeMa] and use expanders to give explicit
constructions of fault-tolerant structures for a variety of application graphs, including
linear arrays, multiple pipelines, and tree-like structures. These structures are also easily
reconfigurable on-line. As before, we first describe the case when G, is a family of linear

arrays. We need the following fact from probability theory.

Lemma 4.1 The probability that at least kem nodes fail in one level is exponentially

small, that is < (2%) , where k is a constant, and k > (1/In2).

Proof: Let X be the number of faulty nodes in one level, and P(Z) the probability
generating function

P(Z)=>_ Prob(X =1)Z'
=0
The probability that X exceeds r is

Prob(X >r) = > Prob(X =1)

r=1 T o] t
< ZProb(X=i)£ + ZProb(Xzi)g—

=0 z7 i=r A
= Z7"P(2)
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where Z > 1 is a real number. Since Prob(X = 1) is the binomial distribution C¢*(1 —
€)™, the generating function P(Z) = (¢Z + 1 —&)™. If we set r = kem, and Z = 2,
Prob (X > kem) < 27Fm(1 4¢)™

—kem _em __ i o
S e _(2k)

Since k > (1/1n2), it follows that -2% <l. O

We first review some definitions and theorems about expanders [LuPhSa, AIMi, Up,
LeMa]. Consider a bipartite graph G = (A, B, E), and let I'(X), X C A, be the set of
nodes in B which are adjacent to X. We say that G has the ezpansion property (c, S,
d, m), if |A| = |B| = m, the degree of each node in G is d, and for every subset X C A,

|X| < am, |I'(X)| is at least 3|X|, where o < 1, B > 1. From [Up], we know that there
141

M_ Tz
—Ilnaf

expander can be found with high probability by randomly generating a regular degree-d

exists an (o, 3, d, m) expander such that af < 1,and d < S+ 1 +

bipartite graph. The expansion property can be checked by calculating the second largest
eigenvalue of its adjacency matrix [AIMi]. There is also an explicit construction of an

expander graph, called the Ramanujan Graph [LuPhSa).

Our construction for the N-th redundant graph is similar to the graph in figure 1,
except the connection between two adjacent levels is now an expander with expansion
property (e, A3, d, m), where A corresponds to the previous level, and B to the next
level. The matching theorem [HaVa, LoPl] then implies a desirable property: there
always exists a matching from every subset X C A, |X| = am to the next level B. This
gives us am N-node pipelines. If we can design a reconfiguration method such that with
high probability there are still am N-node pipelines after failures have occurred, this
will be a highly reliable structure with a linear number of edges, since the degree of each

node is a constant d.

We first describe a key part of our reconfiguration method, called backward propa-
gation, which preserves the (o, 3, d, m) expansion property after the reconfiguration

process.
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Backward Propagation: Let a constant ¢; < 1 be given, and examine each node
in each level, starting from level N — 1, and progressing down to level 0. If a node in
level 7 is adjacent to > ¢&1d nodes in level ¢ + 1 which are nonfaulty, then the node is
declared to be good; otherwise, it is declared faulty. We call nodes which are declared
faulty in this process propagated faulty nodes. Thus we have two kinds of faulty nodes

— physically faulty nodes and propagated faulty nodes.

Theorem 4.2 After backward propagation, an (e, 3, d, m) expander retains the expan-

sion property (o, #',d, m)if1 < pB' < B—(1—¢&)d.

Proof: Consider a subset X C A where |X| < am and all nodes in X are good. Let I';(X)
be the set of faulty neighbors in the succeeding level, and I';(X') be the corresponding set
of good neighbors. The total number of neighbors is [I'(X)| = |T';(X)|+ |T,(X)| = B X|.
Since each node in X is good, the number of faulty connecting nodes to each must be

less than (1 — &;)d. Therefore
ITs(X) < (1 —e1)d|X]

and

Ty (X)) 2 (8- (1 —ex)d)|X| = §'|X]

The following lemma shows that not too many nodes at any one level become faulty

by propagation.

