ORDERED AND RELIABLE MULTICAST COMMUNICATION

Annemarie Spauster
(Thesis)

CS-TR-312-91

June 1991

Ordered and Reliable Multicast Communication

Annemarie Spauster

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

JUNE 1991

© Copyright by Annemarie Spauster 1991
All Rights Reserved

To my mother, Anne Marie Spauster

Acknowledgments?

I am very grateful to my adviser, Hector Garcia-Molina, who not only taught me
how to do research, but also taught me how to write about, speak about it, criticize it and

publish it. I also thank him for always treating me with respect and consideration.

I would like to thank Rafael Alonso for reading my thesis and providing useful
comments, especially regarding clarifications in Chapter 2. I also appreciate the time he

has given me throughout my graduate career for discussing research and career options.

I also thank Kai Li for reading my thesis. He provided several references for related
work and helped clarify the presentation of the material. I'd also like to thank Kai for

giving me the opportunity to spend a summer at DEC SRC.

Daniel Barbara gave me guidance on my first attempt at research as a first year stu-
dent. His kindness and spirit made the effort fun and productive. I'd also like to thank
him for some ideas regarding the topology section of Chapter 4. Diane Souvaine, my

office mate, was very supportive in my first few years at Princeton.

The support staff at Princeton has always been outstanding. Pat Parseghian, Steve

Beck and Sharon Rodgers have always provided especially enthusiastic help.

I thank all the friends I’ve had at Princeton. I am especially glad to have had the

opportunity to be a Cache Hitter.

I would like to thank a number of people at Smith College. My colleagues, Joe
O’Rourke, Dominique Thiebaut, Bob Roos and Merrie Bergmann, heve shown support

and tact regarding my efforts to finish my thesis. A couple of students, Sihame Kairouani

This research was supported by the Defense Advanced Research Projects Agency of the Depart-
ment of Defense and by the Office of Naval Research under Contracts Nos. N00014-85-C-0456
and N00014-85-K-0465, and by the National Science Foundation under Cooperative Agreement
No. DCR-8420948. The views and conclusions contained in this document are those of the au-
thors and should not be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

and Jacqueline Lie, have made my first two years at Smith a pleasant and worthwhile
time.

A few good friends have always been there for me: Jacky Bloom, Nancy Ketterer
and Carol Kilpatrick.

My heart belongs to Alan B. Evans, who has stayed with me through thick and thin,
good and bad and times of uncertainty. I thank him for his love, patience and constant

encouragement. I anticipate with great joy the arrival of our baby.

I would be nothing without the help and love of my family. I think the world of my
two brothers, Edward and Robert, and know I can always count on them. I appreciate the
warmth and love I get from my sisters-in-law, Annie and Anne, my niece and nephew,

Tina and Robert, Jr. and from Rachael Evans and Keelan Evans.

Most of all, I thank my mother, Anne Marie Spauster, to whom this work is dedi-
cated. No one has taught me more than she has. Her example of strength, optimism and
self-reliance has made me believe I can accomplish anything. Her constant support and

encouragement has got me where I am today.

Abstract

Multicasting (sending a message to a subset of sites in a network) has become a
popular mechanism for interprocess communication in distributed systems. Many appli-
cations (e.g., distributed databases) require that a message be transmitted to multiple
processes. One indisputably desirable quality of any type of message transmission is
reliability. A message that is sent from process A to process B should indeed arrive.

Even better, it should arrive within a reasonable amount of time.

For distributed applications, it is also often desirable for multidestination messages
to arrive at the destination processes in a consistent order. In a database application, if
update requests are headed to two destinations with copies of the data, delivering the
requests in the same order at both destinations helps maintain consistency. This is just

one example of how consistent message delivery simplifies distributed applications.

In this thesis, we consider enhancing multicast communication by providing order-
ing and reliability properties. We present an algorithm, the propagation graph algo-
rithm, that guarantees a strong ordering property: multiple group ordering. Experimental
analysis of the propagation graph technique demonstrates that it is efficient compared to
other solutions and exhibits a clear load/delay tradeoff. We also present several types of
reliability that multicast ordering algorithms can provide. We address how to achieve
these types of reliability with the propagation graph algorithm. Further, we clarify the
issue of reliability by presenting a formal model of message ordering and by presenting
formal definitions of reliability properties. These properties are then applied to the pro-

pagation graph solution.-

Contents

FU 02 0021 0 Y ————— i
1 INTRODUCTION oinasmarmmnmnasimsis s s s s s saimes 1
2 ORDERED MULTICASTS ...oeteictecreestcse e cneeceaesestessessesseassaesesaessessones 8

2.1 Sequence NUMDETSccocvivienenininensininnseniisseniessessssenesssesassessassessassessasesseses 10

2.2 TIMESEAMIPS: .uovususosmssomsmssasnsvursysuosinessssns vemos o s ahs e ORGSR IS 10

23 Token PasSinE eumcssnsomsismimmsiiansiss s s s s s ea st 10

2.4 Central SEQUENCET ...cccieuiveeiiiiiisserueiertearsssesseserssssssssaesessesassessesessesessessssessssessnes 11

2.5 TWO-Phase SOIUION ...ccceeererreeremraesenansessesrensereessesserseeessessesessessessessessessessesssns 12

26 .The THaLPRBIBGHL .oonsvamsonessnscns s s S s A GRS 13

AR 1 BT | T ——— 14

2B OUDYHVIALY iyonusnssssninsssaes ansiiassssnss imasniss e rei s oo i oo asss eh st monasranmanss 15
3 THE PROPAGATION GRAPH ALGORITHMccoovviviiieneeiecieeenene 17

3.1 Motivation and Goals .oy bssosissmoseim i 17

30 COOT SONIRNOTE 5o cosusnssasosh Sors i A A4 DS EAA A AR SRS A SRR PR AASTAES 18

3.3 The PG GENETALOTcceeceieerieenaenerieesteeseeeessesesssessasssessessesseessessossesserssessssessenss 21

il

3.4 THe MP ProtOCOL iievio sussisss s iusesamsessomaseisssioises o oo s e e s ae e anee § 36865555

3.5 Optimizations

--

3.6 Correctness Of the PG GENeratorccceveueiinssneenmnsseneneonisssesnesssssssssssssoses
4 PERFORMANCE PG
4.1 Pomttorpoint MOodel ...aumnsnnmnisnsimsmsmimmssaimimasmaiimmnsmkms
4.1.1 NandDcvenreenvnenrnne enmEansliesRansramnsmns e Exnas e n e e Al SN B RS
4.1.2 L0AA ittt ettt s e e e e e e s st e e sr e sa s smte st e e e aa et anae
e T T T U R ———
4.3 Ranoon Oraphs s ssensmssnssmons ot s s o
4.4 Topolopy of Point-10-point NEIWIOIK' wccsamssmsrsmisseinms i issipimsisnssesims
4.5 Performance CONCIUSIONS ...ccoeeeveeeeereereesseeseeesseesseessaesseessaesserssassseesssessessssssses
5 DYNAMIC GROUPS ...ttt eta e ss e sreesesn e e ssssasessansesaansensonsane
3.1 Dynamic Groupsin Other SOIBHONE wousussimamismmsssomisssensissssivseins

5.2 Dynamic Multicast Groups with the

Propaganion OiapE AIPOIIIT ot b it anesnssasns

6 A FORMALMODEL FOR RELIABILITYocumussinsmmsessovwasssmssisisins

Gl Molivationand Previons WK . ousnsonneimmss o s v

6.2 The Model

...

6.3 Ordering and Reliability GUATanteescccvmmeiceseniernesieniserenserssssssensesnnns

6.4 MUILICASE PTOLOCOIS coveiriitieeeieeerereeeeeeiereeeeeesessssseesssessssssssssssssesssssssnsssssssessssssssasn

6.4.1 Protocol O Fieesssenstssnnsesessunetbbnssessasesesansssasssesnsesnnsentestanteressersessssssrnennetetseses

6.4.2 Protocol 1

oo

ii

24
25
28

30
31
31
36
39
41
42
48

53
54

54

57
58
61

71
2
73

iv

63 PIGHIERL 2 rensrmmsrisnsmnesssset i o 0 T R S R A AR 77
6.4.4 PIOtOCOL 3 ..ooviieiiiieenicrsniesnssussseriestssisstsssesessessesssssesssssessestsssssessessessessesssens 80

7 RELIABILITY OF ALGORITHMS FOR MULTICAST ORDERING 83
7.1. Reliability - INFOMMLY .cnmnissimismmimuisi s st 83
7.1.1 Non-atomic DEIIVETYcocieiiiiiriicniieieis et sisss et s e saanas 84
7.1.2 AtOMIC DEHVETY et cctrccae fereeseet e e seseesssaesnas s saassne s snsssnssanssassnes 88
7:1.3 Reliability of Other SolnHons: .cnumavussmnmssmsssmssmsvosmmesiensas 88
T2 Rehability = Fommally onmaamsmssmmsmensensmmmamsossmasyemme 89
7.2.1 Protocol 4: Propagation Graph Algorithm Version Iccccecvieniveevnenens 89
7.2.2 Protocol 5: Propagation Graph Algorithm Version ITccccceceniinnnnanen. 95
7.3 Relaxing the ASSUMPHONS ...ccociiiiiiiiiieiiresicese s see e srae s esssan e s sessassaenes 103
8 CONCLUSIONS AND FUTURE WORK. ... 109
BREEIRIIIR T iiicininisibiasissiiisiomnsomsanamssasssa sesssmessmssesssnsas seasa s svsmsasssamsa oo sRSS SO ERRARS 112
BIBLIOGRAPHY ...coammmumemopnuepmosssmsssamsissss e s s s s s iissmyis 115

Chapter One

Introduction

The basis for any distributed system is the ability of its member sites to communi-
cate. Communication is accomplished by using established protocols on an underlying
network. The network itself comes in many varieties, each providing its own special
features; they are broadly classified into two categories: broadcast and point-to-point.
Broadcast networks (e.g., Ethernet, token ring) allow each attached site to hear a message
put on the channel. Point-to-point networks (e.g., Internet) generally allow only single-
site to single-site communication. Messages from one site to another site to which it is
not directly connected must be routed through intervening sites. Common now is the
internetwork, which connects in a point-to-point fashion local-area (typically broadcast)

networks.

Often, the physical form of communication provided by the network (i.e., broadcast
or point-to-point) is not the one or only type of message transmission desired by the user.
For this reason, protocols run in hardware and/or software are employed to effect various
forms of logical communication. The simplest logical message type is a unicast: a mes-

sage from one site to one other. Point-to-point networks provide this already; broadcast

networks typically provide a hardware filter (channel interface) to weed out messages
that sites are not interested in. The second type of logical communication is broadcast.
A broadcast is a message that a sender wants all sites to receive. A broadcast network
supplies this readily (no site filters this message out); point-to-point networks require

special routing techniques.

Many protocols have been suggested for routing broadcast messages on a point-to-
point network. One simple choice is just to have the source send a separate message to
each site. Another possibility is to flood the network with the message. Any site that
gets the message sends it to every site with which it communicates directly. Multidesti-
nation addressing sends information along with a message telling the recipient which
sites to pass it on to. Destinations along the same route share message copies. Tree for-
warding uses a spanning tree (e.g., a minimum spanning tree) of the network to forward
the message. [FWB85] describes and compares these techniques using ratings of nil,
low, medium, high and gross (best to worst) on the following criteria: bandwidth, delay,
state information, computation, et. al. Separately-addressed messages require high
bandwidth and incur high delay. The bandwidth associated with flooding is rated as
gross, but delay is medium. Multidestination addressing consumes medium bandwidth
and incurs medium delay, but variable-sized packets make this technique hard to imple-

ment. Tree forwarding consumes low bandwidth with medium delay.

A new local-area point-to-point network called Autonet has been implemented by a
gror at Digital’s Systems Research Center [Schr90]. Forwarding tables at each switch
route packets. Broadcast is supported by flooding packets on a spanning tree of links.

The spanning tree is computed dynamically as the topology of the network changes.

The most general form of logical communication is a multicast - the transmission of
a message from one site to a subset of sites in the system. (Unicasts and broadcasts both

qualify as multicasts.) Both types of networks can employ protocols to multicast.

Multicasting on a point-to-point network can be handled using the broadcast methods.
Separately-addressed messages may be a practical alternative for multicasts to a small
subset of sites. Flooding and multidestination addressing also work, as do spanning trees.
For efficiency, a different spanning tree can be used for each subset of sites, but this can
be difficult to maintain. These techniques are addressed in [FWB85]. [DC90] addresses
multicast routing in internetworks and presents several extensions to common routing
algorithms (distance-vector routing and link-state routing) to provide multicast routing.

[McKL90] uses multicast trees to route multicasts in bus-based networks.

Multicasting on a broadcast network can be handled in several ways. Often logical
multicast group addresses can be hardwired into the network, so that the network inter-
face can determine if it should pass the message to its corresponding site. If logical
addresses are not implemented in hardware, multicasts can be accepted at all interfaces,
leaving it up to software to weed out unwanted messages. (Logical group addresses
checked in hardware are supported on the Ethernet, though applications often implement
multicasting using the network’s broadcast capabilities instead. Hosts must then rely on
software to filter out unwanted messages, incurring higher overhead [DC90].) As an
alternative to using a broadcast with software intervention, separately-addressed mes-
sages can be sent from the source to each group member to effect a multicast on a broad-

cast medium.

As networks have gotten larger and distributed services more various, multicasting
has become increasingly regarded as the preferred paradigm of interprocess communica-
tion. Transmission of the same message to more than one site is undoubtedly useful for
many distributed applications, for instance, load balancing, routing table updates, data-
base updates. Replicated file updates, conferencing and dissemination of intermediate
results of distributed computations are noted in [DC90] as motivation for multicasting.

In addition, researchers have asserted that broadcasting is not a generally useful facility

as there are few reasons to communicate with all sites [CD85]. Gray [Gray88] notes that
the scalability of multicasting to very large networks appeals to practitioners, as opposed
to broadcasting which does not scale well. Even the scalability of multicasting to large
networks (in particular, internetworks) has been questioned, but research into efficient
algorithms is providing support against that opinion [DC90]. The idea that broadcasting
incurs more message transmission than is needed for many tasks is easily understood
from the perspective of distributed database applications. Replication of data is expen-
sive, so there are likely to be just a few copies of various fragments scattered in the net-
work. Even when data is not replicated, a particular transaction will likely require coor-
dination among a small subset of the sites. Motivated by the current research in this area,
and given that multicasting is the most general form of logical communication, we con-

centrate in this thesis on multicast communication in distributed systems.

We have been discussing site-to-site communication, but typically messages are
sent from process to process. More generally, we define a mulricast group to be a subset
of processes in a distributed system that are the destinations of the same sequence of
messages. A multicast then is a message sent from a process to a multicast group. In

[DC90] multicast groups (composed of hosts, not processes) are classified as being either

(a) pervasive long-lived and containing many sites; or
(b) sparse long-lived or transient but small; or
(c) local transient and existing on subdomains of the internetwork.

Pervasive groups may best oc ..andled by broadcast communication techniques. The
authors of [DC90] contend that most groups are likely to be sparse. We will not distin-
guish here between networks and internetworks, and local groups are likely sparse com-
pared to the size of the networks, so we, too, will be concerned with sparse groups.
(Consider, for instance, the cost of replicated data to understand why groups are sparse.)

Much of the research on multicasting focuses on a particular kind of group. [McKL90]

assume sustained groups. We, too, expect the multicast groups to be long-lived. (Again,

consider the distributed database application.)

Much of the research we have mentioned so far has been concerned with the routing
of multicast messages. It is not our intention here to pursue this area any further,
Instead, we focus on two important guarantees that are often required of process-to-
process communication and consider providing these guarantees for multicasts. One of
these properties is reliability - a guarantee that the destination processes do indeed
receive the messages sent to them. The other is ordering - a guarantee that destination

processes receive their messages in consistent orders.

Consider first the need for ordering guarantees with the following example of a
banking system with two main computers. Each computer has a copy of the entire bank-
ing database and will process all transactions arriving from the branch offices. (The
second machine is needed for disaster recovery.) Transactions should be executed in the
same order at the main computers, else the database state will differ. For instance, con-
sider a deposit and a withdrawal to the same account. If the withdrawal is done first, an
overdraft occurs and a penalty is charged. With the deposit first, no penalty is incurred
and the resulting account balance is different. See [GA87] for additional details on this

type of application.

In the same banking example, consider now a second subset of sites to distribute
new software releases or system tables (e.g., defining overdraft penalty charges). This
second group includes the two main co.:puters, but in addition other development
machines. Even though two different subsets of sites are involvc;d in transactions, it is

still important to process all messages in the same order at the machines in the intersec-

tion of the groups.

This example is just one illustration of why ordering properties are important for

multicasts. Birman and Joseph [BJ87] have studied multicasting and cite updating

replicated data and deadlock avoidance in lock management as applications that can take
advantage of ordered multicasts. The ISIS System that they have implemented at Cornell
relies heavily on ordered communications. Their experience with a working system
leads them to claim that "[our] communication primitives actually simplify the design of
distributed software and reduce the probability that subtle synchronization or con-
currency related bugs will arise." They further state, "We believe that this is a very
promising and practical approach to building large fault-tolerant distributed systems, and
the only one that leads to confidence in the correctness of the resulting software."

Ordered multicasts are also useful in various concurrency control mechanisms (e.g., see

[KG8T7)).

The need for reliability of message delivery for many applications is clear. Con-
sider again the distributed database described above. If one site receives update mes-
sages that the other site does not, the data copies will diverge. Message loss may occur

for many reasons, including buffer overflow.

In this thesis we consider the problems of guaranteeing consistent ordering and reli-
ability of multicast message deliveries. We study several ordering properties in detail,
concentrating on a property called multiple group ordering. We survey existing methods
for providing the ordering properties (Chapter 2) and describe a new solution that pro-
vides all the ordering properties under consideration (Chapter 3). We compare the new
solution to extant work through analysis and experimentation (Chapter 4). We consider
the problem of sites entering and leaving multicast grougs, in other words, how to handle
dynamic multicast groups (Chapter 5). We then address the problem of providing reli-
able multicast delivery, in particular when ordering properties are also required. There
are many different reliability alternatives, so we begin with a formal model of ordered
and reliable multicasting (Chapter 6) to get a handle on the possibilities. We then discuss

the reliability of our and other ordered multicast solutions both informally and using the

model (Chapter 7). We then consider some future directions for our research (Chapter

8).

