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Abstract

Let k¥ > 1 and P be a probability distribution over R* with all its absolute g-th mo-
ments being finite for some g > k/(k — 1). Let vi,v2,--- be an infinite sequence of
random points, each indepdently distributed according to P. It is shown that the length
of the shortest traveling-salesman’s tour through vy, vq,- - -, v, is, for large n, almost surely
around apn*=1/k for some constant ap. This proves a conjecture of Beardwood, Halton
and Hammersley (Proc. Camb. Phil. Soc. 55 (1959), 299-327).

!This research was supported in part by the National Science Foundation under grant number CCR-
8813283.



1 Introduction

Let k > 1 be an integer, and P be any probability distribution over a bounded region in
REF. Let f be a density function for the absolute continuous part of P. In 1959, Beardwood,
Halton, and Hammersley [BHH] showed that, for an infinite sequence of random points
each distributed independently according to P, the length X, of the shortest traveling
salesman’s tour through the first n points has the property that X,/ n(k=1/k converges to
Brk'/? |, e (f (v))*=D/kdy almost surely, where §y is a positive constant dependent only on
k. They conjectured [BHH] that the theorem remains true for P defined over unbounded
regions in R¥, provided that all the k/(k — 1)-th absolute moments of P are finite. The

purpose of the present paper is to prove this conjecture.

Let ¥ > 1, and P be a probability distribution over RF*. Let ap =
Brk'/? [oi(f(v))*~D/%dy (in general may be infinite), where f is a density function for
the absolute continuous part of P. Let vy, vs,- - be an infinite sequence of random points
distributed independently according to P. Let X,, be the minimum length of any traveling

salesman’s tour passing through vy, ve,: -+, v,.

Theorem 1 If P has all its finite absolute u-th moments for some p > k/(k — 1), then

X, /n=D/¥ converges to ap almost surely as n — 0o. Furthermore, ﬂhrglo I'E_Xn/n(k*l)“c =

ap.

Note that for P satisfying the condition in the theorem, [pi r*dP is finite, where
r stands for (;<;cx 27)'/2. This implies that ap is finite as [(f(v))*~/kdy can be
written as f(r”f)_(k__l)fk(r"(k'l)”)llkdv < (f r# fdo) kDI [ p=(k=1)sdy)1/k by Holder’s
inequality (see e.g. [HLP, p.22)]).

In Steele [S1], the theorem of Beardwood, Halton, and Hammersley was extended to
a class of general functionals which includes as a special case the length of the shortest
traveling salesman’s tour. We will see that Theorem 1 is also true for some of these

functionals.

The idea used in the proof of Theorem 1 can be used to give a fast approximate
algorithm which, with high probability, produces traveling salesman’s tours to within
a factor of 1 + € of the optimal length, for probability distributions P under the same
constraints. This extends a result of Karp [K] for probability distributions P over bounded

regions, and will be discussed elsewhere.

We state some useful elementary facts in Section 2. Theorem 1 is proved for a special
family of probability distributions in Section 3. The general proof of the theorem is given

in Section 4. An extension of Theorem 1 to a class of functionals will be given in Section



5. Some concluding remarks are given in Section 6.

2 Preliminaries

We collect some well-known facts. Throughout this paper, k, n denote integers greater than
1, and £ denotes any positive real number. Let a; be the constant 7%/2(T(1 + k/2))~!,
where I'(z) = [5° e~t""1dt for z > 0.

Fact 1 (see, e.g. [Si, p.26]) The volume of a ball of radius » in RF is equal to axr*.

Definition 1 For any finite set S of points in R*, let T(S) denote the length of a shortest
traveling salesman’s tour through all the points in S. Let M(S) stand for the length of a
shortest Steiner tree connecting all the points in . It is agreed that T'(0) = M(0) = 0. For
any £ > 0, let C,, denote the cube [—£, £]%; let e, denote the point (£,0,0,---,0), which is
on a face of the cube Cj¢. Let T_(S;£) = T(SNCkye) and T4 (S5;£) = T((S \ Cre) U {er}).

Fact 2 For any finite sets § C §’ C R*, M(S) < M(S') and T(S) < T(5").
Fact 3 For any finite set S C R*, T(S) < 2M(S).

