EVALUATION OF MEMORY SYSTEM EXTENSIONS

Kai Li
Karin Petersen

CS-TR-307-91

March 1991

Evaluation of Memory System Extensions*

Kai Li and Karin Petersen
Department of Computer Science
Princeton University

Abstract

A traditional memory system for a uniprocessor con-
sists of one or two levels of cache, a main memory and
a backing store. One can extend such a memory sys-
tem by adding inexpensive but slower memories into
the memory hierarchy. This paper uses an experimen-
tal approach to evaluate two methods of extending a
memory system: direct and caching. The direct method
adds the slower memory into the memory hierarchy by
putting it at the same level as the main memory, al-
lowing the CPU to access the slower memories directly;
whereas the caching method puts the slower memory
between the main memory and the backing store, us-
ing the main memory as a cache for the slower memory.
We have implemented both approaches and our exper-
iments indicate that applications with very large data
structures can benefit significantly using an extended
memory system, and that the direct approach outper-
forms the caching approach in memory-bound applica-
tions.

Introduction

The demand for large memory continues to increase.
Large memory not only improves the performance of
programs with large data structures such as scientific
programs, artificial intelligence applications, and VLSI
design tools, but also simplifies the design for systems
such as memory-resident database and transaction pro-
cessing systems [Sto84,LN88,SGM90]. As the gap be-
tween processor speed and disk paging has widened dra-
matically in the past few years, programs with large
data structures have become very sensitive to virtual
memory disk paging.

Recent work by Ousterhout [Ous90] shows that pro-
grams run much slower on fast machines than the raw

*This research was supported in part by the National Science
Foundation agreement CCR-8814265 and DCR-8420948, by the
Defense Advanced Research Projects Agency of the Department
of Defense and by the Office of Naval Research under Contracts
N00014-85-C-0456 and N00014-85-K-0465.

speed of the the processor would indicate. He believes
that low memory bandwidth is one of the reasons for
these results: “Memory-intensive applications are not
likely to scale well on these RISC machines. In fact, the
relative performance of memory copying drops almost
monotonically with faster processors, both for RISC and
CISC machines.”

On the other hand, the density of current DRAM
chips, physical space and other engineering factors limit
the size of main memory. When reaching the engineer-
ing limits, architects need to consider how to add ad-
ditional memory devices to the memory hierarchy. We
can envision several possible extensions: memory de-
vices connected to the machine over a bus or a network,
multiple memory modules in a shared-memory multi-
processor, and remote memory paging on a network of
processors or on a multicomputer.

How much can a uniprocessor system benefit by hav-
ing an extended memory and what is the best way to
extend a memory system? In an attempt to answer
these questions, we took an experimental approach to
study two design alternatives for extending memory sys-
tems for a uniprocessor system: direct and caching.
"The direct approach adds a large number of inexpensive
DRAM memory modules on a secondary memory bus
that can be directly accessed by the processor’s cache.
The caching approach puts extended memory modules
between the processor’s main memory and its backing
store, using the main memory as a cache.

We chose actual measurement over trace-driven sim-
ulation for evaluating different extended memory de-
sign alternatives. Although trace-driven simulation is
an effective method to evaluate the behavior of a mem-
ory hierarchy and has been used effectively in the past
[Bel66,MGST70,PACST73,GecT4,5Smi82], it is difficult to
collect meaningful traces for extended memory designs
because programs requiring very large data structures
usually run for more than an hour and their trace sizes
are extremely large. It would take weeks to run a
simulation, even if we were able to collect and store
such traces. The actual measurement approach is lack
of the flexibility of varying hardware parameters, but

it provides genuine, workload-based performance mea-
surements.

We implemented the cached and direct approaches
on an extended memory system prototype built under
the MMM (massive memory machine) project at Prince-
ton University. We selected and ran several application
programs that require large data structures. These pro-
grams include a main memory database, Gaussian elimi-
nation with partial pivoting, quicksort, a recursive mem-
ory reference string generator and matrix transposition.
Our experiments and analysis indicate that applications
with very large data structures can benefit significantly
using an extended memory system, and that the direct
approach outperforms the caching approach for these
memory-bound applications.