Chapter Two

Ordered Multicasts

Before we describe the ordering properties for multicast messages, we present a
simple model for message delivery which we will use for the next four chapters. Our dis-
tributed system consists of a collection of processes running at various sites. Recall that a
multicast group is a subset of processes in the system that are the destinations of the
same sequence of messages. For simplicity, we will assume there is only one process at
a site that is a possible destination of multicast messages. (Extending any of the solu-
tions to accommodate multiple processes per site is straightforward.) Subsets of destina-
tion processes, then, form multicast groups, which may intersect. Multicast messages
may originate at one or more source sites and may be destined to any of the multicast
groups. To get to a destination process, messages must first arrive at the host site (the
site where the process is running) and are then delivered to the destination process.
(Delivery is not always immediate. Many protocols require some coordination among
the sites before delivery. Or, more simply, a site may have to wait for an earlier message
before delivering the one it has just received.) Before a message arrives at the host site it

may be routed through various other sites.

Three useful ordering properties that multicast protocols can provide are the follow-

ing ones, arranged from weakest to strongest.

(a) Single source ordering. If messages m; and m originate at the same source site,
and if they are addressed to the same multicast group, then they are delivered in the

same order to all destination processes.

(b) Multiple source ordering. If messages m; and m, are addressed to the same multi-
cast group, then they are delivered to the destination processes in the same order,

even if m; and m, originate at different sources.

(c) Muliiple group ordering. If messages m; and m, are delivered to two processes, p,
and p, they are delivered in the same order, even if m, and m, originate at different

sources and p and p are in different multicast groups.

Figure 2.1 illustrates these three properties.

75]

S1 S2 S1 S2

| N
ED Ca®

(a) (b) (©
Figure 2.1

10

2.1 Sequence Numbers

Guaranteeing the single source ordering property (a) is relatively simple and is
sometimes done by the underlying communication network. The basic idea is to number
the messages at the source and to have destination sites hand the messages to the destina-
tion processes in that order. Note this also allows the destination to determine if it is

missing any messages. We refer to this simple method by the name of sequence number-

ing.

2.2 Timestamps

Enforcing the multiple source and group properties (b,c) is harder than guaranteeing
single source ordering. One solution is to use timestamps [Lamp78, Schn82]. Each
source assigns a unique timestamp to its messages. A site can deliver a message when it
can ensure that there are no outstanding messages with smaller timestamps. For a site a
in multicast groups o and B, if multiple source ordering is required, site @ must check
with all potential sources of an o message before it can deliver any o message. For mul-
tiple group ordering, site @ must check with potential sources of both o and B messages
before it can deliver either an o or B message. If the potential sources are unknown, a

must check with all sites in the system.

2.3 Token Passing

A centralized solution presented by Chang and Maxemchuk [CM84] is designed for
broadcast networks and solves the multiple source ordering problem. To guarantee con-
sistent ordering, all messages are funneled (logically) through a primary receiver called
the token site which determines a total order for all messages. When a source transmits a
message, m, on the broadcast channel, sites that receive it (do not miss it due to buffer

overflow, for instance) queue the message for later delivery to the destination process.

11

The token site, assuming it received m, acknowledges m to the source and includes a
sequence number with the acknowledgment. It is the sequence number which uniquely

identifies the message and gives it a position in the total order.

The token site responsibility is rotated among the sites. A site only accepts the
responsibility of being token site if it has received all messages so far. Once L sites have
accepted the token since m was sent, m can be delivered at the destinations. This implies
that the system is "L-resilient,” in other words, as long as there are L or fewer site
failures no message will be lost. Once the token has gone all the way around to the origi-

nal acknowledger the message has been seen everywhere and can be discarded.

[CM84] does not discuss multiple multicast groups, but the same approach could be
used to guarantee the multiple group ordering property, as long as all overlapping groups

use the same central controller.

2.4 Central Sequencer

A completely centralized version of the token-passing solution is presented in
[KTHB89] in the form of a broadcast algorithm. The algorithm is designed for broadcast
networks and is not designed for fault tolerance. That is, the algorithm handles message
loss, but is not concerned with site failures. Whenever a site wishes to broadcast a mes-
sage, it sends it first to the sequencer - the site whose job it is to totally order broadcasts.
The sequencer assigns the next sequence number to the message and broadcasts it. Sites
can determine they are missing messages using the sequence numbering. As with the
token-passing solution, the focus of the work is on broadcasting and multicasting is not
mentioned. The algorithm could also provide multiple group ordering for multicasts as
long as the same central sequencer is used for all groups, and multicast is effected with
just one network message. The authors briefly address the issue of reliability, first by

stating, "If the sequencer fails, the whole system will come to a grinding halt." Recovery

12

from sequencer failures is then sketchily considered: the history of message delivery
could be replicated and a new node could be elected as the new sequencer. Since this
work does not consider fault-tolerance to be a pressing issue, we will focus on the token-

passing solution here, even though the spirit of both algorithms is similar.

A similar idea is presented in [CZ85] where messages are filtered through a pub-
lisher, which numbers them and issues them to the subscribers. The subscribers, then,
are the multicast group; the publisher is the central sequencer. Missed messages, again,
are detected by a gap in the numbers. The issue of fault tolerance is not addressed in this

work either.

2.5 Two-phase Solution

Birman and Joseph present an interesting solution (attributed to Dale Skeen) to the
multiple group ordering problem as part of their work on the ISIS distributed system at
Cornell [BJ87]. Their algorithm resembles two-phase commit [Gray78]. Each site in the
multicast group maintains an ordered queue for the destination process. The source
sends the messages to the multicast destinations. Each destination gives the message its
own priority number, a systemwide unique number higher than any given so far by that
site. The message is marked "undeliverable" and put on the end of the queue at each site.
Each receiver returns the priority number to the source. The source picks the highest
priority number it sees and sends it back to the receivers, who replace their original
number with the new one and tag the message as "deliverable." Each receiver reorders
its queue in sequence number order. Whenever a message at the front of the queue is

"deliverable," it is delivered.

This algorithm is targeted to sites connected on a local area network where com-
munication is fast and partitioning is rare. Contrary to [KTHB89], the two-phase solu-

tion is concerned with fault-tolerance. The algorithm can be used on any type of

13

network; however, poor performance prohibits this.

2.6 The Total Protocol

A recent solution to the problem of multiple group ordering is presented in
[MMA90] and is called the Total protocol. It is designed for broadcast networks and the
authors envisage their algorithms implemented at the interface level. The Total protocol
makes use of the Trans protocol which uses a series of positive and negative ack-
nowledgments 7 to guarantee that all sites receive messages. The technique is best illus-
trated by an example taken from [MMAO90]. In Figure 2.2, each group of letters desig-
nates a message, labeled by the upper-case letter. The messages are ordered left to right
in the order they are broadcast on the network. (Sources are not shown.) Upper case
letters denote the message, lower case letters indicate piggy-backed acknowledgments
and overhead bars indicate piggy-backed negative acknowledgments. In the example,
the first message that is broadcast is message A. There are no piggy-backed positive or
negative acknowledgments in this message. The second message is message B. The
lower-case "a" juxtaposed with "B" indicates that message A is acknowledged by mes-
sage B. Recall that the underlying network is a broadcast network, so all messages and
any acknowledgments are heard by all sites (barring failures). Once a site knows a mes-
sage has been acknowledged it does not acknowledge it, though it is possible that multi-
ple sites will acknowledge the same message. In the example, C acknowledges message
B and D acknowledges C. In the example, the acknowledgment of C alerts a processor
that it missed C. This processor sends a new message, E, and includes a positive ack-

nowledgment for D and a negative acknowledgment for C. C and its accompanying

t A positive acknowledgment for a message m is an acknowledgment that indicates the desti-
nation received m. A negative acknowledgment indicates that message m was not received and
should be retransmitted.

14

acknowledgments are retransmitted. The processor that acknowledges C with message D

implicitly acknowledges B and A.

A Ba Cb Dc Ecd Cb Fce

Figure 2.2

The Total protocol uses the partial ordering of messages provided by the ack-
nowledgments combined with an implicit voting scheme to define a total order for mes-

sage delivery. See [MMA90] for the details.

2.7 Other Solutions

Table 2.1 summarizes the solutions in terms of the ordering properties they provide
and the networks for which they are intended. There are also other solutions that we do
not review here. In particular, [Wuu85] uses logs of message receipts at each site. In
[NCN88] a solution to the multiple source ordering problem is presented. Each multicast
group has a group manager (and backup managers) responsible for delivering the mes-
sages to the group members. [LG88,LG90] presents a decentralized solution that relies
on majority consensus among designated processes at each site to commit on the order-
ing of broadcasts. The paper [GKL88] focuses on the single source problem and how to
make failure recovery particularly efficient. A system described in [Ahuj89] provides
Flush primitives for nor;-F[FO channels. These primitives guarantee single-source order-
ing of messages. They are not designed for a continuous stream of ordered multicasts

(they are too inefficient), but rather for intermittent ordered messages, for instance to

15

generate global snapshots.

single multiple multiple point

source source group to
Algorithm ordering ordering ordering broadcast point
Sequence numbers * * *
Timestamps * * * * *
Token-passing * * T *
Sequencer * * T * ki
Publishing . * t * i
Two-phase * * * * 3
Total * * * *

" provided as is
i § provided if modified
i provided, but not intended for point-to-point network

Table 2.1

2.8 Summary

Though the solutions presented in this chapter are valid, each has its share of perfor-
mance problems. When applied to multiple group ordering, the timestamping solution is
prohibitively expersive in most cases. (The only time this solution makes sense is if sites
broadcast regularly.) The token-passing solution places too much of a burden on the cen-
tral site and incurs long delay if multiple failures are to be tolerated. Also, this central-
ized solution is limited to broadcast networks and severely limits which sites can serve as
the central controller when applied to multiple group ordering. The central sequencer

solution is not designed for fault tolerance. The Total protocol is also limited to

16

broadcast networks. The two-phase solution incurs substantial message overhead. To
address these concerns, we have developed a new solution - the propagation graph algo-

rithm - which we present in the next chapter.

Chapter Three

The Propagation Graph Algorithm

3.1 Motivation and goals

To alleviate some of the problems associated with the solutions of Chapter 2, we
have developed a solution to the multiple group ordering problem (and the multiple
source ordering problem) that compromises between a highly centralized approach and a
solution which requires many messages. In addition, we have attempted to make our
solution more flexible than others by allowing simple variations on the technique to
accommodate the needs of the system. In particular, the method displays a clear
load/delay tradeoff (where load is processing time at the sites and delay is how long it
takes for a multicast to be delivered to all destination processes). The method is easily
modified to favor one over the other or balance the two. Finally, we attempt to gain
efficiency by not forcing sites to process messages for other sites when these messages
are not of interest locally. Our solution is geared toward sparse, long-lived multicast
groups (see Chapter 1). For the purposes of this chapter we assume that the system is

nearly perfect, that is, sites do not fail, messages are not lost and the network does not

17

18

partition. We will approach the issue of fault tolerance when we discuss reliability in

Chapters 6 and 7.

3.2 Our solution

Our solution, the propagation graph algorithm, attempts to achieve the goals men-
tioned above. It is inspired by the token-passing solution in [CM84], but contrary to their
method, messages are not ordered at a single central site. Rather, they are ordered by a
collection of nodes structured into a message propagation graph. In particular, the graph
is a forest. Each node in the forest represents a computer site and the graph indicates the
paths messages should follow to get to all intended destinations. Instead of sending the
messages to the destinations and then ordering them (which happens with timestamping,
the two-phase solution and the token-passing solution) the messages get propagated via a
series of sites that order them along the way by merging messages destined for different
groups. When a site receives a message it knows immediately where in the order the
message belongs and need only wait for earlier messages before delivering it to the desti-
nation process. The key idea is to use sites that are in the intersections of multicast

groups as the intermediary nodes.

Figure 3.1(a) illustrates a scenario where sites x and y are sending messages to mul-
ticast group o= {a,b,c,d}, while site z is sending messages to B = {c,d.e.f}. A simple pro-
pagation graph is indicated in Figure 3.1(b). In order to guarantee that all messages are
delivered in the same relative order, sources x, y, and z send their messages only to site
¢, who merges them. Site ¢ forwards the group o messages from x and y toa and b, the
B messages from z to ¢ and f, and the merged o, B messages to d. Thus, all sites deliver

their messages in the order defined by site c.

Our propagation graph algorithm has two components: the propagation graph (PG)

generator and the message passing (MP) protocol. The PG generator builds the

x.y
x,y z
/TN N/

a b c d e f c
\\ f / o B B
z a b e

(a) (b)

Figure 3.1

propagation graph for a given set of multicast groups. For simplicity, we assume one site
(designated the manager) runs the PG generator and transmits the resulting graph to the
other sites. (A two-phase commit can be used to ensure all sites receive the graph.) We
discuss dynamic changes to the propagation graph in Chapter 5. Once a site knows what
the graph looks like, it uses the MP protocol to send, receive, propagate and forward

messages.

We establish some terminology for message passing. The group that is to receive a
message from a source is called the destination group. The source sends the multicast
message to one designated site in the multicast group, called the primary destination.
(The primary destination could be the source.) Any time a site sends a message directly

to another site, we refer to these sites as the sender and receiver, respectively.

20

One important requirement for the algorithm is that single source ordering be
satisfied; if the underlying network does not provide this, we use sequence numbering.
Note the implied use of single source ordering in the example of Figure 3.1. Site ¢
delivers its o and P messages locally in the same order in which it sends them to site d.
Site d is able to determine the order in which they were merged by the sequence
numbers. In fact, every edge in the graph relies on the messages being ordered at the

receiver the same way in which they were sent by the sender.

In Figure 3.2 we show a propagation graph for a more complicated example. Here
we have nine sites: a, b, ¢, d, e, f, g, h and j and eight destination groups:
oy = {c,d}, oz = {a,b,c}, az = {b,c,de}, a4 = (d.ef}, as = (ef],
a¢ = {b,g}, o7 = {c,h} and og = {dj}.
Site d is the primary destination for o, 03, 04 and ag, ¢ is the primary destination for o,
and o7, e is the primary destination for as and b is the primary destination for os. Note
that messages do not necessarily flow down to the bottom of the tree. For instance, g

only receives o messages.

-
-~

Figure 3.2

21

Detailed pseudo-code for the PG generator is given in Appendix I and a proof of
correctness is provided in Section 3.6. In the rest of this chapter we present our approach

in a less formal fashion.

3.3 The PG Generator
To ensure correctness our technique must guarantee the following two properties:

(1) Multiple group ordering, i.e., all messages are delivered in the same relative order,

and
(2) Ifxisin group @, then x gets all messages destined to group o.
To satisfy these requirements, it is sufficient for the propagation graph to have the
following two properties:
(PG1) For every group o there is a unique primary destination p; and
(PG2) For every site x € a, there is a unique path from p to x.
There are also two optional properties that the graph can exhibit and which our PG
generator attempts to provide:
(PG3) The primary destination of group o is a member of a; and
(PG4) Let p be the primary destination of o and x be another site in o.. Then, the nodes

in the path from p to x are all members of a.

When there exists a node a on the path from p to x where a is not a member of a, we call
a an extra node. A propagation graph that has no extra nodes possesses the desirable
independence property.

Both PG3 and PG4 are desirable because they yield more efficient graphs: there is
no need for nodes that are not involved in a multicast group to be handling messages for
that group. Our PG generator does guarantee property (PG3), but unfortunately gen-

erates extra nodes sometimes. For example, if we add group oy = {d, a} to the example

22

of Figure 3, we obtain the same tree. However, node ¢ is an extra node for og. We dis-

cuss the impact of extra nodes in Section 3.5 and in Chapter 4.

To start building the forest, the PG generator selects the site in the largest number of
groups (d in our example) and makes it a root. This greedy heuristic helps keep the trees
in the forest short. (We therefore do not consider the cost of processing the messages at a
primary destination to be substantial, but rather attempt to minimize the length of the
path down the tree to cut communication cost.) For purposes of explanation, we call the
groups to which the root belongs root groups and the other sites in the root groups inter-

secters. The root, then, is the primary destination for all root groups.

To determine the children of the root, procedure new_subtree is called, with the root
d as parameter. This procedure works as follows. It partitions the non-root groups so
that no group in a partition intersects a group in another partition. In our example there
are two partitions, P, = {a,b,c},{b,g}, {c,h} and P, = {ef}. This step also has the effect
of partitioning the sites (a,b,c,g and e f). In an attempt to achieve property (PG4), among
the partitions, the generator only considers those that contain an intersecter. From each
of these, one of the intersecters is chosen to be a child of the root using the same heuristic
used for picking the root: choose the site that is in the most groups in the partition. In our
example, for Py, b and ¢ occur in the most groups, so we arbitrarily pick ¢ over b. In P,
we arbitrarily pick e over f. (In practice, there may be a good reason not to choose arbi-
trarily, e.g., one site tends to be less loaded than the others.) Finally, thzre may be sites
that are intersecters but do not occur in any partition. In our example, this is true of j.
These sites become children of the root. At this point the tree looks as shown in Figure

3.3

To generate the next level of the tree, a recursive call is made to new_subtree for
each child, with the child as parameter. Since by determining the root and adding the

children, we have found primary destinations for the groups {c,d}, {a.b,c}, {b,c.de]},

23

Figure 3.3

{def}, {ef}, and {d,j}, we no longer consider these groups for partitioning in these
recursions. Also, we have placed d, c, e and j in the graph, so these are no longer candi-

dates as children.

In our example, the recursion on ¢ leads to a single partition consisting of {b,g}.
Sites a, b and h are attached as children of ¢. The recursion on e leads to no partitions
and to attaching f as a child of e. The recursion on j leads to no new nodes in the tree. At
the next level, new_subtree is called four times with a, b, h and f as parameters. The call
with b as parameter leads to g being added. The others result in no new nodes. Finally,
the recursive call to new_subtree for g leads to no new nodes and the process terminates
having determined the propagation graph. In this case, just one tree is obtained. If, how-
ever, there were still sites that had not been placed (hence, groups whose primary d=ti-
nations had not been determined) after the original call to new_subtree returned, another
root would be picked from the groups left and new subtree called again to determine the

next tree. The loop continues until no more sites are left.

24

3.4 The MP Protocol

The propagation graph specifies the flow of the messages in the network. The pri-
mary destination for each multicast group is the member closest to a root. A site that
receives a message propagates it down any subtree that contains members of the destina-
tion group for the message. In our example, d is the primary destination for {c,d},
{b,c,d,e}, {def) and {d,j}, c is the primary destination for {a,b,c} and {c,k}, and so on.
When, for instance, d receives a message for {b,c,d,e}, it sends copies to ¢ and e. Site c,

in turn, sends a copy to site b.

To be more precise about processing messages, we describe the message passing
protocol for the case of point-to-point networks. The MP protocol requires every site to
maintain sequence numbers for each site to which it sends messages, as determined by
the propagation graph. This guarantees that a receiver can order the messages from a
sender correctly in case they arrive out of order. (It also allows for the detection of lost
messages. Acknowledgments are not required in the MP protocol. Null messages and

timeouts are used for failure detection, a topic we return to in Chapter 7.)