Fact 4 There exists a constant by > 0 such that the following are true: any set § of n
points satisfies T'(5) < bin5=D/kg if the points are contained in the cube [—£,(]*, and
satisfies T(S) < byn(k=2)/(k=1)¢ if the points are on a face of the cube [—£, {]*.

Definition 2 For any v = (21,22,---,2;) € RF. let ||v|| = (1<ick 7)/2 denote the

norm of v in the Lo-metric.

3 A Special Case

In this section, we prove Theorem 1 for a special family of probability distributions. This
will illustrate the basic ingredients in the general proof, and in the process derive some

results useful for the general proof.

We first describe the approach. Consider a large cube of side-length ¢,, centered at
the origin. Divide the n random points vy, vq,- - -, v, into two sets S_ and 5, depending
on whether they lie inside or outside the cube. As the probability density tapers off away
from the origin, it is plausible that the best traveling salesman’s tour 7" for the n points is
about the same length as that for 5_. Therefore, to obtain information on X,,, it suffices
to study the behavior of the shortest traveling salesman’s tour 7_ on S_, with ¢, going

to oo in some fashion. If £, is only required to grow with n at a moderate rate, then the



existing methods of analysis of the problem for bounded regions can be utilized to analyze
4

In the next four lemmas, we derive some quantitative results in preparation for carrying
out the above outline. Lemmas 1 and 2 show how T is related to 7_ and T (the length
of the shortest traveling salesman’s tour for S), and gives estimate on T} so that we
know when it can be safely ignored. Lemmas 3 and 4 extend the existing analysis of
the traveling salesman’s tour over bounded regions to that over regions growing with n.
The information provided by these four lemmas then enables us to prove the theorem by

choosing £,, judiciously.

Let pga(v) = ex (1 + ||v]))~* be a probability density over R¥, where A > k%/(k — 1)
i
and ¢y = (ka(l + ||v]|)"\dv) . (Note that cg ) is well-defined and nonzero.) We will
prove Theorem 1 for P defined by the density function py. .

Let vy,vq,- -+ be an infinite sequence of random points in R*, where each v; is inde-
pendently distributed according to pi,x. Define random variables V,, = {vy, v, -+, vn},
and X, = T(Vy). For any £ > 0, let Yy, y = T_(Vy;€) and Zp ¢ = T (Vp; £).

Lemma 1 Y, < Xn < Yog+ Zn g + 2K1/22.
Corollary If 0 < £ < ¢/, then Yy, < Y, o < Yy g+ Zy o + 2k1/2L.

Proof The inequality Y, , < X,, follows immediately from Fact 2. To derive the other
inequality, let S_ = V, N Cy, and Sy = (Vi \ Cke) U {e,}. We can assume that S_ is
nonempty; otherwise the lemma is clearly true. Take any v; € S_ and connect the shortest
traveling salesman’s tours for S_ and S4 by two copies of the edge {v;, e,}. This creates
a connected Eulerian graph on the points in V,, U {e;} of total length no greater than
Yoo+ Znp + 2k1/20. Tt is well known (see e.g. [K]) that it can be transformed into a
traveling salesman’s tour on V,, U {es} of equal or less length. Lemma 1 now follows from
Fact 2. The corollary is true since Y, ¢ <Y, ¢ < X, by Fact 2. O

Let dyx = 2k3/2T(1/k) ak (ex ) * /% ((k — 1) A — k?)~1. Clearly dj » > 0.
Lemma 2 EZ,, <2 dk,An(k'l)/k £~ O—k=2/k) & A by n(F—2)/(k-1)

Proof For each u € RF )\ Ch,e, let Jy, denote the point closest to u among all points u’
such that (a) ||u|| < ||u||, and (b) v’ lie in either V;, \ Ci ¢ or on the faces of the cube Cj .
For each 1 < ¢ < n, define a random variable D; which takes on the value 0 if v»; € Ci ¢

and, otherewise, the value ||v; — J,,]|.