Extended memory architectures

The simplest and most trivial memory extension is to in-
crement the number of memory boards on the machine.
This approach is limited by the physical constraints,
such as the density of memory chips, the slots on the
machine backplane and the memory bus length.

The next obvious approach is to add inexpensive, slow
memory modules into the memory hierarchy such that
the extended memory modules are used as a large cache
between the main memory and the disk devices. When
a virtual page fault occurs, rather than going to the
disk backing store, it sends a request to the slow mem-
ory modules instead. We call this approach the caching
method (Figure 1).

CPU

i

memory

extended memory

Figure 1: Caching method

Some researchers recently proposed using the main
memories of other processors as the cache between the
local main memory and the local or remote disk back-
ing stores [LS89,Fel90,CG90]. We call this the remote
memory method (Figure 2). The idea is based on the

observation that modern network interconnections pro-
vide higher data transfer bandwidth than disks. This is
particularly true for multicomputers.

Client machines

A

£

Lo

¥
Interconnection
Network

[T

Pagi File
Seﬁg? Server

=--» Paging Activity

Figure 2: Remote memory

Another approach is to use a secondary memory bus
to connect the processor with extended memory mod-
ules, shown in Figure 3. The processor can directly ac-
cess memory cells in the extended memory modules as if
it accesses its main memory. We call such an approach
the direct method. Although the memory access time of
the extended memory modules via the secondary mem-
ory bus is usually slower than the main memory, the
simplicity of the design and the low cost of slow mem-
ory chips make this approach attractive. The secondary
memory bus approach can be extended to a network of
memory buses.

CPU
Mem bus Mem bus
memory extended memory
L I

Figure 3: Direct method using a secondary memory bus

One can use the caching method to simulate the re-

mote memory approach; therefore we concentrate on
evaluating the caching approach and the direct ap-
proach.

GigaSUN prototype

We conducted our study on the GigaSUN prototype
built at Princeton under the massive memory machine
project. The GigaSUN is an enhanced Sun 3/180 with
32 Mbytes of primary physical memory and a large ex-
tended memory system as shown in Figure 4. A VME
bus [VME85] is used as a secondary memory bus to con-
nect the main memory bus with eight extended memory
modules.

GigaSUN’s Physical Address Space

Figure 4: GigaSUN Architecture

Each memory module box contains up to eight
16 Mbyte memory cards and an MC68020 processor
to handle power-up, memory diagnostics and clearing.
We configured each extended memory module with four
16 Mbyte memory cards, for a total of 512 Mbytes of
mMemory.

The extended memory interface is configured as an
A32:D16 VME Bus slave device. It contains the sta-
tus words for each extended memory module such as
interrupt vectors, error vectors, and control registers.
The main function of the interface is for diagnostics and
setup.

The memory modules are directly connected to the
A32:D32 address space of the VME bus. The Memory
Management Unit (MMU) hardware was modified to
allow direct accesses to the extended memory as part of
the physical address space. The 32-bit physical address
space on the GigaSUN is partitioned into four 1 Ghyte
spaces.

The access time of the fast main memory is about
300mns, and that of the extended memory is about 600ns
for 32 bit accesses.

Baseline, caching and direct

The GigaSUN architecture currently runs a modified
Mach operating system (version 2.5) [RTY*88] for eval-
uating three models: baseline, caching and direct. The
baseline model does not use any extended memory mod-
ules. The other two models are implemented by mod-
ifying the Mach virtual memory system. In all three
models the page size is 8 Kbytes.

For the caching model, the fast physical memory
serves as a cache for pages in the extended memory. The
virtual memory system maintains the mapping between
the fast and slow memories and the mapping between
the slow memory and disk. In the direct model, a vir-
tual page can be mapped to either a fast memory page
or a slow memory page. The virtual memory system
uses the disk as the backing store for both fast and slow
memory.

