AN $O(m \log n)$-Time Algorithm for the Maximal Planar
Subgraph Problem

Jiazhen Cai
Xiaofeng Han
Robert E. Tarjan

CS-TR-309-91

March 1991
An $O(m \log n)$-Time Algorithm for the Maximal Planar Subgraph Problem

Jiazhen Cai
Courant Institute, NYU
New York, NY 10012

Xiaofeng Han
Department of Computer Science
Princeton University
Princeton, NJ 08544

Robert E. Tarjan
Department of Computer Science and NEC Research Institute
Princeton University
Princeton, NJ 08544

Abstract

Based on a recursive version of Hopcroft and Tarjan's planarity testing algorithm, we develop an $O(m \log n)$-time algorithm to find a maximal planar subgraph.

Key words. algorithm, complexity, depth-first-search, embedding, planar graph, selection tree

AMS(MOS) subject classifications. 68R10, 68Q35, 94C15

1. Introduction

In [14], Wu defined the problem of planar graphs in terms of the following four subproblems:

1 This work was partly supported by Thomson-CSF/DSE and by the National Science Foundation under grant CCR90-02428.

2. Research at Princeton University partially supported by DIMACS (Center for Discrete Mathematics and Theoretical Computer Science), a National Science Foundation Science and Technology Center, grant NSF-STC88-09648, and the Office of Naval Research, contract N00014-87-K-0467.
P1. Decide whether a connected graph G is planar.

P2. Find a minimal set of edges the removal of which will render the remaining part of G planar.

P3. Give a method of embedding G in the plane in case G is planar.

P4. Give a description of the totality of possible planar embeddings of G in the plane in case G is planar.

Linear-time algorithms for P1, P3, and P4 have been known for a long time. The first linear-time solution (which we call the H-T algorithm) for problem P1 (the planarity-testing problem) was given by Hopcroft and Tarjan [7] in 1974 using depth-first search (DFS) trees. A P-Q tree solution for P1 was given by Lempel, Even, and Cederbaum [10] in 1966, and was proved to have a linear time implementation in 1976 partly by Even and Tarjan [4] and partly by Booth and Lueker[1]. The P-Q tree approach is conceptually simpler, but its implementation is more complicated than that of the H-T algorithm. Linear-time solutions for P3 and P4, also based on P-Q trees, were given by Chiba et al [2] in 1985.

Wu [14] gave an algebraic solution for all four problems. He proved that a graph is planar if and only if a certain system of linear equations is solvable. In case the graph is planar, an actual embedding can be obtained by considering another system of quadratic equations. His solution is elegant, but his implementation takes $O(m^2)$ time on an m-edge graph.

Recently, Jayakumar et al [9] studied problem P2 (the maximal planar subgraph problem). For the special case in which a biconnected spanning planar subgraph is given, their algorithm runs in $O(n^2)$ time and $O(mn)$ space on a graph with n vertices and m edges. For more general situations, their algorithm runs in $O(mn)$ time. Their algorithm is also based on P-Q trees. Note that not every biconnected graph has a biconnected spanning planar subgraph (See Fig. 1.)

A biconnected graph that does not have a biconnected spanning planar subgraph

Fig. 1
In this paper we give an $O(n \log n)$-time and $O(m)$-space solution to P2. For sparse graphs (i.e., graphs with $m = O(n^{1+\varepsilon})$, where $\varepsilon < 1$), it beats the algorithm of Jayakumar et. al. even in the special case when a biconnected spanning planar subgraph is given. Independent of our work, Di Battista and Tamassia [3] have claimed an $O(\log n)$-time-per-operation solution to the problem of maintaining a planar graph under edge additions. Their algorithm also solves the minimal planar subgraph problem in $O(n \log n)$ time. Their method is much more complicated than ours, however, as it is designed to solve a more general problem.

The maximal planar subgraph problem is closely related to the planarity-testing problem. In fact, a graph is planar iff it is the maximal planar subgraph of itself. Our solution to the maximal planar subgraph problem is based on the H-T algorithm. But for our purpose, we need to modify the algorithm. The main difference is that our version of the algorithm admits a more general ordering than the original H-T algorithm does in processing the successors of each tree edge.

The rest of this paper is organized as follows. Section 2 gives preliminary definitions. Section 3 is a new version of the H-T planarity testing algorithm, which leads to our maximal planar subgraph algorithm in Section 4. Section 5 is a summary.

2. Preliminaries

Consider an undirected graph $G_0 = (V_0, E_0)$ with edge set E_0 and vertex set V_0. Let $n = |V_0|$ and $m = |E_0|$. We can draw a picture G_0' of G_0 in the plane as follows: for each vertex $v \in V_0$, we draw a distinct point v'; for each edge $(u, v) \in E_0$, we draw an arc connecting the two points u' and v'. We call this arc an embedding of the edge (u, v), and we call G_0' an embedding of G_0. For brevity, we will sometimes identify graphs with their embeddings. If no arcs of G_0' cross each other, we say that G_0' is planar. If G_0 has a planar embedding, then we say that G_0 is planar. From now on, when we say embeddings, we mean planar embeddings.

The following facts are important to our discussion:

Observation 1. Let C be a simple closed curve in the plane as in Fig. 2; let a be a point inside C and b be a point outside C. Then any curve that joins a and b crosses C.

![Fig. 2](image1)

![Fig. 3](image2)
Observation 2. Let G_1 be the undirected graph represented by Fig. 3, in which P is a path joining the two vertices a and b on cycle C. Then in any embedding of G_1, all the edges of path P are on the same side of the cycle C (either inside or outside).

Observation 3. Let G_2 be the undirected graph represented by Fig. 4, in which a_1, a_2, b_1 and b_2 are four distinct vertices that appear in order on C. Then in any embedding of G_2, the two paths P_1 and P_2 are on opposite sides of the cycle C.

Observation 4. Let G_3 be the undirected graph represented by Fig. 5, in which a, c_1, c_2 and b are vertices that appear in order on C, and c_1 and c_2 may be the same. Then in any embedding of G_3, the two subgraphs P_1 and P_2 are on opposite sides of the cycle C.

All four observations above are intuitively obvious and follow from the Jordan Curve Theorem [6,13].

A depth-first-search (abbr. DFS) [7] will convert the undirected graph $G_0 = (V_0, E_0)$ into a directed graph $G = (V, T, B)$, where V is the set of DFS numbers of vertices in V_0, T is the set of tree edges, and B is the set of back edges. Each edge of G_0 is converted into either a tree edge or a back edge. All the tree edges form a DFS forest. If $[a, b]$ is a tree edge, then $a < b$. If $[a, b]$ is a back edge, then $b < a$, and there is a tree path in T from b to a. In either case, a is called the tail of $[a, b]$, and b is called the head of $[a, b]$. The union of T and B will be denoted by E.

For notational convenience, we will frequently identify undirected graphs with their DFS representations. Since we are interested only in graphs with no isolated vertices, we will also identify graphs with their edge sets.

We define successors for both vertices and edges. If $[a, b]$ is a tree edge, then b is a successor of a. If $[a, b]$ is a tree edge and $[b, c]$ is any edge, then $[b, c]$ is a successor of $[a, b]$. Back edges have no successors. We also define descendants and ancestors for both vertices and edges. A descendant of vertex (resp. edge) x is defined recursively as either x itself or a successor of a descendant of x. If y is a descendant of x, then x is an ancestor of y.
Let $e = [a, b] \in E$. Let Y be the set of vertices y such that for some x, $[x, y]$ is a back edge and also a descendant of e. If Y is not empty, we define $\text{low}_1(e)$ to be the smallest integer in Y, and $\text{low}_2(e)$ to be the second smallest integer in $Y \cup \{n+1\}$. Otherwise, we define $\text{low}_1(e) = \text{low}_2(e) = n+1$. The two mappings low_1 and low_2 can be computed in $O(m)$ time during the depth-first-search on G_0 [7]. If a is not the root of a DFS tree, then a is an articulation point of G iff $\text{low}_1(e) \geq a$. [11]

If $e = [a, b]$ is any edge in E, then we define the function ϕ on E as follows.

$$
\phi(e) = \begin{cases}
2 \ \text{low}_1(e) & \text{if } \text{low}_2(e) \geq a \\
2 \ \text{low}_1(e) + 1 & \text{otherwise}
\end{cases}
$$

We arrange the successors of each tree edge in increasing order on their ϕ values. This ordering can be computed in $O(m)$ time using a bucket sort [7]. If e_1, \ldots, e_k are the successors of e ordered this way, we will call e_i the ith successor of e for $i = 1 \ldots k$.

