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Abstract

Presented here are three fast algorithms solving problems concerning trees
or graphs.

We give a linear-time algorithm for finding a balanced decomposition of
a k-ary tree where k is a constant not related to the input size. A different
linear-time algorithm for finding a balanced decomposition of a binary tree was
discovered previously by Guibas, Leven, Hershberger, Sharir, and Tarjan [26].

We also consider the problem of finding a minimum-cost maximum flow
in a series-parallel network. The algorithm presented here runs in O(m logm)
time on an m-edge series-parallel network and requires O(m loglogm) space.
This is an improvement over the algorithm presented by Bein, Brucker, and
Tamir [6], which runs in O(mlogm + mn) time, where n is the number of
vertices. In an effort to improve the space requirement we also present an
algorithm which uses O(m) space but runs in O(m log mloglogm) time.

Finally, we consider the problem of finding all replacement edges for a min-
imum spanning tree of a planar graph. We present an algorithm for solving
this problem which runs in linear time. This algorithm also performs sensitiv-
ity analysis for the minimum spanning tree, shortest path, and network flow
problems.

The first two algorithms presented rely on the use of balanced binary trees
for efficient representation of data. We give an overview of the relevant red-

black tree and finger tree techniques in introductory chapter.
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1. Introduction

Presented here are three efficient algorithms each of which solves a problem
concerning graphs or trees. Our solutions to the first two problems require the
use of balanced trees. For each problem we require a way of representing a list
which can support efficient implementation of search queries, data modifica-
tion of a certain sort, and concatenation and splitting. Red-black trees [28],
B-trees [4, 5], and splay trees [44] all achieve the running time desired. We
have chosen to use red-black trees. For the result described in Chapter 4, finger
seach trees are used instead of red-black trees to give a simpler implementation.

- The finger search trees used here are a variant of those introduced by Tarjan
and Van Wyk in [51] which are based on red-black trees. Comprehensive
overviews of red-black trees and two types of finger trees are given in Chapter
2. We describe the finger search trees of Tarjan and Van Wyk and also a
variant which appears to be slightly simpler. The searching methods and
proofs given here can often be found elsewhere although not necessarily in
great detail. The description given here aims to fill in the gaps and to collect
in one place enough detail so that the reader can easily verify correctness.

In Chapter 3 we give an algorithm for finding the balanced decomposition of
a tree of constant maximum degreé in linear time. A decomposition is formed
by repeatedly splitting the tree by removal of an edge. The decomposition
is balanced if each edge removal yields two components which have roughly
equal size. Previously, Guibas, Leven, Hershberger, Sharir, and Tarjan [26]
presented an algorithm solving this problem for binary trees in linear time.
Our algorithm uses rather different techniques.

Our algorithm is fairly simple. The key observation is that a good splitting
edge can be found using the preorder numbering of the tree. We are able to find
the splitting edge in logarithmic time by representing the tree as a preorder
list [15] stored in a balanced tree.

Considered in Chapter 4 is another problem whose solution relies on the
use of balanced trees. We present an O(mlogm) algorithm for finding the

min-cost maximum flow of an m-edge series-parallel network. Bein, Brucker,
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and Tamir [6] gave an algorithm which runs in O(mlogm + mn) time on an
m-edge n-vertex series-parallel network. Series-parallel graphs are a subclass
of graphs useful for representing circuits or flow of control in a program.

Series-parallel graphs can be constructed by performing series or parallel
composition operations. An m-edge series-parallel graph can be decomposed
(and represented by a decomposition tree) in linear time by using the algorithm
of Valdes, Tarjan, and Lawler [53]. The relevant flow information for such a
graph can be captured in a list called the flow list [6]. We show how to compute
this list by processing the decomposition tree bottom-up. Using balanced tree
structures to represent the flow lists gives the running time mentioned above.

The key to the algorithm is a procedure for computing the flow list of a.
series-parallel network from the flow lists of its two components. This proce-
dure, called composition, is similar to merging. An efficient merging procedure
described by Brown and Tarjan [8] which can merge lists of size n and m,
n < m, in time O(nlog ﬂ‘i;bﬂ) time by using balanced trees to represent the
lists can be modified to perform composition. We give a simpler method for
composing (and merging) which is equally fast, but which uses finger search
trees to represent the lists. |

The final algorithm presented is unrelated to the other two; it does not
use balanced search trees. This algorithm finds all replacement edges of a
minimum spanning tree of a planar graph in linear time. In addition, it can be
used to perform sensitivity analysis for minimum spanning trees, shortest path
trees, and for a particular network flow problem in the restricted case of planar
input graphs. This problem was motivated by work done by Eppstein [19] on
finding the k smallest minimum spanning trees.

Unlike the other two algorithms, the algorithm presented in Chapter 5
relies almost completely on properties of the input. The solution is elegant
and simple. Queues and lists are the only data structures required. The
problem of finding the replacement edges of a minimum spanning tree in a
general graph in linear time (or proving a lower bound) is open. The best

known deterministic algorithm, due to Tarjan [46], runs in O(ma(m,n)) time



on a graph with m edges and n vertices. A linear time randomized algorithm
has recently been discovered by Dixon, Rauch, and Tarjan [17]. The work
presented in Chapter 5 is joint work with Jeffery Westbrook.

Some terms which are used throughout are defined below.

A graph G is specified by its vertex and edge set (V,E). An undirected
edge e incident on vertices (or, equivalenﬂy, nodes) v and v in V is denoted
by {v,u} or {u,v} . A directed edge (or arc) from v to u is denoted by (v, u).
If nodes u and v are connected by an edge in graph G then u and v are said
to be neighbors.

An unrooted or free tree is a graph containing no cycles. That is, there
is only one path between each pair of nodes. In a rooted tree, one vertex
is designated to be the root; the edges are implicitly directed away from the
root. For each node u in a rooted tree T, the parent of u, denoted p(u), is
the neighbor of v which is on the path from u to the root. The children of u
are the remaining neighbors of u. The subtree rooted at u is the set of nodes
reachable from u by a path not passing through p(u). The nodes contained in
the subtree rooted at u are called descendants of u and w is an ancestor of any
node in its sbutree.

For a node in a graph or unrooted tree, the degree of the node is the number
of neighbors. For a node in a rooted tree the degree is the number of children.
A binary tree is a rooted tree in which every node has degree 0, 1, or 2. The
nodes with degree 0 are called leaves or external nodes and the remaining nodes
are called internal nodes. The level or depth of a node u in a rooted tree is the
number of edges on the path from the root to u. Thus the root is at level 0.
A single-node tree is said to have 1 level.

A full binary tree is a binary tree in which every node has degree 0 or 2. A
complete binary tree is a rooted binary tree in which every non-leaf node has
degree 2 and all leaves are at the same level. Such a tree has 2* nodes at level
k.

Introductory remarks and concluding remarks are given within each chap-

ter.



2. An Overview of Red-Black and Finger Trees

2.1 Introduction

Balanced trees are a well-known solution to the problem of maintaining
an ordered list of items so as to be able to quickly perform the operations
insert, delete, and access. These operations can be executed in O(logn) time
on a list of n elements if the list is represented by a balanced tree. Several
types of balanced tree structures have been studied in the literature, including
AVL-trees [2, 1], B-trees [4, 5], and red-black trees [28]. With both red-black
and B-trees, the more complicated list operations split and concatenate, can
also be performed in logarithmic time.

A more recently developed data structure is the finger tree, which performs
better than balanced trees when the tree operations exhibit some locality of
reference. In finger trees we access data through pointers to a fixed number
of leaves (“fingers”) rather than through the root. This makes the access time
dependent on the distance to the fingers rather than on the number of items
in the list.

Finger trees were introduced by Guibas, McCreight, Plass, and Roberts
[27], as a variant of B-trees. Huddleston and Mehlhorn refined this work in
[34], still using B-trees. Tsakalidis has presented a finger tree data structure
based on AVL trees [52]. Kosaraju [37] presents a more general structure
which also has similar properties. In the appendix of [51], Tarjan and Van
Wyk give another, simpler, implementation of finger trees. They describe a
finger data structure which is a modification of red-black trees, but other forms .
of balanced trees could be used as a basis for the structure.

The two problems presented in Chapters 3 and 4 rely on the use of red-
black and finger trees respectively. In this chapter we give a fairly complete
overview of red-black trees, of the finger trees introduced by Tarjan and Van
Wyk, and of a variant of these which we use in Chapter 4. The material here

is intended to be comprehensive and useful as an introduction to these two



Figure 2.1: A red-black tree. The darkened nodes are black nodes. The

external nodes are denoted by squares. Shown with each node is its rank.
types of data structures.

2.2 Red-Black Trees

A red-black tree is a full binary tree in which each node is assigned a color,
either red or black. The leaves are called exzternal nodes and the non-leaves are

called internal. The node colors satisfy the following constraints:

(i) All external nodes are black.

(i1) All paths from the root to an external node contain the same number of

black nodes.

(iii) Any red node with a parent has a black parent.

The rank of a node u is defined to be the number of black nodes along
any path from u to an external node in its subtree. See Figure 2.1 for an
example of a red-black tree with rank values shown. The height of node u is
the maximum number of nodes along the longest path from u to one of its
external descendants. A node with rank r has height between r and 2r and
has between 27! and 2?"~! external descendants. Thus a red-black tree with
n external nodes has depth O(logn). We will refer to the rank of the root of

a tree as the rank of the tree.



For a node z we use p(z) to denote the parent of z, left(z) and right(z) to
denote the left and right children of z, and sib(z) to denote the sibling of z.

There are two ways to represent a list using red-black trees. The items can
be stored either in the internal nodes, so that order in the list corresponds to
symmetric order in the tree, or in the external nodes, so that order in the list
corresponds to left-to-right order among the external nodes. We will use the
latter representation. We will also assume that the keys associated with list
items are real numbers. Each red-black tree node will have pointers to its left
and right children. The rank of each tree is stored with its root.

Given a list represented as a red-black tree T we may wish to access a
particular item of the list, for example, the item with key k or perhaps the k"
item in the list. Performing any kind of access requires storing auxiliary data
in the internal nodes. For example, in order to find the node with key k we
store with each internal node u the maximum key associated with an external
node in u’s subtree. We will describe two broad types of search operations
and how they are executed. Both types of search are used in the algorithm
presented in Chapter 4. First we describe how the list operations insert, delete,
concatenate, and split are implemented in a red-black tree.