We used the external memory management interface
[You89] to implement both the direct and caching mod-
els. For the direct model, we used the device pager in the
Mach kernel. The pager creates device memory objects
for the extended memory pages using a specified phys-
ical address mapping routine. For the caching model,
we wrote our own external pager. The pager uses the
extended memory as the backing store for main memory
and uses the disk as the backing store for the extended
Imemory.

The vm_map system call provided by Mach allows
client programs to specify which pager manages a range
of virtual addresses in a given address space. We used
this mechanism to map the extended memory pages into
an application’s address space.

Experiments

We selected programs with varied memory reference
patterns for our benchmark suite to evaluate memory
extension approaches. The test suite includes a main-
memory database, quicksort, Gaussian elimination, a

recurrent number generator, and matrix transposition.

600 —
g 400 —
-~ direct
=
E —— cache
= —&— base
.§ =¥ joseek
g 200-
]
0
0 50 100 150 200 250
data size in Mbytes

Figure 5: Elapsed time of DB queries

Main-memory database (DB) is a simple database
manager which stores its entire database data struc-
ture in the virtual memory address space. The database
used in our experiments was randomly generated with
a fixed record size of 1,024 bytes. Each contains a num-
ber of integer and character string fields. There is no
index method for query executions; all queries search
the database sequentially.

Quicksort (QS) uses the standard quicksort algorithm
to sort an array of 1,024-byte records. Each record con-
sists of unsigned long integers and array of records was
generated randomly. The entire array is stored in the
virtual memory. We implemented two versions of quick-
sort. The first uses the rightmost field as the key for
sorting and the second compares all fields.

Gaussian Elimination (GE) implements the Gaussian
Elimination method for solving a linear equation with
partial pivoting. Since this application will take a rela-
tively long time for large equations, we used long integer
data types rather than floating point in order to reduce
the running time of the program while maintaining the
same memory reference patterns.

Recurrent number generator (RNG) is a program that
generates numbers based on the ten numbers generated
previously. The program keeps all the generated num-
bers in its memory heap. This program was chosen be-
cause it exhibits a high degree of locality of reference.

Matriz transposition (MT) builds the transpose of
a matrix by simply interchanging the appropiate ele-
ments. We chose this experiment because it is a sub-

stantial component of signal and image processing ap-
plications and is known to have very little locality of
reference. Previous work on this problem was focused
on avoiding to thrash the memory system by subdivid-
ing MT based on the structure of the application using
it (e.g., FFT) or on algebraic properties of the problem
itself [Ekl]. In our implementation, the whole matrix
is loaded into the applications address space and the
simple element exchanging algorithm is used.

The implementations of the benchmark programs for
all three models (baseline, caching and direct) are the
same, except that for the direct model we used an ex-
tended memory allocator rather than the malloc() in
the standard C library, in order to store data structures
explicitly in the extended memory space. For each pro-
gram, we also implemented a version that stores data
structures in files. These programs use read, write,
and seek system calls to access data explicitly. Such an -
implementation provides a data point to compare with
the three models that use a large memory address space.
In all cases, the code segments are always stored in the
fast, main memory. In the following figures, we use the
label base for the baseline model, cache for the caching
model, direct for the direct model, and ioseek for the
case of storing data structures in files.

Figure 5 shows the elapsed times of the executions of
a set of queries on the main-memory database as a func-
tion of the database sizes. We observe that the direct
method significantly outperforms all other approaches.
The direct method is an order of magnitud better than
both the baseline case and caching approach. Since a
query in the main-memory database examines only one
field for each record, it does not exhibit high locality
of reference. The caching scheme does not work well
because it pays for the overhead of moving the entire
record from extended to main memory even though only
40 bytes are actually used in the query execution.

There are two experiments for the quicksort program,
as mentioned above. The first accesses only the key
field for comparisons and all the fields during exchanges;
whereas the second accesses the entire record for every
comparison and exchange. Clearly, the first experiment
exhibits a lower degree of locality of reference than the
second one.