As in [7], for $e = [a, b]$, we define $S(e)$, the segment of e, to be the subgraph of G that consists of all the descendants of e. We use $\text{ATT}(e)$ to denote the set of back edges $[c, d]$ in $S(e)$ such that d is an ancestor of a, including a itself. Each back edge in $\text{ATT}(e)$ is called an attachment of e.

For any edge $e = [a, b]$, we define $\text{cycle}(e)$ as follows: if e is a back edge, then $\text{cycle}(e) = \{e\} \cup \{e': e' \text{ belongs to the tree path from } b \text{ to } a\}$; if e is a tree edge and $\text{low}_1(e) > a$, then $\text{cycle}(e) = \{\}$; otherwise, $\text{cycle}(e) = \text{cycle}(e_1)$, where e_1 is the first successor of e. We use $\text{sub}(e)$ to denote the subgraph $S(e) \cup \text{cycle}(e)$. It is easy to see that if $\text{cycle}(e)$ is not empty, then the vertex $\text{low}_1(e)$ is always on $\text{cycle}(e)$. Also, if $\text{low}_1(e) \geq a$, then $\text{sub}(e) = S(e)$; if $\text{low}_1(e) < a$, then $\text{sub}(e) - S(e) = \{e': e' \text{ belongs to the tree path from } \text{low}_1(e) \text{ to } a\}$.

Fig. 6 illustrates some of these definitions.
In Fig 6, \(e = [5, 6] \); \(\text{low}_1(e) = 1 \); \(\text{low}_2(e) = 2 \); \(\text{cycle}(e) = \{ [5, 6], [6, 8], [8, 1], [1, 2], [2, 3], [3, 4], [4, 5] \} \); \(S(e) \) contains all the edges in the graph except \([1, 2], [2, 3], [3, 4], [4, 5] \); \(\text{sub}(e) \) is the whole graph; \(\text{ATT}(e) = \{ [8, 1], [9, 1], [9, 2], [9, 3], [9, 5], [7, 2], [7, 4] \} \).

3. Planarity testing

As explained in [7], a graph is planar if and only if each of its biconnected components is planar. Also, a graph of one edge is always planar. Thus, we need only consider how to test the planarity of biconnected graphs with more than one edge. Let \(G = (V, T, B) \) be a DFS representation of such a graph. Then \(T \) forms a single tree with only one tree edge leaving the root. Call this tree edge \(e_0 \). Since \(\text{sub}(e_0) \) is the whole graph, we can determine the planarity of \(G \) with a procedure that can determine the planarity of \(\text{sub}(e) \) for all \(e \) in \(G \).

We say that an edge \(e \) is planar if \(\text{sub}(e) \) is planar. To determine the planarity of an edge \(e \), we consider two cases. If \(e \) is a back edge, then \(\text{sub}(e) = \text{cycle}(e) \), which is always planar. Otherwise, \(e \) is a tree edge having at least one successor. In this case we first determine the planarity of each of its successors. If all these successors are planar, then we determine the planarity of \(e \) based on the structure of its attachments. The details follow.

3.1. Structure of attachments

The planarity of an edge \(e = [a, b] \) directly depends on the structure of its attachments. Since we assume that \(G \) is a biconnected graph with more than one edge, then \(\text{low}_1(e) \leq a \), and both \(\text{ATT}(e) \) and \(\text{cycle}(e) \) are not empty. If \(e \) is planar, then we can partition the edges of \(\text{ATT}(e) \) into blocks as follows. We put two back edges of \(\text{ATT}(e) \) in the same block if they are on the same side of \(\text{cycle}(e) \) in every embedding of \(\text{sub}(e) \). Two blocks \(B_1 \) and \(B_2 \) of \(\text{ATT}(e) \) interlace if they are on opposite sides of \(\text{cycle}(e) \) in every embedding of \(\text{sub}(e) \). Each block \(B_1 \) of \(\text{ATT}(e) \) can interlace at most one other block, since two attachments of \(e \) that cannot be embedded on the same side of \(\text{cycle}(e) \) as \(B_1 \) must be in the same block.

The back edge on \(\text{cycle}(e) \) is the only attachment of \(e \) that will not be embedded on either side of \(\text{cycle}(e) \). By convention, this back edge forms a block by itself, called the singular block of \(e \), which does not interface other blocks of \(\text{ATT}(e) \).

In Fig 6, \(\text{ATT}(e) \) consists of three blocks: \(B_1 = \{ [8, 1] \} \), \(B_2 = \{ [9, 1], [9, 2], [9, 3], [9, 5] \} \), and \(B_3 = \{ [7, 2], [7, 4] \} \). \(B_2 \) and \(B_3 \) are interlacing.

If \(e' = [u, v] \) is an attachment of \(e \), then \(\text{low}_1(e) \leq v \leq a \). If \(\text{low}_1(e) < v < a \), then we say that \(e' \) is normal. Otherwise we say that \(e' \) is special. A block of attachments of \(e \) is normal if it contains some normal attachment of \(e \). Otherwise we say that it is special. We say that \(\text{sub}(e) \) is strongly planar w.r.t. \(e \) if \(e \) is planar and if all the normal blocks of \(\text{ATT}(e) \) can be embedded on
the same side of $\text{cycle}(e)$. If $\text{sub}(e)$ is strongly planar (w.r.t. e), then we say that e is strongly planar. We have

Lemma 1. Let e_i be the ith successor of e, where $i > 1$. Then e_i is strongly planar iff the subgraph $S(e_i) \cup \text{cycle}(e)$ is planar.

Proof

\Rightarrow If e_i is strongly planar, then there is an embedding of $\text{sub}(e_i)$ such that all its normal blocks are on the same side of $\text{cycle}(e_i)$. Thus we can add $\text{cycle}(e)$ to the other side of $\text{cycle}(e_i)$ to get an embedding of $S(e_i) \cup \text{cycle}(e)$.

\Leftarrow If $S(e_i) \cup \text{cycle}(e)$ is planar, then in any embedding of $S(e_i) \cup \text{cycle}(e)$, all the normal blocks of $\text{ATT}(e_i)$ must be on the same side of $\text{cycle}(e_i)$.

Note that in an embedding of $S(e_i) \cup \text{cycle}(e)$, the special blocks of e_i do not have to be on the same side of $\text{cycle}(e_i)$. (See Fig. 7.)

![Diagram showing cycle(e) and cycle(e_i) with special attachments d and d']

The two special attachments d and d' of e_i can be on different sides of $\text{cycle}(e_i)$, although they are on the same side of $\text{cycle}(e)$.

Fig. 7

We will represent a block of back edges $H = \{[b_1, a_1], [b_2, a_2], \ldots, [b_i, a_i]\}$ by a list $K = [a_1, a_2, \ldots, a_i]$, where $a_1 \leq a_2 \leq \ldots \leq a_i$. Repeated elements in K can be omitted. Frequently, we will identify blocks with their list representations. Define $\text{first}(H) = \text{first}(K) = a_1$, and $\text{last}(H) = \text{last}(K) = a_i$. If K is empty, we define $\text{first}(H) = \text{first}(K) = n+1$, and $\text{last}(H) = \text{last}(K) = 0$. We can further organize the blocks of $\text{ATT}(e)$ as follows: if two blocks X and Y interlace, we put them into a pair $[X, Y]$, assuming $\text{last}(X) \geq \text{last}(Y)$; if a nonempty block X does not interlace any other block, we form a pair $[X, \emptyset]$. Let $[X_1, Y_1]$ and $[X_2, Y_2]$ be two pairs of interlacing blocks. We say $[X_1, Y_1] \leq [X_2, Y_2]$ iff $\text{last}(X_1) \leq \text{min}(\text{first}(X_2), \text{first}(Y_2))$.