Inserting into and deleting from red-black trees is accomplished by the
addition and deletion of external nodes. Such updates require rebalancing the
tree, which is done by recoloring nodes and performing rotations, which locally
change the tree structure.

To insert a new item after a specified external node z, replace = by a new
internal node having z and a new external node containing the new item as
children. The new internal node is colored red. If its parent is also red, this
violates the red constraint (iii). Such a violation is corrected by walking up the
tree path from the violation, repeatedly applying the recoloring transformation
of Figure 2.2(a) until it no longer applies, and then if necessary applying one
of the transformations in Figures 2.2(b),(c), or (d). (Transformations (b) and
(d) change the tree structure as well as the node colors; transformation (b)

does one rotation; transformation (d), two.) Note that there are symmetric
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Figure 2.2: Rebalancing transformations for insertions. There are symmetric

cases not shown.

cases which are not shown.

Deleting an item is similar but slightly more complicated. To delete an
external node z with sibling y, replace p(z) by y. If the deleted internal node
was black, this violates the black constraint. That is, y is short, i.e., paths down
from it contain one too few black nodes. The violation is corrected by walking
up the tree path from the violation, repeatedly applying the transformation of
Figure 2.3(a) until it no longer applies, followed if necessary by one application
of Figure 2.3(b) and then possibly one application of Figure 2.3(c), (d), (e),
or (f). Altogether at most three rotations are done.

The worst-case time needed to insert or delete an external node in a red-
black tree is O(logn), but the amortized time' is only O(1). To prove this, we
define the potential of a red-black tree to be the number of black nodes with

two black children plus twice the number of black nodes with two red children.

1By amortized time we mean roughly the time of an operation averaged over a worst-case

sequence of operations. See [45].
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Figure 2.3: Rebalancing transformations for deletions. The half-darkened
nodes in (f) are nodes which can be either red or black, but they must both

be the same color. A ”-” by a node indicates that it is short.



We define the actual time of an insertion or deletion to be one plus the number
of transformations applied and the amortized time to be the actual time plus
the net increase in potential caused by the tree restructuring. Each application
of the (non-terminal) transformations of figures 2.2(a) or 2.3(a) reduces the
potential by at least one. An application of any of the other transformations
either decreases the potential or increases it by at most two. This implies
that the amortized time of an insertion or deletion is O(1), since there are at
most a constant number of applications of the latter type of transformation. If
we begin with an empty tree and perform a sequence of k external insertions
and deletions, the total time for all the tree restructuring is O(k), because
the amortized time is O(k), the actual time is the amortized time minus the
net increase in potential over the sequence, and the net increase in potential
is nonnegative (since the initial potential is zero and the final potential is
nonnegative.)

On a list represented by red-black trees we can also perform the more
complicated operations concatenate and split in logarithmic time.

Concatenate is the simpler operation. Let T} and T3 be two red-black trees
with ranks ry and r, respectively. Let z; be the root of T} and z, the root of
T,. We will assume that ry < ry and that we wish to concatenate T; on the
left of T5; the other cases are analogous.

If ry = ry, create new root 7, having z; as left child and x5 as right child.
If both 2, and z, are black, make ¢ red and otherwise make it black. Note
that although the balance constraints can be satisfied by making the new root
black in either case, this would unnecessarily increase the rank of the resulting
tree, which would adversely affect the splitting operation described below.

Otherwise ry > ry. If 2y is red, make it black. Let r," denote the current
rank of z1; ri’ is ry if z; was black to start with and is r; + 1 otherwise. Walk
down the left path of T3 until reaching first black node u having rank equal
to ry'. Create new node 7 having z; as left child and u as right child. Replace
u by ¢ and make ¢ red. If this causes a violation to the red constraint (if

the parent of ¢ is red), then rebalance as for an insertion. Notice that both



Figure 2.4: Concatenating two red-black trees. Shown are the original trees,

Ty and T;, and the result before rebalancing.

children of i are black. This procedure (illustrated in Figure 2.4) requires
O(max{|r; — r3],1}) time in the worst-case.

We will need the following property about the rank, r, of the tree resulting
from such a concatenation: if r, = r; and both roots were originally black or
if 7 > r; and z, was black then r is ry; otherwise r is 7, or ro + 1. Further, if
the rank of the resulting tree is r, 4+ 1, then its root is black.

If the trees are concatenated by creating a new root with z; and z, as
children, then an analysis of the possible cases above shows that the property
holds. Otherwise the resulting tree is formed by modifying the structure of 75,
leaving the root intact, and then rebalancing as for an insertion if necessary.
The rank of this tree is the same as the rank of T3 unless rebalancing causes
the rank of the root to increase. Inspection of the relevant rebalancing trans-
formations (see Figure 2.2) reveals that this can occur only if z, was originally
red. This implies that for r, > r{, the rank of the resulting tree is r; if 2, was
originally black, as claimed. Note that the rank of the root can increase by at
most one; in all such cases the new root is black.

The inverse of concatenating is splitting. Splitting a tree T" at node z yields
trees T} containing the items to the left of 2 and 7, containing the items to the
right of z, in order. In the implementation described here z is not contained

in either resulting tree. It is easy to modify this implementation so that z is
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> T,
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Figure 2.5: Splitting a red-black tree. After four stages, L4 is the result of

concatenating Ty and Ty and Ry is T;.

included either in T; or in T,, as desired. We assume that the path from z to
the root of T is known. Splitting is accomplished by cutting off all subtrees
of this path and then concatenating all the left ones in order to form 7; and
then all right ones to form 7.

More formally, let the nodes on the path be zy,...z; where z; = z and z; is
the root. Let T;, 2 < 2 < [, be the subtree of z; that does not contain z;_;. Let
L; be the tree formed by concatenating those left subtrees of z,, ..., z; that do
not contain z; and let R; be defined analogously for the right subtrees. This
is illustrated in Figure 2.5.

Splitting is accomplished as follows. Initially L; and R; are empty. At
time ¢, compute L; and R;. If x;_; is a left child, then L; = L;_y and R; is
formed by concatenating R;_; and T;. If z;_; is a right child, then R; = R;_;
and [; is formed by concatenating T; and L;_;. The final trees L; and R; are
Ty, and T,.

We will show that the time required for splitting an n-node tree is O(log n).
The cost is essentially a telescoping series, but the analysis is involved. Let
cost; denote the time required for executing the first ¢ stages as described
above. Note that cost; = cost;_; + 14 the cost of performing the ith concate-
nation. Recall that the worst-case time to concatenate two trees of rank ry

and ry is O(max{|r; — ra|,1}). For simplicity we will assume here that the
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Figure 2.6: The cases of the proof of Lemma 2.1. The half-darkened nodes

may be either black or red.

constant is 1; this affects only the constant of the running time of the splitting

algorithm.

Lemma 2.1 The time required to split an n-node red-black tree at an external

node is O(logn).

Proof: We show by induction on the black nodes of the path that the following
invariant is maintained: at the i** stage, if z; is black, then r(ds) < rla;),
r(R;) < r(z;), and cost; < 4r(z;) + r(L;) + r(R;). When ¢ = [ this implies
that cost;, which is the time required to execute the entire splitting process,
is O(logn), since the ranks of x;, L; and R; are all O(logn).

When ¢ = 1, the invariant is satisfied since r(z,) = 1, L; and R, are empty
and have rank 0 and cost; = 0. _

We will show that the invariant holds at stage 7 if z; is black. Assume that
the invariant holds for all black nodes z; such that j < i. Assume also that

x;_1 1s a right child; the other case is symmetric. Let k denote the rank of z;.
Both children of z; have rank £ — 1.

Case 1 : z;_q is black. (See Figure 2.6(a).)
By the inductive hypothesis, the invariant holds for z;_;. This implies that

the ranks of L;_; and R;_; are at most £ — 1 and that cost;_; is at most

47‘(385_1) i T’(L,‘_1) -+ T(R,;_l).
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The invariant holds with respect to R; since R; = R;_; which has rank at
most k& — 1. Next consider L;, which is formed by concatenating T; and L;_;.
Since both these trees have rank at most k£ —1, I; has rank at most k. Finally,
consider cost;, which is cost;_1 + 1+ max{|r(T;) —r(L;-1)|,1}. Using the facts
that r(7;) > r(Li—1) and that for all z the rank of L; (R;) is no less than the
rank of L;_y (R;_1) gives: cost; < 4k —4+r(R;)+ 1 +max{r(T}),r(Li—1)+1}.
Substituting r(L;) + 1 for the last term gives the desired result.

Case 2: =z;_4 is red.

There are two sub-cases depending on whether z;_ is a left or a right child. In
both cases, both children of z;_; are black. The children of z; and of z;_; all
have rank k& — 1. Since the invariant holds for z;_, we know that the ranks of

L;_5 and R;_; are at most k—1 and that cost;_s < 4(k—1)+r(L;—2)+r(Ri-2).

Case 2a : z;_5 is a left child (see Figure 2.6(b)).
On the (¢ — 1)** step, R;_; is formed by concatenating R;_; and T;_;. The
rank of R;_; is at most k since the ranks of the two constituent trees are at
most k£ — 1. The rank of R; is also at most k, since R; = R;_;. On the i** step,
L; is formed by concatenating T; and L;_y, which is the same as L;_,. Again,
both constituent trees have rank at most k — 1, making the rank of L; at most
k.

The cost at stage ¢ is at most cost;_p + 1 + max{|r(T;) — r(Li-1)], 1} + 1+
max{|r(T;—1) —r(R;-2)|,1}. The techniques used in Case 1 above can be used
here to show that cost; < 4k + r(L;) 4+ r(R;), which completes the proof that

the invariant is satisfied in this case.

Case 2b : ®;_5 is a right child (see Figure 2.6(c)).

Here R; is the same as R;_; and has rank at most k—1 which is less than r(z;).
Consider L;. In the (i — 1)** stage L;_; is formed by concatenating 7;_; and
L;_5. The resulting tree has rank k or £ — 1. By the concatenation property
given previously, the rank of L;_; will be k — 1 or k; if it is k& then the root of
L;_y must be black. If L;_; has rank k — 1 then r(L;) < k since T; has rank

k—1. If L;_; has rank k, then we are concatenating a tree with rank k£ and

13



black root with a tree of rank k£ — 1. The resulting tree, L;, has rank k.