The results of the two cases are different. In the
first case, as shown in Figure 6, when the data size ex-
ceeds the capacity of local main memory, the caching
approach takes about five times as much as the direct
approach. This is because the direct approach accesses
only the related fields while the caching approach pages
in the entire record for comparisons. Figure 7 shows the
second case. As expected, the cache approach performs
better in this case, but it still takes twice the time of

20000 —
-]
2 15000 e direct
f] —4— cache
8 i -~ base
.§ 100001 - ioseck
]
: :

5000 —

0 (St) M
0 50 100 150 200 250
data size in Mbytes

Figure 6: Elapsed time of QS on keys only

the direct approach. In both cases, the baseline model
performs worse than either the caching approach or the
direct approach.

Figure 8 shows the results of the Gaussian elimina-
tion program with partial pivoting. The baseline model
performs about the same as the case of storing data
structures in files. The primary reason is that pivoting
is quite random, so that the caching provided by the
file system buffers is just as good as the virtual memory
page replacement mechanism. The caching approach
reduces the elapsed time by about 30% and the direct
approach by about 70%.

It seemed counterintuitive to us that the direct ap-
proach outperformed the caching approach in the Gaus-
sian elimination program, since iterative, numeric pro-
grams exhibit a high degree of locality of reference. We
realized later that the main reason for this is the fact
that the program code segments were stored in fast main
memory; the locality of reference in instruction fetches
does not affect the performance of the program. The
locality of reference in data accesses to the extended
memory is not high enough to make the caching ap-
proach worthwhile.

Figure 9 displays the results of the recurrent number
generator. In this case, our experiments show that the
performance of the baseline and direct model is com-
parable. As mentioned above, the recurrent number
generator exhibits a high degree of locality of reference
because each number is generated using the previous 10
numbers. This degree of locality makes the overhead of
disk paging insignificant; the cached approach performs

25000 -
= 20000
£]
§] -8 direct
.§ 15000 —+— cache
E 1 —&— base
g] et
g 1 3 ioseek
g]
&= i
5000
04
0 50 100 150 200 250
data size in Mbytes

Figure 7: Elapsed time of QS on full records

worse than the baseline model because the default in-
ode pager resides in the kernel, while the external pager,
that manages the extended memory caching, executes
in user space, and therefore has a more significant fault
processing overhead.

Figure 10 shows the results of the matrix transpo-
sition experiment. The direct approach outperforms
both paging approaches by over an order of magnitude.
While the direct approach performs proportional to the
problem size, both the cached and baseline model suf-
fer from serious performance degradation as soon as
the matrix becomes larger than the local main mem-
ory. This indicates that using such an approach the
algorithms used for certain problems, such as matrix
transposition, can be made much simpler, by ignoring
its influence on the memory system.

We observe the average utilization of the secondary
memory bus for our experiments using the direct ap-
proach in Figure 11. The utilization for QSK, QS, GE
and MT is about the same, in the order of 30% of the
secondary memory bus bandwidth. The utilization for
DB is only about 4%, while for RNG it is almost 60%. A
reasonable explanation for the high utilization by RNG
is that very little processing (one integer addition) is
done between data accesses.

In summary, our experiments show that the direct ap-
proach works well for most of the selected application
programs using large data structures, and that the di-
rect approach outperforms both the caching and base-
line models for all tested applications (Fig. 12). Two
conditions are critical in our experiments:

-

2000
3]
2) .
E 1500 - -o- direct
@] —o— cache
-E 1 —&— base
£ 1000 - joseek
z]

500 -

0
0 50 100 150 200 250

data size in Mbytes

Figure 8: Elapsed time of GE

e the program code segments are kept in the fast
main memory, and

e the access time ratio of the fast main memory to
the extended memory is about 0.5.

We expect that the first condition is true for most appli-
cations because code segments are relatively small, and
that it is easy to achieve the access time ratio of 0.5 in
today’s memory system designs.

Access time vs. page hit ratios

In this section, we study the relationship between the
ratio of the access times for fast main memory to that of
extended memory and the degree of locality programs
display. Our main goal is to see under what conditions
the caching approach would outperform the direct ap-
proach.