We say a list of interlacing pairs $[q_1, \ldots, q_s]$ is well-ordered if $q_1 \leq \cdots \leq q_s$. Empty lists or lists of one pair are well-ordered by convention. We will see that all the interlacing pairs of $\text{ATT}(e)$ can be organized into a well-ordered list $[p_1, \ldots, p_t]$. We call this list $\text{att}(e)$.

In Fig. 6, \(att(e) = [p_1, p_2] \), where \(p_1 = [[1], []] \), \(p_2 = [[1, 2, 3, 5], [2, 4]] \).

3.2. Computing \(att(e) \)

Now we are ready to compute \(att(e) \). The planarity of \(e \) will be decided at the same time.

Consider any edge \(e = [a, b] \). If \(e \) is a back edge, then its only attachment is \(e \) itself. Therefore \(att(e) = [[[b], []]] \). Otherwise, let \(e_1, ... e_k \) be the successors of \(e \) in increasing order by their \(\phi \) values. We first recursively compute \(att(e_i) \) for each successor \(e_i \) of \(e \). Then we compute \(att(e) \) in four steps:

Step 1. For \(i = 1 .. k \), delete all occurrences of \(b \) appearing in blocks within \(att(e_i) \). Because these occurrences appear together at the end of the blocks that are contained in the last pairs of \(att(e_i) \) only, a simple list traversal suffices to delete all these occurrences in time \(O(1 + \text{number of deletions}) \). After this, initialize \(att(e) \) to be \(att(e_1) \).

Step 2. For \(i = 2 .. k \), merge all the blocks of \(att(e_i) \) into one intermediate block \(B_i \). See Fig. 8.

According to Lemma 1, this step can only be done for a given value of \(i \) if the normal blocks of \(att(e_i) \) do not interlace. (If a pair of normal blocks of \(att(e_i) \) interlace, the graph is not planar, and the computation fails.) To merge the blocks for a given value of \(i \), we traverse the list of pairs \(att(e_i) \), concatenating blocks to form \(B_i \). Initially, \(B_i \) is empty. To process pair \([X, Y]\), if \(X \) and \(Y \) are both normal, the computation fails, since the graph is not planar. Otherwise, we concatenate \(X \) and \(Y \) onto the end of \(B_i \) in order and continue. Note that the correct ordering of attachments is maintained by this process. This step takes \(O(1 + \text{number of blocks in } att(e_i)) \), resulting in one block for each \(i \).
Step 3. Merge blocks in \(\text{att}(e) \). See Fig. 9.

![Fig. 9](image)

By Observation 3, all blocks \(D \) in \(\text{att}(e) \) with \(\text{last}(D) > \text{low}_1(e_2) \) must be merged into one block \(B_1 \). (If any two of these blocks interlace, the graph is not planar, and the computation fails.) This is achieved by merging from the high end of \(\text{att}(e) \). The time is \(O(1 + \text{reduction in number of blocks}) \). This step turns \(\text{att}(e) \) into a list of pairs \(p_1 \leq \cdots \leq p_h \) with only \(p_h \) possibly having a block \(D \) with \(\text{last}(D) > \text{low}_1(e_2) \).

Step 4. For \(i = 2, ..., k \), add blocks \(B_i \) into \(\text{att}(e) \).

To process \(B_i \), consider the highest pair \(P : [X, Y] \) of \(\text{att}(e) \). Consider three subcases:

- \(B_i \) cannot be embedded in either side of \(\text{cycle}(e) \)
- \(B_i \) interlaces \(X \) only
- \(B_i \) interlaces neither \(X \) nor \(Y \)

![Fig. 10](image)

i. If \(B_i \) cannot be embedded on either side of \(\text{cycle}(e) \), then the computation of \(\text{att}(e) \) fails.

ii. If \(B_i \) interlaces \(X \) only, then merge \(B_i \) into \(Y \) by concatenating their ordered list representations. Next, switch \(X \) and \(Y \) if \(\text{last}(X) < \text{last}(Y) \).
iii. If \(B_i \) interlaces neither \(X \) nor \(Y \), then add \([B_i, []]\) to the high end of \(att(e); P := [B_i, []].\)

By the following lemma, testing whether \(B_i \) interlaces \(X \) or \(Y \) takes \(O(1) \) time. Also by that lemma, it is not possible that \(B_i \) interlaces \(Y \) only, since \(last(X) \geq last(Y) \) (see Fig. 10).

Lemma 2. \(B_i \) and \(D \) can be embedded on the same side of cycle \((e) \) iff \(low_1(e_i) \geq last(D) \), where \(D = X \) or \(D = Y \).

Proof

\(\Rightarrow \) Assume \(low_1(e_i) < last(D) \). Then there must be a path \(P_1 \) in \(S(e_i) \) from \(b \) to \(low_1(e_i) \) containing some back edge in \(B_i \), and another path \(P_2 \) in \(S(e) \) from a vertex \(w \) on cycle \((e) \) to \(last(D) \) containing some back edge in \(D \) but no edge on cycle \((e) \). We consider two cases (see Fig. 11). If \(w > b \), then by Observation 3, \(P_1 \) and \(P_2 \) cannot be embedded on the same side of cycle \((e) \). If \(w = b \), then the first edge on \(P_2 \) is \(e_j \) for some \(1 < j < i \), which implies \(i > 2 \) and \(\phi(e_j) \leq \phi(e_i) \). Consequently, \(low_1(e_j) \leq low_1(e_i) < last(D) < b \), which implies that \(low_2(e_j) < b \).

If \(low_1(e_j) < low_1(e_i) \), then there must be an undirected simple path \(P_3 \) between \(last(D) \) and \(low_1(e_j) \) containing back edges in \(D \) but no edges on cycle \((e) \). By observation 3 again, \(P_1 \) and \(P_3 \) cannot be embedded on the same side of cycle \((e) \). If \(low_1(e_j) = low_1(e_i) \), then \(low_2(e_i) < b \) (recall \(low_1(e_j) \leq low_1(e_i) \)). By observation 4, \(S(e_i) \) and \(S(e_j) \) cannot be embedded on the same side of cycle \((e) \). All of the above cases imply that \(B_i \) and \(D \) cannot be embedded on the same side of cycle \((e) \).

\[w > b \]

\[w = b \quad \text{and} \quad low_1(e_i) > low_1(e_j) \]

\[w = b \quad \text{and} \quad low_1(e_i) = low_1(e_j) \]

Fig. 11

\(\Leftarrow \) See the proof of Lemma 4 in the next section.

We call the preceding method Algorithm 1, and claim that
THEOREM 1.

1. Algorithm 1 computes $att(e)$ successfully iff e is planar.

2. If e is planar, then Algorithm 1 computes $att(e)$ correctly.

Proof See the next section.

3.3. Correctness

In the following proofs, unless stated otherwise, we will use $att(e)$ to mean the list $att(e)$ computed by Algorithm 1. But we will prove that this $att(e)$ correctly implements the $att(e)$ defined in Section 3.1.

During the presentation of Algorithm 1, we explained that two nonempty blocks form a pair within $att(e)$ only if they cannot be embedded on the same side of $cycle(e)$, and the computation of $att(e)$ fails only when e is not planar. Also we can see that the singular block of e is not merged with any other block. To prove Theorem 1, we still have to show that

1. if computation of $att(e)$ succeeds, then e is planar;

2. if any two nonempty nonsingular blocks of $att(e)$ do not form a pair, then these blocks can be embedded on the same side as well as on different sides of $cycle(e)$;

3. $att(e)$ is well-ordered.

We first prove (3), i.e.,

LEMMA 3. The list of pairs $att(e)$ computed by Algorithm 1 is well-ordered.