Let Sy = (Vi \ Cke)U{ee}. Then a Steiner tree for Sy can be obtained by adding the
set of edges {vi, Jy; }, vi € Vi \ Ck e, to a shortest traveling salesman’s tour for the points



in J, where J = {Jy; | v; € V;, \ Ci¢; Ju; € Cie} U{er}. From Facts 3 and 4, we have

Zny 2M(S4)

=% Y D) +21(J)
1<i<n

2 Y D;)+ 20 £ |J|*-D/ 1)
1<i<n

2( Z Di) + 20 ¢ (n + 1)("—2)/(1:_1).
1<i<n

IA

IA

Thus,

EZ,,<2 Z ED; + 4bk£n(k_2)/(k—1)‘ (1)
1<i<n

To estimate ED;, let r, denote the Euclidean distance between any point v € R*
and the set Ci . Observe that, for u € RF \ Cke and 0 < s < 1y, one can construct a
cube K of side-length sk~/2 such that its main diagonal is the line segment connecting
u and the point (1 — s/||u||) u. As every point v’ in K is within a distance s from » and

pr(u') < pga(u), the conditional probability distribution of D; satisfies

Pe{D;>s|lm=u} < (1 - Pk,A(u) (Sk—llﬁ)k)n—l
< exp(—(n — 1) k"kf2 CEA Sk (1 + ”u”)—A) (2)

Clearly, inequality (2) is valid for s > r,, since Pr{ D; > s|v; = u} = 0. It follows that

o0
B(Di| 5 =4) = / Pr{D; > 8| v = u}ds
0

IA

/Om exp(—(n — 1) k=2 ey s* (1 + [Jull)~)ds
E7Y2T(1/k) (e a(n— 1) 75 (14 [luf)ME. (3)

Hence,

ED;

IA

EY2T(1/k) (cxn (n — 1))~1/* ]Q (1 + [[ull)*pp () du

IA

o0
K/2T(1/k) ax (e ) ED* (n - 1)‘1”“]! (L + Nl ™Al d] ]

IA

KY2T(1/k) ag (cx)E-D/F (n — 1)-1/k / P kE=1 g,
¢
< dyy -k gmO=k=21), (4)

Lemma 2 follows from (1) and (4).0

Let d}, , = 32(T(1/k))? k" (ex\)~%*. Let ¢(n) = 1+Innif k = 2, and n*=2/* k/(k—
2)ifk > 2.



Lemma 3 Let s > 0. Then Pr{|Yp¢ — EY, | > s} < 2e=5*/V where v = 128k(2 +
ex (1 + k172022 4y (),

Proof The proof employs an approach used by Rhee and Talagrand ([RT]) (also see Steele
[S2]) to obtain similar bounds for the traveling salesman problem over the unit cube.

For 1 < i < n, let o; denote the sigma field generated by vy, vy,---,v;. Let g;,
1 €1 < n, be the sequence of martingale differences defined as E(Y,, ¢ | 0; ) —E(Y, 0| 0i-1)-
Let w; = sup |g;|. Then, by Azuma’s Inequality (Hoeffding [H], Azuma [A]), we have

Pr{| Y gl >s} <2exp(—s*/(2 > w})).

1<i<n 1<i<n

Since Y, — EY,, = ZISiSn g;, we have

Pr{|Y,,— EY,,| > s} < 2exp(—s?/(2 D w})). (5)
1<i<n

It remains to evaluate w;.

Let V,, = {v1,v2,--+,v,} and V! = (V;, \ {wi}) U {v;}. It is not hard to see that

IT_(Vas ) - T-(Vi; )| <2 Y Ay,

u€{wiw; JNC ¢

where A, = 2k'/2¢ if none of the vj, t +1 £ j < n, is in the cube Cj 4, and otherwise
equal to min{||u — vj|||i+ 1 < j < n}. This implies

w; €4 sup EA,. (6)
u€CK ¢

Let 1 < ¢ < n—1. Adopting the method used in the proof of Lemma 2, we find for
any u € Creand 0 < s < 2kY2¢

Pr{A,>s} < (1= (s/k"/2 ppr(t,€,---,0) """
exp(—(n — i) k=2 sk ¢p 5 (14 KM20)7Y).

IA

Clearly, the above inequality is also valid for s > 2k'/2¢, since in this case Pr{ A, >
s|vi=u}=0. It follows that

EA, = / Pr{ A, > s}ds
0

IA

/oo exp(—(n — i) k72 sk ¢p \ (1 4+ K2 £))ds
0
k7Y2D(1/k) (een)™F (1 + BM2ONE (n — )R,



Therefore,

rk‘)\(l_l_klfz’f))\/k Z (n__i)—2/k

[\]
5

g
=b

A

1<i<n—1 1<i<n—1
n—1
< dpa (L KV [T 5 )
< di\(1+ E20Mryy(n) . (7)

Lemma 3 follows from (5)-(7) and the fact that w, = 8k/2£.0
Lemma 4 For any fixed ¢ > 0, lim, oo EYy ¢ /nt=V/k = g k12 [, (per(u)EDE gy

Proof Let 6 be the probability that a random point v distributed according to py  falls
into the cube Cjy 4. Clearly, 6 = ka i pr(u)du > 0.