We use the following factors to characterize the aver-
age cost per page for both caching and direct models:

e n — average number of accesses to a page without
a page fault,

Cast — access time (per memory word) of the fast
main memory,

Csiow — access time (per memory word) of the ex-
tended memory,

Craunn — overhead of a page fault (per page, ex-
cluding page movement),

e d — average percentage of replaced pages that are
dirty (page out events during replacements), and

4000
< 3000
g
] -8~ direct
=
% -+ cache
£ 2000 - base
g =¥ ioseek
:
1000
0
0 50 100 150 200 250

data size in Mbytes

Figure 9: Elapsed time of RNG

e p — page size in words.

The average cost on accessing n memory words under
the direct model is straightforward, n x Csjoy; whereas
the average cost under the caching model includes the
cost of handling a page fault, the cost of a page replace-
ment and the cost of accessing n fast memory words.
Thus, the following inequality must hold for the caching
approach to outperform the direct approach:

p(1+ d)(c_fast + Citow) + Crautt + 1 - Cast <1 - Csion-

Using the inequality, we can derive the relationship
between the access time ratio (Cjast/Cisiow) and the
page hit ratio (data locality of reference).

Table 1 shows the smallest data page hit ratios (lo-
cality of reference) needed for the cache approach to
outperform the direct approach. In this table, we as-
sumed that 50% of the replaced pages are modified, and
therefore paged out from main memory to the extended
memory during page faults. The measured overhead of a
page fault served by the external pager, excluding page
moving, is equivalent to 10500 main memory accesses
(or approximately 3 msecs on the GigaSUN running
Mach 2.5). Each memory word is 4 bytes long. These
parameters are dependent on the hardware and virtual
memory implementations. The average percentage of
replacing modified pages on a fault also depends on the
application programs. In our experiments, this per-
centage varies significantly for the different programs.
For example, d = 0 in the DB program, because the
database queries do not modify any records; whereas
both QS and GE modify most pages.

Access time

Page Size

ratios 1 Kbytes 2 Kbytes 4 Kbytes 8 Kbytes
0.750 0.999971 0.999973 0.999976 0.999981
0.667 0.999956 0.999960 0.999965 0.999973
0.500 0.999914 0.999922 0.999934 0.999949
0.333 0.999834 0.999853 0.999880 0.999912
0.200 0.999688 0.999735 0.999797 0.999862
0.100 0.999389 0.999525 0.999671 0.999797
0.010 0.997991 0.998876 0.999402 0.999691
0.001 0.997470 0.998718 0.9993556 0.999676

Table 1: Page hit ratios needed for the caching approach to outperform the direct approach.

.§ 100000 —
= -o- direct
g —e— cache
=
g 4 —&—- base
= 50000 -
2
=
DE———
ey e ey —
0 20 40 60

data size in Mbytes

Figure 10: Elapsed time of MT

The table tells us that in order for the caching ap-
proach to outperform the direct approach on the Giga-
SUN extended memory system, application programs
need to have a page hit ratio greater than .999949.
Based on the algorithms, data placements, and the Gi-
gaSUN configuration, we measured the page hit ratios
for DB, QSK, QS, GE, RNG and MT to be .9875,
-99952, 9999105, 999692, .9999511 and .7262 respec-
tively. These estimates further confirmed our experi-
mental results.

Other design issues

Although our experiments have given us some insight in
design of extended memory systems, many problems in
architecture design, virtual memory design, and behav-

100 =

-

80 —

60 —

40

Percentage of bus utilization

20 4

0

Figure 11: Average utilization of the secondary memory
bus for the direct approach

iors of memory-bound applications still remain open.

It is clear that a large, fast main memory would im-
prove the overall performance of our benchmark pro-
grams for all three models. A large main memory im-
plies fewer page faults for both the baseline model and
the caching approach. The direct approach should also
benefit from a large main memory because a large por-
tion of the data structures of application programs can
then be kept in the fast memory, reducing the total
overhead of data accesses.