The cost at time 1 is
costi_g + 2 + max{|r(Ti—1 — r(Li—2)|,1} + max{|r(T;) — r(L;-1)|,1}.

The reasoning used in the previous cases can be used to show that this is at
most 4k — 1+ r(R;) + r(L;) + max{|r(L;—1) —r(T})|,1}. Since the value of the
last term is at most 1, cost; also satisfies the invariant. |

Searching in a list represented by a balanced tree requires logarithmic time.
Recall that an n-element list is represented by a red-black tree with n external
nodes, in which each item and its key is associated with an external node such
that order in the list corresponds to left-to-right order among the external
nodes.

There are two general types of search operations which we will describe
here. First we describe, for given value k, how to find the leftmost item with
key at least k. This does not assume any ordering among the keys.

To perform this type of search store with each internal node u the value
mazkey(u) which is the maximum key of an external descendant of u. The
desired item is found by searching down the path from the root. If u is the
current node on the path and v is its left child, then go left if mazkey(v) > k
and go right otherwise. The external node reached is the leftmost external
node with key at least k.

It is easy to modify this in order to find the rightmost item with key at
least k. By storing minkey values instead of mazkey we can find the leftmost
(rightmost) item with key at most k.

We can also search on cumulative key values, if the keys are all non-
negative. That is, given value k, find the leftmost item z such that the sum of
the keys of items up to and including z is at least k. For example, if all keys
are 1, this would find the £** item.

For external node z let cumkey(z) denote the sum of keys of external nodes
up to and including z. One way to perform the above search would be to

consider the cumkey values as the keys and to perform the search given above.
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In order to achieve this we would have to store with each node u the value
mazcumkey(u), which is the maximum cumkey value of an external descendant
of u. Note that this equivalent to the mazcumkey value of the rightmost
external descendant of u. If data is stored in this manner, then operations
modify the tree (ie, insertions and deletions) may potentially invalidate many
mazcumkey values. For example, deletion of external node z invalidates the
cumkey data of all external nodes succeeding = which is likely to invalidate the
mazcumkey data of all ancestors of these nodes.

Instead we store with each internal node u the value fotkey(u) which is the
sum of the keys of all the external descendants of u. From these values we can
compute mazcumkey values as they are needed. Again the search traverses
the path from the root to the desired node. Let u be the current location
of the search and let v be the left child of v and w the right child. Initially
u is the root and mazcumkey(u) = totkey(u). At a general step compute
mazcumkey(v) = mazcumkey(u) — totkey(w). If this value is greater than or
equal to k go left; otherwise go right and set mazcumkey(w) = mazcumkey(u).

In accessing an item both of the search operations described above traverse
the path from the root to the desired item. This requires O(logn) time in an
n node red-black tree.

It is also necessary to describe how to compute and maintain the auxiliary
data. Computing the auxiliary data initially requires O(n) time for an n-
node tree since both mazkey and totkey have recursive definitions and can be
computed bottom-up. Note that tree restructuring such can invalidate some
auxiliary data values. These values can be updated quickly as long as the
data is defined recursively; that is, the value associated with a node can be
computed from the values associated with its children.

Insertion or deletion at an external node = may invalidate the auxiliary
data of the ancestors of z only. Concatenating may invalidate the data of all
nodes along a path from the new node (i in Figure 2.4) to the root. This data
can be recomputed by processing the affected path bottom-up. This will take

at most O(log n) time after an insertion into or a deletion from an n-node tree,
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making the amortized (as well as the worst-case) time O(logn). Updating data
after a concatenation adds only a constant factor to the running time.

The auxiliary data is also affected by rotations occurring during rebalanc-
ing. A rotation affects the data values of only a constant number of nodes. It
is easy to see that this data can be recomputed (bottom-up) in constant time
per rotation.

Another useful operation that can be executed is add value. Given a value
k and a node u we can add the value k to the keys of all items in u’s subtree in
constant time. This operation is compatible only with the search on mazkey
values. That is, we cannot perform add value operations and also search on
cumulative keys in logarithmic time. We will assume from now on that each
item has two keys, keyl and key2. The mazkey values are defined relative
to keyl values and totkey and cumkey relative to key2. Add value operations
affect keyl values only.

In order to support add value we store the mazkey data in difference
form. With each non-root node = we define Amazkey(u) = mazkey(u) —
mazkey(p(u)). If u is the root, Amazkey(u) = mazkey(u). This is illustrated
in Figure 2.7. Note that for a node u, mazkey(u) = Y {Amazkey(v)|v is an
ancestor of u}. If Amazkey values are stored and we are given the mazkey
value of a node u then we can compute the mazkey values for the parent or
children of u in constant time.

In order to perform add value(k,u) to add the value k to the keys of all
external descendants of u, simply add k to Amazkey(u). It is also possible
to add a value to the keys of all external nodes to the left of a given external
node z. This requires time proportional to the depth of the tree (assuming
that the path from the root to z is given) and is accomplished by traversing
this path, at each node u adding k to Amazkey(sib(u)) if sib(u) is a left child.
An analogous procedure can be used to add value to all items contained in
external nodes to the right of z. Combining the two procedures allows us also
to add a value to the keys of all items between two specified external nodes.

If Amazkey values are stored instead of mazkey values, then extra work
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Figure 2.7: Data required for performing an add value operation. Shown
with each node u is maxkey(u), Amaxkey(u). For each external node u,

maxkey(u) = key(u).

is required in the splitting operation. In order to split at node z we need to
compute mazkey(z) and to maintain the mazkey value of the current node as
the path up from z is traversed. When a subtree of this path is cut off, the
Amazkey value of the root of the subtree is replaced by the mazkey value of
the root. Taken by itself, each subtree hanging off the path now has correct
Amazkey values and the splitting algorithm can proceed as described above.
This extra computation adds only a constant factor to the running time.
Maintaining Amazkey values is harder than maintaining mazkey or totkey.
Again values may be invalidated by structural changes and by rotations. First
consider the éhanges caused by modifying the tree. Modifying the contents of
the subtree rooted at node x may invalidate the mazkey values of the nodes
on the path from z to the root and the Amazkey values of these nodes and
their siblings. These values can be recomputed by traversing the path from x
to the root as long as the old and new mazkey values for x are known. Let
mazkey and Amazkey denote the old values and mazkey' and Amazkey’ the
new ones. At each node x we compute Amazkey'(z) and Amazkey'(sib(z)),

where sib(z) denotes the sibling of z, as follows:

mazkey(p(z)) = mazkey(z) — Amazkey(z)
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mazkey(sib(z)) = mazkey(p(z)) + Amazkey(sib(z))
mazkey'(p(z)) = max{mazkey'(z), mazkey(sib(z))}
Amazkey'(z) = mazkey'(z) — mazkey'(p(z))
Amagzkey'(sib(z)) = mazkey(sib(x)) — mazkey'(p(z)).

Now it is possible to process p(z). This procedure is used for updating
Amazkey data after an insertion, deletion, or concatenation. The time re-
quired is the length of the path traversed, and is proportional to the worst-case
time required for the operation itself.

Auxiliary values may also be invalidated by rotations. To recompute these
values, we maintain the mazkey value of the current node while rebalancing.
After a rotation, this value is used to compute first the old mazkey values from
which we compute the new mazkey values and new Amazkey values, which
are then stored. This requires constant time per rotation.

To summarize, we have described a data structure that is capable of sup-
porting any sequence of insertions, deletions, concatenations, splittings, and
accesses of the form described above. Except for concatenation, all operations
require O(logn) time on an n-node tree. Concatenation of two trees of ranks
ry and ry requires O(max{|r; — r3|,1}) time. In O(logn) time we can access
the leftmost external node with key at least k or the leftmost with cumkey at
least k and can also add a constant to the values of all external nodes in the

tree, or to the values of all external nodes between two chosen ones.

2.3 Finger Trees

In this section we describe the finger tree data structure presented by Tar-
jan and Van Wyk in [51]. We will refer to these trees simply as finger trees.
Also presented is a cleaner variant of this data structure which has slightly
worse access time.

In a regular red-black tree, the left path is the path from the root to the
leftmost external node and the right path is the path from the root to the
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Figure 2.8: A finger tree.

rightmost external node. To convert a red-black tree into a finger tree we
reverse the pointers along the left and right paths and add pointers from the
root to its two children.

~ For non-root nodes on the left path in the finger tree the left pointer now
points to the parent in the red-black tree. For non-root nodes on the right
path the right pointer points to the parent. The pointers from the root are
unchanged. The tree is accessed via pointers to the leftmost and rightmost
external nodes. These are called the left finger and right finger, respectively.
See Figure 2.8 for an example.

For such a finger tree with n external nodes, inserting, deleting, or splitting
at the d** node requires O(1 + log(min{d,n — d})) time, as does accessing the
d™ node. Concatenating requires time proportional to the rank of the smaller
tree. All these time bounds are in the amortized sense.

The nodes reachable from a node u in the finger tree are those nodes con-
nected to u by a path of pointers that does not pass through the root. It will
later be clear why we exclude paths which pass through the root. The subtree
of u is the set of nodes which would be reachable if the pointers were not re-
versed. For example, in Figure 2.8, ¢, d, and e are the external nodes reachable
from u and a, b, and ¢ are the external nodes contained in the subtree of u.
A non-root node is called a path node if it is on the left or right path and a

non-path node otherwise. The non-path subtree of a node u on the left or right
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(a) (b)

Figure 2.9: Figure (a) illustrates a finger tree shown with keyl and maxkey

values. In Figure (b) the same tree with key2 and totkey values shown.

path is the subtree rooted at the non-path child of u.

A list of items is again represented by associating the items with the ex-
ternal nodes, in order. We assume that each item has two associated real
values, key! and key2. For each non-root node u in the tree let mazkey(u) be
max{key!(z)|z is an external node reachable from u}, and let totkey(u) be
S-{key2(z)|z is an external node reachable from u}. Note that these values
are defined in terms of the reversed pointers along the left and right paths.
In order to perform the search operations described previously we store these
values with each node except for the root and with each finger. Figure 2.9
contains an example illustrating these values.