At each site, two queues are maintained, a queue for messages destined to a local
process and a wait queue for messages that arrive out of sequence. When a site receives
a message, it checks the sequence number against the sequence number it expects from
that sender. If they do not match, the message is queued on the appropriate wait queue
until the earlier one is received. If they do match, the receiver determines if any of its
descendants in the tree are destinations for this message. If so, it sends it to the children
that are the subroots of those subtrees, using the appropriate sequence number for each
child it sends it to. If the receiver is a member of the destination group, the message is
queued for local dclivc;y. In addition, the receiver checks if there are any messages in
the wait queue from that sender that were waiting on this message. If so, it processes

these message(s) in the same manner.

25

3.5. Optimizations

In Section 3.3, we mentioned the independence property and claimed that the PG
algorithm attempts to preserve independence. Independence, stated again, is achieved
when no site is required to process messages for a group to which it does not belong. In
other words, no site is an extra node for some group. Unfortunately, the PG algorithm
does not always build a forest that achieves independence. Consider the following exam-
ple. There are eight sites: a,b,c,d,ef and g and destination groups oy = {a,b,d,e}, 0z =
{b,cf), a3 = {d,ef,g}. One possible tree generated by the PG algorithm is indicated in

Figure 3.4(a). In this case, d must propagate o, messages to f, even though d is not in .

I /I\
/N

(a) (b)
Figure 3.4

In systems where site autonomy is important, independence is an appealing pro-
perty. For this reason, we consider extending the PG algorithm to provide more indepen-
dence to the sites. We will see, however, that it is not always possible to achieve com-

plete independence for every site with our methods.

In the example of Figure 3.4(a), an edge can be added from b to f and the oy mes-
sages can bypass d. (See Figure 3.4(b).) This, of course, destroys the tree structure, so
care must be taken to do this correctly. The important question is: What allows the extra
edge? The answer is that there is no other site establishing a relative order among o, and
o3 messages. In other words, fis now the only node in the tree merging o, and o3 mes-

sages. This implies the general rule that all merges that are now required at the new

26

destination site must be uniquely performed at that site.

There are other scenarios that require a more complicated algorithm for achieving
independence. For instance, if we have sites a,b,c,def,g and h and groups oy =
{abde}, op = {b,cf,g) and o3 = {d,ef,g,h}, then the PG algorithm produces the tree in
Figure 3.5(a). In this case, d is not independent since it is forwarding o messages. Fig-
ure 3.5(b) indicates how the graph can be changed to avoid sending o, messages through
d. This change requires more than just adding an edge; the subtree rooted at g must
become a child of f. This is necessary because both f and g need the merged o and o3

messages.

PR NS
AN /N,
\

4

(a) ()

Figure 3.5

The following example illustrates a situation where independence cannot be
preserved. Here we have four sites: a,b,c and d and four destination groups: oy = {a,b,c},
oy = {a,b,d}, 03 = {a,c,d} and oy = {b,c,d}. The propagation graph produced for this
example is indicated in Figure 3.6(a). In this case, b is not independent because it is for-
warding o3 messages. It is tempting to use the same method as in the previous example,
producing the graph of Figure 3.6(b). Now c is receiving oz messages from a that it

merges with a; messages from b, but there is a problem since these messages are already

27

being merged by a. (Note, in addition, that now ¢ is no longer independent; it is for-
warding o, messages.) It is possible to send both o; and o3 messages from a to ¢ already
merged, but then ¢ must merge oy with oy messages, which is done by b. So, another
idea is to send oy messages from both a and b to ¢ and let ¢ resolve the o, o3 ordering
with the o, oy ordering (Figure 3.6(c)). But this technique gets complicated when we try
to make ¢ independent. We can add an edge from b to d to send the merged o, oy mes-
sages, ¢ can send d the merged og, oy mcssagés, but now d must merge o, messages with
oz messages, which is done by a. So, we can add the edge from a to d and send the oy, o3
ordering to d. (See Figure 3.6(d).) Now d receives o, 03 messages already merged, o,
oy messages already merged and (13; oy messages already merged. It must resolve these
to achieve a total ordering on oy, 03 and oy messages and deliver them locally. Note,
however, that this may be impossible. Consider message m, that a orders before mg,.
Site b orders m, before m,. Site ¢ orders m, before mq,. Site d cannot resolve m, mq,

and my, to a total order. In fact, we cannot achieve independence in this case with our

methods.
a a a a
b b b b
SN N
d d d
(a) (b) © @
B Figure 3.6

Because of the potential difficulties with resolving the ordering of messages, we do

not resort to sending the same messages via several paths, even though sometimes this

28

technique achieves independence. The prudence of such a solution is questionable any-
way, since extra communication may be required for the redundant messages. It is possi-
ble that some of this can be reduced by sending a message along only one path and send-
ing only a message identifier on the other paths, but we do not investigate these possibili-

ties further.

3.6 Correctness of the PG Generator

Finally, we show that the forest we build using the methods of Section 3.3 is
correct. It is not difficult to see that the PG generator indeed builds a forest that includes
every site. To show that the forest guarantees the multiple group ordering property we
must prove two things: (1) all sites receiving the same messages deliver them in the same

order; (2) all sites receive the messages destined to them.

To see that property 1 is satisfied, say we have two sites, a and b, that receive mes-
sages m, and m,. Say that a delivers these in the order mm; and b delivers them in the
order mom,. If m; and m, are messages for the same multicast group a, then initially
they are ordered by the primary destination for a. It is easy to see that the sequence
numbering scheme used in the MP protocol guarantees that this order is maintained as m;
and m, are propagated.

Suppose, then, that m, is destined for group o; and m; is destined for o,. Call the
primary destinations for these types pd (o) and pd (o), respectively. If pd (o) and pd (o)
are the same site, then the situation is the same as when m; and m, both are destined for
o;. Say then that pd(oy) and pd(op) are two different sites. Certainly a, b, pd(oy) and
pd (o) are all in one tree of the forest, and pd(a;) and pd(ay) are both ancestors of a, b.
By the properties of trees, we know that there is only one path from the root of the tree to
any node. Thus, there is only one path from the root to a, only one path from o, to a and

only one path from oy to a. This implies that either pd (o) is ancestor to pd (o) or vice-

29

versa. Say pd (o) is ancestor to pd (o). Then, at pd(az) m; and m; are merged and pro-
pagated to a. By the same reasoning, m; and m are merged at pd () and propagated to
b. Certainly pd (o) determines the order just once by the MP protocol and the messages
are propagated to both a and b. Since this ordering is easily seen to be preserved by the

MP protocol, a and b cannot deliver these messages in inconsistent orders.

It is also not difficult to see that the algorithm guarantees that all sites receive their
message types. Say some site does not get some message type that it should. The situa-
tion should look as in Figure 3.7, where a and b are supposed to receive type o messages,
but b is not on a path for o messages. Figure 3.7 indicates that the PG generator places
nodes a and b in different subtrees of x, even though they are in the same group (o). This
is an impossibility since the partitioning step of new_subtree puts all sites that share

groups in one subtree of the current subroot.

Figure 3.7

Chapter Four

Performance

Performance is the crucial measure of the practicality of the propagation algorithm,
so here we compare the propagation method to the two-phase algorithm of [BJ87] and to
a strictly centralized version of [CM84] 7. Two models are considered, a point-to-point
network and a broadcast network. We look specifically at three performance measures:
N, the number of messages required to send a multicast under the multiple group order-
ing property; D, the time elapsed between the beginning of the ordered multicast and the
time when all the members of the multicast destination group can mark the message
ready for local delivery; and the load incurred at the sites to process the multicast mes-

sages.

t Since [CM84] relies on a broadcast network we do not consider changing the central site. In-
stead, we look at a centralized solution which is essentially a propagation graph that consists of
one tree of depth 1 and is similar to the central sequencer algorithm of [KTHB89].

30

31

4.1. Point-to-point model

The point-to-point network model we consider here is typical of networks like the
ARPANET. For a single source to send the same message to n sites it must send n mes-
sages, one to each receiver. For site @ sending a message to site b, we say it takes a pro-
cessing time P to put the message on the network and it takes latency time L for the mes-
sage to get to site b (network delivery time). Thus, a simple multicast with no ordering
requirements from source s to n sites requires n messages and the time elapsed before the

last site receives the message is nP+L.

411NandD

Table 4.1 indicates the performance of the three multicast methods for the first two
measures, N and D. Consider first N for an ordered multicast from source s to n sites.
The two-phase algorithm requires n messages to initially get the message from the source
to the destinations. Another n messages are required to return the locally-assigned prior-
ity number from the destinations to the source. Finally, the source sends out the final
priority number of the message, for a total of 3n messages. The centralized solution
requires one message from the source to the central site and n-I messages from the cen-
tral site to the remaining nodes, for a total of n messages. The propagation algorithm
requires 1 message from the source to the primary destination. In the best case, only
group members form the path down the tree, so n-I more messages are required to get the
message to every destination. If there are extra nodes on the path, then the number of

messages totals n+€, where € is the expected number of extra nodes.

To compute the delay for the two-phase method we consider the three rounds of
messages. The time it takes between when the source sends its first message and the last
site receives the message is L+nP. Then, the delay for that last site to send the local ord-

ering information back to the source is L+P. The source then sends the final priority

32

order to the sites, again L+nP. The total is 3L+(2n+1)P. The centralized algorithm has
delay L+P from the source to the central site plus L+(n-I)P delay from the central site to

the last recipient, for a total of 2L+nP.

The delay in the propagation graph case depends on the length of the longest path
from the primary destination to a member of the multicast destination group. We intro-
duce the variable d to represent the expected depth of this recipient from the primary des-

tination.

The total delay in this case, then, is the sum of the delays from the source to the pri-
mary destination and the delay from the primary destination to the group member that is
furthest away (at depth d). The delay from the source to the primary destination is sim-
ply L+P. It is simple to show that the delay from the primary destination to the group
member at depth d is maximized at dL+(n-1+€)P (and in general is much less). Total

delay then for the propagation algorithm is at most (d+1)L+(n+€)P.

two-phase centralized propagation
N 3n n n+e
D 3L+(2n+1)P 2L+nP (d+I)L+(n+e)P
Table 4.1

Clearly, the performance of the propagation algorithm depends on the values of €
and d. It turns out that in most cases of interest, € and d are relatively small. We esta-

blished this via experiments on randomly generated multicast groups. For a fixed

33

number of sites, number of groups, and group size we chose sites from a uniform distri-
bution to generate a random set of multicast groups and then computed their propagation
graph. We have looked at a broad range of network sizes (from 20 to 1000 sites), group
sizes (from 5 to 40) and number of groups (from 10 to 40). A representative sample of

those results is given here.

Graphs 4.1 and 4.2 indicate results for the average depth, with Graph 4.1 consider-
ing a static group size for a varying number of sites participating in the system and Graph
4.2 considering varying group sizes for a static number of system sites. These curves
represent an average over all the runs of the average value of d for the groups in a run.
For these and all graphs, each data point is asserted with 95% confidence. For Graphs
4.1 and 4.2, the confidence interval is within £10% of the mean. The behavior of the
curves is explained by the ratio of group size to the number of sites. When this ratio is
large (left end of the horizontal axis), there are many intersections among the groups; the
abundance of common nodes leads to short bushy trees. As the ratio decreases, there are
fewer intersections, the trees get longer, so d increases. However, when the ratio is very
small (right end of the horizontal axis), there are so few intersections that the algorithm

produces a forest of many sparse, short trees.

Another factor in the measurement of D for the propagation graph algorithm is g,
the expected number of extra nodes (see Table 4.1), for which we show results in Graph
4.3. (The confidence interval is £0.5.) For each propagation graph generated in the
experiment, the number of extra nodes required to deliver a message to each site in a
group was averaged over all the groups. The graph indicates the average over all these
runs. The number of extra nodes is low in general and the curves display the same

behavior as those for the depth.

With a range of values available for € and d, we can return to Table 4.1 and com-

pare the algorithms in detail. Clearly, for N, the number of messages, the propagation

34

10 —
9 —
o 40 groups
8 - « 30 groups
+ 20 groups
7 a 10 groups
average g _|
depth 5 —
(d) 4
3
2 \\
1 4 e &
0 | P P | | |
2050 100 200 500 1000
number of sites in system
Group size §
Graph 4.1

method is significantly more efficient than the two-phase approach, since € is shown to be
small in our experiments. Also, the propagation technique is only slightly worse than the
centralized solution for this measure. For D, the delay, if the depth of the tree, 4, is less
than or equal to 2, then the propagation method is better than the two-phase solution. If
the depth is greater than 2, the propagation method may incur longer delay for message
delivery than the two-phase av. ~ach. Note, though, that this is only the case if the
latency time of a message dominates. If the processing costs are significant, then the pro-
pagation algorithm may still achieve better performance. Further, we expect d to be less
than or close to 2 when the group size is small. Small group sizes occur in many interest-
ing applications; for instance, since maintaining copies of replicated data is expensive,

copies are kept at only a few sites.

35

average g _

depth 5

(@ 44

| 1 |
5 10 20 30 40

size of groups
200 sites in system
Graph 4.2
Also, it is important to remember that the depth computed in the experiments is an
average over the worst case delay for a group. Thus, for any one group, the delay may be
long for one or just a few nodes, whereas the other nodes may get the message with small
delay. In the two-phase algorithm, it is only when the commit messages are sent out that
there is any variance in the delay among the nodes; each site must wait at least two full
rounds. Finally, note that the centralized solution is better in terms of delay and number
of messages. However, for large group sizes, e central site of the centralized solution
is a bottleneck, so D and N are not sufficient measures of performance. For this reason

we next consider the load at the sites.

36

8 —
o 40 groups
7 « 30 groups
+ 20 groups
a 10 groups
g ! group
average
54
number of
4
extra nodes
3
(€)
2 -
1
e Y f
2050 100 200 500 1000
number of sites in system
Group size 5
Graph 4.3
4.1.2 Load

To measure the load of the three methods we generated multicast groups as in the
experiments for € and d. Then we considered how many messages a site must process if
a message were sent to each group. Both send and receive messages are included in the
load. In the experiments presented here, for each set of groups we determine the max-

imum over the loads at the sites and average this over all th= - as.

In Graphs 4.4 and 4.5 we show the load results, using a confidence interval of +10%
of the mean. For the propagation graph method, load is high when just a few sites are
primary destinations and we have short, bushy trees. As trees get longer, load decreases
until trees are sparse and load is very low. The load for the two-phase method is very

well distributed, yielding low average numbers. This is the load at receivers, though.

37

Load at the source will be higher (possibly much higher) if the groups are large since the
source must communicate directly with every site in the group. As expected, load in the

centralized case is high, reflecting the central site bottleneck.

240 - S S B v [R TR R R S R o]

22040

200 —

180 —

1604 centralized

140 ——— propagation method
ticd - — - - two-phase

N N T T |
2050 100 200 500 1000
number of sites in system
Group size 5
Graph 4.4

The experiments show that the propagation graph method strikes a good comprom-
ise between minimizing delay and distributing load. In addition, it provides a flexible
solution that can be tailored to a particular network or application. For instance, the
greedy heuristic for picking primary destinations is just one option for ge.»=rating propa-
gation trees; other techniques with different goals can be used. Also, the graph can often
be modified to find the correct balance between delay and load. For example, groups o =
{a,b,c,de), B=(bf.gh}, y={ab)} yield the tree in Figure 4.1(a). To reduce the load at
a and b, we can transform our graph into the tree in Figure 4.1(b), which is correct and

does not use extra nodes. The depth, however, has increased. Further, the propagation

38

800

........ centralized
_ ——— propagation method
700 - = = - two-phase

600 *
500 |
load 400
300
200 —

100 —

size of groups

200 sites in system

Graph 4.5

PZAN N
N VAN
\

h
(a) (®)

- Figure 4.1

39

graph requires fewer messages than the two-phase algorithm, making it a desirable alter-

native in cases where network traffic is already high.

Finally, we comment that we have performed many other experiments using the
exponential distribution for determining the size of the groups, instead of the fixed value
for which we presented results here. The graphs produced by these runs have the same
shape but generally give lower numbers for the average depth. Thus, the propagation
strategy yields good results when a propagation graph is formed for groups of various

sizes.

4.2. Broadcast Model

The second model we consider is a broadcast network of the Ethernet variety. With
this model, any message sent by a source is transmitted to all sites on the network at
once. Each site must check if it is a destination of the message. In the case of a unicast
or broadcast, this is done in hardware at each site’s network interface. Multicast address-
ing is available, but requires the source to broadcast and each site on the network to
check in software if it is a member of the destination group. 7 Note that no message
transmission is reliable (for example, buffers may overflow); thus, the network does not
provide any ordering properties. Note, also, that we do not achieve any concurrency in

sending messages; there is just one message on the network at a time.

The performance results for this case are shown in Table 4.2 for the three algo-
rithms we are considering here. N for each case is determined as follows. The two-phase
algorithm requires one message from the source to the n destinations, n messages from
the destinations to the source and one message back from the source to the destination

group, for a total of n+2. The centralized solution requires simply two messages: one

+ It is true that the Ethernet does provide hardware check for multicast addresses, but we
choose to use a more general model.

40

from the source to the central site and one from the central site to the rest of the members
of the destination group. The propagation graph algorithm requires a message from the
source to the primary destination and a multicast at each level of the subtree. If the

expected depth of the subtree is d, the resulting number of messages is d+1.

two-phase centralized propagation
N n+2 2 d+1
D (n+2)T 2r (d+1)T
Table 4.2

Due to the nature of the broadcast network, each message has the same ‘dclay. This
delay consists of the time for the sender to put the message on the network, plus the time
for the message to get to the other sites plus the time for each site to determine if itis a
member of the destination group. Let T be this total delay. The delay in each of the
three algorithms is simply the number of messages multiplied by T, as indicated in Table

4.2.

The table seems to indicate that the centralized solution is superior in the broadcast
case. Also relevant, however, is the bottleneck at the central site, which will increase the
value of T and the delay. Given the results for values of d as presented in the last section,
the propagation graph method has small delay and requires few messages. The two-

phase algorithm is only comparable for small values of n.

41

With the broadcast model, it is important to consider the fact that many of the mes-
sages are multicasts, requiring a software check (for membership) at the receiving com-
puters. Any such check will affect the load at a site. These checks occur not just at des-
tinations but at all sites on the network, whether or not they are involved with multicasts.
Indeed, it may be preferable to ignore the network-provided multicast facility and revert
to point-to-point mechanisms (i.e., a series of unicasts) to multicast a message. Such an
option might be followed if the number of sites receiving the multicasts is small com-

pared to the number of sites on the network and/or load at the sites is already high.