Let pg,: denote the probability density when pg ) is restricted to the cube Cji,.
Then prai(v) = 071 ppa(v) for v € Cy; and 0 otherwise. Let uj,uz,--- be a se-
quence of random points independently distributed according to pg ¢, and let Wy de-
note the length of the shortest traveling salesman’s tour through the first n points. Let
Yeag = Pr k12 fck,: (p,rc,)\(u))(khl)/"c du. The result of Beardwood, Halton and Hammer-
sley ([BHH]) implies that

Lm EW,,o/nlt-0/k = g=C-Diky , (8)

Let pp ns be the probability that n’ out of n random points v;, each of which indepen-
dently distributed according to pi », fall into C ;. Then

EY'n.,t = an,n’EWn’,t- (9)

n!

Also, by Chernoff’s bound [C], we have

Z pn’n’ S 26_292 11,1/3. (10)

nl,|n'—8n|>8n2/3

2/3 it is elementary to show that, for all sufficiently

For any n' satisfying |n' —6n| < 6n
large n,

|(nf)(k—1)/k _ (9 n)(k—l)/k| < 4n—1/3 (9 n)(k—l)/k_ (11)

It follows from (8)-(11) that

EYa;: = Z P EWni g + O(n 6—292 nlls)

n',|n’ —0n|<on2/3



- - D P (8)~ D gy 4 () ED/K(L 4 0(1)) + O(n 2 ™)

n!,|n’ —On|<n2/3

= Yo P (0)7F E g (0n)ETDE(1 4 0(1)) + 0(1)

n!,|n’ —0n|<In2/3

= (L4 o(1)) e n/ . Pawto(l)

n',|n’ —n|<On2/3

= (14 o(1)) yx -1k,
This proves Lemma 4.0

To apply the above lemmas to prove the theorem, we choose an £,, such that Y, 4,
is a close approximation to X,, and at the same time C} 4, is small enough that we can
extend the known method used for bounded regions to analyze Y, 4, .

Let e=(40Ak%?)Y and € = ¢(A—k — A/k). Then ¢, > 0. Let £, = n¢ for all n > 1.

Lemma 5 limy_e EX,/n®*DV/% = lim, . EY, 4, /n*~D/k = op, where P is the

probability distribution with density function py .

Proof Let K, stand for either X, or Y, 4,. Let ¢ > 0. By the corollary to Lemma 1, we
have
EY,: < EK, <EY,,+ BEZs4 + 262, (12)

Let vkt = Bk k2 fOk " (Pk,}\(’ﬂ))(knl)/k dv. By Lemmas 2, 4 and inequality (12) we have

et S liminf BK, /n*=D/% < limsup EK, /n*=0/F < gy 554 24y 527 CFE). (13)

n—oo

Letting ¢ — oo, we obtain the lemima. O

We have thus proved one of the equations stated in Theorem 1. It remains to prove

the other equation: almost surely,
Jim X /n0 = ap, ()
where P is the probability distribution with density pg ).

We specialize the general bounds discussed in Lemmas 2 and 3 with the choice of £ = £,,.
We will see that Ty (V,;£,) is small (and hence T'(V,,) is essentially equal to T_(V,;£,)),
and that the probabilistic behavior of T_(Vy;£,)/n*~1)/* is highly concentrated around

its average value (and hence around ap by Lemma 5).
Lemma 6 EZ,, < 6dg) nk=1/k=¢ for all sufficiently large n and n/2 < m < n.

Proof It follows from Lemma 2 and the fact that (k — 1)/k —e(A —k — AJk) > (k -
2)/(k—1)+eD



Lemma 7 Pr{|Y,s, — EY,. |>n'/?7¢} < e~™* for all sufficiently large n.

Proof It follows from Lemma 3 by setting £ = {,, s = n'/2=¢, and observing that
82 /v = Q(n'/logn) where t = 2/k — 2¢ — 2Xe/k > 1/k.O

We are now ready to prove (14). Let § > 0 be any fixed number, and B, be the event
that | X,,/n*~1/k — ap| > §. We need to prove that

lim Pr{UpymBa} = 0. (15)

Let F, be the event that |¥, s, — EY, .| > n/27¢ and G, be the event that Z, ,, >
(k1) /k—c' /2.