Proof We prove this lemma by induction on the number of descendants of e. If e has no successor, then e is a back edge, and the lemma is trivially true. Now assume that e is a tree edge with successors $e_1, ..., e_k$ in increasing order by ϕ value. Assume also that $att(e_1), ..., att(e_k)$ are all well-ordered. After Steps 1 and 2 are executed, both assumptions still hold. Thus, $att(e)$ is well-ordered when it is initialized to $att(e_1)$. In Step 3, only blocks in the highest pairs of $att(e)$ are merged, and therefore $att(e)$ is still well-ordered after the merge. Then consider the moment in Step 4 just before B_i is added to $att(e)$. Assume $att(e)$ is well-ordered at this moment. Let $P: [X, Y]$ be the last pair of $att(e)$. We need only consider the two cases in which the computation does not fail.

1. If B_i interlaces X only, then B_i is merged with Y. If P is the only pair in $att(e)$, then $att(e)$ is well-ordered by definition. Otherwise, let $Q: [X_1, Y_1]$ be the pair next to P. Then we have $Q \leq P$ before merge. We need only to show that this is still true after the merge. If $i = 2$, then Step 3 guarantees that $first(B_2) = low_1(e_2) \geq \max(last(X_1), last(Y_1)). $ If $i > 2$, then B_{i-1} is contained in either X or Y. Since $first(B_i) = low_1(e_i) \geq low_1(e_{i-1}) = first(B_{i-1}) \geq \min(first(X), first(Y))$, then merging B_i into X does not change the value of
\(\min(\text{first}(X), \text{first}(Y)) \). Thus, after merging \(X \) and \(B_i \), we still have \(Q \leq P \).

2. If \(B_i \) interlaces neither \(X \) nor \(Y \), then \([B_i, [\,]]\) becomes the last pair of \(\text{att}(e) \). Since \(\text{last}(X) \leq \text{low}_1(e_i) = \text{first}(B_i) \) in this case, we have \(P \leq [B_i, [\,]] \).

Thus, \(\text{att}(e) \) is still well-ordered after each \(B_i \) is added, \(i = 2 \ldots k \). Therefore \(\text{att}(e) \) is well-ordered after Step 4. \(\square \)

Then we prove the following lemma that implies the assertions (1) and (2). We say that a set \(W \) of blocks of \(\text{att}(e) \) is consistent w.r.t. \(e \) if for all \(X, Y \in W \), neither \([X, Y] \) nor \([Y, X] \) is in \(\text{att}(e) \).

Lemma 4. If Algorithm 1 does not fail, and \(D_1 \) and \(D_2 \) are two disjoint consistent sets of nonsingular blocks from \(\text{att}(e) \), then there is an embedding of \(\text{sub}(e) \) such that blocks of \(D_1 \) are on one side of \(\text{cycle}(e) \) and blocks of \(D_2 \) are on the other side of \(\text{cycle}(e) \).

Proof The lemma is trivially true if \(e \) has no successors. If \(e \) has successors, let \(e_1, \ldots, e_k \) be the list of successors of \(e \) in increasing order by their \(\phi \) values. Assume that the lemma holds for each of these successors. We want to construct an embedding of \(\text{sub}(e) \) such that \(D_1 \) and \(D_2 \) are embedded on different sides of \(\text{cycle}(e) \).

If \(W \) is a set of blocks, then a \(W \)-attachment is an attachment contained in some block of \(W \). For \(j = 1, 2 \), let \(D_j = \left\{ X : [X, Y] \text{ or } [Y, X] \text{ is a pair in } \text{att}(e) \text{ and } Y \in D_j \right\} \). Let \(C_1 = D_1 \cup D_2 \) and \(C_2 = D_2 \cup D_1 \). For \(j = 1, 2 \), let \(K_j = \{ X : X \text{ is a block in } \text{sub}(e_1) \text{ containing some } C_j \text{-attachment} \} \). Then \(K_1 \) and \(K_2 \) are two disjoint consistent subsets of blocks of \(\text{sub}(e_1) \).

Initially, we construct an embedding of \(\text{sub}(e_1) \) such that \(K_1 \) and \(K_2 \) are on different sides of \(\text{cycle}(e_1) \). As a result, those \(C_1 \)-attachments and \(C_2 \)-attachments contained in \(\text{sub}(e_1) \) are on different sides of \(\text{cycle}(e) \) (which is \(\text{cycle}(e_1) \)). This embedding exists by the induction hypothesis. Take this embedding to be the initial embedding of \(\text{att}(e) \). Then for \(i = 2, \ldots, k \), we add \(\text{sub}(e_i) \) to this embedding one by one as follows.

Since the normal blocks of \(\text{att}(e_i) \) do not interlace, we can, by induction, find an embedding of \(\text{sub}(e_i) \) such that all of its normal blocks are embedded on the same side of \(\text{cycle}(e_i) \). We call this embedding \(E_i \), and its mirror image \(E_i' \). Let \(B_i, P \) and \([X, Y]\) be the same as in Step 4 of algorithm 1. Let \(\text{att}_i \) be the value of \(\text{att}(e) \) just before \(B_i \) is added. Let \(h_1 = \max\{\text{last}(Z) : [Z, U] \text{ is a pair in } \text{att}_i\} \) and \(h_2 = \max\{\text{last}(U) : [Z, U] \text{ is a pair in } \text{att}_i\} \). Then there are two faces \(F_1 \) and \(F_2 \) in the current embedding of \(\text{sub}(e) \) such that the tree path from \(h_1 \) to \(b \) is on the boundary of \(F_1 \) and the tree path from \(h_2 \) to \(b \) is on the boundary of \(F_2 \). Moreover, \(F_1 \) and \(X \) are on the same side of \(\text{cycle}(e) \), and \(F_2 \) and \(X \) are on different sides of \(\text{cycle}(e) \), as is shown in Fig. 12.

We need only consider two cases:
Case 1: \(B_i \) interlaces \(X \) but not \(Y \). Then \(\text{low}_1(e_i) \geq \text{last}(Y) \) by the only if part of Lemma 2. We argue that \(\text{low}_1(e_i) \geq h_2 \) also. If \(Y \) is not empty, then by Lemma 3, \(h_2 = \text{last}(Y) \). Otherwise, if \(Z \) is any block in \(att_i \) below \(X \), then by the discussion in the proof of Lemma 3, \(\text{last}(Z) \leq \text{low}_1(e_i) \). In either case, we have \(\text{low}_1(e_i) \geq h_2 \). Therefore one of \(E_i \) or \(E_i' \) can be embedded in \(F_2 \). If \(B_i \) contains any \(C_1 \)-attachment, then \(X \) contains some \(C_2 \)-attachment; if \(B_i \) contains any \(C_2 \)-attachment, then \(X \) contains some \(C_1 \)-attachment. In any case, \(C_1 \)-attachments and \(C_2 \)-attachments are still on different sides of \(\text{cycle}(e) \) after \(B_i \) is embedded.

Case 2: \(B_i \) interlaces neither \(X \) nor \(Y \). Then \(\text{low}_1(e_i) \geq h_1 \geq h_2 \). In this case, one of \(E_i \) or \(E_i' \), say \(E_i \), can be embedded in \(F_1 \), and the other, \(E_i' \), can be embedded in \(F_2 \). At least one of these choices will result in an embedding such that \(C_1 \)-attachments are on one side of \(\text{cycle}(e) \), and \(C_2 \)-attachments are on the other side.

When all the \(B_i \)'s are added, we get an embedding of \(\text{sub}(e) \) such that \(D_1 \) is on one side of \(\text{cycle}(e) \), and \(D_2 \) is on the other side of \(\text{cycle}(e) \). This is true because every \(D_1 \)-attachment is a \(C_1 \)-attachment, and every \(D_2 \)-attachment is a \(C_2 \)-attachment.

The above analysis also shows that for \(D = X \) or \(D = Y \), if \(\text{low}(e_i) \geq \text{last}(D) \), then \(B_i \) and \(D \) can be embedded on the same side of \(\text{cycle}(e) \), which proves the if part of Lemma 2.