4.3 Random Graphs

The performance results presented in the previous sections consider only one
heuristic for generating a propagation graph (choosing the site in the most groups as the
next subroot as long as it is an intersecter). Note, however, that the sufficient conditions
for correctness of the graph (Section 3.3) imply that any forest is a correct propagation
graph. Sources need only send group messages to a common ancestor of all group
members. (This may violate optional property PG3.) The obvious question, then, is: If
any tree works, can we be sure that the heuristic described in Section 3.4 is yielding
"good" trees, trees that meet our goals? To show that the heuristic we have developed is
indeed yielding desirable trees, we compare it, in Graphs 4.6 and 4.7, to trees that have
been generated randomly. Graphs 4.6 and 4.7 indicate results for average depth for
group size 5 (20 and 40 groups). By a random graph, we mean a graph for which the root
is chosen randomly, the remaining sites are partitioned as before and the children are
chosen randomly from each partition. (Then the algorithm recurses on the children.) As
shown in the graphs, the heuristic we have studied yields better trees than just picking
sites randomly. Of cour;e, there are other possible heuristics; we analyze some of these

in the next section where we consider the topology of the network when building the

42

propagation graph.
7 —
heuristic
e et e random
5
average A
dept h 3.
2 —
1 =
0 I | | 1
20 50 100 200
number of sites
Group size 5
20 groups
Graph 4.6

4.4 Topology of Point-to-Point Network

An interesting question regarding the propagation graph algorithm (or any algo-
rithm for message ordering) is how the topology of the network affects performance. In
our previous analyses, we assume that the cost of sending a message from one site to
another is the same for all pairs of sites. On a point-to-point network, however, there is
likely to be a higher delay for messages sent between sites that are far apart than between
sites that are neighbors. It is sensible, then, to consider designing propagation graphs to

take advantage of the topology of the network. Here, we examine the cost of the original

43

average

depth

. heuristic
e=f s random

| | | |
20 50 100 200

number of sites

Group size 5
40 groups
Graph 4.7
propagation graph algorithm when the topology is taken into consideration. We compare
it to two other heuristics for generating propagation graphs. We also consider two tree
structures that are commonly in use on networks and could serve as propagation graphs -

minimum spanning trees and shortest path trees.

For these experiments we use a square grid for the topology, as this is representative
of a network like the ARPANET. All links on the network incur a cost of 1. The simula-
tions were done similarly to those in the previous section, except now the delay measure
includes the cost of the physical path between two sites. For instance for the propagation
graph of Figure 4.2(a) and the network of Figure 4.2(b), the cost of sending a message

from a to b is 2. Since message delay is no longer the same for all messages sent, the

(a) (®)
Figure 4.2

network delivery time described in Section 4.1.1 and used in Table 4.1 is no longer accu-
rate. Instead, we compute a new average for network delivery time based on the cost of
the physical paths between logical tree nodes. Thus, the portion of the expression for D
in Table 4.1 that accounts for latency ((d+1)L) is replaced by the average cost of the phy-
sical path that messages must follow to get to the furthest destination. This average cost
is determined via the experiments. Extra nodes are still counted only as they occur in the

logical propagation graph. We do not consider the load here.

One simple possibility for a propagation graph that accounts for the topology of the
network is a minimum spanning tree. For these experiments, a minimum spanning tree
was generated using the most frequent group member as the root and giving that root as
many children as possible while still yielding a minimum cost tree. Other choices of
equal cost were determined randomly. The minimum spanning tree was compared to the
original propagation graph method described in Section 3.4, which we now call Heuristic
I. A new heuristic (Heuristic II) was analyzed as well. This heuristic is similar to
Heuristic I except that when a choice is available among sites in the most groups, (i.e.,
there are several sites in the same number of groups), the site that is the shortest distance
away is chosen. The chosen site is always an intersecter. Results for minimum spanning

trees, Heuristic I and Heuristic II are indicated in Graphs 4.8 and 4.9 and show that a

45

25 —
20 —
15
average
depth
10 -
4‘, - - Heuristic I
o Heuristic I
_____ MST
5 — 27
0 T T I |
25 49 100 ' ken
number of sites in system
Group size 5
20 groups
Graph 4.8

smarter heuristic yields slightly better results than the original, but for smaller numbers

of sites, the minimum spanning tree does very well. The depth always increases, though,

for the minimum spanning tree algorithm as opposed to both the heuristics, which

decrease in Graph 4.8. The heuristics are exhibiting the same behavior as Heuristic I

showed in Section 4.°.]1. As the number of sites grows, the large trees are breaking up

into sets of smaller trees. A group that does not intersect any other yields one short tree

that uses optimal physical paths between logical tree nodes. The minimum spanning tree

technique, on the other hand, always yields a graph that consists of just one tree. Thus,

group members may be spread around the tree making the logical path from primary des-

tination to furthest member longer. This path likely passes through extra nodes. The

46

40 —
35 I N - 00 preonmpm o T T iy =
30
25 —
aver age
20 .
dep | /5. .
15
10
Heuristic I
e Heuristic IT
MST
0 I | : |
25 49 100 225
number of sites in system
Group size 5
40 groups
Graph 4.9

longer logical path is apt to make the physical path longer. This behavior is not as

marked in Graph 4.9 as the larger number of groups makes group intersection likelier.

The good performance of minimum spanning tree in many cases encourages us to
find a better heuristic than Heuristic II. Heuristic ITI makes choices for children that give
priority first to neighbors. The closest site is always chosen as a child, but if there is a
selection among sites that are tied or closest site then an intersecter in the most groups is
picked. Graphs 4.10 and 4.11 indicate results for Heuristic 1T compared with the results
from minimum spanning tree and Heuristic II. This third heuristic indeed outperforms

Heuristic II, though cannot beat minimum spanning tree in some cases.

The poorer performance of minimum spanning tree for higher numbers of sites lead

us to consider another common network structure, the shortest path tree. ’ This technique

1 A shortest path tree of a graph, G, is a spanning tree rooted at a particular vertex, v, all of
whose paths from v to another site are shortest in G [Tarj83].

47

25 —
20 —
15
average
depth

10

5

0 I | | [L

25 49 100 225 289
number of sites
Group size 5
20 groups
Graph 4.10

makes sense because we can pick the source to be the site that occurs in the most groups,
and end up with a short path to other group members from that site. Graphs 4.12 and 4.13
show results for the average depth of shortest path trees compared to minimum spanning

trees and Heuristic II1.

The results in Graphs 4.12 and 4.13 might lead one to conclude that it usually does
not make sense to use any of the heuristics described here; instead, simply build a shor-
test path tree. A look at the average number -¢ -~tra nodes for these techniques shows
otherwise. Graph 4.14 demonstrates that the logical tree structures generated by
minimum spanning trees and shortest path trees yield many more extra nodes than the
heuristics. (The results for 40 groups are similar and are not included.) This can have

more of an impact on delay than does the length of the physical path from primary desti-

nation to furthest group member. It is reasonable to expect that the physical routing of

48

40 —

35 o.

30

25 —

average __a
20 — e

depth = a— —t]

15 — '

10—1

25 49 100 225 289
number of sites

Group size 5
40 groups

Graph 4.11
messages will be handled in hardware at the interface level. Propagation of the message
on the logical tree, however, will likely be done in software. The more sites in the logi-
cal tree that a message passes through, the longer it takes for the message to get to its
destination and the cost at each such site is much higher than the cost of simply routing a
message through a site. With this taken into consideration, the heuristics (especially

Heuristic III) yield good performance.

4.5 Performance Conclusions

The experimental results presented in this chapter make it evident that the propaga-
tion graph algorithm provides a viable alternative for ordered multicasts in both point-
to-point and broadcast networks. It generally requires fewer messages than the two-

phase solution. It provides a compromise between minimizing delay and distributing

49

load, avoiding a central site bottleneck. Further, it is a flexible solution in that there are
many ways in which to build the propagation graph in order to meet the needs of a partic-
ular system. The heuristic we concentrated on here (Heuristic I) was certainly found to
improve over a random graph. Two other heuristics that take into account the topology
of the network also provide good performance. All heuristics obtained worse measure-
ments for d, the expected depth, than did propagation graphs obtained via minimum
spanning trees and shortest path trees. But the measures for €, the number of extra nodes,
were much better and show the heuristics to be better choices. Finally, it is important to
note that there is a substantial cost associated with setting up the propagation graph that
is not reflected in our results. Hence, this approach is of most interest when multicast
groups are long-lived and receive many messages over the lifetime of the group. We
return to the issue of setting up the propagation graph in the next few chapters, where we

consider dynamic groups and reliability.

25 —

20

15
average

depth
10 S

50

| 1 I |
25 49 100 225

number of sites

Group size 5
20 groups

Graph 4.12

average

depth

40 —

35 —

30 —

25 -

20 —

15 —

10

51

-
-
-

number of sites

Group size 5
40 groups

Graph 4.13

average

extras

52

40 —
35 — —— Heuristic IIT
..... SPT -
5] = Pt
o T
- -+
20] T e
l,' ’
15 AT et
- +
10 - Prae
5 {.ﬁ'..
—_—
—
9 | I | I
25 49 100 225
number of sites
Group size 5
20 groups

Graph 4.14

Chapter Five

Dynamic Groups

So far we have only considered how to provide the ordering properties when the
multicast groups are static. It is likely, however, that the multicast groups will change
over time. For instance, in the banking example of the Introduction, a new site with a
new copy of the data may be added to the network. Or, a site may be permanently
removed from the network. An entire group may be disbanded or a new group may be
added. Site failures may also necessitate temporary changes to the multicast groups. For
instance, in the example of Figure 3.2, if ¢ fails, it may be desirable to temporarily delete
¢ from oy, 0y, 03 and oy and rebuild the graph, then return to the original graph when ¢

comes back up.

For these reasons, we briefly consider how the algorithms described in Chapter 2
accommodate dynamic multicast groups. We then describe in detail extending the propa-
gation graph algorithm to allow for dynamic multicast groups. This initial description
applies when the changes to the groups are not due to failures. We consider failures in

Chapter 6.

53

54

5.1 Dynamic Groups in Other Solutions

One very nice feature of the two-phase algorithm is that it easily accommodates
adding sites to groups and deleting sites from groups. Once a source knows what the
amended group looks like, it just sends its multicasts to the new group and expects to
hear from each member. No special protocol is needed. The token-passing solution,
however, requires a complex "reformation phase" where a new list is committed (with
three phases) and a new token site is elected. The propagation graph algorithm does

require some special work, but is much easier than a three-phase algorithm.

5.2 Dynamic Multicast Groups with the Propagation Graph Algorithm

The main objective of our technique for providing dynamic multicast groups is to
institute changes to the propagation graph efficiently, i.e., without requiring tight coordi-
nation among the sites and without preventing the delivery of messages for long periods
of time. One solution is to have one site compute the new graph and use a commit proto-
col involving all the sites to terminate the old graph and install the new graph. This is a
clean solution that prevents discrepancies over the state of the system; however, it
involves high communication overhead and long delays. Instead, it is possible to take
advantage of the ordering properties guaranteed by the propagation graph to make the

changes to the graph consistently and rapidly.

The new algorithm is essentially the same as for the static case, except now we
designate one site as the manager. When the multicast groups change, the manager is
responsible for computing a new propagation graph and initiating the change system-
wide. The manager is analogous to the coordinator of a commit protocol solution, but
instead of committing the change, the propagation method will guarantee that it happens
safely. Two operations -ére required: Close and Open. First the manager Closes the old

tree by broadcasting a Close message. (Broadcast simply requires sending the message

55

to each root and having it propagated down to every node in the trees.) .Upon receiving
the Close, a site stops processing later messages (i.e., does not deliver them locally or
propagate them). Any new messages from sources are queued. Note that messages from
sources are the only messages a site will receive on its tree after a Close since each
parent Closes before its child and then does not propagate any more messages. Since the
Close message is ordered along with all other messages, for a message m, either all desti-
nations will order m before the Close or all destinations will order m after the Close.
Thus, a message m is either delivered at all destinations before the Close or is not

delivered anywhere until the next graph is Opened.

The manager opens a new graph by broadcasting an Open message to each new
root, along with the new graph information. This Open message is also ordered among
the other messages. After receiving the Open, each site incorporates the new graph infor-
mation locally and propagates the Open to its new children. Then it checks each mes-
sage it queued after the Close. If the site is still the primary destination for the message,
it processes it in the usual way (delivers it locally if appropriate and propagates it down
the new tree to its new children). If the site is not the primary destination for the mes-
sage, it throws it away and informs the source of the new primary destination. The
source resends the message to the new primary destination. A source does not begin
sending messages to the new primary destination until the old primary destination
informs it of the change, even if the source is already aware of the change. This prevents
messages from a single source from getting delivered contrary to the order in which they

were first sent.

Since sources must sometimes resend messages, we assume that each site maintains
a message history - a log of messages received and sent - along with message contents.
Such an assumption is not unreasonable for many applications, including a database,

where recovery information is generally maintained anyway. The message history will

56

be useful for reliability purposes, as well.

The solution presented here allows for concurrent incomplete Opens; for instance, a
site may be added to a group, thereby initiating Open messages from the manager, before
the new graph for a different site addition is opened everywhere. Due to communication
delays, it is possible for sites to receive these Opens in different orders, since they are
traveling via different graphs. To prevent confusion, the manager must number the
graphs and include this with the Open and Close messages. When a site receives an
Open, it must be sure that this is the Open for the next graph following the last graph
closed. If not, the Open must be queued until all earlier graphs are opened and closed.
In addition, all messages must include a graph number field to ensure that they are
delivered following the Open of the correct graph. Any arriving messages that do not

belong to the current graph are queued until the appropriate graph is opened.

It is not difficult to see that the multiple group ordering property is preserved using
this algorithm. A two-level message ordering is established: the top level orders mes-
sages by the graph number and within the graph numbering messages are ordered by the
propagation path of the tree. It is simple to verify that this hierarchical ordering is

correct; we do not present the proof here.

Chapter Six

A Formal Model for Reliability

As mentioned in the Introduction, reliability of message delivery is important to
many applications. A variety of causes, such as buffer overflow, can lead to message
loss. In addition, many algorithms require that sites retrieve missed messages upon
recovery from a failure, hence reliability includes some sort of recovery protocol for pro-
viding message delivery at all sites. In the course of analyzing the reliability of the pro-
pagation graph algorithm, we determined that there are many different degrees of relia-
bility which a protocol might provide. Further, the issue of reliability is roughly orthogo-
nal to that of ordering in that one can "mix and match" ordering and reliability properties.
Also, in the course of comparing the reliability of the PG algorithm with other ordered
multicast protocols, we have noted a wide disparity regarding the types of reliability the
algorithms provide, even though many purport to solve the same problem. Also, we have
noticed (even in some of cur own work) a tendency to be vague and imprecise about
what reliability is. To address these issues, we have worked out a formal model for ord-
ering and reliability prol;ertics of multicasts in order to be more precise about the correct-

ness of multicast protocols. The model provides a means for proving properties of

57

58

multicasts and also lends insight into the difficulty of providing reliability. In addition,
the model brings out some of the differences between protocols in terms of the assump-
tions made about the system, the properties they guarantee and their performance. We
begin with a discussion of the conflicting (and imprecise) types of reliability several mul-
ticast algorithms have claimed to provide. We then compare our formal approach to
other work that has been done on proving properties of distributed protocols. In the rest
of the chapter we present the model and apply it to some simple multicast protocols. In

the next chapter, we return to the propagation graph algorithm already studied.

6.1 Motivation and Previous Work

Reliable message delivery (with or without message ordering) has been defined in
various ways for different algorithms. In [CM84], reliable broadcast (or multicast) is
achieved with a protocol that "guarantees that all of the broadcast messages are received
at all of the operational receivers in the broadcast group." When a site recovers it again
becomes part of the broadcast group. [BJ87] considers processes instead of sites; a
broadcast is "made to a set of processes" and is eventually "received by all operational
destinations." The authors describe the failure detection mechanisms of the underlying
ISIS system that determine whether a site (and hence its processes) is operational. But,
contrary to token-passing, failed processes do not again become destinations upon
recovery: "Once a process is observed to fail, it will never be heard from again." [SGS84]
present a fault-tolerant broadcast protocol that ensures message delivery to the "function-
ing processors" in a system. But in their case a processor does more than just rejoin the
broadcast group when it recovers, it also insists on getting all the messages it missed
while down. It is not clear, however, what constitutes an "operational” or "functioning"

site. If a site has been operational until the time all other sites receive a message, should

it also receive the message? If not, how much longer must it stay up to be considered

39

"operational?" Many protocols besides the two-phase solution of [BJ87] use the word
"eventually” to describe reliability of message delivery. This led us to wonder how soon
"eventually"” is. If a protocol manages to deliver a message by next week, is it reliable?
Certainly not, nor certainly do the authors intend this to be reliability. Our model
attempts to specify more precisely when a message can be guaranteed to end up at its

destinations.

Despite the imprecision noted above, the reliability alternatives are useful since dif-
ferent applications may require different degrees of reliability. Consider, for instance,
one site that wishes to be elected leader using majority voting, so sends messages to all
the sites. The fact that some sites never receive the message may be irrelevant if the ori-
ginator manages to collect a majority. On the other hand, if an update message is being
sent to all sites with a copy of the data, the update should be applied at all sites. If a site
is down when the message is sent, the message should be obtained upon recovery. Often,
for performance reasons, we would like to temporarily deliver messages in an incon-
sistent order and then redeliver them later. This may be the case, for instance, at a site
that has just delivered a series of messages that no other site has and then fails. If these
are updates, we can let the operational sites go on with processing and then roll back the

messages (hence the updates) at the recovered site.

At first glance, the problems of ordering messages and guaranteeing reliability seem
similar to the problem of reaching agreement in distributed systems, as treated by work
on commit protocols [Gray78] and Byzantine agreement [LSP82]. However, there are
several important differences. For one, whereas in a commit protocol a site votes "yes"
or "no", with message delivery there is no reason to refuse a message. Sites agree on
when to deliver, not if. Commitment also implies that the operation is an atomic one.
Message ordering is relevant for applications with less stringent requirements; it may be

practical and meaningful to allow a site, because of a failure, to miss messages or deliver

60

them incorrectly (temporarily), as mentioned above. This allows us to explore various
reliability alternatives. Further, in the sense that sites are achieving agreement, each
decision does not stand alone. There is a sequence of agreements among which certain
ordering properties must hold. This is not a concern of commit protocols and Byzantine
agreement solutions. It is true, though, that delivering a message in a reliable, orderly
way requires agreement among the deliverers [MMA90]. We propose, however, that if
we are given reasonable assumptions about the network, then there are guarantees that
can be made about sites receiving the messages sent to them. Contrary to work in
[FLP85,MMA90b], instead of proving what can never be done (e.g., agreement cannot be
reached) we provide a means to prove what can be done under favorable, but reasonable,

conditions.