A node is accessed by traversing the path from one of the fingers. There
are two such paths; one passes through the root and one does not. A node is
always accessed by the path which does not pass through the root, which is
called the access path. Although this path may be longer than the other one,
it will be longer by at most a factor of 2. The finger from which the access
path starts is called the nearer finger. The advantage of finger search trees
over red-black trees is that the time required to access a node is proportional
to the distance from a finger rather than on the distance to the root; this
distance is O(1 + log(min{d, n — d})) if the node is the d"* and the tree has n

external nodes altogether, as shown below.
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Lemma 2.2 The length of the access path to the d** external node is
O(1 + log(min{d,n — d})).

Proof: Let z be the d** external node in an n-node tree. Assume z is in the
left subtree; the other case is symmetric. We will show that the length of the
left access path is O(1 + log d) and that this is also O(1 + log(n — d)). The
case when z is in the right subtree is analogous.

Let u be the left path node whose non-path subtree contains z. The left
access path consists of the path nodes from the left finger up to u and the
path from u down to z. Its length is O(rank(u)). If d = 1 then the path has
length one. Otherwise let v be the predecessor of u on the left path (ie, u is
the left child of v). Since v has fewer than d external descendants, we know
that v has rank at most logd + 1. This implies that the rank of u is at most
log d + 2 and thus that the length of the left access path is O(1 + log d).

Given that = is in the left subtree we can also show that this value is
O(1+log(n—d)). Let z be the right child of the root. The number of external
descendants of z is at most n —d. Thus the rank of z is at most log(n —d)+1.
The rank of z is at least r — 1, where r is the rank of the root of the tree. This
is at least (logn — 1)/2, which implies that logn < 2log(n — d) + 3. Since
d < n, this implies that that 1 4 logd is O(1 + log(n — d)), as claimed. 1

Both types of queries described in the previous section can be performed
on finger trees as well. Both searches proceed by finding the node on the left
or right path whose non-path subtree contains the item and then searching
down in the indicated non-path subtree (which is a regular red-black tree) for
the desired external node. :

First we describe how to find the leftmost node with key at least k. Detect-
ing whether such a key exists can be done in constant time; a tree contains an
item with key! > k if and only if one of the fingers has mazkey value at least
k. Tf the maxkey value of the left finger is at least k (the item is reachable
from the left finger) then walk up the left path until reaching the first node
u with non-path child v such that mazkey(v) > k. Then search down in v’s

subtree for the leftmost external node with key at least k. Otherwise, walk up
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Figure 2.10: Searching in finger trees. A tree with maxkey values is shown in
Figure (a). The dashed edges comprise the access path for a search on maxkey
with k = 8. The same tree is shown in Figure (b) with the totkey value
associated with each node. Also shown are the maxcumkey values maintained
along the access path (which is dashed) during the search for the leftmost node
with cumkey > k, for k = 40.
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the right path until reaching the last node u such that mazkey(u) > k. Then
search down in u’s non-path subtree for the leftmost external node with key
at least k. This is illustrated in Figure 2.10 (a).

Finding the leftmost external node z such that the sum of keys up to and
including z is at least k is similar. Such a node exists if and only if the sum
of the totkey values of the left and right fingers is at least k. As in Section
2.2, the search is guided by mazcumkey values, where mazcumkey(u) is the
maximum cumkey value of an external node in u’s subtree. This may not be
the same as the maximum cumkey value of an external node reachable from
u.

If the totkey value of the left finger is at least k, set mazcumkey = 0 and
walk up the left path, maintaining mazcumkey, until mazcumkey > k. To
update this value when going from node u to its successor on the left path,
add totkey(v) where v is the right child of u. Next search down in the non-
path subtree as in a regular red-black tree. If the item is not in the left
subtree, search from the right finger as follows. Set mazcumkey to be the
sum of the totkey values of the left and right fingers. Walk up the right path
maintaining mazcumkey until reaching the first node u whose successor has
mazcumkey value less than k. To update mazcumkey when going from a node
v to its successor, subtract the totkey value of v’s left child. Then search for
the leftmost node with cumkey at least k in the left subtree of u. See Figure
2.10(b) for an example.

In both cases, accessing a node requires time proportional to the length of
the access path, which is O(1 + logmin{d,n — d})) for the d** external node
in an n-node tree.

As described in  [51], it is also possible to access a node by searching
simultaneously from both fingers. Here a node is always accessed via the
access path (i.e., the path from the “nearer” finger), even though the other
path may be shorter by as much as a constant factor. Which method one
should use deiaends on the application. If after accessing an external node z

we wish to insert after z or to delete z, we need to know the access path in

23



order to update the auxiliary data. Similarly, splitting at = requires knowledge
of the access path, as we will see. For our purposes it is simpler to search as
described above.

Performing insertions and deletions in finger trees is almost the same as in
regular red-black trees. Consider inserting after or before an external node z
or deleting z. It is again necessary to know the access path to z. If z and its
parent are both non-path nodes, then the restructuring is the same as before.
Otherwise the reversed pointers have to be taken into account. Both of these
operations potentially invalidate the data of all nodes on the access path to z.
Updating is done as in regular trees by traversing the access path backwards
and recomputing the auxiliary data for each node as it is accessed.

Updating' the auxiliary data requires time proportional to the length of
the access path, which is O(1 4 log(min{d,n — d})) if = is the d** node in an
n-node tree. Constant time is required for the restructuring in the worst case
and constant amortized time for the rebalancing. This implies that insertion
at or deletion of the d™* node requires O(1 + log(min{d,n — d})) amortized
time.

Concatenating is a little more complicated than in the regular case. Let T}
and T, be two finger trees with roots x; and z,, and ranks r; and r;. Assume
that r1 < ry and that 7 is to be concatenated to the left of T5. The other
cases are analogous.

If ry = ry, walk up the left paths of 77 and T, until reaching the roots.
Create new node ¢ having z; and z as children and make z; and z, point to
1. Make z red if both z; and 5 are black and red otherwise.

If 1 < 7y, then the procedure is as follows. Delete the pointers from z; to
its children. Walk up the left path of T; to the root, z;. If z; is red, make
it black. Let r] denote the resulting rank. Walk up from the left finger of
T, until reaching a black node u such that rank(u) = r". Let v be the left
child of u (the successor on the left path). Create new node i. Make v and
u the left and right children of i, respectively and make 7 the left child of z;

(see Figure 2.11). Make 7 red and rebalance using the transformations given

C 24



X2

Xl v

Ty

Figure 2.11: Concatenating finger trees. Shown are the trees to be concate-

nated, Ty and Ts, and the resulting tree T' before rebalancing.

in Figure 2.2 if this causes a violation of the red constraint with v (i.e., if v is
red).

The tree formed is now a valid red-black tree but is not a proper finger
tree since the pointers on the right path of T} and on the path from the old
left finger of T to u (or z, if the ranks are equal) point up instead of down.
To fix this, traverse both these paths reversing the pointers and recomputing
auxiliary data values. The left finger for the resulting tree is the left finger
of T} and the right finger is the right finger of 73. Finally, recompute the
auxiliary data for nodes on the path from the left finger to .

The time required for finding v and updating pointers and data is O(ry),
which is O(1 + logd) if the tree had d external nodes, and the time required
for rebalancing is O(1) in the amortized sense.

Splitting is more complicated still. Let T' be a finger tree and let z be
the d* external node of T. Splitting at z yields finger trees T; containing
the external nodes preceding = and T, containing the nodes succeeding z. We
assume that z is in the left subtree; the other case is symmetric. Let u be the
left path node whose non-path subtree contains z.

Let T, be the subtree rooted at u, let v be the successor of u on the left
path and let v’ be the non-path child of v (see Figure 2.12). Delete T, from
T leaving a fragment, T’, of the original tree. Make T, a regular red-black
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Figure 2.12: Splitting finger tree T' at node e. Shown at right are the trees
formed during the splitting process; the trees T} and T? left after splitting T,
at e and the fragment of T' left after deleting T,.

tree by reversing the pointers along the left path and recomputing auxiliary
data for nodes on this path. Use the red-black tree splitting operation to split
T. at z into T} and T2. These trees are regular red-black trees; make them
finger trees by reversing the pointers on the left and right paths and again
recomputing the auxiliary data of these nodes. The desired tree T} is 7).

To form T, we need to combine the nodes of T2 and T'. Make T" a valid
finger tree as follows. Reverse the pointers along the path from ' to its
leftmost descendant, which is now pointed to by a left finger. Replace v by u’
and its subtree. If v was black this causes a violation of the black constraint
(u' is short). If so, rebalance from u’ as for a deletion, updating auxiliary data
as required. The auxiliary data along the path from the left finger to ' is now
invalid (since the pointers have been reversed) and must be recomputed. Now
use the finger tree concatenation operation to concatenate 7’ and TZ2. The
result is T5.

Note that u, u’, and v all have heights proportional to O(1+log d) which is
also O(1+log(min{d,n—d})). The work involved in finding u and deleting and
creating fingers in the various trees requires time proportional to the height
of u. Splitting T, requires O(1 + logd) time. Rebalancing after deleting v
requires O(1) amortized time. Concatenating 7" and T requires O(1 + logd)
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time also. Thus the amortized time for splitting T' at the d** node is O(1 +
log(min{d,n — d})).

To restore the balance condition after a tree restructuring operation (eg,
insertion, deletion, or concatenation), as for regular red-black trees, we use
the rebalancing transformations of Figures 2.2 and 2.3. These operations are
applied to the path from the violation up to the root, ignoring the reversed
pointers. In order to traverse this path without storing parent pointers, the
portion (if any) that is not on the left or right path must be stored. Note that
in a regular red-black tree without parent pointers the entire path from the
root must be stored in a similar manner.

Auxiliary data must again be updated after rotations and restructuring
operations. For a node z, the auxiliary value stored at z becomes invalid only
if the set of nodes reachable from x changes. First consider how rotations
affect the data.

For rotations involving only non-path nodes, the effect and subsequent
recomputation is the same as in regular red-black trees; if path nodes are
involved the reversed pointers must be taken into account. A rotation at the
root is more complicated. Such an operation changes the set of reachable
nodes for all nodes on both the right and left paths. To restore these auxiliary
values requires traversing both paths top-down, recomputing the data at each
node. This requires O(log n) time in an n-node tree. However, the fact that the
rebalancing procedure reached the root implies that O(logn) work was already
done, either in rebalancing (in an insertion or deletion) or in restructuring and
rebalancing (in a concatenation). This implies that rebalancing still requires
only O(1) time in the amortized sense.