This completes the proof of Theorem 1, and establishes that the list \(att(e) \) computed by Algorithm 1 has the properties discussed at the end of Section 3.1. This proof also shows that

Corollary 1.1. Let \(e, e_i, B_i, \) and \(h_2 \) be the same as in the above proof. Then \(B_i \) cannot be embedded in either side of \(\text{cycle}(e) \) iff \(\text{low}_1(e_i) < h_2 \).
3.4. Data structure and running time

As suggested in [7], we can implement blocks as linked lists. An interlacing pair of blocks can be represented as a record containing two pointers to the two linked lists representing these two blocks. Then \(att(e) \) can be represented as a linked list of such records. In this way, the time cost for Step 1 is \(O(k + \text{number of deletions}) \). The cost for Step 2, 3 and 4 is \(O(k + \text{reduction in number of blocks}) \). The cumulative expense of executing these steps over the whole graph is \(O(m) \). The initial DFS in which \(\text{low}_1 \) values are computed takes time \(O(m) \). Arranging the successors in increasing order by \(\phi \) value for all tree edges takes \(O(m) \) time using a bucket sort. Thus the whole algorithm runs in \(O(m) \) time. It is well known that any \(O(m) \)-time algorithm for planarity testing can be implemented in \(O(n) \) time since \(m = O(n) \) for a planar graph [7].

3.5. A modification to Algorithm 1

Consider Step 4 of Algorithm 1. Lemma 2 requires that the successors of each tree edge be ordered by \(\phi \) values. Maintaining this ordering causes difficulties in solving the maximal planar subgraph problem. Fortunately, we can modify Algorithm 1 so that it requires only the \(\text{low}_1 \) ordering of the successors of each tree edge.

Let \(e = [a, b] \) be a tree edge, and \(e_1, \ldots, e_k \) be the list of its successors in increasing order by \(\text{low}_1 \) values. Still define \(\text{cycle}(e) = \text{cycle}(e_1) \). Then Step 1, 2, and 3 can be performed w.r.t. this ordering without any modification.

Next we want to merge \(B_2, \ldots, B_k \) into \(att(e) \) in that order. In general, successors ordered by \(\text{low}_1 \) values may not be ordered by \(\phi \) values. Consequently, there may be some \(1 < i \leq k \) such that \(\phi(e_{i-1}) > \phi(e_i) \). But if this happens, we know that \(\text{low}_1(e_{i-1}) = \text{low}_1(e_i) \) and \(\text{low}_2(e_i) \geq b \). If \(i = 2 \), Lemma 2 still applies, and we can merge \(B_2 \) into \(att(e) \) as before. Otherwise, the following lemma says that we do not have to merge \(B_i \) into \(att(e) \) at all:

Lemma 5. If for some \(2 < i \leq k \), \(\text{low}_1(e_{i-1}) = \text{low}_1(e_i), \text{low}_2(e_i) \geq b \), and \(e_i \) is planar, then \(G \) is planar iff \(G - S(e_i) \) is planar.

Proof The only if part is trivial, so we just prove the if part. Consider an embedding \(E_i \) of \(G_i = G - S(e_i) \). Under the condition of the lemma, \(e_i \) has no normal attachments. Since \(e_i \) is planar, then \(e_i \) is strongly planar. Also, \(b \) and \(\text{low}_1(e_i) \) are the only two vertices shared by \(S(e_i) \) and \(G_i \). Therefore \(S(e_i) \) can be embedded in any face of \(E_i \) whose boundary contains the two vertices \(b \) and \(\text{low}_1(e_i) \).

Let \(P \) be the tree path \(\text{cycle}(e_{i-1}) \cap \text{cycle}(e) \) and let \(C \) be the closed curve \(\text{cycle}(e_{i-1}) \cup \text{cycle}(e) - P \). Then \(C \) contains edges from both \(S(e_{i-1}) \) and \(G_i - S(e_{i-1}) \). By Observation 2, \(P \) is on one side of \(C \). Call this side of \(C \) \(S_1 \), and the other side \(S_2 \). Let \(U \) be the set of faces in \(S_2 \)
whose boundaries contain edges from $S(e_{i-1})$ only, and let W be the set of faces in S_2 whose boundaries contain edges from $G_1 - S(e_{i-1})$ only. Then faces in U and faces in W do not share common boundaries. Thus, within S_2 there must be some face F whose boundary contains edges from both $S(e_{i-1})$ and $G_1 - S(e_{i-1})$, and therefore contains at least two vertices common to $S(e_{i-1})$ and $G_1 - S(e_{i-1})$. But all the vertices common to $S(e_{i-1})$ and $G_1 - S(e_{i-1})$ are on P, and among them only b and $\text{low}_1(e_{i-1})$ are on the boundary of S_2. Therefore these two vertices must be on the boundary of F. Thus we can embed $S(e_i)$ in F to get an embedding of G.

Therefore, under the conditions of Lemma 5, in deciding the planarity of G, we can ignore its subgraph $S(e_i)$. Since the condition $\text{low}_1(e_{i-1}) = \text{low}_1(e_i)$ and $\text{low}_2(e_i) \geq b$ is implied by $\text{low}_1(e_{i-1}) \leq \text{low}_1(e_i)$ and $\Phi(e_{i-1}) > \Phi(e_i)$, we can modify Step 4 as follows:

Step 4'. Add blocks B_2, \ldots, B_k into $\text{att}(e)$ in that order, assuming $\text{low}_1(e_1) \leq \text{low}_1(e_2) \leq \ldots \leq \text{low}_1(e_k)$. Initially, let $j = 1$ and $i = 2$. To process B_i, we consider two cases. If $j = 1$ or $\Phi(e_j) \leq \Phi(e_i)$, we do the same thing as in Step 4, and then let $j = i$; otherwise, we do nothing.

The list $\text{att}(e)$ computed by the modified algorithm may not contain all the attachments of e. Some attachments may be omitted by Step 4', because their existence does not affect the planarity of the whole graph G.

4. The maximal planar subgraph problem

Now we consider the maximal planar subgraph problem: find a minimal set of edges whose deletion results in a planar graph. The resulting graph is called a *maximal planar subgraph* of G. We can always find a maximal planar subgraph of G by deleting back edges only, since all the tree edges form a forest, which is planar.

We will not assume that the input graph is biconnected, since deletion of back edges may turn a biconnected graph into a graph with articulation points. But without loss of generality we can assume that the input graph is connected. Thus the tree edges of G form a single tree with root r. Let t_1, \ldots, t_s be the tree edges leaving the root. If $s = 1$, then $\text{sub}(t_1)$ is the whole graph G. If $s > 1$, then r is the only vertex common to $\text{sub}(t_1), \ldots, \text{sub}(t_s)$. Thus, to find a maximal planar subgraph of G, we can just find a maximal planar subgraph for each of the subgraphs $\text{sub}(t_1), \ldots, \text{sub}(t_s)$, and then simply put these subgraphs together. Therefore, what we need is a procedure that can find a maximal planar subgraph of $\text{sub}(e)$ for any given edge e of G.

4.1. Maximal l–planar subgraphs

Based on our planarity testing algorithm, we will construct a maximal planar subgraph of $\text{sub}(e)$ from planar subgraphs of $\text{sub}(e_1), \ldots, \text{sub}(e_k)$, where e is a tree edge with successors e_1, \ldots, e_k. This approach leads naturally to the concept of l–planar subgraphs, which is a
generalization of the concept of strongly planar subgraphs.

Consider an edge $e = [a, b]$ and a vertex l on the tree path from $\text{low}_1(e)$ to a. An attachment $[u, v]$ of e is l-normal if $\text{low}_1(e) < v < l$. A block of attachments is l-normal if it contains some l-normal attachment. Let D be the list representation of a nonempty block of attachments. Define $\text{first}_2(D)$ to be the second smallest element in the set $\{x : x \in D\} \cup \{n+1\}$, and define $\text{first}_2([]) = n+1$. Then D is l-normal iff $\text{low}_1(e) < \text{first}(D) < l$ or $\text{first}_2(D) < l$. The two mappings first and first_2 can be maintained during the computation of $\text{att}(e)$ in $O(1)$ time for each modification to $\text{att}(e)$.

We say that the subgraph $\text{sub}(e)$ is l-planar if e is planar and the l-normal blocks of $\text{att}(e)$ do not interface. (c.f. Fig. 13, where (a) is l-planar, but (b) is not.) Edge e is l-planar if $\text{sub}(e)$ is planar.