A physical data cache that caches both the fast main
memory and the extended memory would benefit pro-
grams with a high degree of temporal locality of ref-
erence. Programs such as the main-memory database
may not benefit since each query scans the database ex-
actly once for each execution. It is still an open question
whether most applications with very large data struc-
tures exhibit a high degree of temporal locality of refer-

B cached
B base-line

Performance Gap in %
g
1

500

DB QSK QS GE RNG MT

Figure 12: Performance gap of the direct approach vs.
the cached and baseline approaches

ence.

Changing the caching unit size will affect the perfor-
mance of the caching model. In our implementation,
the caching unit is a virtual memory page of 8 Kbytes.
Small page sizes may help applications that only access
small amounts of data within a page. On the other
hand, small page sizes will introduce greater paging
overhaed for applications that reference most memory
locations in each page due to a larger number of page
faults. It requires careful study to determine the op-
timal page size for the caching model with respect to
other system parameters.

Another open question is whether it is better to have
a combination of the direct and caching approaches. In
other words, can programs with large data structures
benefit from a dynamic physical page migration mech-
anism that move frequently accesses pages from the ex-
tended memory to the fast main memory? For parallel
programs, LaRowe and Ellis [LE90] observed that on
multiprocessors, dynamic page placement does worse on
occasion due to artificially induced page faults for page
location reevaluation. A similar phenomenon is likely
to occur when the extended memory on the secondary
memory bus is large.

Direct Memory Access (DMA) between the extended
memory and disks will benefit applications whose data
structures cannot be stored entirely in the extended
memory. Although the GigaSUN architecture does not
have DMA disk controllers on the secondary memory
bus, our experimental results still stand because the
data sizes of all the programs in our experiments do
not exceed the capacity of the extended memory.

If it would be a good idea to have DMA page trans-
fers between fast main memory and extended memory
remains an open question, as well. It is unclear whether
such DMA page transfers improve the performance of
extended memory architectures, since paging between
fast main memory and the extended memory differs
from paging between the main memory and disks. On
traditional architectures, a DMA data block transfer be-
tween main memory and a disk usually takes tens of mil-
liseconds of which only a very small portion is due to
the actual data transfer and a large portion corresponds
to seek time for data blocks on the disk storage media.
During this sufficiently long period of time the CPU
can do other useful work. On extended memory archi-
tectures, we expect the time for a DMA page transfer
between the fast main memory and extended memory
to be reduced by at least an order of magnitude. If the
overhead of context-switches and setting up DMA reg-
isters is significant, the DMA page transfer may not be
worth while. The answer to this question also affects
the effectiveness of dynamic page placement policies in
this environment.

Although slow DRAM chips are less expensive than
the DRAMs used in main memory, building a massive
extended memory can be quite costly. An idea to reduce
the cost of building a large extended memory system is
to share the extended memory system among several
machines. We call such an extended memory a mem-
ory server (as opposed to a compute server). A mem-
ory server is an extended memory system available to
a set of processors. These processors can directly ac-
cess the memory locations in the extended memory sys-
tems. Page frames in the memory servers are allocated
to processors upon request. Such an architecture can be
viewed as a multiprocessor system without maintaining
cache coherence.

Related work

There is a large body of literature related to mem-
ory hierarchies and extensions for uniprocessor systems.
Most work concentrates on multiple level memory hier-
archies [Bel66,MGST70], program memory access pat-
terns [BG68], virtual memory systems [Den70,Den80],
memory caches [Smi82], and disk caches [Smi85].

The idea of massive memory architectures was first
proposed in [GMLV83,GMLV84]. They pointed out
that the performance of applications requiring very
large data structures can be significantly improved if the
data structures can be stored entirely in memory. They
also proposed several approaches to designing massive
memory systems including the secondary memory bus
approach. Garcia-Molina and his colleagues also show

that in many cases, database queries on a uniproces-
sor with massive memory can outperform those on a
database machine [GMCHL84].