Finger search trees can also support add value operations. Again, the
mazkey values must be stored in difference form as described in Section 2.2
for red-black trees. Maintaining this data with the reversed pointers, in par-
ticular, recomputing auxiliary data when reversing the pointers along a path,
1s somewhat involved. We describe here a simpler, but slightly less powerful,

type of finger search tree in which data is stored only with the nodes not on
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Figure 2.13: An example of a finger tree with no path data. Shown with each
node z are the values maxkey(z) and Amaxkey(z) (maxkey values are not
stored).

the left or right paths. This type of finger tree is used for the application
described in Chapter 4.

In order to represent a list having n items, create a finger search tree having
n + 2 external nodes; the leftmost and rightmost nodes represent null items.
The remaining external nodes are associated with list items in order, as before.
For both null external nodes set key! to minus infinity and key2 to 0. Store
auxiliary data only with the non-path nodes. For each non-path node y store
totkey(y) and Amazkey(y). The latter value is mazkey(y) — mazkey(p(y)) if
p(y) is not a path node and is mazkey(y) otherwise. An example illustrating
the data is shown in Figure 2.13. _

Notice that the non-path subtrees are regular red-black trees with mazkey
stored in difference form.

Using this data structure we can perform the same operations. With re-
spect to searching it is similar to a finger tree with only a left finger. Accessing
an item requires O(1+log d) time if the item found is the d**. Again, insertion,
deletion, and splitting require O(1 4 log(min{d,n —d})) time at the d** exter-
nal node in an n-node tree. Concatenation requires time proportional to the
rank of the smaller tree. Adding a constant to the values of all external nodes

(or to the values of a consecutive subsection of the external nodes) requires
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O(logn) time in an n-node tree.

Implementation of insertion, deletion, concatenation, and splitting is the
almost exactly the same as for regular finger trees. The only difference lies in
the data updating and searching procedures.

Searching is slower since it is no longer possible to detect in constant time
whether the desired item is reachable from the left finger. To access an item,
first search up the left path until finding a subtree containing the item or until
reaching the root. If no subtree is found, search down the right path (which
first requires walking up the entire path) until reaching a subtree coﬁtaining
the desired item or until reaching the right finger. If we reach the right finger,
then the item does not exist. Otherwise, search for the item in the found
subtree as in a regular red-black tree.

In the search for the leftmost item with key at least &, we find the leftmost
path node whose non-path child u has Amazkey > k and then search down
within u’s subtree as described in Section 2.2.

To find the leftmost item with cumulative value at least k we again main-
tain the value mazcumkey. To update this value when going from a node u
on the left path to its left child, v (if v is not the root), add totkey(right(v)).
If mazcumkey(u) < k for all nodes u on the left path, then the search con-
tinues from wu, the right child of the root, starting with mazcumkey incre-
mented by totkey(left(u)). To update mazcumkey when going from node on
the right path to its predecessor v, add totkey(left(v)). The leftmost node with
mazcumkey > k is contained in the non-path subtree of the leftmost path node
having mazcumkey > k. The procedure for searching within this subtree was
described in Section 2.2. -

If the desired item is not found, then both search procedures described
above will take O(logn) time in an n-node tree. If the desired item is the
d™ then the search will require O(1 + logd) time. Lemma 2.2 implies that
the length of the access path for the d item is O(1 + logd) if it is in the
left subtree. If the item is in the right subtree the algorithm requires O(logn)

time, but using the reasoning used in Lemma 2.2 we can show that this is also
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O(1 + log d) in this case. :

To add a constant k to the key! values of all external nodes, add k to the
Amazkey values of all non-path children of path nodes. Given two external
nodes z and y and their access paths, we can also add k to the values of all
external nodes between z and y. Both these operations require O(logn) time
on an n-node tree. The first operation is slower than for the Tarjan and Van
Wyk finger trees in which adding a constant to all nodes of the tree requires
constant time. However, by storing a cost offset value with the root of each
modified finger tree, we can perform add value operations in O(1) amortized
time. Adding a constant & to this value increases by k the costs associated
with all leaves [43]. Such a scheme entails more work in maintaining data after
a concatenation or a split operation, but this adds only a constant factor to
the running time.

It is easier to maintain the auxiliary data in this modified finger tree. Since
no data is associated with the path nodes, the reversed pointers do not need to
be taken into account. In contrast, with the finger trees described previously,
rotating at the root does not require updating data of nodes on the left and
right paths. '

Since the subtree containing a particular external node is a regular red-
black tree, updating data after an insertion or deletion is handled exactly
as described in Section 2.2. Creating or destroying a finger also invalidates
data. Updating data after such an operation is straightforward. If we wish
to add a finger by reversing all the pointers along the left or right path of a
tree, first traverse the path once to compute mazkey values for the path nodes
and their siblings. For each sibling replace Amazkey by mazkey. To destroy a
finger again traverse the path once computing and storing mazkey values (with
respect to downward pointers) in place of Amazkey values for the nodes on
the path and their siblings. Then traverse the path once more to compute new
Amazkey values for all these nodes. Store mazkey with the root. In addition
to reversing the pointers and updating data, when deleting a finger we must

also delete the corresponding special external node and when adding a finger
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we must insert a null external node.

2.4 Remarks

Finger trees have a reputation for being complicated and impractical, hard
to understand and hard to implement. If one considers only the operations
insert, delete, and access, then the finger tree implementations given here are
not significantly more complex than those of regular balanced trees. Concate-
nating and splitting are more complex and allowing add value operations adds
still more details.

In this variant the path nodes serve only to link together a bunch of red-
black subtrees and to impose regulations on their sizes so that the search time
is optimal. A natural question is whether this observation can be generalized
to create a simpler data structure with the same kind of performance. It is
not necessary to think of the set of subtrees plus the linking paths as a tree
itself, especially since the linking nodes already have to be treated differently
from the subtree nodes. However, treating the whole structure as a tree allows
us to use standard tree rebalancing operations (i.e., rotations) in order to
maintain the balance condition in the entire structure. Splay trees, a form
of self-adjusting search tree introduced by Sleator and Tarjan [44], are more
elegant and easier to implement. It is not known if they perform as well,

however.
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3. Finding a Balanced Decomposition of a Tree

3.1 Introduction

In this chapter we describe how to find a balanced decomposition of a tree
in linear time. The balanced decomposition can be defined for both rooted and
unrooted (or free) trees. A free tree is a connected graph that has no cycles.
A rooted tree [36] is a free tree with one vertex designated as the root.

A decomposition of a tree, either rooted or free, is formed by breaking the
tree into two or more pieces and then repeatedly decomposing each piece until
it can no longer be split. Breaking the tree can be accomplished by removing
any non-empty set of vertices and/or edges. For our purposes we consider only
decompositions in which each splitting operation consists of removing a single
edge, thereby breaking the tree into two pieces. In this case the decomposition
process ends when each piece is a single-node tree.

This process can be be represented by a rooted tree called the decomposition
tree. The decomposition tree (here) is binary; each node of the decomposition
tree represents a component resulting at some point in the decomposition
process. Such a component is called a fragment of the input tree. An example
is given in Figure 3.1. For a tree T, the size is the number of nodes in 7' and
is denoted |T'|.

Let T' be a tree we wish to decompose. A decomposition is called balanced
if there exists a constant ¢ not dependent on the size of the tree such that
0 < ¢<1/2 and for each fragment F' formed during the decomposition of T,
the two fragments left after splitting F' both have size at least ¢|F'|. The decom-
position process terminates after O(log n) stages in a balanced decomposition.
This implies that the decomposition tree has depth O(logn).

In [26], Guibas, Leven, Hershberger, Sharir, and Tarjan give an algorithm
for finding a balanced decomposition of a binary tree in linear time, which
is optimal. As used here, a k-ary tree is a rooted tree in which each node

has at most k children. Here we give an algorithm for finding a balanced
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Figure 3.1: A tree, a partial decomposition of the tree, and the corresponding

decomposition tree.
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decomposition of a k-ary tree in linear time, if k is a constant independent of
tree size. Since an unrooted tree with maximum degree k+ 1 can be converted
into a k-ary tree by choosing any node with degree 1 to be the root, this
method will also work for unrooted trees. The method is quite different from
that of Guibas, et. al.. Cole and Vishkin [14] have given a parallel algorithm
for a similar tree decomposition problem.

This chapter contains three additional sections. In Section 3.2 we prove
the existence of a balanced decomposition for a k-ary tree and show how to
find one in O(nlogn) time. In Section 3.3 we present a linear-time algorithm.

Section 3.4 contains concluding remarks.

3.2 Existence

Every k-ary n-node tree has a balanced decomposition which can be found
in O(nlogn) time. To show that a balanced decomposition exists we need to
show that there exists a constant 0 < ¢ < 1/2 such that every k-ary n-node
tree has an edge whose removal leaves two pieces each of size at least cn. For
this proof and the remainder of the chapter we assume that the input tree is
rooted.

To denote an edge from node u to node v in a tree we use the notation
{u,v}. For a node u in tree T', nd(u) denotes the number of descendants of u
in T. If u is not a leaf, the largest child of u is the child of u with the largest
number of descendants. Observe that for a node u with at most k children,
the largest child of u has at least [M%tl] descendants.

Lemma 3.1 If T is a k-ary n-node tree with k > 2 and n > 4, then there

erists an edge of T whose removal leaves two pieces both having size at least
[21-

Proof: Consider the following procedure. Walk down from the root of the tree,
taking at each node z the edge from z to its largest child, until reaching a node
v with nd(v) < [(1 — 3;)n]. Let u be the parent of v. We can show that the
edge {u,v} satisfies the claim. Since nd(u) > [(1 — 3-)n] and v is the largest
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child of u, nd(v) > fﬂ%)_—l], which is at least [2] for n > 2% which is less
than or equal to 4 for £ > 2. We also need to show that n —nd(v) > [3x]. This
follows from the fact that nd(v) is an integer strictly less than [(1 — ;)n].
|

This lemma implies that there exists a balanced decomposition of T with
constant ¢ = 2. The depth of the decomposition is dependent on the constant
c. The depth is less than or equal to dlogn where d is the smallest integer
such that (1 — ¢)n < 1. This implies that d %s

the following theorem:

. This discussion proves

l—c

Theorem 3.1 For an n-node k-ary tree T there exists a balanced decomposi-
tion of T' with depth at most lg—lL——log n.
0, 1_51;‘5 ‘
For example, for an n-node binary tree (k = 2), the depth is at most
1Og oz 475 l0g n, which is approximately 2.4 log . |
In the splitting procedure given in Lemma 3.1, the threshold (1— L) can be

replaced by 1— yielding a split in which both pieces have size at least 5.