Our work on performance evaluation is unique and valuable for several reasons.
First, since message ordering involves a continuum of decisions, rather than distinct
agreements, we do not measure the delay of a protocol merely in terms of how long it
takes to decide where in the message ordering a message belongs. More important, we
think, is when a message can actually be delivered to its destination process. To address
this, we consider how earlier messages can interfere with the delivery of a new message.
Second, our treatment does not measure performance simply on the basis of rounds of
message exchange. It separates the measure of processing time from the measure of net-
work time and considers both. This is relevant since, as mentioned in [Gray88], for small
high-speed networks, the cost of communication does not overwhelm the cost of process-
ing to the degree it does in larger networks. Hence, processing time is not insignificant.
Also, in networks where a physical multicast is accomplished by a series of unicasts, a
site responsible for multicasting to a large number of destinations may require substantial
processing time. Further, our model is flexible enough to allow us to analyze the perfor-

mance of algorithms under a variety of conditions. For example, we can consider how

61

well an algorithm performs when no failures occur during its operation and also when

failures do occur.

Overall, with this work we attempt to model the message delivery process and for-
mally define a spectrum of ordering and reliability guarantees. We do not exhaust the
possibilities, but we do demonstrate how providing specific types of ordering and relia-
bility affects the efficiency of a protocol and the assumptions required to make it work. In
a sense, we are describing correctness criteria. In addition, we are attempting to be clear
about what is required from the computing environment in order for delivery to meet the
reliability requirements. We also use the model to analyze the performance of multicast
protocols. Though we do formally define the three ordering properties mentioned above,
we focus on formalizing the spectrum of reliability alternatives. We begin by presenting
the model and then defining various guarantees multicast protocols can provide. Next,
we apply the model to some simple algorithms for multicasting. As we mentioned ear-

lier, we return to the algorithm studied in previous chapters in Chapter 7.

6.2. The Model

Before presenting formal definitions for ordering and reliability, we establish a
model for message delivery. We define a multicast message m as a triple [s,d,n] where s
is the source, d is the destination group and 7 is a systemwide-unique identifier for the
message. (The identifier n may bear no relation to the order of messages, but rather, it
may simply make a message unique. It could be a concatenation of a unique identifier
:or s and a sequence number for all messages from s to d.) We use Group(m) to denote
the set of sites comprising the destination multicast group, d. A site that receives a multi-
cast is responsible for delivering it to the destination process (running locally). For sim-

plicity, we assume one such process per site.

62

The system is modelled in terms of events occurring at sites. A global clock is used
to specify when events happen. At any one site, no two events occur concurrently, but
multiple events can occur at the same time at different sites. (It is important to note that
the clock is used merely for the purposes of the model and is not needed by the algo-

rithms that provide ordering and reliability.)

We use (E), to represent event E at site a. Event E may occur at more than one site.
For example, if event E is the delivery of message m and two sites, a and b, deliver m
then E has occurred at both sites. The delivery at b is represented by (E),. T{E), is the
time at which E occurs at a. If T(E), < T(E"), then the time of event E at a is earlier
than the time of event E” at a. If T(E), < T{E), then E happened at a before E at b. If

T(E);s =T(E), then E at a and E at b happen at the same time. In this case, a # b.

Events at one site are totally ordered by the time at which they occur. (E), = (E"),
iff T(E), <T(E'),. A partial order can be established for all events in the system.
(E)a = (E) iff T(E), <T(E),. The model thus far is similar to that presented in
[Lamp78].

Since we are interested in the relative order of message delivery at the sites, we
define an event ordering predicate, O. For two events E and E’, both occurring at a and
b, O (E)a {E)a{E)s {E')s) =true if the order of the two events at the two sites is the

same:

O ((E Yo {E Yo {E Yo {E) = true when

(E)a - (E’)a Iff (E)b -2 (E')lv

63

There are eight types of events that can occur at a site.
(M (m))s site s initiates a multicast of message m;
Sm))g site g sends message m to site a;
(G(m)), site g receives m;

(D (m))g site g delivers message m to the destination process;

(Fi), site g fails for the i** time;
(RP), site g recovers from failure i;
(Af), site g awakens after failure i.

The distinction between an M event and an S event is important. When (M (m)),, then s
has initiated a multicast. Site s is the source. The actual physical transmission of m

involves one or many S events, possibly not all of which will occur at s. For conveni-

ence, we will say that (M (m)), occurs after s has performed (S (m))f‘ for all d; to which it
is required (by the protocol under consideration) to send m. The difference between a G
event and a D event is also important. When (G (m)),, then site g is the recipient of mes-
sage m, but this does not imply that m has been delivered to the destination process.
(D (m)), is the event that indicates the destination process executing at g has been given
m. A delay at site g between (G (m)), and (D (m)), may be due to the multicast protocol
in use. Even in a very simple protocol where sites deliver messages in a sequence
number order, if a site g receives message m it may not be able to deliver it if it is miss-
ing the message(s) that should be delivered before m. The recovery and awake events
distinguish between when a node is again functioning after a failure (awake) and when it
can resume normal operation (recovered). Note that for failure |,

T(Fi), <T{Ai), <T(Ri),.

64

It is convenient to know if a message is ever multicast, sent, received or delivered.

We define the following:
M;(m)=true if T(M (m)); <o
Sg(m)=true if T(S(m))f <o
Gg(m)=true if T(G (m)); <o
Dg(m)=true if T{D(m)); < oo

Sometimes it is convenient to allow more than one delivery of the same message at
the same site. The deliveries of a particular message m are indexed by referring to the i*
delivery event of a message m at site g: (D (m)){. We let (D (m))} be synonymous with

6.3. Ordering and Reliability Guarantees

In order to make some guarantees on message delivery, we need to consider various
states of the processors and network. For instance, it is obvious that we cannot guarantee
delivery of a message at a site whose behavior is erratic, i.e., it goes down often. The
same applies to the network. If the network cannot remain up long enough to deliver a
message, then message delivery cannot be guaranteed. Also, if a processor or a link is
especially slow, only weak properties of delivery can be guaranteed. To explore the
spectrum of message delivery we need to define some states for our system. To simplify
matters, we divide the system into two components: the network responsible for deliver-
ing messages and the processors rec.” 7..g and delivering messages.

For processors, we need to define what constitutes a down, or halted, processor. We
say that there exists a constant ¢p for processors that represents the time required to per-
form a message operation. These operations are broad, e.g., they may include delivering

one message, delivering a series of messages, delivering a backlog of messages plus a

65

new one, etc. When a processor, P;, can no longer meet ¢p, then that constitutes a failure
event, (F/);, the j* failure at P;, When processor P; can again meet ¢p, it awakens, i.e.,

(A7); occurs. Further, we define a period of being awake.
AWAKE(g,1,8) = true if
(i) thereisno (Fi), suchthatt<T (Fi), <t+3and

(i) T (Fi), <timplies T (A%), <7.

A site that is awake is capable of executing on behalf of messages within ¢,, but it may
not be allowed to execute for all processes, e.g., it may need to do some recovery work.
(What a site can do in the AWAKE state is algorithm dependent.) Stronger than AWAKE
isUP.

UP(g,t,8) = true if
(i) thereisno (F), suchthatt<T (Fi), <t+8and
(i) T (Fi); <timplies T (R¥), <t.
In addition to processor execution time, we also consider a network that is operational to
be one that can provide delivery of a message from sender a to receiver b within ¢y.
When the network cannot make that guarantee, it is not operational. Similar to UP and
AWAKE, we define a time period in which two sites can send each other messages that
get delivered within ¢y .
REACH (a ,b 1,0) = true if AWAKE (a ,7,5+¢y) and AWAKE (b ,1,5+¢y) imply
(1) fT<T{(Sm))l<t+dthenT (G(m)) <T (S(m)): + ¢n.

(i) fT<T (Sm))f<t+dthenT (G(m)), <T (S(m))E + ¢n.

66

Now, using UP and REACH (the state of the processors and the network) we can provide
guarantees on delivery. The properties are divided into 3 categories: P, Q and R. The P
properties make guarantees on delivery of a multicast message m at a destination a given
that the source has initiated the multicast of m. The P properties mostly fall into two
types: those that provide some guarantee based on the time a message is multicast from
the source and those that provide a delivery guarantee based on when the message is
received at the destination, a. The Q properties describe message delivery guarantees
among group members, that is, they address atomicity of delivery. The R properties
define guarantees on consistent delivery orders at the destinations. Although the proper-
ties are numbered, there is not a strict hierarchy of property strength; hence, the number-

ing does not reflect any such hierarchy.

We begin with the P properties. PO is the weakest P property we present and P2 is
the strongest. The others fall in between, but cannot be strictly ordered by strength. To
determine the relative strength of a property, we consider from what action the property
can guarantee bounded message delivery. For instance, P2 can guarantee delivery based
on the original multicast from the source. P1 is weaker because it only guarantees
delivery at a destination based on when the message is received (i.e., the get event
occurs) at the destination. The properties are not totally ordered because they apply to
different types of protocols; for instance, some apply to agreement protocols and others
apply to protocols where the ordering decision is centralized. The first P property we

present guarantees nothing (as some protocols may).

P0: Let m be a message such that M;(m) and a € Group(m). No guarantee is made on

the delivery of m at a.

67

The next two properties are stronger. They provide a delivery bound. P1 is weaker
than P2 since its bound is based on when the multicast is received at the destination,

rather than based on when it is sent by the source.

P1: Let m be a message such that M;(m) and a € Group(m). There exists a constant A

such that if T(G (m)), =1, UP(a,T,A), then T(D (m)), <T +A.

P2: Let m be a message such that t=T{(M (m)), and a € Group(m). There exists a con-
stant A such that if UP(a,t,A), AWAKE(s,T1,A) and REACH(a,s,t,A) then

T(D (m)), < T+A.

The next property is used when sites must be able to contact other destination sites
in order to deliver messages. For example, if a majority commit is needed to deliver a

message, P3 may apply.

P3: Let m be a message such that M;(m) and a,b,bs,....by € Group(m). There exist con-
stants A and N such that if T(G(m)), =1, UP(a,t,A), AWAKE(,;,t,A) and
REACH(a,b;,t,A) for all b; then T{D (m)), <1+ A.

Property P4 provides a time bound that is based on when a destination site is sent a
message by some site, rather than when it is multicast from the source. For instance,
some protocols propagate messages through a series of sites in order to deliver the mes-
sage at all destinations. A delivery guarantee at one site, a, is based on its ability to com-

municate with the site that sent the message, x. (Note: x may be s.)

68

P4: Let m be a message such that M;(m) and T(S (m))# =1 for a € Group ()m). There exists
a constant A such that if UP(a,0,A), AWAKE(x,0,A) and REACH(a,x,0,A) for 6 >t then
T{(D(m)); <6 +A.

The Q properties provide atomicity of delivery, that is, guarantees among group
members. Again, different Q properties apply to different types of protocols (just as the
P properties do) so it is not possible to order them strictly from weakest to strongest. But
there is some sense of a strong Q property. Strength here is based on which conditions
must be true in order to guarantee atomic delivery. QO is very weak. Q3 requires that a
site be able to communicate with a distinguished site - its parent. Q2 is similar in that the
destination must be able to communicate with the source. Q1 is strongest in that the
delivery bound at a destination is based on when any other group member delivers the

message. QO, the first property, provides no atomicity guarantee.

QO: Let m be a message such that a,b € Group(m). Even if D, (m), no guarantee can be

made so that D, (m).

Property Q1 guarantees bounded delivery of a message at group member b given
that the message was delivered at a and a and b can communicate. The bound is based

on when the message is delivered ata.

Q1: Let m be a message such that a,b € Group(m). There exists a constant p such that if

T{D(m)), =8, if UP(b,0,p), AWAKE(a,0,p) and REACH(a,b,0,p) then T{(D (m)), <0 +p.

Q2 is weaker in that its bounded delivery is not based on when a delivers the mes-

sage, but rather the time at which b can begin to communicate long enough with the

69

source to get the message delivered at b. It is used for protocols in which the source is

solely responsible for getting messages to the group members.

Q2: Let m be a message such that T(M (m)); =1 and a,b € Group (m). There exists a con-
stant p such that if D,(m), UP(b,0,p), AWAKEC(s,0,p) and REACH(s ,b ,8,p) for 8 21,

then T(D (m)), =0 +p.

For the next Q property we need a definition. Many algorithms make use of logical
paths for propagating messages, as mentioned for property P4. For instance, the protocol
may specify that a message must start at site a, be sent from a to b and then sent from b
to c. In such a case, we might consider a to be the parent of b and b to be the parent of
c. For such algorithms, we may be able to make a Q guarantee based on the ability of a

parent and child to communicate. We refer to the "parent” of a site, say b, as p (b).

Q3: Let m be a message such that M;(m), D,(m) and a,b € Group (m). If T{D (MmNppy=0
then if UP(b,0,p), AWAKE(p(),6,p) and REACH(b,p(b).0,p) for 6=a then

T(D (m)) <0 +p.

The R properties describe ordering guarantees. As mentioned in the introduction,
there are several ordering properties that may be required for messages. For two mes-
sages, m and m’, consistent ordering may be required only if m and m’ originate at the
same source and are destined to the same group. Or ordering may be necessary if the
messages originate at different sources or even if they are destined for different groups.
Since the reliability alternatives we describe here are applicable to any of the ordering
properties, we generalize these options with the message predicate P. For two messages

m=[s,dn] and m’ =[s'd",n’], if P (m,m’) is true then m and m” are messages that must be

70

ordered consistently. What makes P true depends on which orderihg property is
required.
(1) Single Source Ordering:

P (m,m’) is true if ((s=s") A (d=d)).
(2) Multiple Source Ordering:

P (m,m’) is true if (d=d").
(3) Multiple Group Ordering:

P (m,m’)is true for all m and m".
For the purposes of presenting the R properties, we do not consider a particular ordering
property; rather, we refer to the predicate P.

The R properties presented here can be readily ordered from weakest to strongest.

RO is very weak and guarantees no consistent ordering among sites. R2 is next, and
guarantees ordering as long as a site remains up; that is, once a site fails its message
delivery order is irrelevant to the remaining sites. R3 is stronger still - it guarantees con-
sistent ordering at all sites since their last recovery event. Rl is the strongest - it guaran-

tees consistent ordering at all sites that have delivered the messages, at any time.

RO: If P(m,m") and D,(m), Da(m’), Dy(m), Dyp(m’) for a,b in Group(m), no guarantee is

made on the relative order of the deliveries of m and m” at @ and b.

R1:
(1) If P(mm’) and D,(m), D,(m"), Dy(m), Dy(m" for ab in Group(m), then
O (D (m))a AD (m))g D (m))p LD (m"))p).

(2) There is no (D (m)),E ,AD (MmN, {D (m))E or (D (m"))i where i > 1.

71

R2:

() If P (mm’), D,(m), D,(m", Dy(m), Dy(m) for ab in Group(m), and
(D (M))a = (D (m"))a, then (D (m)), = (D (m")), unless
(a). (D(m)) — (F'), = (D (m)), for some i or
(b). (D(m))a = (Fi)s —{D(m)), for some j.

(2) There is no {D (m))i, (D (m"));, (D (m)) or {D (m"))i where i > 1.

A definition is required for R3. The following function defines F,(m,t) to be the latest
delivery (at time) of message m at g.
Fy(m,t) = (D (m))i where there is no (D (m)){ such that (D (m))§ — (D (m))]

and (D(m)){ <t.

This function may be undefined for some values of ¢, i.e., there may be no delivery of m

at g before time .

R3: If P(m,m’) is true, then at any time ¢ for which F2'(t), FI'(t), F'(t), Ff'(t) are

defined, if UP(a ,t,0) and UP(b,t,0) are true, then O (F(t),F(¢),FI'). FIr(t)).

6.4. Multicast Protocols

With well-defined properties available to us, we can analyze multicast protocols in
terms of the reliability they provide and their performance characteristics. Each protocol
is described as a series of code fragments. All fragments are assumed to represent code
that can execute within ¢p if the site is UP. As mentioned earlier, if ¢» cannot be met

with the execution of a code fragment, then the site has failed. In terms of the model,

72

typically this simply means that a guarantee cannot be made on delivery. Most protocols
include a set of assumptions, numbered in square brackets. At least one P, Q, and R pro-
perty is shown to be true for each protocol. The protocol consists of a series of code frag-
ments (labeled within parentheses), which we assume are executable within ¢p. The
fragments include lines of code, plus indication of the occurrence of formal events such
as the multicast, send, get or delivery of a message. These events appear in bold face to
distinguish them from code. They do not represent an action on the part of the site, but

rather show the formal result of the previous action.

We begin with a simple protocol that does not guarantee consistent ordering. (It
guarantees R0O.) It serves to illustrate two points: (1) the model is straightforward to use;
(2) even very simple tasks seem to require strong system characteristics if they are to

guarantee strong reliability properties.

6.4.1 Protocol 0

Here is a very simple protocol that guarantees properties P1, Q0 and RO. It consists
merely of sources multicasting to groups. Whenever a site receives a message, it simply

delivers it.

(A) When amessagem =[S,D,n]is received at a:

{G (m)), occurs
deliver message [S,D,n];
(D (m)), occurs

73

(B) Ats,tomulticastm =[s,D,nl:

for each g € Group(m)
send[s,D,n]tog;
(M (m)), occurs

It is easy to see that Protocol 0 guarantees P1, Q0 and RO. To show that P1 is
guaranteed, consider message m such that M;(m), ae Group(m) and 1=T{(G(m)),. The
bound A is simply ¢p. If a stays up for ¢p time, code fragment A will execute and the

message will be delivered.

As presented, Protocol 0 guarantees that if the destination site, a, stays up long
enough to execute code fragment (A) after receiving message m, then m is delivered at a
within the A bound. It seems desirable to be able to guarantee some bound based on
when the source sends m, not just when a receives m. Such a guarantee is given in P2.
In fact, Protocol 0 guarantees P2 also. But note that delivery within a bound in P2
requires some network conditions. It is not sufficient for just a to be UP. The source
must be AWAKE and the link between them must be operational. Thus, the conditions

under which the stronger property holds are stronger.

6.4.2 Protocol 1

As mentioned above, Protocol 0 does not provide an ordering guarantee. It also
does not prevent multiple delivery of the same message at the same site (though some
networks provide this service). The next protocol provides a stronger ordering (R) pro-
perty to address these problems. Observe also that Protocol 0 does not provide atomicity
of message delivery among group members, as indicated by the weak Q property. We

approach this problem in later protocols.