The IBM 3090 system provides an extended memory
system called ezpanded memory [Tuc86,CKB89]. The
expanded memory system only supports 4K page block
data transfer between itself and the main memory. This
operation is controlled by the operating system. Simi-
lar to the caching model of our implementation, the ex-
panded memory runs synchronously with respect to the
processor that requests the transfer. The design decision
for synchronous transfer was based on a study compar-
ing the CPU time required for both asynchronous and
synchronous approaches. The CPU overhead for the
asynchronous approach, basically consistent of repeated
context switches, was found to be substantially greater
than for the synchronous approach. Unlike our Giga-
SUN prototype, the IBM 3090 system does not allow
the processor to access the expanded memory directly.

Recently, much attention has been dedicated to
page placement, replication and migration methods for
Non Uniform Memory Access (NUMA) architectures
[LE90,CF89,BFS89]. Their results do not directly apply
to uniprocessor systems.

The research on shared virtual memory [LS89,LH89)
showed that the performance of paging can be improved
by an order of magnitude when using the physical mem-
ory of another processor node as a temporary backing
store. The replication of pages in a shared virtual mem-
ory system can further reduce the overhead of paging.

The research at Purdue [CG90] and at the University
of Washington [Fel90] explores the idea of using remote
memory as a fast backing storage device for uniprocessor
systems. The work to date has been concentrated on
how to manage remote memory pages and disk backing
stores.

Conclusion

We have evaluated both caching and direct approaches
for designing extended memory systems. Our experi-
ments on the GigaSUN prototype machine shows that
an extended memory system can significantly improve
the performance of applications with large data struc-
tures.

The access time ratio of the fast main memory to
the extended memory is the key factor that determines
whether the direct approach is better than the caching
approach. On our prototype machine with the access
time ratio of about 0.5, the direct approach outperforms
the caching approach in most applications with large
data structures.

When evaluating extended memory design alterna-
tives, one should separate data memory references from
instruction references because program code segments
are usually small and they should always be stored in
the fast main memory. QOur experiments show that data
memory references of many memory-bound applications
do not have a very high degree of locality of reference.

It is possible to combine the direct approach with the
caching approach; frequently accessed pages in the ex-
tended memory can be migrated to the fast main mem-
ory. This approach can be attractive to applications
with a high degree of temporal locality of reference.

Our experiments also indicate that the average uti-
lization of the secondary memory bus will probably be
in the order of 30% and that it is feasible to let multi-
ple processors share an extended memory, leading to the
concept of memory servers in a computing environment.

Acknowledgement

We would like to thank Daniel Babara, Mary Fernandez,
Hector Garcia-Molina, Mark Greenstreet, Anne Rogers,
and our reviewers for their valuable comments.

References
[Bel66] L.A. Belady. A study of replacement algo-
rithms for virtual storage computers. IBM
Systems Journal, 5(2):78-101, 1966.

W.J. Bolosky, R.P. Fitzgerald, and M.L. Scott.
Simple but effective techniques for numa mem-
ory management. In Proceedings of the Twelfth
Symposium on Operating Systems Principles,
pages 19-31, December 1989.

[BFS89]

[BG68] B.Brawn and F.G. Gustavson. Program be-
havior in a paging environment. In 1968
AFIPS Proceeding of the Fall Joint Comput-

ing Conference, pages 1019-1032, 1968.

A.L. Cox and R.J. Fowler. The implementa-
tion of a coherent memory abstraction on a
numa multiprocessor: Experiences with plat-
inum. In Proceedings of the Twelfth Sympo-
sium on Operating Systems Principles, pages
32-44, December 1989.

D. Comer and J. Griffoen. A new design
for distributed systems: The remote memory
model. In Proceedings of the USENIX Summer
Conference, pages 127-135, Anaheim, Califor-
nia, June 1990.

E. I. Cohen, G. M. King, and J. T. Brady.
Storage hierarchies. IBM Systems Journal,
28(1), 1989.

[CF89]

[CG90]

[CKB8Y]

[Den70]

[Den80]

[EX]]

[Fel90]

[GecT4]

[GMCHLS4]

[GMLV83]

[GMLV84]

[LE90]

[LH89]

[LN8S]

[LS89]

[MGST70]

[Ous90]

Peter J. Denning. Virtual memory. ACM
Computing Surveys, 2(3):153-189, September
1970.