_1
k+2°
This method will not always yield a decomposition with splitting constant less
than or equal to klﬁ since there exists a family of trees in which removal of

any edge yields a piece of size less than T+1» Where n is the size of the tree.
For example, consider the family of k-ary trees with parameter d such that
each tree consists of a central node connected to the roots of k + 1 complete
k-ary trees with d levels. This tree will have ikd—_luﬂl + 1 nodes. Removal
of any edge yields a piece of size at most £=1 Wthh is less than n/(k + 1).
Figure 3.2 shows the structure of such a tree When k=2.

Note that a tree in which the maximum degree is not a constant may not
have a balanced decomposition. For example, the “star” tree consisting of n
nodes such that one node is adjacent to all the others (shown in Figure 3.3)
has no decomposition with depth less than n — 1. (Note that splitting by

removing a vertex instead of an edge can yield a decomposition with constant
depth.)
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Figure 3.2: This figure shows the structure of a family of binary trees having
the following property. If T is a tree in this family and has d levels (and hence
n = 3(2% — 1) + 1 nodes), then removal of any edge in T leaves a piece having

size less than 2,

N | A
S

Figure 3.3: A tree which has no balanced decomposition. The decomposition
tree is the same - a chain of n — 1 nodes - for all possible decompositions (all

possible orderings of the edges).
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Let T' be an n-node k-ary tree. An edge e in T is called a splitting edge (for
T') if and only if removal of e yields two pieces both having size at least [2].
The proof of Lemma 3.1 gives a procedure for finding the splitting edge of T
in linear time, which leads to the following algorithm for finding a balanced

decomposition.

Algorithm 1 Compute nd(u) values for all nodes u in T, find the splitting
edge for T', and recursively decompose the two pieces formed by removing this

edge.
Lemma 3.2 Algorithm 1 runs in O(nlogn) time.

Proof: The running time of this algorithm satisfies the following recurrence:

T(n) = max {T(n1)+T(n3)+ O(n)}, (3.1)

ny,np2cn
ni+ne=n

for ¢ = 5-. It is well-known that this has solution bounded by O(nlogn). 1

Algorithm 1 gives a simple method for finding a balanced decomposition
which splits an n-node tree in O(n) time. This method relies on values, the
nd values, which cannot be easily recomputed after splitting. In order to get a
faster decomposition algorithm, we need a procedure for finding the splitting
edge that can be executed recursively. That is, the data used to find the
splitting edge should either be easy to recompute after splitting or should

need no recomputation at all.

3.3 A linear-time algorithm

Our algorithm has the same form as Algorithm 1. After preprocessing
the input tree T', we execute the same recursive step: find the splitting edge,
remove it, and recurse on the two fragments formed. Our algorithm cannot
match the splitting constant of the previous section. There we defined a split-
ting edge to be one whose removal left pieces both having size at least [2r];

here this quantity must be decreased to the floor of - rather than the ceiling.
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The basis of our algorithm is a procedure for finding a splitting edge of an
n-node tree in O(logn) time with linear preprocessing. Thus the running time
of the algorithm satisfies the recurrence:

T(n)= max {T(ny)+T(ny)+ O(logn)} (3.2)

ni,np>cn
ni1+no=n

where c is the splitting constant; 0 < ¢ < % The solution of this recurrence is
O(n). This can be proved by induction.

Proof: Assume that T'(n) < an—2logn for a constant a, which will be derived.
We will assume that the log term in the running time recurrence has a constant
of 1; this affects only the constant of the result. It suffices to show for all n;

and n, such that ny > en, ny > en, and ny; + ny = n, that
any — 2logny + any — 2logny + logn < an — 2logn.

This is true for all n such that 3logn < 2logn; + 2logn,. Since n; and
ny must both be greater than or equal to ¢n, the right hand side is at least
4log cn, which is at least 3logn for n > ¢4

To complete the inductive proof it is necessary to show that 7'(n) is at
most an — 2logn for n < ¢™*. Tt can be shown for all n that T'(n) < a’nlogn
for some constant a’ > 0. This implies that the bound on T'(n) holds if there

exists a constant ¢ > 0 such that:
(@' 4+ 2)nlogn < an.

For the values we are concerned with, logn < 4log(1/¢). Thus choosing
a =4(d' + 2)log(1/c) gives the desired result. |

In order to find the splitting edge in logarithmic time we use a preorder
numbering of the tree.

A preorder numbering [1] of a rooted tree T' is computed by traversing the
tree depth-first, numbering each node as it is first accessed. A depth-first
traversal of a rooted tree T first accesses the root of T' and then recursively

traverses each subtree. Computing the preorder numbering of an n-node tree
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Figure 3.4: A rooted tree with preorder and range values shown with each

node.

can be done in linear time [48]. For node u we use pre(u) to denote the
preorder number. In addition to pre(u) we need the value range(u). For node
u, range(u) is the largest preorder number of a node in u’s subtree. Figure 3.4
illustrates these values.

Preorder and range values have the following properties. The descendants
of a node u are all numbered consecutively, from pre(u) to range(u). If v and v
are two nodes in a tree 7" such that u is an ancestor of v, then pre(u) < pre(v)
and range(u) > fange(v). Further, pre(u) < pre(v) if and only if u is on the
path from v to the root (ie, is an ancestor of v) or is contained in a subtree to
the left of the path from v to the root.

The nearest common ancestor of two nodes u and v is the deepest node
that is an ancestor of both u and wv.

The following observation is the basis of our algorithm.

Lemma 3.3 Let T' be a k-ary tree, k > 2, with n nodes. If x and y are
the nodes with preorder numbers [2] and [2] respectively, z is the nearest

common ancestor of ¢ and y, and u is the largest child of z, then u has between

| 2] and |2 descendants.

Proof: Let S; = {v € T|pre(v) < [2]} and let S; = {v € T|pre(v) > [2]}.

The subtree of z contains all nodes with preorder numbers between pre(z)
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Figure 3.5: The triangles indicate subtrees. The subtrees and nodes to the
left of the dashed line are contained in the set S; and those to the right of the

dotted line are contained in Ss.

and pre(y), that is, all nodes not in either S; or S, (Figure 3.5 illustrates
these definitions). This subtree also contains two distinct nodes, z and y,
that are contained in either S; or S,. Since S; N S; = @, this implies that
nd(z) > n — |S;| — |S2| + 2, which is at least |2] + 1. The largest child u of z
has at least [Pﬂ—;kl] descendants, which implies that nd(u) > |2].

Finally, we can see that nd(u) < [2%] by observing the following. If the
subtree of a node v contains nodes from both S; and S;, then it must be an
ancestor of both z and y and hence an ancestor of z. This implies that a
child of z may not contain nodes from both sets, which in turn implies that
nd(u) < max{n — |S1|,n — |S2|}, which is at most [22]. |

Corollary 3.2 FEdge (z,u) defined in Lemma 3.3 is a splitting edge for T.

Proof: A splitting edge is one whose removal leaves two pieces both having
size at least |7;|. Removal of (z,u) leaves two trees, the subtree rooted at u
and the tree containing the remaining nodes of T. By Lemma 3.3, the former
has at least || nodes and the latter has at least [£]. This implies that both

fragments have size at least | -] for k>2. |
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Replacing [2] and [#] in the lemma given above by [#1 and [lg::_i;l]
yields a better split; removal of the edge found by this variation yields two
pieces each having size at least [ }5].

Lemma 2.2 suggests the following method for splitting an n-node tree T':
(i) find the nodes z and y with preorder numbers [2] and [22], respectively,
(i1) find z, the nearest common ancestor of z and y in T,
(iii) find the largest descendant u of z in T', and
(iv) remove edge {z,u}.

This can easily be executed in linear time. To improve the running time
from O(n) to O(logn), we represent each fragment as a list, recasting the
above procedure in terms of some simple list operations. Later we show how
to represent the list as a balanced binary tree so that the list operations and,
hence, the splitting procedure, can be executed in O(logn) time. In order to
transform the splitting problem into a list problem, each tree is represented
by a list called its preorder list. Such a representation has been used in many
previous settings; for example, see the paper by Dial, Glover, Karney, and
Klingman [16].

For the input tree T, the preorder list Lt contains the nodes of T in
preorder order; stored with each node u is the range value for u in T. For
a fragment F' of T', the preorder list Lr contains the nodes of F' in preorder
order, but with each node u is stored the range value of u with respect to the
input tree T'. This value is denoted by ranger(u). Figure 3.6 gives an example
of a tree, a fragment, and its corresponding preorder list.

The preorder list gives a good deal of information about the tree structure,
enough so that the operations required for finding the splitting edge can be
executed using simple list queries. First we describe how to execute these
operations - finding the node with a given preorder number, finding the nearest
common ancestor of two nodes, and computing the number of descendants of

a node - in the input tree T'.
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Figure 3.6: Shown are a tree T and a fragment of T; shown with each
node wu is the value rangej(u). The preorder list Lp for fragment F is
(7,19)(8,14)(10, 14)(11, 14)(12, 14)(14, 14).

Since nodes are ordered in the preorder list by increasing preorder number,
finding the node with a given preorder number is equivalent to searching on
position in Ly. Given integer j, the node with preorder number j is the j*
item in Lp.

To find the nearest common ancestor we need to use the following property:
if z and y are two nodes in T' with pre(z) < pre(y), then the nearest common
ancestor of z and y is the common ancestor with highest preorder number;
a node z is a common ancestor, an ancestor of both z and y, if and only if
pre(z) < pre(z) and range(z) > range(y). Thus, in Ly, the nearest common
ancestor of 2 and y is the rightmost node to the left of z whose range value
is at least range(y). We call this query search to the left: given a list with
associated keys, a key r and a node z, find the rightmost node to the left of =
with key at least r. |

The number of descendants of a node in 7' can be determined without
searching. Since the descendants of a node are all numbered consecutively,
from pre(u) to range(u), nd(u) = range(u) — pre(u) + 1.