3 k
i 8), m = EIHN’ and & > 1. Then the number of

1
Lemma 4.3 Let &; < =(f —
d a

propagated faulty nodes at each level is less than am with probability at least 1 — =

Proof: We first prove that if the number of physically faulty nodes is less than 3em
and the number of propagated nodes is less than am at level [ 4 1, then the number of

propagated nodes is less then am at level [, where [ = N —2,...,0. We then prove that

with probability > 1 — there are in fact fewer than 3em physically faulty nodes

Nk—l
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there are fewer than am propagated

1
at each level. Thus, with probability > 1 — VT

faulty nodes.

The first part is proved by induction. The basis is true trivially because there are
no propagated faulty nodes at the last level. Suppose that at level [ + 1, the number of
propagated faulty nodes is less than am, the number of physically faulty nodes is less
than 3em, and at level /, the number of propagated faulty nodes is greater than am.
Choose X to be a set of propagated faulty nodes at level [ with |X| = am. Let F
be the set of faulty nodes at level [ + 1. From the induction hypothesis, we know that
|F| < am + 3em.

Let T's(X) be the set of faulty neighbors of X at level [ 4+ 1, and let I'y(X) be the
corresponding set of good neighbors. Since z € X is a propagated faulty node at level

[, the number of connecting good nodes must be less than e;d. Thus, |I'y)(X)| < e1dam.

Since |I'(X)| = Bam, |T'f(X)| > am(B — &1d). We know that &; < Cll(ﬁ - a—(§;35

am(f — e1d) > am + 3em. Thus, from |F| > |T'(X)| and |T4(X)| > am(B — &1d), we

), so

know that |F'| > am + 3em, which is a contradiction, finishing the induction.

From Lemma 4.1, we know that the probability that the number of physically faulty
nodes at any one level exceeds 3em is exponentially small, being upper bounded by

& (g) . Thus, the probability P that there exists one level with more than 3em

physically faulty nodes is < N (g) . Since m = gln N,
e kInN
- (9

8
N1+k—kh18

< NE

Therefore, the probability that there are fewer than 3em physicaly faulty nodes at every

level is greater than 1 — ——. Thus, the conclusion of the induction part is true with

Nk

probability greater than 1 — O

Nk—l :
Appropriate choice of «, 3, d and ¢ in the two lemmas above yields the following
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theorem.

Theorem 4.4 An n-node linear array can be maintained at any fixed level of reliability
1-2a
7

using a simple layered structure with O(n) edges, provided ¢ <

Proof: From lemma 4.1, we know that with probability greater than or equal to 1 —

(g) , there are fewer than 3em physically faulty nodes at any one level. Thus, as in

the proof of lemma 4.3, with probability greater than 1 — there are fewer than 3em

Nk-1°

physically faulty nodes at every level. After backward propagation, by lemma 4.3, at most
1

am nodes are declared to be faulty at each level with probability greater than 1 — N
2

= there

are fewer than am 4 3em total faulty nodes. We can always make k large enough to

k
where m can be set to —In N. Therefore, with probability greater than 1 —
€

satisfy the desired reliability.

Also, if we choose 3’ = (8 — (1 —&1)d) > 1, the structure will still have the expansion
1 -2«

property after finishing the backward propagation. Since ¢ < , we know am <
m — (a + 3¢)m. We can find am pipelines in the whole system, and can add two special
levels, as in the proof of theorem 3.4, one before the first level and one after the last, to
stitch the pipelines together. This will make an O(N log N)-node linear array, with total

number of edges 2m? 4+ mN = O(N log N), since m = O(log N). O

Note that even when the given error probability € is more than (1 — 2a)/3, we can
reduce the error probability to satisfy the'upper bound constraint of theorem 4.4 by
using multiple modular redundancy and a majority voter for each node. From [Pi], we
know that a k-argument majority function can be computed by a noisy network of size
O(k7). Since (1 — 2a)/3 is a constant, the number of multiple modules and the size of
the majority voter for each node are also constants. Thus, the upper bound constraint

of theorem 4.4 can be satisfied with only a constant factor more hardware.

By using the same techniques, we can get similar results for trees with bounded degree

6. The construction replaces each node of the tree with a column of m nodes. The

{ i}



connection between two adjacent columns is also an expander with expansion property
(o, B, d, m). To establish the result we generalize backward propagation as follows:
Apply the old backward propagation method for each path from the root to a leaf. A

node is good if it is declared good in every path it is in; otherwise, it is faulty.