From Lemma 1, we have

| Xa/nED% —ap| < X/ nE I~ Yy [ (Y, frEE — Y, g,

+|EY,, 4, /0 D/% _ qp

+|EY, 4, /n*-D/E _ap]|,

Now, 2k'/2¢, [nk~1/* < §/4 and by Lemma 5, |EY, 4, /n*~1/k_ap| < §/4 for all large
n. We conclude that, for all sufficiently large n, B, implies F;, U G,.

Let GU) be the event Ugi<n<2i+1Grn. We have, for all large m,

Pr{Un>mBn} < > Pr{F.}+ ) Pr{G,}

n>m n>m
< Y Pr{F}+ Y Pr{GW}. (17)
n2m 2> |logz m]
By Lemma 7, .
Pr{F,} < e, (18)

Also, note that by Fact 2, Z,,, < Zz,-+1,,_;2j for all 27 < n < 27+, Thus, Lemma 6 implies
that, for all sufficiently large 7,

Pr{G’U)}

IA

PT{Zz:'H,f” > (Qj)(k—l)/k—d/z}
(E22j+1,32j)/(Qj)(k—l)/k_e'/z
6 d. (27F1)(E-D/k=¢' 97\ (k=1)/k=€'/2

12dg.5 (27572)7 (19)

IA IAIA

< Zngo IV 4 2 k120, =Dk L |y, =Dl _EY, , =01

(16)



It follows from (17)-(19) that, for all large m,

Pr{URZmB‘n} S Z e_nllk —+ 12 dk,.\ Z (2_5’/2)3{

n>m 32 [logy m]
3 072 124,527 sl /3 9712
n>m
= O(m=¢/?. (20)

Taking m — oo, we obtain (14). This completes the proof of Theorem 1 for the case when

P has density function pg,).

4 Proof of Theorem 1

The structure of the proof for the general case is similar to that for the special case pj )
(as described in the beginning of Section 3). The details involve additional ideas in order

to carry out estimates without relying on an explicit form for P.

By assumption P is a probability distribution over RF whose absolute yu-th moments
are all finite where u > k/(k — 1); f is the probability density for the absolute continuous
part of P. Let Ap, denote [g: ||v||“dP, which is clearly finite.

We will use notations similar to the ones employed in the previous section. Choose
any fixed A such that g+ &k < A < kp. (Such A exists as p > k/(k — 1).) Define the
constants cg,, dk,), and € by the same formulas as in Section 3; also let Ci ¢ = [—£, 4* and

£, = n® as before.

Let vy, vy, -+ be an infinite sequence of random points in R¥, where each v; is inde-
pendently distributed according to P. Define V,, = {vy,v3,--+,v,} and X, = T'(V,,). For
any £ > 0,let Yo o = T_(Vyy; £) and Zp g = T (Vy; £).

We first prove the analogous results for Lemmas 1-4.
Lemma 8 Y, < Xy Yoo+ Znp+ 2k1/2¢,

Corollary If 0 < £ < £, then Y, ¢ < Yoo < Yoo+ Zn g + 2k
Proof The same proof as Lemma 1.0

Let hpyy = 2M5 k=12 T(1/k) (ck.0)~V* Ap .
Lemma 9

EZn. < 2hp, nlb=Dk g~lu=2/k) ¢ o g, plb~Dlk j~(A=k-Mlk) | gy, fpplk-2)/k-1])

10



Proof Let vj,v5,--- be an infinite sequence of random points in R*, where each v/ is

independently distributed according to pg . Let V,, = {v],v5, -+, v} }.

For each u € RF\ Ci, let J, denote the point closest to u among all points u’ such
that (a) ||o'|| < ||u||, and (b) u’ lie in either V,, \ Ck ¢ or on the faces of the cube Cjy . For
each 1 < 7 < n, define a random variable D; which takes on the value 0 if v; € Cj ¢ and,
otherewise, the value ||v; — Jy;||. Similarly, for each 1 < ¢ < n, define a random variable

D! which takes on the value 0 if v € C and, otherewise, the value ||v; — J,.]|.