For a fragment of T" the latter two operations are more involved because
the values stored are the range values with respect to T rather than those

computed for the fragment itself.
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Finding the nearest common ancestor of two nodes in a fragment is the
same as in the input tree. For a node u in F' let prep(u) and prer(u) denote
the preorder numbers of u with respect to F' and T respectively. Consider
nodes z and y in F' such that prep(z) < prep(y). Any node z which is an
ancestor of both # and y in F' is also an ancestor of both in 7' and thus must
satisfy: prer(z) < prer(z) and ranger(z) > ranger(y). The first condition is
equivalent to prep(z) < prep(z). The nearest common ancestor in F is the
common ancestor in F' with highest preorder number. This implies that the
nearest common ancestor of z and y is the rightmost node to the left of z in
Lr having ranger > ranger(y).

To compute the number of descendants of a node in a fragment we again
use the fact that the descendants of a node all occur consecutively in the
preorder list. Let u be a node in F. The rightmost descendant of u is the
descendant of u in F' with highest preorder number. Let «' be the rightmost
descendant of u and let pos(z) denote the position of node z in F. Then
ndp(u) = pos(u') — pos(u) + 1.

To find v/, we use the following facts. For all nodes v between v and v’ in
Lg, ranger(v) < rangep(u). For nodes w following u’, ranger(w) > rangeq(u).
This implies that u’ is the predecessor of the leftmost node to the right of u
that has range; > rangep(u). Finding uw' thus requires the list operations
search to the right and predecessor. Determining ndp(u) also requires the list
operation position, which returns the position of a node in its list.

In order to remove the splitting edge so that the splitting procedure can be
recursively applied to the two pieces, we need to compute the preorder lists of
the resulting pieces. Let I be a fragment with splitting edge {z,u} where z is
the parent of u. Removal of this edge leaves two pieces, the subtree rooted at
u and the tree containing the remaining nodes. We call these new fragments A
and B, respectively. The preorder list, L 4, for A contains all nodes between u
and v/, where v is the rightmost descendant of u; Ly contains the remaining
nodes in the same order as in Lg. To construct L, and Lp (given u'), split

L before u and after «’. The middle piece is L4; concatenating the first and
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third pieces yields Lg.

By representing each fragment as a list, we have converted the splitting
edge problem into the following list problem. Given an ordered list of items
in which each item has an associated real-valued key, we wish to represent the

list so as to be able to execute the following operations quickly:
search on position: given integer j, 1 < j < n, return the j** item,
position: given item z, return its position,

search to the left: given value r and item z, return the rightmost item to the

left of & having key at least r,

search to the right: given value r and item z, return the leftmost item to the

right of = having key at least r,
predecessor : given node z, return its predecessor in the list,

split after: given list L and item z, return two lists, one containing the items

up to and including = and the other containing the remaining items,

split before : given list I and item z, return two lists, one containing the
items up to but not including  and the other containing the remaining

items, and

concalenate: given two such lists L; and Lo, concatenate Ly to the back of
Ly,

The keys associated with items in our list are the range; values.

We can now specify the recursive step of the algorithm in terms of the list
operations given above. Let F' be an n-node fragment of the input tree 7.
The following procedure splits F', producing lists L4 and Lp representing the

new fragments A and B:

z = search on position(Lr, [2])

y = search on position(Lp, |'3ZT“'|)
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z = search to the left(Lr, x, rangey(y))

For each child v of z in F, determine ndp(v) as follows:
r = search to the right(Lp, v, ranges(v))
v’ = predecessor(r)
ndp(v) = position(v') - position(v) + 1

Let u be the child of z with largest ndp value

Let u' be the rightmost descendant of u

/* Split F' as follows: */ |

remove {z,u} from F'

let A be the subtree rooted at u

let B be portion of F' left after removing A

/* Split Lg as follows: */

split before(Lp, u, Ly, L})

split after(L, u', Lo, L3)

Ls=L,

Lg = concatenate(Ly, L3)

The procedure for splitting an n-node fragment runs in O(g(n)) time where
g(n) is the maximum time required for executing the list operations given
above on an n-item list. With a simple linked-list representation, g(n) = O(n).
This time can be improved to O(logn) by representing the list by a balanced
tree.

There several well-known types of balanced tree data structures which can
support the operations mentioned above in logarithmic time in the worst-case.
Two of these are (a, b) [40] and red-black [28] trees. In addition, the splay tree
data structure introduced by Sleator and Tarjan [44] can be used to execute
these operations in amortized logarithmic time. For this algorithm, any of the
above data structures can be used.

Red-black trees [28] are described in detail in Chapter 2 and we develop
that method here. The non-leaf nodes are called internal nodes and the leaf

nodes are called ezternal. An n-item list L is represented by a red-black tree
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T}, with n external nodes by associating each item of L with an external node
of the tree so that left-to-right order in L corresponds to left-to-right order
among the external nodes of T7.

In order to perform the desired query operations, the following two auxil-

iary data values are stored with each internal node u:

size(u) = |{z|z is an external descendant of u}| and

mazkey(u) = max{key(z)|z is an external descendant of u},

where key(z) is rangep(z).

Given a list L, the tree T}, representing L can be constructed in linear
time. Constructing the tree structure is easy. The auxiliary data values can
be computed by traversing the tree bottom-up.

For the implementation described in Chapter 2, mazkey and cumkey are
stored. The latter value is equivalent to size if each item of the list is thought
of as having a second key of value 1. Searching on position is thus equivalent
to searching on cumkey which was described previously. Given below are
descriptions of the other query operations.

To determine the position of a node z, walk up the path from z to the root
summing the values size(u) for the nodes u such that u is a sibling of a node
on the path and is also a left child.

Performing search to the left entails finding the rightmost external node
with key at least k such that the node is also to the left of a given node
x (given the path from z to the root). To do this, walk up from z until
reaching the first node with left child « such that u is not on the path to =
and mazkey(u) > k. Then search down in u’s subtree for the rightmost node
with key > k. This search requires time proportional to the length of the path
from z to the desired node which is O(logn). Performing search to the right
is analogous. _

To return the predecessor of an external node z in logarithmic time, walk

up from z until reaching the first node that is a right child then walk down
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from its sibling by following right pointers until reaching an external node.

All these query operations run in time proportional to the depth of the
tree, which is O(logn).

Splitting and concatenating were also described in Chapter 2 along with
the procedures for updating any auxiliary data invalidated by the tree re-
structuring. Both run in O(logn) time on an n-node tree. As described, the
operation split(u) yields two lists, one containing the items preceding u and
one containing the items succeeding u. It is easy to modify this operation so
that u is included at the end of the former list or at the beginning of the latter
as desired. This does not affect the running time.

By representing the preorder list as a red-black tree, the list operations
necessary for computing the splitting edge can be executed in O(logn) time
if the list has n items. This implies that an n-node fragment can be split
in O(logn) time. To preprocess the input tree T, compute the preorder and
range numbers for T', construct the preo.rder list, and finally construct the
red-black tree representing the preorder list. This can be done in linear time.
Thus the running time of the splitting algorithm satisfies Recurrence 3.2. This

constitutes a proof of the following theorem.

Theorem 3.3 The algorithm given above for finding a balanced decomposition

of an n-node k-ary tree runs in O(n) time.

3.4 Remarks

Crucial to finding a balanced decomposition is a method for splitting a tree
into two roughly equal pieces. The splitting method presented here is fast and
relatively simple.

Splitting a tree is an operation that may be useful for solving other prob-
lems. The evolutionary tree problem, studied by Kannan, Lawler, and
Warnow [35], is such a problem. An evolutionary tree is a tree repesenting
ancestor-descendant relations between biological species in which the leaves

correspond to distinct species. An internal node is an ancestor of the species
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contained in its subtree. Given a set of n species and the ability to perform
queries of a certain sort, we wish to be able to determine the structure of the
tree while minimizing the number of queries and the asymptotic time required
for computation. Kannan, et. al. considered the following query: given three
species, return the pair that has the deepest nearest common ancestor.

One of the algorithms they presented relies on a procedure for splitting
the tree in a balanced manner by removing a vertex. For splitting they use a
variant of Algorithm 1, which requires linear time. Using our splitting method,
modified to find a splitting vertex instead of edge, yields an algorithm which
requires n logs n queries and runs in O(n log? n) time. This bound is equivalent
to one of the bounds presented in their paper.

Another open question which is also related to the evolutionary tree prob-
lem is the dynamic balanced decomposition problem. That is, given a balanced
decomposition of an n-node tree T', we wish to be able to perform an insertion
to or a deletion from T so that a balanced decomposition of the resulting tree
can be computed quickly. Such an algorithm could be used to solve the evo-
lutionary tree problem; if the decomposition can be updated in O(log n) time
after an insertion or a deletion, then the evolutionary tree can be computed
in O(nlogn) time with nlogz n queries.

Finally, a related problem is finding a parallel balanced decomposition

algorithm.
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4. Finding the Minimum-Cost Maximum Flow of a
Series-Parallel Network

4.1 Introduction

In this chapter we give a fast algorithm for computing a minimum-cost
maximum flow in a series-parallel network. On an m-edge network, the algo-
rithm runs in O(mlogm) time. The space needed is O(m) if only the cost of
the minimum-cost flow is desired, or O(rﬁlog m) if the entire flow is needed.
This space bound can be reduced to O(m log log m) without increasing the run-
ning time, or to O(m) by increasing the running time to O(m log m loglog m).
The idea behind the algorithm is to represent a set of augmenting paths by a
balanced search tree.

Let G = (V, E) be a directed (multi)graph with vertex set V of size n and
edge set E of size m. Each edge e € F has a source s(e) € V and a sink
t(e) € V; e is directed from s(e) to t(e). A graph G is called (two-terminal)
series-parallel with source s and sink t if it can be built by means of the

following three rules (see Figure 4.1 ):

Base graph. Any graph of the form G = ({s,t}, {e}) with s(e) = s and t(e) = ¢

is series-parallel with source s and sink t.

Let Gy = (V4, E;) be series-parallel, with source s; and sink t;, and let

Gy = (Va, E3) be series-parallel with source s, and sink t,.