74

We call our first non-trivial protocol the fan algorithm. It consists ofa single source
s multicasting to a single multicast group D = d, through d,. Thus, single source order-
ing is the goal. To multicast a message, the source is responsible for sending the mes-
sage directly to each member of the destination group (see code fragment D below). This
protocol guarantees P2, Q0 and R1. To ensure ordering property R1, the source adds

sequence numbers to all messages.
We make the following assumptions.

[A1] The source node S never fails, i.e., UP (s,0,.0) = true . Destination nodes, however,

are allowed to fail.

[A2] There are no communication failures. That is, for all pair of nodes x, y,
REACH (x,y ,0,.¢). As given in the definition of REACH, the upper bound on mes-
sage delivery time is ¢y. Note that messages may be delivered out of order by the

network and duplicate messages may arrive.
[A3] There is stable storage available.
We relax assumption [A2] in the next protocol.
Given these assumptions, the following algorithm guarantees P2, Q0 and R1.

Storage Requirements: The algorithm keeps track of the sequence number of the last
delivered message in variable L, initialized to 0. It stores pending messages, those
received but not delivered (to the application) in a set P. Variable L is kept in stable
storage (available after a failure). It is not necessary to keep P in stable storage. The
source ma .2.iS a sequence number for messages sent to the group. This sequence
number is represented by n for message [S,D,n]. Since there is just a single group and

source, S and D are constant over all messages.

(A) When amessage m =[S, D,n] is received at d; and d; is UP, the following is done:

(G (m))4, occurs
if n = L+1 then begin
deliver message [S,D.,n];
(D (m))4, OCCUrS
L«L+1;
while message [§,D,L+1] is in P do begin
remove message [S,D,L+1] fromP;
deliver message [S,D,L+1];
(D (m))q, oCCUrS
L «L+1; end end
elseitn >L+1thenadd[S,D,n]JtoP;
else ignore message;

(B) After a node d; awakens for the i* time, the following takes place:

event (A')q occurs with T(A")q =B
/* note that L still represents that last message delivered */

(C) When amessagem =[S§,D,n]is received at d; and d; is AWAKE but not UP:

if o5 has elapsed since B and n > L then begin

Léen-1;

recover from Fi, where F' is the latest failure;

event (R‘)d‘ occurs for F!, the latest failure

process [S, D, n] and following messages as in part (A) above; end
else begin

(G (m))q occurs

place [S,D,n]inP;end

(D) Ats,to multicast messagem =[s,D,N]:
for each g € Group([s,D,N]) do

send[s,D,N]tog;
(M (m)); occurs

7

76

This algorithm guarantees properties P2, QO, and R1. To see that property R1 is

guaranteed, simply note that a node only delivers messages in strict message order (L is

not lost because of failures). So, messages that are delivered must be delivered in the

same order. Similarly, messages can never be redelivered.

To show P2, we must consider a message m =[s,D ,n] such that T(M (m)), =1 and

node a € Group(m). We must then show there is a constant A such that if UP (a,z,A),

then m is delivered at a by time 1+ A. We will prove that the constant A exists and

equals ¢y + ¢p.

A simple induction on n, the message identifier, proves that our bound A is correct

if sites never fail.

Basis

LS.

Clearly [s.D,1], where 1=T(M (m)),, is delivered by T+ ¢y +¢p. The net-
work guarantees receipt of [s,D,1] at a by ¢y. (There are no communication
failures.) When code fragment B executes, n = L+1 (L is initialized to 0), so

[s,D,1] is delivered immediately. Code fragment B requires ¢» time.

Assume that message [s,D,n—1] (multicast at T,_;=T{M([s,D,n-1])),) is
delivered by t,-1+¢p +¢5. Note that 1, >1,_;. The network guarantees
receipt of [s,D,n] at a by 1y +¢n. (Again, there are no communication
failures.) If n=L+1 when code fragment B executes, then a delivers
[s.D,n] by 1, +¢n + ¢p. Otherwise, [s,D,n] is placed in P and will be
delivered as part of the execution of code fragment B that delivers
[s.D,n-1]. But, the execution of B that delivers [s,D,n—1] completes by

Tn-1+ ¢y + ¢p and 1, > 1,—;. Thus, [s,D,n] is delivered by 1, + o5 + ¢p. O

To show that delivery holds in the presence of site failures, we show that all mes-

sages sent within a period in which site a is up are delivered correctly at a. (Recall that

there are no communication failures as assumed in [A2].)

Basis

LS.

47

Consider [s,D x], such that T(M([s,D x1)); =1, the first méssage multicast
from s after a recovers from failure event (F¢),. Say that (A?), occurs at .
We must prove that [s,D,x] is delivered at @ within T+ ¢y +¢p. When
[s,D x] arrives, a is up due to the receipt of an earlier message, [s,D,y] that
arrived after B+ ¢y. Thus, x >y since y was sent before x. Message [s,D,y]
is delivered immediately since L is set to y—1. In addition, all messages
[s.D,z] such that y <z <x received before [s,D,y] have been saved in P. Say
that [s,D,y] arrived at y. Then, any message that arrived before v, but sent
after [s,D,y] must have arrived after Y- ¢y, due to the network ¢y delivery
guarantee. Note that y> B+ ¢5. Thus, a was awake and saved the message
in P. Any other messages [s,D,z] (z <x) must arrive no later than 1T+ ¢y.
Say the last such [s,D,z] does arrive at T+ ¢y. Then all messages, including
[s,Dx] are delivered using code fragment B within ¢p of T+ ¢y, if not
before.

The inductive step is identical to that of the non-failure case. The only mes-
sages considered, however, are those sent by s between an R event and an F

eventata.[d

6.4.3 Protocol 2

In this protocol, we amend Protocol 1 so that communication failures can be

tolerated. If a message arrives at d; out of sequence, d; requests retransmission of earlier

messages. This protocol guarantees P2, Q0 and R1. We use assumptions [A1] and [A3]

from Protocol 1.

Storage Requirements: The algorithm keeps track of the sequence number of the last

delivered message in variable L, initialized to 0. It stores pending messages, those

78

received but not delivered (to the application) in a set P. Variable L is kept in stable
storage (available after a failure). It is not necessary to keep P in stable storage. The
source maintains a sequence number for messages sent to the group. This sequence
number is represented by n for message [S.D,n]. Since there is just a single group and

source, S and D are constant over all messages.

(A) When a message m =[S, D, n] is received at a, the following is done:

(G (m)), occurs
if n =L + 1 then begin
deliver message [S,D,n];
(D (m)), occurs
LeL+1;
while message [S,D,L+1]isin P do begin
remove message [S,D,L+1] fromP;
deliver message [S,D,L+1];
{D (m)), occurs
L «L+1; end end
elseif n > L+1 then begin
add [S,D,n]to P
for all messages [S, D, x] suchthat[S,D,x]notin P and L <x<n
request retransmission of [S, D, x] from §; end
else ignore message;

(B) After a node d; awakens for the i* time, the following takes place:

(A')dj occurs with T(A!)q =B
/* note that L still represents that last message delivered */

19

(C) When amessage [S,D,n] is received at d; and d; is AWAKE but not UP:

if n > L then begin
setL «n -1,
recover from F¢, where F* is the latest failure;
(R")4 occurs where F! Is the latest failure

process [S, D, n] and following messages as in part (B) above; end
(D) Ats, to multicast messagem =[s,D,N]:

for each g € Group([s,D,N]) do
send [s,D,N]tog;
(M (m)), occurs;

(E) Ats,when a retransmission request is received from site a:

resend requested messagestoa;

We show that Protocol 2 guarantees QO, R1 and P2. Once again variable L, along
with retransmission of missed messages guarantees R1. To prove P2, we must show that
for a message m =[s,D ,n] such that 1=T(M (m)); and a e Group (m), there exists a A such
that if UP(a,t,A) and REACH(a,,tA), then T(D(m)), <t+A. We show that

A=3¢p +3¢n.

First we consider the case of no site failures. It takes ¢y for site a to receive m.
When site a receives message m, either it is deliverable immediately (and A obviously
holds) or site a informs the source that it is missing messages with sequen-e numbers
less than n. It takes ¢p to generate the request for retransmission and ¢y for the network
to transmit it to s. ¢p is required at s to send the missed message and ¢y more is needed
to ensure they all arrive at a. ¢p is required for code fragment B to deliver the last of the
messages to arrive. As part of the execution of fragment B, when [s,D ,n—1] is delivered,

[s,D,n] is taken from P and delivered. Thus, if site a does not fail within T+ 3¢p + 2¢x

80

(UP(a,t,A) is true) and it can contact s within the ¢y limit for that time period

(REACH (a,s ,t,A) is true), then the bound is correct.

The proof in the case of site failure is similar to that of Protocol 1. We consider the
basis case where we must show that the first message to arrive after a recovers, [S,Dx]
where 1=T(M ([S.,D x])); is delivered within A of T as long as the properties in P2 hold.
It is not hard to see that [S,D,x] will be delivered within the time indicated for the non-
failure case. Site a will simply request previous messages if it is unable to deliver

[S.D,x] immediately.

(Note that although the spirit of Protocol 2 intends that a recovering site not bother to
obtain missed messages sent while it was down, this may in fact happen. Because we do
not use assumption [A2], it is possible that the first message to arrive initiating code frag-
ment (C) is a message from the distant past - one perhaps sent while d; was down. As
part of fragment (C), L is set so that this newly arrived message will be delivered, as will
all following messages for as long as d; remains UP. Hence, d; may recover some, and
possibly all, of the messages sent while it was down. This does not violate any of the
guarantees, but it does mean that more message get delivered than are required by P2 and

Q0.)

6.4.4 Protocol 3

Protocol 3 is much like Protocol 2, except we allow a recovering site to obtain all
messages missed while down. Thus, this protocol provides a stronger Q property: Q2. In
order to achieve this atomicity, however, sites must be aware of having missed messages.
In this protocol, a site that awakens from a failure recognizes it is missing messages by

getting a message with a sequence number higher than it is expecting. (Here again the

81

variable L keeps track of the expected sequence number.) But, in ordcf to tell that the
site is missing messages, it must receive some message with too high a sequence number.
Thus, there must be a continual flow of messages from the source. Null messages are
used to accomplish this. Once again, we use assumptions [Al] and [A3]. The storage
requirements and code fragments (A), (B), (D) and (E) are the same as in Protocol 2.
Here, we provide (C) and (F).

(C) When amessage [S,D,n] is received at d; and d; is AWAKE but not UP:

if n > L then begin
recover from Fi, where Fi is the latest failure;
(R!)4, occurs where Fi Is the latest fallure

process [§, D, n] and following messages as in part (B) above; end
(F) At source, if no messages are multicast for 8 seconds:

multicast null message using (D);

It is not difficult to see that Protocol 3 guarantees P2 and R1 just as Protocol 2 does.
(A is still 3¢p +3¢y.) We show that Q2 holds with p=38+3¢p +3¢y. Say that
t=T{M(m)), where m =[s,D,n]. In accordance with Q2, say REACH(s,b,0,p) and
UP(b ,8,p). (The fact that a has delivered m is irrelevant in the proof.) We show that b
delivers m within p of 6. There are two cases: (1) 0=1; (2) 06> 1.
Case 1:

This case is equivalent to the proof of P2.
Case 2:

Within 8 of 0, s must send b some message, even if just a null message, according

82

to code fragment (F). Say this is message m'=[s,D,nl. Note n'>n since
T{S(m"))?>6. Since REACH(s,»,0,A) and UP(b,0,A) hold, b receives m" by
3+ ¢p +ony. Upon receiving m’, b will request, receive and deliver missed mes-
sages, including m. As in the proof of P2, this requires 2¢p +2¢y. Thus,
p=08+30p +3¢n.0

Chapter Seven

Reliability of Algorithms For Multicast
Ordering

With a better understanding of reliability, we are prepared now to return to the pro-
tocols for ordered multicasts discussed in the earlier chapters; in particular, we can
address the issue of reliability in the propagation graph algorithm. We begin by describ-
ing the reliability of the PG algorithm, the two-phase solution and the token-passing solu-
tion informally. We then apply the model to two versions of the propagation graph algo-

rithm that provide different degrees of reliability.

7.1 Reliability - Informally

For this ‘nformal d=scription of reliability, we make some simplifying assumptions.
We assume that all failures are fail-stop [SS83] and there are no partitions. Thus, we
assume that all operational sites will respond to messages in a reasonable amount of time
and the network delivers messages in a reasonable amount of time. As a result, all
failures are detectable. In addition, we assume only one failure occurs at a time and there

is sufficient time between failures to run the required recovery procedure and resume

83

84

normal operation. We address relaxing these assumptions after we discuss reliability of

the PG algorithm formally.

As we mentioned in Chapter 6, there are many types of reliability a protocol can
provide. Further, we believe that our approach can be made reliable to any desired
degree. Here we present two reliability alternatives that mesh nicely with our ordering
strategy. We call these two methods for handling failures atomic ordered delivery and
non-atomic ordered delivery. Atomic ordered delivery guarantees that all sites receiving
the same messages always deliver them in the same order, but in many cases failure
forces sites to block. With this method, the propagation graph is not changed; rather, the
other sites wait for the failure to be repaired. Blocking is avoided with the second alter-
native, but ordered message delivery is not atomic. Non-atomicity occurs infrequently,
however, and only a failed site may have delivered messages in the wrong order. We

begin with non-atomic delivery.

7.1.1 Non-atomic Delivery

With this alternative, we use a technique similar to that used for dynamic multicast
groups. Sites constantly monitor the sites on the propagation graph from which they
receive messages. Failures are detected via timeouts. If a child has not received a mes-
sage from a parent within some predetermined time interval, the child assumes the parent
has failed. If the parent has no messages to send, it sends a null message periodically to
prevent false failure detection. If a failure is detected, a two-phase process is initiated
among the survivors and the manager. In the first phase, the manager is informed of the
failure and it closes the group involved. Since the graph may be broken, the manager
may have to unicast Close messages directly to the survivors, without using the propaga-

tion graph. To ensure that all sites order the Close messages with the other messages

consistently, when each site receives the Close, it stops processing messages and reports

85

back to the manager its message history back to the last message it ins.tallcd for some
group. (Note this was not necessary when there were no failures since all messages used
the propagation graph.) Knowing the last messages installed per group requires a group
sequence number, which the primary destination is responsible for assigning to messages.

Each new graph starts with the group sequence numbers initialized to 0.

The second phase requires each survivor to install any missing messages that the
other sites report. To see how this works, consider the following example. The network
has five sites and multicast groups o = {a,b,c,d,e}, B = {c,d,e} and Y= {a,b}. The propa-
gation graph is shown in Figure 7.1, along with a history of message delivery at each site
up until the time that site ¢ fails, some site detects this and the manager, site a, sends out
the Close messages. (The first message sent to group o is numbered oy by the primary

destination, the second is numbered o, and so on.)
a

b €
d e

Figure 7.1

(o, 1,002,013, Close)

(o, 1,062,03,Close) (01,002, B1,B 2,03, P3)

(o .(12,[3 1,C lose) (al.u;,.C lose)

To maintai.n availability, site ¢ is temporarily omitted from o and B, forming o =
{a,b,d,e) and B’ = {d,e}. The new tree, PG, is shown in Figure 7.2. Before message pro-
cessing can resume, all sites in PG’ must have consistent message delivery histories. In
our example, d and e must deliver o3 and e must deliver ;. To accomplish this, the
manager determines which messages every site is missing using the group sequence

numbers and informs each site, by sending messages down the new tree, of what the

86

history should be (determining a total order if there is not one already implied by the

message histories) and which site can provide each missing message.
a
b d

e (0,05,Close)

(011, 71,00,003,C lose)

(ah?hu%uLClose) (al'az!Bl ,Close)

Figure 7.2

When this catch up phase is completed, the live sites will have consistent message
delivery orders and all live members of the same group will have delivered the same
messages. We get Figure 7.3. (The merge of the Close messages can be disregarded at
this point.) The same is not true of failed sites. Note that site ¢ has delivered messages
that d and e have not (B, and B;). Since the message information at site ¢ is not available,
sites d and e are not aware of B, and Bs. To prevent new messages from the source(s) of
B, and B3 from getting delivered at d and e before B, and Bs, a source sequence number is
used. Each source maintains a sequence number for each group to which it sends mes-
sages. When d receives another message from the source(s) of B, and Bs, it determines
that it missed some messages and asks to have them resent. Sources learn of the new pri-

mary destination by checking with the manager after <= =cting the failure of site c.

Of course, although site d eventually receives B, and s, it is too late to have them
delivered before o3, as ¢ did. Instead, site d finds a new spot in the message history for
these messages, as indicated in Figure 7.4. Thus, if and when c revives, the tail end of its
message deliveries are out of order with respect to the other sites. If required, site ¢ can

rollback delivery of B, , a3, and 3. Site ¢ may redeliver them, using the order defined by

87

a (011, 71,02,013)
(ul-ThU-sz-S) b d (alialaslvuﬁ)
[4 (0-1-(12-31-(13)

Figure 7.3
d along with any other messages it has missed while down. Some applications may not
require such rollback and recovery of missed messages. In that case, site ¢ can just

rejoin the tree and start over at the current message.
a
b d

[(ul !a?-lBI !a3l52153)

(013,Y1,002,003)

(011,71,02,03) (011,02,B1,03,2,B3)

Figure 7.4

We also must consider failure of the manager. A hierarchy of managers can be set
up so that there is always a backup manager ready to take over in the event of manager

failure.

Finally, it is important to note that it is only a failed site which may deliver mes-
sages in the wrong order; even in that case, it is only the tail end of its message history
that may be incorrect. In addition, there are two big advantages with this method. One is
that during failure-free pperation, no additional messages have to be sent (e.g., no two-
phase commit). Although there is some extra bookkeeping as messages are propagated,

the performance of the reliable and unreliable versions during normal operation is

88

roughly the same. The second is that message delivery can continue after the recovery,

even though the site is still down.

7.1.2 Atomic Delivery

If rolling back messages is not satisfactory and atomicity is desired, then sites that
detect a failure can simply block on messages destined for groups that include the failed
site. Blocking is not necessary in all cases. For example, if a leaf site of the propagation
tree fails, the other sites in its group(s) can continue, assuming the failed site can get its
missed messages upon recovery. If a non-leaf site fails, however, the sites to which it
propagates messages must block on the messages they ordinarily receive from that node.

When the failed site recovers, it can continue forwarding messages from where it left off.

7.1.3 Reliability of other solutions

Both the algorithms of [BJ87] and [CM84] address the reliability issue. In the origi-
nal algorithm for the centralized solution (not the simplified version discussed here), fault
tolerance is achieved by committing the message ordering via token passing. When this
is taken into account, the delay as measured in Chapter 4 increases considerably as noted
by Ken Birman [Birm88]. The reliability alternatives as presented here can be applied to
the simplified centralized solution and thus face the same tradeoff of rollback vs. block-
ing.