Let S4 = (Va \ Ckye) U {es}. Observe that a Steiner tree for Sy can be obtained
by adding the sets of edges {vi,Ju;}, vi € Va \ Cky, and {v;,Jy1}, v; € V; \ Cie to a
shortest traveling salesman’s tour for the points in J, where J = {J,, | v € Vo \Ci 3 Ju; €
Cr,e} U{Jy | vi € Vi \ Ciyes Iyt € Cre} U{ee}. By Facts 3 and 4, we have

Zﬂ,g < 2M(S+)
< 2 ) Di+2 Y Dj+2T(J)

1<i<n 1<i<n
< 2 Y Di+2 Y Dit2bit(2n+ 1)V,
1<i<n 1<i<n
Thus,
EZ,0<2 Y, ED;+2 Y, ED+8btn*D/E (21)
1<i<n 1<i<n

The quantity ED} has been analyzed in the proof of Lemma 2, and we have from (4)
ED! < djn~ Mk g~O—k=2k) (22)
We now estimate ED;. We start as in the analysis of ED!. Let @, = RF \ Ck,¢. For

u € (Jp the conditional probability distribution of D; satisfies, for all s > 0

Pr{D;>s|vi=u} < (1-pra(u) (Sk_lﬂ)k)n
< exp(—nk7* e\ sF (14 [Jul)7H). (23)

This leads to

E(D,—Iv;:u) = /mPr{Di>s|v£:u}ds
0
kM2T(1/k) (epan) ™% (14 ||l (24)

IA

Using (24) we obtain

ED; = f E(D; | v; = u)dP
Qe

11



< KRR (eram) ™ [ (L )M ap
Qe
< PREV2D(1/R) (cpr )~V /Q l[u]M* dP
£
Now,
[ wlPkap = [ jololi-rap
Qe Qe
< g'(rr-)\/k)/ ||v||“dP
Qe
g APjﬁg—(u—A/k),
Therefore,

ED; < 2MF kY2 1(1/k) (en)~V* Ap, nm M /E g~ (0=2E) (25)

Lemma 9 follows from (21), (22) and (25).0
Lemma 10 If1 < £ < n1/12/10 and s > 6 b, n(k=1)/k (£_1/2+ nl/12 e_'"'m)-[—ﬁ k1/2 £, then
Pr{|Yos—EYq| >s} <2 e~ 4 23“2"/56,
where v = 211k (n(k=2)/kg2424/k | ok+2y,(k=1)/kg=T412/k | okpg=T),

Proof Let m = [(n€~'2)"/¥] and A = 2{/m. Divide the cube Cj, into m* subcubes
Cy,Ca,+++,C, «, each of side-length A. For each 1 < i < m*, let & = Jo, dP. Let I be the
set of 1 < i < mF satisfying &m* > £73, and let I = {1,2,---,mF}\ I. Define C’ = U;c;C;
and C" = U;7C:;.

Intuitively, few points falling into the cubes in C” and thus can be ignored. For points
falling into the cubes in C’, each such point is likely to have neighbors within the cube
containing the point, which enables us to use Azuma’s inequality to obtain a strong error

bound as required by the lemma.

Let V; =V, NC" and V) = V, N C". Let Y, , = T(V;) and Y/, = T(Vy). The same

n

argument as used in the proof of Lemma 1 gives
Yoo — Yol S Yoy + 2k (26)
Note also that, obviously,
Yot — EYnel < Yo =Yy ol + |Yn o — EY, | + |EY, , — EYp 4| (27)

In view of (26) and (27), our plan is to derive bounds on the behavior of [Y,, — Y ,| by
examining the behavior of Y,’,, and to derive bounds on [V, , — EY, ,| by using Azuma’s
inequality.

12



Let £ = 3 ;cr &i- Then

¢ < mA(e®mF)
= (3,

Let N denote the cardinality of V). As each v; has a probability ¢ to fall into C”, it

follows that

EN

én
< n/£3.

Also, by Chernoff’s bound

Pr{N > 2n/?} < Pr{N - EN > n/¢?}
2 exp(—2n/£°).

IA

Now, Y/, < by £ N(-=1)/k by Fact 4. It follows that

IA

Pr{N > 2n/?}
2exp(—2n/08).