We also define l-planarity for some subgraphs of $\text{sub}(e)$. A subgraph H of G is a palm tree [7] if all the tree edges in H form a single tree, and for each back edge $[a, b]$ in H, the tree path from b to a is also contained in H. Thus, $\text{sub}(e)$ is a palm tree for every $e \in G$. Also, deleting some back edges from a palm tree results in another palm tree. Let H be a palm tree that is a subgraph of $\text{sub}(e)$ and contains e. Then we can define the l-planarity for H (w.r.t. e) in the same way as we did for $\text{sub}(e)$. We will talk about l-planar subgraphs of $\text{sub}(e)$ in this sense. An l-planar subgraph of $\text{sub}(e)$ is maximal if it can be obtained from $\text{sub}(e)$ by deleting a minimal set of back edges.

Consider edge $e = [a, b]$. According to our definition, e is planar iff e is $\text{low}_1(e)$-planar, and e is strongly planar iff e is a-planar. Therefore, if we can find a maximal l-planar subgraph of $\text{sub}(e)$ for any $\text{low}_1(e) \leq l \leq a$, then we can compute a maximal planar subgraph of $\text{sub}(e)$.

![Diagram](image)

Fig. 13

The following is an outline of our maximal l-planar subgraph algorithm. Let $e = [a, b]$, and consider three cases:
Case 1: \(e\) is a back edge. Assign [[\([b]\), \([\square]\)]] to \(att(e)\), and return.

Case 2: \(e\) is a tree edge with no successors. Assign [] to \(att(e)\), and return.

Case 3: \(e\) is a tree edge with successors \(e_1, \ldots, e_k\), among which \(e_1\) has the smallest \(low_1\) value. We construct a sequence \(G_1, \ldots, G_k\) of \(l\)-planar subgraphs of \(sub(e)\) such that \(G_1\) is a maximal \(l\)-planar subgraph of \(sub(e_1)\) and \(low_1(e_1)\) remains unchanged; \(G_k\) is a maximal \(l\)-planar subgraph of of \(sub(e)\); and each \(G_i, 1 < i \leq k\), is obtained from \(G_{i-1}\) by adding to it a strongly planar subgraph \(S_i\) of \(sub(e_i)\), where \(e_i\) is some successor of \(e\) not contained in \(G_{i-1}\). During the construction, we compute \(att(e)\) using the modified version of Algorithm 1. We describe below in rough terms how we compute \(S_i\):

1. select an edge \(e_i\) with the smallest \(low_1\) value from successors of \(e\) not contained in \(G_{i-1}\);
2. while there exists a maximal strongly planar subgraph of \(sub(e_i)\) which can be added to \(G_{i-1}\) without resulting in an \(l\)-planar subgraph of \(sub(e)\) do
 3. delete some attachments from \(sub(e_i)\);
 4. if the deletion changes the \(low_1\) value of \(e_i\) then
 5. select a possibly new edge \(e_i\) with the smallest \(low_1\) value from successors of \(e\) not contained in \(G_{i-1}\);
 6. end if;
3. od;
4. recursively construct a maximal strongly planar subgraph of \(sub(e_i)\) without changing \(low_1(e_i)\) further. We take this subgraph as \(S_i\).

In the procedure sketched above, lines 1, 4, 5, 6, and 8 guarantee that subgraphs \(S_i\) are generated in increasing order by new \(low_1\) values of the corresponding successors. For each \(1 < i \leq k\), once \(S_i\) is computed, no edges will be deleted further from it. There are still two questions remaining to be answered: how the testing in line 2 can be done without constructing a maximal strongly planar subgraph of \(sub(e_i)\), and how the attachments are chosen so that the deletion in line 3 makes the set of deleted edges minimal. These two questions are closely related and will be explained together in the next section.

Remark. The need to generalize to \(l\)-planarity arises in the following way in the algorithm sketched above. To compute a maximal planar subgraph of the input graph, the recursive calls that construct \(S_i\) for \(i = 2, \ldots, k\) must construct maximal strongly planar graphs. Within one of these recursive calls, the initial second-level recursive call (to construct a maximal \(b\)-planar subgraph of \(sub(e_{i1})\), where \(e_{i1}\) is the first successor of edge \(e_i\)) and more deeply nested recursive calls of the same kind construct maximal \(l\)-planar subgraphs for general values of \(l\).
4.2. Algorithm for deleting back edges

Let $e = [a, b]$, and consider the while-loop in the above procedure. If $\text{low}_1(e_i) \geq b$, then b is the only vertex common to $\text{sub}(e_i)$ and $G - \text{sub}(e_i)$. In this case, we can apply the maximal planar subgraph to $\text{sub}(e_i)$ separately, and do not have to consider the effect on the whole graph. Next, we consider the case when $\text{low}_1(e_i) < b$. Assume that $\text{sub}(e_i)$ is made strongly planar by deleting some back edges. Suppose that the low_1 value and the low_2 value of e_i are not changed by these deletions. We want to see whether the union of $\text{sub}(e_i)$ and G_{i-1} is l-planar.

As in planarity testing, let B_i be the block of attachments obtained by merging $\text{att}(e_i)$; let att_i be the current value of $\text{att}(e)$; let B_j be the last block merged into att_i by Step 4; let $h_1 = \max \{ \text{last}(Z): [Z, U] \text{ is a pair in } \text{att}_i \}$ and $h_2 = \max \{ \text{last}(U): [Z, U] \text{ is a pair in } \text{att}_i \}$. (Initially, we set $j = 1$ and $\text{att}(e) = \text{att}(e_1)$ after removing all the occurrences of b from $\text{att}(e_i)$.) Finally, let $h_3 = \max \{ \text{last}(Z): Z \text{ is an } l\text{-normal block of } \text{att}_i \}.

The two variables h_1, h_2 can be maintained in $O(1)$ time per modification to $\text{att}(e)$ by maintaining two lists L and R (as suggested in [7]), where L is the ordered list of nonempty blocks X such that $[X, Y]$ is a pair in $\text{att}(e)$, and R is the ordered list of nonempty blocks Y such that $[X, Y]$ is a pair in $\text{att}(e)$. If B_L and B_R are the highest blocks of L and R respectively, then $h_1 = \text{last}(B_L)$ and $h_2 = \text{last}(B_R)$. Lists L and R also let h_3 be maintained easily. If e is a back edge, we compute h_3 from its definition. If e is a tree edge, we get the initial value of h_3 from the computation of $\text{att}(e_1)$, and modify it in $O(1)$ time for each modification of $\text{att}(e)$. The details will not be discussed here.

By Lemma 5, in case that e_i is planar, $\text{sub}(e_i)$ can affect the planarity of G only if any of the following conditions holds:

a. $j = 1$,

b. $\text{low}_1(e_j) < \text{low}_1(e_i)$, or

c. $\text{low}_2(e_i) < b$.

If any of these conditions is true, we consider two additional cases:

1. The union of $\text{sub}(e_i)$ and G_{i-1} is not planar. By Corollary 1.1, this can happen iff $\text{low}_1(e_i) < h_2$.

2. The union of $\text{sub}(e_i)$ and G_{i-1} is planar, but not l-planar. Then B_i is l-normal, and it interlaces an l-normal block of att_i. We know that B_i is l-normal iff $\text{low}_1(e_i) < \text{low}_1(e_i) < l$ or $\text{low}_2(e_i) < l$. Also, it is easy to see that B_i interlaces an l-normal block of att_i iff $\text{low}_1(e_i) < h_3$.

This means, under the conditions a, b, or c, that if any of the following conditions holds

i. $\text{low}_1(e_i) < h_2$
ii. \(\text{low}_1(e_1) < \text{low}_1(e_i) < \min \{ h_3, l \} \)

iii. \(\text{low}_2(e_i) < l \) and \(\text{low}_1(e_i) < h_3 \)

then the union of \(\text{sub}(e_i) \) and \(G_{i-1} \) cannot be \(l \)-planar. Therefore, some back edge has to be deleted to change either the \(\text{low}_1 \) value or the \(\text{low}_2 \) value of \(e_i \). Such testing and deletion can be done even before making \(\text{sub}(e_i) \) strongly planar. For this purpose, we combine the above conditions (a or b or c) and (i or ii or iii) into two groups according to whether they involve \(\text{low}_2(e_i) \) or not:

Condition AA.