The reliability of the algorithm in [BJ87] is an inherent part of the two-phase nature
of the protocol and suffers the same problem of blocking as does two-phase commit. In
fact, it can block under the same conditions as the propagation method and the central-
ized solution (e.g., the source fails before it can send the second phase messages). A
three-phase protocol may be adequate to prevent blocking, but this is even less efficient.

Thus, the blocking propagation method (the second reliability solution we described)

89

provides the same reliability as the two-phase protocol. Intuitively, it may seem that
having a second broadcast phase is necessary for atomic delivery. However, since sites
never can refuse to process messages, the propagation graph approach achieves atomic
delivery in a single phase by making centralized ordering decisions (enforced via

sequence numbers) and blocking sites when failures occur.

7.2 Reliability - Formally

We now consider the reliability alternatives of the PG algorithm formally, using the
model of Chapter 6. We present two versions, the first provides atomic ordered delivery
by providing guarantee R1. The second version provides R2, non-atomic ordered
delivery. In order to present the protocols formally and clearly, we have made some
simplifications. The algorithms presented here provide multiple source ordering, not
multiple group ordering. We do not consider the deletion and insertion of group

members for any reason other than failure or recovery.

7.2.1 Protocol 4: Propagation Graph Algorithm Version 1

In this first version of the propagation graph algorithm, we provide a strict R pro-
perty: R1. It is "strict" because it does not ever allow two messages to be delivered in
contrary orders at two different sites, therefore it adheres to the atomic ordered delivery
alternative. For the PG algorithm, this requires that all message propagation stop until the

failed node recovers (unless the node is a leaf in the tree).

Properties P4, R1, and Q3 are guaranteed. This protocol tolerates site and commun-

ication failures. We use assumption [A3] and make the following other assumptions:

[A4] The initial logical tree is known by all sites, in particular all sites know who their

parent is and who their children are.

90

[AS5] The value of n for a message [S,D,n] is a concatenation of the source id, S, and a
sequence number assigned by §. Thus, n is S.x, where x is determined by a local
counter. (Further, n+1=8.x+1 if n =S5x.) Including S in the sequence number is
redundant, but this assumption is needed because the model stipulates that n

uniquely identify the message.

Storage Requirements: Several sequence numbers are required at tree sites for mes-
sages. All tree sites except the root maintain a variable, L,, for ensuring that messages
from the parent are not missed. Each parent (including the root) maintains a variable L,
to tag sequentially messages being sent from the parent to its children. In addition, each
tree site maintains a local array children (D), to store which sites in group D are children
of that site. The root maintains a variable L} for sequence numbers of messages from
source i (assigned according to [A5]), for each source i. At all sites, messages must be
kept in a LOG for recovery purposes. A queue, Q, for undelivered messages is also used.

Both the LOG and Q must be on stable storage.

Sources must maintain a sequence number L,, to tag messages to the root. L, is initial-
ized to 0. In addition sources must record the messages they send on a LOG in stable
storage. Each source maintains the variable root (D), the id of the root of the tree for

group D.

Tree protocol
(A) At source s, to multicast a message ([s, D, n]), the following is done:

neelL,;

L L, +1;

LOG([s,D,n];
send[s,D,n]to root(D);
(S([s, D, n]))re=+® occurs

(B) At root, uponreceiving [S,D,n]:

{G (m))oot OCCUIS
if n =L§+ 1then begin
(D([S,D,n]) OCCUrsS
LfeLf+1;
L.« L,+1;
LOG([S,D, nl.L.);
deliver message [S,D, n];
for each g in children (D) do begin
send([S,D,n].L.)tog;
S([S.D n))8x Occurs end
while message [S,D,L+1]is in Q do begin
remove message [S,D Ls+1] from Q;
Lfe—Lf+1,;
L.e«L.+1;
LOG([S. D, Lg].L);
deliver message [S, D, L{];
(D([S, D, L§])rox OCCUrS
for each g in children (D) do begin
send ([S,D,Lf]L.)to g;
S(S,D,n)))%x occurs endend
else if n > Lf+1 then begin
add|[S,D,n]to Q;
for all messages [S, D, x] suchthat[S,D, x] notin Q and L{<x <n do
request retransmission of [S,D, x]from §; end
else ignore message;

91

92

(C) At non-root group member, a, upon receiving message ([S, D, n],p) from site b, parentofa:

G{[S,D,n]), occurs
if p =L, + 1then begin

Ly«L,+1;

Lo L. +1;

LOG((S, D, nl.Le);

deliver message ([S,D.nlp);

{(D([S,D,n]), occurs

for each g in children (D) do begin
send([S,D,n],L.)t0og;
{(S([S,D,n]))# occurs end

while message ([S,D,x].L, + 1) is in Q do begin
L, L, +1;
remove message ([S.D,x].L,) from Q;
L.«L. +1;
LOG([S,D,x].L;);
deliver message ([S,D,x]);
(D([S,D,x])). occurs
for each g in children (D) do begin

send ([S,D,x].L:)to g;
(S([S,D,n])¢ occurs endend

else if p > L, + 1 then begin
add ([S,D,n]p) to Q;
for all messages ([S, D, x],y) such that ([S,D,x],y) notinQandL, <y <m do
request retransmission of ([S, D, x],y) from b; end
else ignore message; end

(D) After a node a awakens from a failure:

(A1), occurs

wait for next message ([S, D, nl,y) to arrive;

(R"), occurs

process ([S, D, n],y) and following messages using (B);

93

(E) At each site with children, if no messages have been sent for 8 seconds:

L.« L.+1;
for each child do
send null message to child: ([null],L.);

(F) At each source, if no message is multicast for § seconds:

multicast null message using (A);

(G) Atasite b, when a retransmission request is received from a site a:

resend requested messagestoa;

Proof of Correctness

It is not difficult to see that the PG algorithm guarantees R1. All sites deliver mes-
sages in strict sequence number order. This numbering is determined by the root. The

message order is maintained by the parent/child sequence numbers.

It would be nice to say that Protocol 4 guarantees the strong P property, P2. It does
not, though, because Protocol 4 propagates messages from the source via a series of sites.
Thus, it is not possible to guarantee delivery based on a destination’s ability to reach the
source when it should only receive the message via its parent. Instead, P4 is used, which
guarantees delivery at a site x that depends on the availability of the site responsible for

sending the message to x.

The algorithm as described guarantees P4, where A=8+3¢p +3¢y. Say that
1=T(S(m))# where m =[s,D,n]. For convenience, assume that s is the source of m.
That is, in P4, s assumes the role of x. Site a is the root of the tree. We will then

address the case of s being a non-source. There are two cases: 0 = tand 6 > 1.

94

If 8 = T, then a receives m within ¢y of t. If it cannot deliver m immediately, it
requests any missed messages within ¢p (code fragment (C)). 2¢n + ¢p is the maximum
time expired before a receives the missed messages. Another ¢p time is needed to pro-

cess them, as well as deliver m. Thus, P4 holds, since 3¢y + 3¢p < A.

Else 6 > 1. Within 8+ ¢p of 6, s sends some message, m'=[s,D,n’] t0 a, even if just
a null message, due to (F). Note n" > n. Site a receives it within ¢y, processes it within
¢p, requesting any missed messages, including m. Another ¢y is required for the request
to reach s, and ¢p +¢n + ¢p is required for a to finally receive and deliver m, as in the
first case. Thus, A=08+3¢p +3¢n5. The case of s not being the source is equivalent,

except that code fragment (E) is responsible for the transmission of null messages.

The proof that the protocol guarantees Q3 is almost identical to that of P4, so we do

not go into detail. The value of p is also 8 + 3¢p + 3¢n.

Although P4 and Q3 seem similar, both are needed to make the protocol correct. If
the protocol guaranteed just P4, then delivery of a message m only at the root would be
sufficient for correctness. If just Q3 were guaranteed, then delivery at no group members
would be correct, since delivery is only guaranteed within p if m has been delivered at

some site in the group, in particular, at a parent site. However, the root has no parent.

The P and Q properties this algorithm provides are necessarily very weak. This is
because the logical tree structure is static. If a node other than a leaf fails, no action is
taken to bypass that node and send messages to its children. Hence, since such a node
stavs down for what is likely an indeterminate amount of time, a guarantee cannot be
made concerning any pair of sites a and b. Instead, a bound can only be provided

between parent and child pairs in the tree, and from source to root.

95

7.2.2 Protocol 5: Propagation Graph Algorithm Version 2

In this next version of the propagation graph algorithm the R property is weakened
in order to provide stronger P and Q properties. Instead of shutting down tree operation
when an interior node fails, the remaining sites reconfigure the tree and go on with mes-
sage delivery. Note, though, that if it is the root that has failed, it is possible that the root
delivered some messages that did not get propagated to the remaining sites. As part of
this protocol, these messages will get redelivered via the new tree. It is possible that this
delivery order will not match that of the failed root (non-atomic delivery). This situation
yields a weaker ordering property than the previous version of the tree protocol. This
second version provides R2. We will show that P4 is again guaranteed. We will also
show something stronger: P2. In addition, the Q property provided by this protocol is
stronger: Q1. In order to make the code easier to follow, the algorithm differs somewhat
from the informal description of Section 7.1.1. The manager (root) does not use the tree
to inform sites that they should stop processing and participate in reconfiguring the tree.

Instead, the root informs the sites directly.

In order to simplify the formal analysis of the protocol, we make a number of
assumptions. At the end of the chapter, we discuss how to relax these assumptions. We
use assumptions [A2] (there are no communication failures), [A3], [A4] and [AS5] and

make the following other assumptions:

[A6] The root is the only site that fails. (For multiple source ordering, this is the interest-
ing case.)

[A7] Failed sites do not recover.

[A8] Once the root fails, at least 8+3¢p+2¢y seconds pass before there is a failure of the
new root, where 8 is a constant of the algorithm and is used for timeouts. (This pro-

vides enough time for the new tree to be in place and for operation to be proceeding

normally.)

96

Storage Requirements: For this protocol, each parent/children set does hot need its own
sequence numbering system. Instead, all sites maintain Lp, to keep track of the sequence
numbers for all messages that have been sent to the group D. (The root assigns Lp.) As
before, the root maintains a variable L{ for messages from source i, for each source i. In
addition, each tree site maintains the local array children(D), as before. Again, stable
storage at all sites is needed for the LOG and for the queue, Q. Also, a temporary queue,
Q_temp, is needed at the root when it first becomes the root, also in stable storage. Each
site is assigned a rank for group D to be used in the event of root failure. The rank is
kept in rank;(D) at site i. In addition, each site maintains the rank of the root in
rank,,o, (D). The root maintains a variable called state which is initialized to CLOSED

when the root is new and is set to OPEN when the new root can proceed normally.

Sources must maintain the same storage as in Protocol 4.

Tree protocol
(A) At source s, to multicast [s, D, n], the following is done:

n«L,;

L, L, +1;
LOG([s,D,n];
send[s,D,n]to root(D);
(S([s,D 1)) ®) occurs

(B) Atroot, if state = OPEN , upon receivingm =[S,D,n] from §:

(G (m))rou OCCUrS
if n =L$+ 1then begin
LfeL5+1;
Lp «Lp +1;
LOG([S,D,n].Lp);
deliver message [S,D, n];
(D ([S,D,n]))oet OCCUrS
for each g in children (D) do begin
send ([S.D,n]Lp)tog;
(S (m))%x occurs end
while message [S,D,L#+1]is in Q do begin
remove message [S, D, Li+1] from Q;
LfeLf+1,;
Lp «Lp +1;
LOG([S, D, L].Lp);
deliver message [§, D, Lf+1];
(D([S,D, L)oot OCCUrS
for each g in children (D) do begin
send ([S,D,Li]Lp) 1o g;
S(S,D,L]))&x occurs endend
else if n > Lf+ 1 then begin
add[§,D,n]to Q;
for all messages [S,D,x] notin QsuchthatLf <x <n do
* for recovery of source messages at new root */
request retransmission of [S,D,x] from §; end
else ignore message;

97

(©)

At root, a, if state = CLOSED , upon receiving message ([S, D, n],d) (not from S):
/* catching up to siblings */

(G([S,D,n])), occurs
if d =Lp + 1 then begin
LOG([S,D,nld);
deliver message ([S,D,n]);
{D([S,D,n])), occurs
for each g in children (D) do begin
send ([S,D,n]d)tog;
{(S([S,D,n])¢ occurs end
while message ([S, D, x1,d+1) for any x is in Q_temp do begin
remove message ([S, D, x],d+1) from Q_temp;
Lp «Lp +1;
LOG([S,D,x1.Lp);
deliver message ([S,D,x]);
(D(S,D,x])). occurs
for each g in children (D) do begin
send ([S,D,x].Lp)to g;
{(S([S,D,n])¢ occurs end end
else if d > Lp + 1 then begin
add ([S,D,n].d) to Q_temp; end
else ignore message; end

98

99

(D) At non-root group member, a, upon receiving message ([S, D, n],d) from parent:

{G([S,D,n])), occurs
if d =Lp + 1 then begin
Lp «Lp +1;
- LOG([S,D,nld);
deliver message ([S,D,n));
(D([S,D,n])), occurs
for each g in children (D) do begin
send ([S,D,n]d)tog;
(S([S.D ,n]))f occurs end
while message ([S, D, x],y+1) for any x is in Q do begin
remove message ([S,D, x],y+1) from Q;
LOG([S,D,x]y);
deliver message ([S,D,x]);
(D([S,D,x1)). occurs
for each g in children (D) do begin
send ([S,D,x]y)tog;
(S([S,D,n)))f occurs endend
else if d > Lp + 1then begin
add ([S,D,n]d) to Q; end
else ignore message; end

(E) Atsite i where rank; (D)= rank,., (D) + 1, if no messages received from root for § seconds:

/* take over as root */
directly inform all remaining sites of new tree and Lp;
for all j such that j is a source do
Li « greatest x such that ([j,D x1,y) in LOG, forany y;
state « CLOSED ;
clear Q; /* remove any pending messages */

(F)

(G)

(H)

U]

)

(K)

At site j, upon receiving new tree and value 4 from:

root « i,

rankoo (D) < ranky,o (D) + 1;

while ([§,D,x].d + 1) for any x in LOG do begin
send ([S,D,nl.d + 1) to root;

(S ([S.D ,n]))[>t occurs
d«d+1; end

At source, if no message is multicast for 8 seconds:

multicast null message using (A);

At root, after state = CLOSED for 2¢y + 2¢p seconds:
/* by now the new tree is in place and new root is caught up to other sites */

state « OPEN ;
inform sources of new root;

At source, upon hearing from i of new root:

root(D) «1i;

At source s, upon receiving request for retransmission of [s, D, x] from root:

resend [s, D, x] by retrieving it from LOG;

At a site b, when a retransmission request is received from a site a:

resend requested messagestoa;

100

101
Proof of Correctness

It is not difficult to see that this version of the PG algorithm guarantees R2. Essen-
tially, R2 requires that if two messages are delivered in contrary orders at two sites, then
it must be the case that the pair was delivered at one site, that site failed, and then the pair
was delivered at the other site. This is the only situation that allows inconsistent
delivery.

Because of assumption [A2], the only situation that can cause inconsistent delivery
in Protocol 5 is if the root delivers messages locally before it fails that are not sent to its
children. In that case, the children will recover those messages from the sources and pos-
sibly deliver them in a different order than the old root did. But these messages are not

recovered by the children until well after the failure event at the root, so R2 holds.

The algorithm as described guarantees P4, where A=¢p + ¢y. Say that 1=T(S(m))?

where m =[s,D,n]. Note first the types of send events that may occur.
(1) Sources send messages to the root during normal tree operation.
(2) Sources send messages to a failed root.

(3) During normal tree operation, parents send messages in sequence number order to

their children.

(4) During tree reconfiguration, some tree sites send messages to the root in sequence

number order so that the root can catch up.

Note that it is not possible for sources to send a message to a root that is still in the midst
of reconfiguring the tree. Sourécs are not informed of a new root until the new tree is in
place. The tree reconfiguration requires 2¢p +2¢y - ¢n for all sites to be informed of
new tree, ¢p for these sites to execute (F), ¢x for the new root to receive all missing mes-
sages, and ¢p for the nc»:z root to process those messages. By assumption [A8], there will

not be another site failure within this time, so the new root does indeed catch up to the

102

other sites. By (H), the sources are not informed of the new root until after this catching

up process completes.

Messages sent by a source to a failed root do not concern us, as UP(a,1,A) is not true
in this case. This leaves (1), (3) and (4). These cases are similar to the scenario in Proto-
col 1 for the proof of P2. Note that in all three cases, the site x which sends m to a has
logged (and delivered, in the non-source case) all previous messages. Thus, once a
receives m, if it cannot deliver it due to missing messages, those messages can be
retrieved from x, as long as REACH(a x 6,A), UP(a,8,A) and AWAKE(x,0,A). ¢p + dn

time suffices.

The protocol guarantees Q1, with p =38+ 30p + 20y +n—-1(0p + On) + ¢p, where n is
the number of sites in D. The value n—1(2¢p + ¢n) is merely the cost of propagating a
message from the root to a leaf if the tree is linear. The longest delay between deliveries
at two group members occurs between the root and the site of greatest depth. If there are
n sites in the group, n—1 is the maximum this depth could be. For the root to deliver m
and propagate it requires ¢p time. At each intermediate hop, ¢p + ¢y is needed to get the
message to the next node and processed. It is possible, though, that the root will deliver
m and fail before propagating it to all its children. The rest of p covers the case of failure
of the root and is determined by the time it takes for a new root to recover a message sent
by the old root to some other child. & time is needed for the new root to detect failure of
the old root. Execution of (E) requires ¢p seconds, ¢y is needed to get the new tree
information to the other sites. They require ¢p to execute (F). ¢y is needed to send any
missed messages. ¢p is needed for the new root to process those messages, deliver them
and propagate them. (By [A8], we do not need to consider root failure in the midst of

tree reconfiguration.) The propagation requires n—1(¢p + ¢n) + dp, as shown above.

By proving that Protocol 5 guarantees P4, Q1 and R2, we have shown that all UP

sites deliver messages in the same order, given some conditions about the system.