Pr{Y}, > Qynlh-D/kg-313/k)

A

Using Fact 4 and the above inequality, we have

EY,, < 2 n(k=1/kg=243/k 1 9 exp(—9n/68)bytnF- D/
< 2bpnk=V/k(g=1/2 | p1/12g-nil%y

It follows from (26), (28), and (29) that

IEY., — BY,,| < 2bpnlE-D/k(g-1/2 4 g1/12e-n7%) 4 9p1/2
< 8/3,

and

Pr{|Yn, - Y, ,| > s/3} Pr{Y), > s/3 — 2k'/%(}
Pr{Yyyl, > 2bpn*—1/kg=2+3/k}

2 exp(—2n/L°).

IAIA

IA

From (27), (30), and (31), we obtain

Pr{|Yne — E¥nel > s} < 2exp(~2n/6) + Pr{[Y,, — EY,,| > s/3}.

It remains to estimate Pr{|Y, , — EY, ,| > s/3}.
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(32)



As in the proof of Lemma 3, consider the martingale differences g; = E(Y,/,|0:) —
E(YT:','E|0'€_1) for 1 < i < n, where o; is the o-algebra generated by vy,vq,---,v;. Let
w; = sup |g;|. Using Azuma’s inequality, we obtain

Pr{|¥, , — EY,,| > 5/3} < 2exp(~5*/(18 3 w?)). (33)
1<i<n

To evaluate w;, define for each u € C} ¢ the random variable A, whose value is 2k1/2¢
if none of the vj, i + 1 < j < n, is in C’, and otherwise is equal to min{||u — v;|||i+ 1 <
Jj £ n,v; € C'}. Then

w; < 4 sup EA,. (34)
ueC!

Suppose u € Cy where t € I. By definition of I, & > £3m™% > =32 Fp~112 = 2/,
where z = 2759, The probability that none of v;, i + 1 < j < n, falls into C; is at most

(1_&)11-'5 < e~ &t(n—i)

< e—z(n—i]/n .
This implies
EA, < KY2A 4 2k!/2ge—*(n=0)/n
< 21 /2y 1k 1412/ 4 9p1/2go=2(n—i)/n

Hence, by (34), we obtain
w; < 8k1/2(n—-1/k£1+12/k +Ee—zezi/’n>'
Standard manipulation leads to

Z w? S 64k(n(k_2)/k£2+24fk 4 2k+2n(k—1)/k£—7+12/k & 2kn£—7) . (35)
1<i<n

Lemma 10 follows from (32), (33), and (35).0
Lemma 11 For any fixed ¢ > 0, limp—co EY;, ¢ /n5~1/k = g, £1/2 lo,., (j“('u))(k_l)/’c dv.

Proof Let § = fck , @P. We can assume that 6 > 0; otherwise the lemma is trivially true.
Let P; denote the probability distribution when P is restricted to the cube Cj ;. Clearly,

P, has an absolute continuous part with density 87! f.

Let wug,ug,- - be an infinite sequence of independent random points each distributed
according to P;, and let W, ; denote the length of the shortest traveling salesman’s tour
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through the first n points. Let yp; = B k'/2 Jo. (f('v))(k_l)/"c dv. The result of [BHH]
implies that
lim BW, /nt-0/k = g=(--1/k (36)

Consider n independent random points in R*, each distributed according to P, and
let pnnr be the probability that n’ of them fall into Ck¢. Then

EYﬂ.,t = an,n’EWn',t' (37)

n

Lemma 11 can be obtained from (36), (37) and Chernoff’s bound on p,, ,/ in the same

way as in the proof of Lemma 4.0

We now complete the proof of Theorem 1 using the preceding lemmas in essentially

the same way as in Section 3. We will only sketch the proof.

Let £, = n¢ and s,, = n(k~1/k=¢/4_ The following lemmas (analogous to Lemmas 5-7)

can be proved.
Lemma 12 limy—eo EXn/n(k_l)/k = limp—eo EYn,gn/n(k_l)/k =ap.

Lemma 13 EZ,,, < (4hpyr + 1) n(F=1)/k=e(b=2/k) for Al sufficiently large n and
n/2 <m < n.

Lemma 14 Pr{|Y,, — EY,,, | > n(k=1)/k=¢/4} < ¢=7° for all sufficiently large n.