\((j = 1 \text{ and } \text{low}_1(e_i) < h_2) \text{ or } \)

\((\text{low}_1(e_j) < \text{low}_1(e_i) < h_2) \text{ or } \)

\((\text{low}_1(e_j) < \text{low}_1(e_i) < \min \{ h_3, l \}) \)

Condition BB.

\((\text{low}_2(e_i) < b \text{ and } \text{low}_1(e_i) < h_2) \text{ or } \)

\((\text{low}_2(e_i) < b \text{ and } \text{low}_1(e_1) < \text{low}_1(e_i) < \min \{ h_3, l \}) \text{ or } \)

\((\text{low}_2(e_i) < l \text{ and } \text{low}_1(e_i) < h_3) \)

It is easy to see that the condition ((a or b or c) and (i or ii or iii)) is equivalent to the condition (AA or BB).

If Condition AA is true, we can make it false only by changing the value \(\text{low}_1(e_i) \). In this case, we delete all the back edges of \(\text{sub}(e_i) \) entering the vertex \(\text{low}_1(e_i) \). After the deletion, we choose a possibly new \(e_i \) with the smallest \(\text{low}_1 \) value.

The edge \(e_i \) satisfies condition BB. If we choose to delete \(d' \), then \(d' \) will also be deleted later because of Condition AA, and the resulting graph will not be maximal.

Fig. 14

If Condition AA is not true, then we test Condition BB. If Condition BB is true, we know that \(\text{low}_1(e_i) = \text{low}_1(e_j) \). This is because \(\text{low}_1(e_i) < \text{low}_2(e_i) \), which means that BB implies that \(\text{low}_1(e_i) < h_2 \) or \(\text{low}_1(e_i) < \min \{ h_3, l \} \), from which it follows that \(\text{low}_1(e_j) = \text{low}_1(e_i) \); otherwise AA would be true. (We have \(\text{low}_1(e_j) \leq \text{low}_1(e_i) \) by the ordering of the successors of \(e_i \).) To
make Condition BB false, we can change the value of either $\text{low}_1(e)$ or $\text{low}_2(e)$. If we choose to change $\text{low}_2(e)$ consistently, then at least one of the back edges $[u, v]$ of $\text{sub}(e)$ with $v = \text{low}_1(e)$ will survive. But if we choose to change $\text{low}_1(e)$, it may happen that all the attachments in $\text{ATT}(e) \cap \text{ATT}(e)$ are deleted eventually and that the resulting graph is not maximal. Therefore, in this case we choose to delete all the back edges $[u, v]$ of $\text{sub}(e)$ with $v = \text{low}_2(e)$ (see Fig. 14).

We test and delete repeatedly as described above until we find an edge e_i that does not satisfy AA or BB. Then we can construct S_i recursively from $\text{sub}(e_i)$ and merge it into G_{i-1}. Since no edge is added to $\text{sub}(e_i)$ during the construction of S_i, conditions AA and BB remain false after the construction. Thus, the resulting graph G_i will be planar, and no l-normal blocks will interlace.

To see that the deleted set of back edges is minimal, let $[u, v]$ be an edge deleted by the above algorithm, and add it back to G_i. If $[u, v]$ was deleted because of Condition AA, then $\text{low}_1(e) = v$ now, and Condition AA is true again. If $[u, v]$ was deleted because of Condition BB, then $\text{low}_2(e) = v$ now, and Condition BB is true again. Notice that, in the latter case, the low_1 value of e_i has remained unchanged since the deletion of $[u, v]$. In either case, G_i will not be l-planar.

4.3. Data structures and running time

In the algorithm described above, we need to repeatedly select an unprocessed successor of e with the smallest low_1 value, and the low_1 values of tree edges are constantly changing. Therefore we maintain a heap [12] based on low_1 values of the unprocessed successors of the tree edge e currently being processed. Since the algorithm is recursive, we actually maintain simultaneously a heap of unprocessed successors for each tree edge along the path to the currently active tree edge. The total size of all such heaps is $O(m)$. The initialization of all these heaps takes a total of $O(m)$ time. When the low_1 value of some element in a heap increases, we modify the heap accordingly. It is important to note that any two edges in active heaps are unrelated; thus deletion of a single attachment can modify the low_1 value of only a single such edge. It follows that the total number of modifications to and deletions from heaps is $O(m)$. The time for the heap operations is $O(\log n)$ time per operation, for a total of $O(m\log n)$ time. (Since $m < n^2$, $\log m = O(\log n)$.)

We also need a data structure for the back edges of $\text{sub}(e)$ so that the following operations can be done efficiently:

1. delete an attachment $[u, v]$ of e with $v = \text{low}_1(e)$ or $v = \text{low}_2(e)$;
2. maintain the low\textsubscript{1} and low\textsubscript{2} values of e;
3. split the data structure into several pieces, one for each successor of e.

One easy solution that meets these requirements is the selection tree [8]. To represent a set of edges E_0 as a selection tree T_0, we store edges of E_0 inside the leaves of T_0 from left to right in increasing order (by DFS number) of their tails. Edges with the same tail are ordered arbitrarily. Each internal node w of T_0 has two children $w.lchild$ and $w.rchild$. Let S_w be the set of edges stored in the leaves of the subtree rooted at w; let $lb = \min \{x: [x, y] \in S_w\}$ and $rb = \max \{x: [x, y] \in S_w\}$; let $low_1 = \min \{y: [x, y] \in S_w\}$, and $low_2 = \min \{y: [x, y] \in S_w | y \neq low_1\} \cup \{n+1\}$. Then the four values lb, rb, low_1 and low_2 are stored in the four fields $w.lb, w.rb, w.low_1$, and $w.low_2$ of w respectively. If w is a leaf storing the edge $[x, y]$, then $w.lb = x, w.rb = x, w.low_1 = y$, and $w.low_2 = n+1$. The values in each internal node can be computed from the values in the children (in constant time).

In the following discussion, we will refer to a tree by its root. Let r_1 and r_2 be two selection trees representing the two disjoint sets of edges E_1 and E_2. If $u_1 \leq u_2$ for all $[u_1, v_1] \in E_1$ and $[u_2, v_2] \in E_2$, then we can merge r_1 and r_2 to get the selection tree for $E_1 \cup E_2$ in $O(1)$ time:

```text
procedure merge(r_1, r_2);
begin
if r_1 = null then
    return r_2;
end if;
if r_2 = null then
    return r_1;
end if;
r := newNode();
r.lchild := r_1;
r.rchild := r_2;
r.lb := r_1.lb;
r.rb := r_2.rb;
r.low_1 := min(r_1.low_1, r_2.low_1);
r.low_2 := min((r_1.low_1, r_2.low_1, r_1.low_2, r_2.low_2) - (r.low_1));
return r;
end;
```

Let r be a selection tree representing a set of edges E_0. To split E_0 into two sets $E_1 = \{[u, v] \in E_0 | u \leq u_x\}$ and $E_2 = \{[u, v] \in E_0 | u > u_x\}$, we split r with respect to u_x as follows:

```text
procedure split(r, u_x);
begin
if u_x < r.lb then
    return [null, r];
else if u_x \geq r.lb then
    return [r, null];
else
    if [r_l, r_r] := [r.lchild, r.rchild];
    if u_x < r_l, rb then
```
\[[r_{11}, r_{12}] := \text{split}(r, u_k); \]
\[\text{return } [r_{11}, \text{merge}(r_{12}, r)]; \]
\[\text{else } [r_{1}, r_{2}] := \text{split}(r, u_k); \]
\[\text{return } [\text{merge}(r, r_1), r_2]; \]
\end{if}
\endend

The height of any tree that results from splitting a tree \(r \) can be no greater than the height of \(r \). To select and delete an edge \([x, v]\) from a tree \(r \), where \(v \in \{ r._{low_1}, r._{low_2} \} \), we do the following:

\textbf{procedure delete}(r, v);

\begin{align*}
\text{begin } & \text{if } r \text{ is a leaf then} \\
& \text{mark the back edge stored in } r \text{ as 'deleted'}; \\
& \text{return null;} \\
\text{else } & [r_l, r_r] := [r._{lchild}, r._{rchild}]; \\
& \text{if } v = r._{low_1} \text{ or } v = r._{low_2} \text{ then} \\
& \text{return merge(delete}(r_l, v), r_r); \\
\text{else } & \text{return merge}(r, \text{delete}(r_r, v)); \\
\text{end if}; \\
\text{end if}; \\
\end{align*}

\textbf{end}

Assuming the input graph \(G \) is connected, we know that all the tree edges form a tree. Let the root be 1. For technical reasons, we add a dummy edge \(e_0 = [0, 1] \) to the tree edges. To get a maximal planar subgraph of \(G \), we just construct a 0-planar subgraph of \(\text{sub}(e_0) \), and then delete \(e_0 \) from it. Initially, we construct a balanced selection tree \(\text{tree}(e_0) \) to store all the back edges of \(G \). The height of this tree is \(O(\log n) \). The time and space needed to initialize \(\text{tree}(e_0) \) are both \(O(m) \).

When we begin to construct a maximal \(l \)-planar subgraph for an edge \(e \), we first split \(\text{tree}(e) \) into several pieces \(\text{tree}(e_1), \ldots, \text{tree}(e_k) \), where \(e_1, \ldots, e_k \) are the successors of \(e \) not marked as 'deleted'. For each such successor \(e_i \), \(\text{tree}(e_i) \) is a selection tree representing the set of back edges in \(\text{sub}(e_i) \), and can be obtained as follows. If \(e_i \) is a back edge, then \(\text{tree}(e_i) \) can be constructed from its definition. If \(e_i \) is a tree edge, let \(e_i = [b, c_i] \), and let \(n_i \) be the number of descendants of \(c_i \). It is well known that a back edge \([u, v]\) is a descendant of \(e_i \) iff \(c_i \leq u < c_i + n_i \). Then we can use the procedure \text{split} to get \(\text{tree}(e_i) \) from \(\text{tree}(e) \) in \(O(\log n) \) time. For the whole algorithm, the splitting takes \(O(m\log n) \) time. After each split, the total size of the trees is still \(O(m) \).

To select and delete an attachment \([x, v]\) of \(e_i \), where \(v \in \{ \text{low}_1(e_i), \text{low}_2(e_i) \} \), we execute \text{delete}(\text{tree}(e_i), v) \), which takes \(O(\log(n)) \) time. There can be at most \(O(m) \) such invocations of \text{delete}, so the total cost for executing \text{delete} is \(O(m\log n) \). Given the selection tree \(\text{tree}(e_i) \), the values \(\phi(e_i), \text{low}_1(e_i) \), and \(\text{low}_2(e_i) \) can be computed from \(\text{tree}(e_i) \) in \(O(1) \) time: if \(\text{tree}(e_i) \) is null, we just set these values to \(n+1 \); otherwise, they can be computed from \(\text{tree}(e_i).\text{low}_1 \) and
tree \((e_i).low\). Thus, the total cost of selection tree operations is \(O(m \log n)\).

We have mentioned that the total cost of heap operations is also \(O(m \log n)\). The other costs of the algorithm are the same as in planarity-testing. Thus the total cost of our maximal planar subgraph algorithm is \(O(m \log n)\).

4.4. The complete algorithm

Now we summarize our maximal planar subgraph algorithm. We take a connected undirected graph as input, and convert it into a DFS representation \(G = (V, T, B)\). At the same time, we compute the two mappings \(\text{succ}\) and \(N\), where, for each \(e \in T\), \(\text{succ}\) \((e)\) gives the successor edges of \(e\) in increasing order of their tails, and for each \(v \in V\), \(N\) \((v)\) gives the number of descendants of \(v\). We assume that there is a dummy edge \(e_0 = [0, 1]\) such that \(\text{succ}\) \((e_0)\) gives the list of tree edges leaving the root. The whole preprocessing takes \(O(m)\) time.

We summarize the maximal \(l\)-planar subgraph algorithm below.

```markdown
procedure IPlanar\((e, l)\);
begin
    let \(e = [a, b]\);
    if \(e \in B\) then
        return [[[b]], [l]];
    end if;
    if \(e\) has no successors then
        return [ ];
    end if;
    let \(e_1, ..., e_k\) be the successors of \(e\) not marked as 'deleted';
    split \(\text{tree}\) \((e)\) into \(\text{tree}\) \((e_1)\), ..., \(\text{tree}\) \((e_k)\);
    organize \(e_1, ..., e_k\) into a heap based on their \(low\) values, with the smallest one on the top;
    let \(e_1\) be the edge on the top of the heap;
    delete \(e_1\) from the heap;
    \(att\) \((e)\) := IPlanar\((e_1, l)\);
    delete all the occurrences of \(b\) from the top blocks of \(att\) \((e)\);
    \(j := 1;\)
    \(i := 2;\)
    while heap is not empty do
        let \(e_i\) be the edge on the top of the heap;
        if \(low\) \(_1\) \((e_i) \geq b\) then
            delete \(e_i\) from the heap;
            \(dummy := IPlanar\((e_i, b)\);\)
        elseif Condition AA is true then
            \(v := \text{tree}\) \((e_i)\). \(low\) \(_1\);
            while \(v = \text{tree}\) \((e_i)\). \(low\) \(_1\) do
                \(\text{tree}\) \((e_i)\) := delete \((\text{tree}\) \((e_i)\), \(v)\);
            end while;
            if \(e_i\) is a back edge then
                delete \(e_i\) from heap;
            else modify heap;
        end if
    end while
end begin
```
end if;
else if Condition BB is true then
\[v := tree(e_i). low_2; \]
while \(v = tree(e_i). low_2 \) do
\[tree(e_i) := delete(tree(e_i), v); \]
end while;
else delete \(e_i \) from the heap;
\[att(e_i) := lplanar(e_i, b); \]
merge blocks of \(att(e_i) \) into one block \(B_i \);
delete all the occurrences of \(b \) from the top blocks of \(att(e_i) \);
if \(i = 2 \) then
perform Step 3 of Alg. 1;
end if;
merge \(B_i \) into \(att(e) \) as described in Step 4';
\[i := 1; \]
end if
end while;
return \(att(e) \);
end;

To compute a maximal planar subgraph, we simply do the following:

1. Organize \(B \) into a selection tree \(tree(e_0) \);
2. Execute \(lplanar(e_0, 0) \);

Then \(T \cup B - B' \) gives a maximal planar subgraph of \(G \), where \(B' \) is the set of back edges deleted by the procedure \textit{delete} in the preceding algorithm.

5. Summary

The problem of drawing graphs in the plane arises naturally in circuit layout. Since finding a maximum planar subgraph is \textit{NP}-complete [5], a maximal planar subgraph seems to be a reasonable approximation. Because planarity-testing can be done in linear time, it is easy to solve the maximal planar subgraph problem in \(O(mn) \) time: start with a graph \(H \) with no edge; for each edge of the input graph \(G \), add it to \(H \) if the resulting graph is planar, and reject it otherwise. The resulting graph \(H \) will be a maximal planar subgraph of \(G \). However, a better solution seemed to be hard to find for a long time. Jayakumar et al. [9] even made the conjecture that "no maximal planarization algorithm of complexity better than \(O(mn) \) will be possible." Our \(O(m\log n) \) solution disproves this conjecture, as does the method of Di Battista and Tamassia [3].

We have assumed that the input graph to our algorithm is connected. For a more general graph, we can find a maximal planar subgraph by applying our algorithm to each of its connected components.

Our algorithm is based on the H-T planarity testing algorithm, and many lemmas and theorems are similar, but not identical, to those in [7]. Instead of referring the readers to [7] for
the proofs, we found it more convenient and accurate to supply all main proofs here.

References