103

However, we have not shown that every message from a source gets delivered at the des-
tination group. We have only shown there is some atomicity of delivery at UP sites. It
turns out that Protocol 5 guarantees a P property stronger than P4. Not only does it
guarantee that messages sent from particular sites to particular sites are delivered if UP
and REACH hold, it also guarantees that every message from a source gets delivered by
the operational group members. This is property P2. It is not too difficult to see this is
the case. If a source initiates a multicast by sending it to a failed root, its messages will
be retrieved by the next root that stays operational long enough. In the worst case, the
last site to get such a message is the last site to become the root after a string of succes-
sive failures of new roots. Each reconfiguration requires &+ 3¢p + 2¢5 as shown above.
Another 2¢p + 2¢y is needed fqr the source to learn of the new root. Within & of that
time, the source must send some message to the new root (code fragment (G)). When
that message is processed at the root using (A), old missed messages are retrieved. This

requires 3¢y + 3¢p. Thus, the value of A is n—1(28 + 7on + 80p).

7.3 Relaxing the Assumptions

The formal proofs of Section 7.2 give us more confidence in the correctness of the
PG protocol. They also, however, point out its limitations. The P and Q properties
guaranteed by Protocols 4 and 5 rely on certain properties of the computing environment.
In particular, UP and REACH requirements are stringent. The UP property insists that a
site be able to process code fragments in a certain amount of time and REACH requires
conditions for communication between pairs of sites. Without these properties, P and Q
guarantees cannot be made. This is not unreasonable behavior, though. We cannot
expect a system with unreliable sites and communications links to deliver messages reli-

ably. We do need to consider, however, the behavior of the protocol when we relax our

104

assumptions and allow all kinds of failures.

There are several issues concerning the protocols for the PG algorithm presented in

Section 7.2 that must be addressed:
(1) How do we handle multiple failures that are not conveniently staggered in time?
(2) How do we incorporate multiple group ordering?

(3) What happens when there are communication failures and/or the fail-stop model is

not applicable?
(4) What happens if sources fail?
(5) How do we incorporate new or recovering sites into the tree?

We address these questions informally, applied to Version 2 of Section 7.2.2, since this is

the more complex protocol.

Tolerating multiple, closely-spaced failures does not require much change to the
protocol. For now, we will continue to assume there are no communication failures.
Consider first a non-root failure in the midst of tree reorganization due to an earlier non-
root failure. Since roots inform the other tree sites directly of the new tree, the failure
does not prevent operational sites from hearing of the new tree. Assuming the newly-
failed site has children in the new tree, these children will eventually detect the failure
and request the tree be reorganized again. If the root fails in the midst of reorganizing
the tree for a non-root failure, then this is eventually detected by the site responsible for
taking over as root. Reorganization is restarted. If consecutive roots fail, then a problem
ensues because a decision must be made as to which site becomes the next root. A one-
time prioritizing of the nodes can be used for this (e.g., the level-order of the original
tree), but sites must know when it is time to take over. A timeout takes care of this, with

the length of the timeout set proportional to the position of the site’s spot in the order.

105

The incorporation of multiple group ordering complicates the protocol since not all
messages enter the tree at the root. Non-failure operation is essentially the same as for
multiple source ordering. Reorganizing the tree due to failure is more complicated. As
for multiple source ordering, children detect failures of parents and inform the root. The
root closes the tree (queuing new messages), decides on a new tree and informs all the
sites directly. The operational sites that are primary destinations also close and queue
new messages from sources. All sites send the root their message histories dated back far
enough to include the last message delivered per group the site is in. The root must
reconcile these histories to create a total order of message delivery. Each site must be
informed of its missing messages so that all sites can be brought up-to-date for the start
of the new tree. (This was described in Section 7.1.) It is less reasonable now to expect
that reorganization will attach an "orphaned" site to some ancestor which can provide
missed messages. Missed messages, then, must be obtained from other sites, just like the
new root must do in the case of multiple source ordering. Sources are informed of the

new root, as in Protocol 5.

This algorithm requires no more phases than did Protocol 5. However, local pro-
cessing is more complex, especially at the root. Also, since missed messages do not get
propagated down the tree, more messages may be sent in this version. (A more sophisti-
cated algorithm might make message recovery via the new tree possible, but we do not
consider this here so as not to complicate the description.) Note that multiple failures

during reorganization can be handled as above.

It is not reasonable in practice to expect [A2] to hold. So, we must address how to
handle communication failures in the protocol. By the same token, our use of the
definition of UP makes failures fail-stop, so that slow sites are down sites. In practice a
site that is functioning slowly may not just halt; it may just continue at its slow pace.

Taken together, fail-stop processing and reliable communication between pairs of sites

106

gives us the ability to detect failures accurately. Though in practice this is impossible,
most protocols do rely on some notion of an "operational” site. One way to decide which
site is operational in practice is to use the concept of a logical failure , as described in
[BJ87]. Such a failure occurs when enough sites in the system (e.g., a majority) deem
another site to have failed. The site, for instance, may be so overloaded that no other
sites have heard from it in a while. Even though it may not be completely down, the sys-
tem acts as though it is. Similarly, the site may have lost its communication link with the
other sites (in the case of a partition). When the "down" site again establishes communi-
cation with the others, it is told that it is dead. Such an approach can be used in the pro-
pagation graph algorithm. When a site is deemed down, tree reorganization can proceed
as described in the protocols. However, we now insist that in order to form a new tree, a
majority of sites must participate. This will prevent two new trees from forming at once.
Of course, without a majority of sites, no tree will form; this is similar to the situation in

the ISIS system, where protocols block if a majority becomes unavailable.

There is an anomalous case that this "majority tree" can lead to. In the event of
false failure detection (in particular, due to a partition) it is possible that two trees will
exist at once. This can happen if a subtree with a majority of sites breaks off and forms a
new tree, while the intact remainder of the old tree continues the propagation of mes-
sages. This situation is illustrated in Figure 7.5. This is a highly unlikely situation, but
one that should be considered. Nothing can be done to prevent this from happening, but
it is reasonable to insist that every tree periodically check to ensure it still contains a
majority of members. Thus, the remains of the old tree eventually determine they should
gracefully die. In the meantime, they are "logically" failed sites, as the new tree is treat-

ing them that way.

As a result, there is a period of time during which different sites may be delivering

messages inconsistently, though this period can be made very short and includes sites

107

I NI
a/\h f :|z f

Figure 7.5
that will expire soon, leaving no inconsistencies among up sites. Other protocols work in
this fashion. In particular, the two-phase protocol of [BJ87] yields a similar situation if
the source and a destination become unreachable in the midst of running the protocol for
a message, m. If the source has finalized the priority number of the message and the
unreachable destination has delivered it based on that number and the remaining destina-
tions do not hear of the final priority number of m, then inconsistency will result when
the remaining sites pick a new priority number for m. (This is the scenario that causes
the well-known two-phase commit protocol to block.) Instead of blocking, the remaining
sites determine a new order for the messages and go on with delivering more. For some
period of time, there are inconsistent delivery orders. Of course, if this is intolerable to
the application, then both protocols can simply use blocking to prevent inconsistent

delivery, as atomic ordering reliability guarantees.

It is not difficult to handle source failure in the PG protocols. The only complica-
tion arises if the primary destination is expected to maintain the order of messages from a
source. It may, then, receive messages out of order and must queue later messages to
recover earlier messages. But, the source may fail in the meantime. If the source it not
expected to recover, the later messages must be discarded. Else, they are held up until

earlier messages are recovered.

108

It has been convenient (and, for many applications, useful) not to consider recovery
of failed sites. Similarly, we have not considered entry of new sites into multicast
groups. As in [BJ87], we can consider recovering sites to be new sites, thus the cases are
the same. To incorporate new sites, the tree must be restructured as in the site failure

case. There is little difference from the technique used for failures.

If we want recovering sites to deliver the messages missed while down, then we
might employ R3, where sites are allowed to re-deliver messages. Remember that the
tail end of the recovering site’s message history may be inconsistent with the other sites.
With R3, the message history of the recovered site would show it backing out its old
deliveries that may conflict with the order that the operational sites had decided upon.
Then, these messages get redelivered in the new order. Plus, the messages completely

missed by the recovering site are delivered.

Chapter Eight

Conclusions and Future Work

Here we have considered the problems of ordered and reliable multicast delivery
both informally and formally. As mentioned in the Introduction, multicasting has
become a popular model for message passing in distributed systems. In addition, many
researchers claim that ordering multidestination messages consistently at the receivers
simplifies many distributed applications. The need for reliable message delivery is well-

documented.

The most general form of multicast ordering we have considered here is multiple
group ordering. The propagation graph algorithm we have detailed provides this pro-
perty (as well as single source and multiple source ordering) efficiently. During normal
operation it is essentially a "one-phase" algorithm. That is, once a site receives a mes-
sage it can deliver it without further contact with other destinations of the message. Per-
formance results indicate that the propagation graph algorithm strikes a good comprom-
ise between minimizin ghdelay and distributing load and is flexible. It does not require as
many messages as other solutions and avoids bottlenecks. Many heuristics can be used

for generating the graphs, including heuritics that take into account the network topology.

109

110

However, given the cost of setting up the propagation graph, it is only appropriate when

the multicast groups are expected to last a long time.

Providing reliability along with ordering properties is not straightforward. (In fact,
even without ordering, reliable message delivery is a formidable task.) In order to be
truthful about the reliability of a protocol, we claim that precise models of the system and
message delivery algorithm are reqﬁired. In Chapter 6, we presented such a model. We
then applied it to the propagation graph algorithm, albeit under favorable system condi-
tions. Regardless, the model illustrates that it is really only under such favorable condi-
tions that a guarantee on delivery can be made. What our model does is clear up the
notion of "eventual” delivery at "operational” sites by showing that delivery happens not
"eventually,” but when the conditions are right. For instance, delivery can occur when

the necessary links are up and the necessary sites are available.

Unfortunately, it is very difficult to prove formally anything about a protocol such
as the propagation graph algorithm when all possible system events are considered.
Instead, we have restricted the system to the types of events we can handle for the formal
analysis. However, based on that analysis, we can make reasonable conclusions when

we relax the assumptions, as in Chapter 7.

The work presented here has many future directions. We did not have the opportun-
ity to implement our algorithm. Much can be learned from putting an idea into practice
and we would benefit from such a task. Enhancements to the algorithm are possible in
several areas. Further inquiry into the issue of extra nodes might lead to interesting
observations. More interesting, though, would be to study rigorously how to tailor the
propagation graph to the topology of the network. This is applicable to both point-to-
point and internetwork topologies. Careful positioning of the nodes iﬁ the forest could
lead to a very efficient graph. Work has been done in this area to provide for reliable

delivery when ordering is not needed [McKL90]. Techniques used there might be

111

applicable to the ordering case.

The model developed in Chapter 6 is really only a start in what is a very complex
problem. By formally considering other types of algorithms (e.g., those that use a phased
commit protocol or those that use .tokens to commit) many other P and Q properties
could be developed. There are many simple algorithms which lend themselves to formal
analysis by the techniques in Chapter 6. Lamport’s timestamp algorithm [Lamp78] and
the Fault-Tolerant Broadcast algorithm of Schneider, Gries and Schlichting [SGS84] are
good candidates. Such an analysis could give us insight into the efficiency of these pro-
tocols under favorable conditions and also give us a new way to view their correctness.

Comparison of various algorithms is much easier when they are considered using a com-

mon model.

APPENDIX 1

PG Generator Pseudo-code

The Propagation Graph (PG) Generator

main()
begin

groups « the set of multicast groups;
sites « the set of sites;
unmarked_groups «— groups,
unmarked_sites « sites,

while unmarked_groups <> @
{

root < s | s occurs most frequently in unmarked_groups,
new_subltree(roof);

)

end "

112

113

new_subtree(current_subroot)
begin
intersecters « &,

/* Mark site since it has been placed in forest. */
mark_site(current_subroot);

/* Determine the sites that are in groups with the subroot. */
for each s € unmarked_sites
if 3 g € unmarked_groups such that (s € g A current-subroot € g)
then :
intersecters «— intersecters U s,

/* Mark all groups that contain subroot since now we have a primary destination
for them. */
for each g € unmarked_groups

if current_subroot € g

then

mark_group(g);

/* Partition groups so that no group in a partition intersects a group in another partition
and some site in some group of each partition is included in a group with the subroot (is in
intersecters). */
G « (g g € unmarked_groups NS s € g such that s € intersecters});
repeat

S« [s13ge Gsuchthatse g}

G« G u (gl ge unmarked_groups N5 € G such that s € S}
until no change to G
P; -+ Py « partition of G so that no group in a partition intersects a group

in another partition;

/* If s is in a group with the root but is not in a partition, make it a child. */
for each s € intersecters
if sisnotina P;
current_subroot — 5; * make s a child of current_subroot */

/* Determine a child from each partition. */

fori:=1tok

{
newsite « s | s occurs most frequently in P; A s € intersecters;
current_subroot — newsite; [* make newsite a child of current_site */
new_subtree(newsite);

end

114
mark_site(s)
begin
unmarked_sites «— unmarked_sites - 5;
end;

mark_group(g)
begin

unmarked_groups < unmarked_groups - g,

end;

BIBLIOGRAPHY

[Ahuj89] M. Ahuja, "Implementation and Use of Flush Primitives for Asynchronous
Concurrent Systems,” Technical Report OSU-CISRC-9/89 TR41, Ohio

State University.
[Birm88] Personal Communication.

[BI87] K. P. Birman, T. A. Joseph, "Reliable Communication in the Presence of
Failires," ACM Transactions on Computer Systems, Vol. 5, No. 1, February

1987, pp. 47-76.

[CD85] D. R. Chertton, S. E. Deering, "Host Groups: A Multicast Extension for
Datagram Internetworks," Proceedings of the 9th Data Communications
Symposium, ACM SIGCOMM Computer Communications Review, Vol. 15,
No. 4, September 1985, pp. 172-179.

[CM&84]

[CZ85]

[DC90]

[FLP85]

[FWBS85]

[Garc82]

[Gray78]

116

J. Chang, N. F. Maxemchuk, "Reliable Broadcast Protocols," ACM Transac-

tions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 251-273.

D. R. Cheriton, W. Zwaenepoel, "Distributed Process Groups in the V Ker-
nel," ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985, pp.
77-107.

S. E. Deering, D. R. Cheriton, "Multicast Routing in Datagram Internet-
works and Extended LANS," ACM Transactions on Computer Systems, Vol

8, No. 2, May 1990, pp. 85-110.

M. J. Fischer, N. A. Lynch, M. S. Paterson, "Impossibility of Distributed
Consensus with One Faulty Process," Journal of the ACM, Vol. 34, No. 2,
April 1985, pp. 374-382.

A.J. Frank, L. D. Wittie, A. J. Bernstein, "Multicast Communication on Net-

work Computers,"” IEEE Software, Vol. 2, No. 3, May 1985, pp. 49-61.

H. Garcia-Molina, "Elections in a Distributed Computing System," IEEE

Transactions on Computers, C-31, No. 1, January 1982, pp. 48-59.

J. N. Gray, “'Notes on Database Operating Systems," in Operating Systems:
An Advanced Course, G. Goos, J. Hartmanis, ed. Springer-Verlag, New

York, 1978, pp. 393-481.

[Gray88]

[GA87]

[GK1.88]

[KG87]

[KTHB89]

[Lamp78]

[LSP82]

117

J. Gray, "The Cost of Messages," Proceedings of the Seventh Annual Sympo-
sium on Principles of Distributed Computing, August 1988, pp. 1-7.

J. J. Gray, M. Anderton, "Distributed Computer Systems," Proceedings of
the IEEE, Special Issue on Distributed Database Systems, Vol. 75, No. 5,
May 1987, pp. 719-726.

H. Garcia-Molina, B. Kogan, N. Lynch, "Reliable Broadcast in Networks
with Nonprogrammable Servers," Proceedings of the Eighth International

Conference on Distributed Computing Systems, June 1988.

B. Kogan, H. Garcia-Molina, "Update Propagation in Bakunin Data Net-
works," Proceedings Sixth ACM Symposium on Principles of Distributed

Computing, August 1987, pp. 13-26.

M. F. Kaashoek, A. S. Tanenbaum, S. F. Hummell, H. E. Bal, "An Efficient
Reliable Broadcast Protocol," Operating Systems Review, Vol. 23, October
1989, pp. 5-19.

L. Lamport, "Time, Clocks, and the Ordering of Events in a Distributed Sys-
tem," Communications of the ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

L. Lamport, R. Shostak, M. Pease, "The Byzantine Generals Problem," ACM
Transactions on Programming Languages and Systems, Vol. 4, No. 3, July

1982, pp. 382-401.

[LG88]

[LG90]

[McKL.90]

[MMA90]

118

S. Luan, V. D. Gligor, "A Fault-Tolerant Protocol for Atomic Broadcast,"
Proceedings Seventh Symposium on Reliable Distributed Systems, October

1988, pp. 112-126.

S. Luan, V. D. Gligor, "A Fault-Tolerant Protocol for Atomic Broadcast,"
IEEE Transactions on Parallel and Distributed Systems, Vol. 1, No. 3, July
1990, pp. 271-285.

P. K. McKinley, J. W. S. Liu, "Multicast Tree Construction in Bus-Based
Networks," Communications of the ACM, Vol. 33, No. 1, January 1990, pp.
29-42.

P. M. Melliar-Smith, L. E. Moser, V. Agrawala, "Broadcast Protocols for
Distributed Systems," IEEE Transactions on Parallel and Distributed Sys-

tems," Vol. 1, No. 1, January 1990, pp 17-25.

[MMA90b] L. E. Moser, P. M. Melliar-Smith, V. Agrawala, "On the Impossibility of

[NCN88]

[Schn82]

Broadcast Agreement Protocols," to be published.

S. Navaratnam, S. Chanson, G. Neufeld, "Reliable Group Communication in
Distributed Systems," Proceedings Eighth International Conference on Dis-

tributed Computing Systems, June 1988, pp. 439-446.

F. B. Schneider, "Synchronization in Distributed Programs," ACM Transac-
tions on Programming Languages and Systems, Vol. 4, No. 2, April 1982,
pp. 125-148.

[Schr90]

[SGSg4]

[SS83]

[Tarj83]

[Wuu85]

119

M. D. Schroeder, et. al.,, "Autonet: a High-speed, Self-configuring Local
Area Network Using Point-to-point Links," Technical Report 59, DEC Sys-
tems Research Center, Palo Alto, April 1990.

F. B. Schneider, D. Gries, R. D. Schlichting, "Fault-Tolerant Broadcasts,"

Science of Computer Programming, 4(1984), pp. 1-15.

R. D. Schlichting, F. B. Schneider, "Fail-Stop Processors: An Approach to
Designing Fault-Tolerant Computing Systems," ACM Transactions on Com-

puting Systems, Vol. 1, No. 3, August 1983, pp. 222-238.

R. E. Tarjan, "Data Structures and Network Algorithms," Society for Indus-

trial and Applied Mathematics, Philadelphia, PA, 1983,

T. Wuu, "Reaching Consistency in Unreliable Distributed Systems", Ph.D.
thesis, Department of Computer Science, State University of New York at

Stony Brook, August 1985.