Peter J. Denning. Working sets past and
present. IEFEE Transactions on Software En-
gineering, SE-6(1):64-84, January 1980.

J. O. Eklundh. Efficient matrix transposi-
tion. In T. S. Huang, editor, Topics in Applied
Physics, Two Dimensional Digital Processing
Il, volume 43, pages 9-35. Springer Verlag,
Berlin Heidelberg New York.

Edward Felten. Distributed virtual memory.
Presentation in Topaz User Group Meeting,
DECSRC, June 1990.

J. Gecsei. Determining hit ratios for multilevel
hierarchies. IBM Journal of Research and De-
velopment, 18(4):316-327, July 1974.

H. Garcia-Molina, R. Cullingford, P. Honey-
man, and R. Lipton. Mmm performance on
certain database benchmarks. Technical Re-
port 327, Department of EE and Computer
Science, Princeton University, May 1984.

H. Garcia-Molina, R. J. Lipton, and J. Valdes.
Analysis of the massive memory architectures.
Technical Report 313, Department of EE and
Computer Science, Princeton University, May
1983.

H. Garcia-Molina, R. J. Lipton, and J. Valdes.
A massive memory machine. JEEE Trans-
actions on Computers, C-33(5):391-399, May
1984.

Richard P. LaRowe and Carla S. Ellis. Exper-
imental comparison of memory management
policies for numa multiprocessors. Technical
Report CS-1990-10, Duke University, 1990,

Kai Li and Paul Hudak. Memory coherence in
shared virtual memory systems. ACM Trans-
actions on Computer Systems, T7(4):321-359,
November 1989.

Kai Li and Jeffrey F. Naughton. Multiproces-
sor main memory transaction processing. In
Proceedings of the International Symposium on
Database in Parallel and Distributed Systems,
pages 177-187, December 1988.

Kai Li and Richard Schaefer. A hypercube
shared virtual memory. In Proceedings of the
1989 International Parallel Processing Confer-
ence, volume Vol:I Architecture, pages 125-
132, August 1989.

R.L. Mattson, J. Gecsei, D.R. Slutz, and I.L.
Traiger. Evaluation techniques for storage hi-

erarchies. IBM Systems Journal, 9(2):78-117,
1970.

J. K. Ousterhout. Why aren’t operating sys-
tems getting faster as fast as hardware? In

10

[PACST3)

[RTY*88]

[SGM90]

[Smis2]

[Smi85]

[Stog4]

[Tucsé6]

[VMES5]

[You89]

Proceedings of the USENIX Summer Confer-
ence, pages 247-256, Anaheim, California,
June 1990.

A.V. Pohm, O.P. Agrawal, C.W. Cheng, and
A.C. Shimp. An efficient flexible buffered
memory system. IEEE Transactions on Mag-
netics, MAG-9(3):173-179, September 1973.

R.F. Rashid, A. Tevanian, M. Young,
D. Golub, R. Baron, D. Black, W. Bolosky, and
J. Chew. Machine-independent virtual mem-
ory management for paged uniprocessor and
multiprocessor architectures. IEEFE Transac-
tions on Computers, 37(8):896-908, August
1988.

Kenneth Salem and Hector Garcia-Molina.
System m: A transaction processing testbed
for memory resident data. I[EEE Transac-

tions on Knowledge and Data Engineering,
2(1):161-172, March 1990.

Alan J. Smith. Cache memories. ACM
Computing Surveys, 14(3):473-530, September
1982,

Alan J. Smith. Disk cache—miss ratio analysis
and design considerations. ACM Transactions
on Computer Systems, 3(3):161-203, August
1985.

Michael Stonebraker. Virtual memory trans-
action processing. Operating Systems Review,
18(2):8-16, April 1984.

S. G. Tucker. The ibm 3090 sytem: An
overview. IBM Systems Journal, 25(1), 1986.

Vmebus specification manual. Revision C,
February 1985.

M. Young. Ezporting a User Interface to Mem-
ory Management from a Communication Ori-
ented Operating System. PhD thesis, Carnegie
Mellon University, 1989.