Lemma 12 proves lim,_., EX,/ nk=1/k = 4p. To prove the other equation in the
theorem, let § > 0 be any fixed number. Let B,, be the event that [Xn/n(k_l)/k —ap| > 6.
We need to prove that

Jim Pr{Un>mBn} = 0. (38)

Let F, be the event that |V, s, — EY,,,| > n(k=D/k=¢/4 and G, be the event that
Zny, > ntk—1)/k=e(u=A/k)/2 V¥ith the help of Lemmas 12-14, inequalities (16)-(20) can be
derived in the same way as in Section 3, leading to the proof of (38). This completes the

proof of Theorem 1.

5 Extensions

In this section we extend Theorem 1 to include a general class of functionals. Following
Steele [S1], a Euclidean functional L in RF is a real-valued function of the finite subsets of
RF, such that L(®) = 0, L(cvy, cva, - -+, cvm) = cL(v1,v2, -+, Um ), L(vi+u, va41u, -+, vy +
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w) = L(vy, vz, +, V) for all m > 1, ¢ > 0 and v;,y € R¥, and L(S) < L(8") for all finite
subsets § C ' C RF.

The length of the shortest traveling salesman’s tours, minimum Steiner trees, and min-
imum spanning trees are familiar examples of Euclidean functionals. Steele [S1] showed
that the Beardwood-Halton-Hammersley theorem [BHH] holds for a broad class of Eu-
clidean functionals satisfying certain conditions. We show that Theorem 1 is true when

one more condition ((T2) below) is imposed.

Let 7(5,5") denote the minimum Euclidean distance between any point in § and any

point in §’/, when S and S’ are nonempty sets in R¥. Consider the following properties.

(T1) For any finite collection of disjoint bounded cubes @1, @2, - -, Qs with edges parallel

to the axes, and for any infinite sequence of points vy, v, -+ in R¥, one has for large n,

> L(VanN Qi) < L (Vi N (Urcics@i)) + o(nlE~D7F),
1<i<s

where V,, = {’01, Uz,"'a’vn}-

(T2) For some positive constant 1, L(SUS’) < L(S)+ L(S")+n-7(S, S') for all nonempty
finite sets S and 5.

Theorem 2 Let k > 1 and L be any Euclidean functional in R* that satisfies properties
(T1) and (T2). Then there exists a positive constant 8z, such that, for any probability
distribution over R¥ with all its absolute yu-th moments being finite for some p > k/(k—1),
the following is true: if vy, wg,--- is an infinite sequence of independent random points
each distributed according to P, then L,/n*~1/* converges to ar p almost surely and
nlLrgo ELn/n(k_l)/k = ar,p, where L, is the random variable L(v,v2,---,v,) and ag p =

BL [ge( f(v)*-D/kdy with f being any density function for the absolute continous part
of P.

Note that (T1) was called the upper-linearity property in [S1]. The Euclidean function-
als corresponding the traveling salesman’s tour, minimum Steiner tree, minimum spanning
tree satisfy (T1) as was demonstrated in [S1]. It is easy to see that (T2) is also true for

these three examples.

We make two further observations. First, it is not hard to show that any Euclidean
functional obeying (T1) and (T2) automatically satisfies all the properties (A1)-(A8) listed
in Steele [S1], which implies by the results in [S1] that Theorem 2 is valid for any probability
distribution P with a bounded support.

Second, it is easy to see that, if L satisfies (T2), then L(.9) is no greater than max{1, n}
times the length of the minimum spanning tree on §. It follows that L(S) < #'M(S)
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for some positive constant 7', where M(S) is the length of the minimum Steiner tree
connecting all the points in §. (Fact 3 is a special case when L is T, the functional

corresponding to the shortest traveling salesman’s tour.)

With the help of the above two observations, the proof of Theorem 2 is basically the

same as Theorem 1, and will not be repeated here.

6 Concluding Remarks

It would be of interest to investigate the asymptotic behavior of functionals not covered
by the results in this paper. For example, what can be said of the optimum matching of
points with distributions over unbounded regions? (See Papadimitriou [P] for discussions
of the optimum matching question over bounded regions.) Are there natural functionals
whose behavior over bounded regions, say the unit cube, is different from n(k=1/k? How
do they behave?

We have proved that a subclass of the Euclidean functionals discussed in Steele [S1]
have the Beardwood-Halton-Hammersley limiting behavior even when the underlying dis-
tribution P has unbounded support. Can this result be extended to cover the entire class
discussed in [S1] (i.e. replace (T1) and (T2) by properties (A1)-(A8) listed in [S1])?
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