The expansion property will be guaranteed after this generalized reconfiguration,
provided we choose ¢;, d and 3 to make the new 8’ > 1, as we did in theorem 4.2.
The number of propagated faulty nodes is also upper-bounded by (6§ — 1)amn with high
probability, by an analysis similar to that establishing lemma 4.3. We therefore get the

following corollary.

Corollary 4.5 For every N-node tree T with bounded degree, we can construct an
O(N log N)-node layer-like structure with bounded degree (and hence O(N log N) total
hardware), which can simultaneously realize O(log N) T’s with any given fixed reliability.
O

Using similar techniques, we can generalize our result to the class of graphs with

bounded tree weight, defined as follows:

Definition 4.1 Tree Weight: Given a graph G, consider all ways in which its nodes
can be contracted to components to yield a tree. A contraction whose largest component
is smallest possible will be called a minimaz contraction. The number of nodes in the

largest component of a minimaz contraction is defined to be the tree weight of G.

We can get the following theorem for graphs which have bounded tree-weight and
bounded degree. This class includes tree-like structures and one-dimensional dynamic

graphs.

Theorem 4.6 For every N-node graph G with bounded degree and bounded tree weight,
we can construct an O(N log N)-node layer-like structure with bounded degree (and
hence O(N log N) total hardware), which can simultaneously realize O(log N) G’s with
any given fixed reliability.
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Figure 5: Example of application graph 1
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Figure 6: The reliable redundant version of graph 1

!

Proof: Let the tree-weight of G be k and let the corresponding tree be . We can
substitute a column of m components for each component of T' (at most k£ nodes in G).
We also connect two adjacent columns together to satisfy the expansion property (o, 3,
d, m). The error probability &’ of one component is at most 1 — (1 — &), which is still a
constant. From Corollary 4.5, we know that we maintain any fixed level of reliability by

choosing parameters appropriately and setting m to O(log N). O

Simple algorithms can be used to implement both the backward propagation method,

and reconfiguration of the bipartite matchings between adjacent columns.

Figures 5 — 8 show the constructions for two examples.

5 Conclusions

We have presented two explicit ways to construct reliable and easily reconfigurable struc-

tures for wide classes of application graphs. The reconfigurable structures are particularly
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One component after contraction

Figure 7: Example of application graph 2

Figure 8: The reliable redundant version of graph 2
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amenable to on-line reconfiguration. The first construction, described in section 3, ap-
plies to any application graph with bounded degree, and results in finitely reconfigurable
graphs with the asymptotically minimum number of extra nodes. However, the asymp-

totic number of extra edges is not linear in the size of the original application graph.

The second construction, described in section 4, applies to tree-like application graphs,
yields an explicit reconfiguration procedure, and results in redundant graphs with a lin-
ear (optimal) number of nodes and edges. References [AICh, FrPi] also give linear-sized
reliable structures for linear arrays and trees, but do not give reconfiguration proce-
dures. Although the redundant graphs that result from the second construction are
not finitely reconfigurable, the reconfiguration procedure — backward propagation and

bipartite matching — can be implemented easily.

We mention here some problems that deserve further study. The construction in
section 3 produces a redundant graph with O(N log® N) edges for an application graph
which is an (/N log N)-node mesh. To the authors’ knowledge it is unknown how to
construct a linear-sized redundant structure that maintains a fixed level of reliability for

even a two-dimensional mesh.

The redundant graphs resulting from our constructions are not dynamic graphs. It
would be interesting to consider the construction of redundant graphs that are restricted
to be dynamic graphs, which are more easily implemented than other, less regular graphs.
We do know from [ShSt] that if we wish to use a dynamic graph as a redundant structure
to maintain both finite reconfigurability, and a fixed level of reliability, for an application
graph that is an array, the dynamic graph must be of dimension at least one greater
than that of the array. Nontrivial lower and upper bounds on the size of reliable and
finitely reconfigurable redundant structures that are restricted to be dynamic graphs are

not known.
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