Parallel composition. The graph G formed from Gy and G, by identifying s,
and s, and identifying #; and ¢, is series-parallel, with source s; = s, and sink
ty = ts. |

Series composition. The graph G, formed from G, and G; by identifying t,
and s, is series-parallel, with source s; and sink %,.

A series-parallel graph can be represented by a decomposition tree, which
is a binary tree in which the leaves represent edges of the graph and each

internal node represents either a series or a parallel composition of the graphs
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Figure 4.2: The decomposition tree of the graph given in Figure 4.1.

represented by its subtrees. (See Figure 4.2.) One can test an arbitrary graph
to determine if it is series parallel, and if so compute a decomposition tree, in
O(n + m) time [53].

A network is a directed graph G = (V, E) with two distinguished vertices,
a source s and a sink , and three real-valued functions on the edges, a lower
boundl, a capacity u, and a cost c. A flow on a network is a real-valued function

f on the edges satisfying the following constraints:
(1) (capacity constraints) I(e) < f(e) < u(e) for all e € E;

(2) (conservation constraints) Y f(e)= Y f(e) forallve V — {s,t}.

eEE e€B
t(e)=v s(e)=v
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The value of a flow fis Y _ f(e); the cost of f is Zc(e)f(e). A flow is

cER e€E
mazimum if it has maximun;(?)?ssible value and minimum if it has minimum
possible value. A flow is minimum-cost if it has minimum cost among all flows
with the same value. The minimum-cost flow problem is that of computing a
maximum flow of minimum cost in a given network.

The minimum-cost flow problem can be solved in polynomial time; many
algorithms are known, (see for example [18]). The best currently known bound
as a function of n and m is O((m + nlogn)mlogn) [41]. In the special case
that the capacities and/or costs are integers of moderate size, slightly better
bounds are known; see [3]

Bein, Brucker, and Tamir [6] considered the question of whether the
minimum-cost flow problem becomes easier on networks of special structure,
in particular on series-parallel networks. For the special case of zero lower
bounds, they observed that a simple greedy strategy works, and they obtained
a time bound of O(nm + mlogm) for each of two algorithms, one based on
the greedy strategy and one a composition algorithm using a decomposition
tree.

In this chapter, we develop an algorithm for finding a minimum-cost flow
in a series-parallel network in O(mlogm) time. The algorithm requires O(m)
space if only the cost of a minimum-cost flow is desired or O(m loglogm)
if the flow on each edge is needed. The latter bound can be improved to
O(m); however, the running time increases to O(mlogmloglogm). Finding
a linear-space algorithm with O(mlogm) running time is an open problem.
Our algorithm is based on the ideas of Bein, Brucker, and Tamir; its effi-
ciency comes from the use of balanced search trees to represent sequences of
augmenting paths.

This chapter consists of four sections in addition to this introduction. Sec-
tion 4.2 describes the idea of the algorithm. Section 4.3 discusses the im-
plementation and efficiency analysis. Section 4.4 extends the algorithm to

construct an entire minimum-cost flow rather than just computing its cost.
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Section 4.5 contains some concluding remarks.

4.2 A Composition Algorithm

Our algorithm builds a representation of minimum-cost flows for all possible
flow values by processing a decomposition tree for the network bottom-up.
This information can be stored as a list which we call the flow list associated
with the network. Associated with each node of a decomposition tree is the
flow list corresponding to the series-parallel graph it represents.

The algorithm first computes the decomposition tree by using the algorithm
of Valdes, Tarjan, and Lawler [53]. Next we compute the flow lists associated
with each node of the decomposition tree by processing it bottom-up. This step
relies on the observation that the flow list of a node in the tree can be computed
from the flow lists of its two children; we call this procedure composition.
Finally, the algorithm computes the flow assignment by processing the tree
top-down, using the flow lists to determine at each stage how to distribute the
flow.

As a preliminary observation, note that we can compute the minimum
and maximum flow values, denoted by minval and mazval, respectively, in
O(m) time by processing a decomposition tree bottom-up using the following

equations:
Base graph. Let G = ({s,t},{e}) with s(e) = s and t(e) = ¢. Then
minval(G) = l(€), mazval(G) = u(e).
Let Gy and G be series-parallel. Let their parallel composition be G,

and their series composition (G,.

Parallel composition. minval(G,) = minval(G1) + minval(Gs);
mazval(G,) = mazval(Gy) + mazval(Gy).

Series composition. minval(G) = max{minval(G1), minval(G)};
mazval(Gy) = min{mazval(G,), mazval(G,)}.

(If minval(G,) > mazval(G,), no flow value is feasible.)
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Whereas the value of a maximum flow can be computed knowing only
the maximum flow values of the constituent graphs, this is not true of the
minimum cost of a maximum flow. To compute the latter value, we need in
general to know the costs of minimum cost flows of all possible values in the
constituent graphs.

To represent the minimum cost of each possible flow value, we shall use a
list we call a flow list. This is a list of pairs (l, ¢o); (u1,¢1), (us, €2), ..., (ug, k)

with the following properties:
) wg=dforl<i<k

() g<egpforl <i<k.

k
(iii) Iy is the value of a minimum flow and uy = Iy + Zu,- is the value of a
i=1
maximum flow;

4
(iv) for any flow value z, I < = < wug, where z = [ + Zui + au; with

=1
j—1

0 < a <1, the cost of a minimum-cost flow of value z is ¢g + Zc,-u.i 4

i=1

CYUjCj.

Note that the first pair of a flow list plays a special role; we call it special
and the remaining pairs normal. We call the first component of a pair the
capacity and the second component the cost. In a flow list, all the normal
pairs are ordered by cost, i.e., ¢; < ¢;4q for 1 <4 < k. Normal pairs of equal
cost can be combined by adding their capacities, thereby shortening the list.
We call a flow list in which all the normal pairs have distinct costs reduced.
Figure 4.3 shows two networks and their flow lists. Roughly speaking, the
special pair gives the minimum flow value, [y, and the minimum cost of [
units of flow; the next u; units of flow can be obtained at a cost of ¢; per unit;

the next wu, units of flow can be obtained at a cost of ¢y per unit, and so on.
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1=(-2,-3);(11,2),(4,3) L=(1,5);(4.5)

Figure 4.3: Two simple series-parallel networks and their flow lists. Shown

with each edge is a triple giving the lower bound, capacity, and cost.

2,10,5 g’g%m
s 452 o 0TI A" T
8,5
(6,22);(1,3),(8.5)

Figure 4.4: Shown at the left is a series-parallel network and its flow list.
At the right is the simplest network with the same flow list. The dashed
edge represents the special pair (ly, ¢p). The remaining edges represent normal

capacity, cost pairs.

A flow list can be regarded as corresponding to a series-parallel network
consisting of a source s, a sink ¢, and an edge with source s and sink ¢ for each
pair. The edge eg for pair (lp, ¢p) has I(eg) = u(eg) = lp and c(eg) = co/lp; for
1 <1 <k, the edge ¢; for pair (u;,c;) has I(¢;) = 0, u(e;) = u;, and c(e;) = ¢;.
See Figure 4.4 for an example. This is the simplest flow network for which
the given flow list is valid, with the possible exception of networks formed
by combining edges of the same cost by adding their lower bounds and their
capacities. There is a unique simplest graph representing a reduced flow list.
Remark. In our formulation of the minimum-cost flow problem, we have made
no assumption about the signs of the lower bounds, the capacities, or the flows.

A negative flow on an edge e can be regarded as a positive flow from #(e) to

s(e).
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A flow list for an arbitrary network can be constructed by first computing
a minimum flow of minimum cost using any minimum-cost flow algorithm.
This gives the first pair (ly, co). Each subsequent pair is computed by finding
a minimum-cost augmenting path in the residual network for the current flow,
augmenting along this path, and forming a pair consisting of the capacity of
the augmenting path and its cost per unit of flow. Ford and Fulkerson [21] and
many other books discuss augmenting paths and minimum-cost augmentation.
~ For general networks, the length of even a reduced flow list can be expo-
nential in n. For a series-parallel network, however, a reduced flow list has size
O(m), and constructing such a flow list provides a way to find a minimum-cost
flow in such a network.

To construct a flow list for a series-parallel network, it is more efficient not
to use the minimum-cost augmenting path method directly but to build the
list by processing a decomposition tree bottom-up. The following rules define

this computation:

Base graph. Let G = ({s,t},{e}) with s(e) = s, t(e) = t. The flow list for

G is (I(e),c(e)l(e)); (u(e) — I(e), c(e)) if u(e) > I(e) or just (I(e), c(e)l(e)) if
u(e) = I(e). If u(e) < I(e) then there is no valid flow.

Let Gy and (5 be series-parallel graphs with flow lists L; = (I, ¢3); Ly and
Ly = (1%, c2); LY respectively.

Parallel composition. For G, the flow list is L, = (Ij + I3, ¢y + ¢j); L', where
L;, is formed by merging lists L] and L}, ordering the pairs in nondecreasing

order by cost, and combining pairs of equal cost by adding their capacities.

Series composition. For G, the flow list Ly = (I§,¢5); L. is constructed as

follows:

Step 1. (Compute the special pair.) If I§ = [5 then [ = [} (or [2) and
co = ¢y + ci. Otherwise assume [} > [2 (the remaining case is symmetric). Let

L ={u, c%) ., (uz, ct). Determine j and a such that 1 <j <k, 0< a <1,
1

and -1 = Z uf+au?. (If there are no such j and «, G has no feasible flow.)

i=1
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Set Ig =1} and ¢§ = ¢t + 3 + Zc ui 4+ aciu’. Replace L} by ((1 — a)u?,c?),

777

CT I I T ) ehmmatmg the first pair if & = 1.

Step 2. (Compute the remaining pairs.) Initialize I’ to be the empty list and
repeat the following step until either L] or L} (or both) is empty:

Add-insert. Remove the first pair (u c') from L} and the first pair (u?,c?)
from L}. Add the pair (min {u',u?}, ' +¢?) to the back of L. If u' > u?, add
the pair (u' — u?, c!) to the front of L}; if u' < u?, add the pair (u? — u',c?)
to the front of L.

Figure 4.5 illustrates the composition procedure.

This method is essentially the second algorithm of Bein, Brucker, and
Tamir [6], modified to handle lower bounds. Its correctness is easy to verify
by induction on m; we omit the details, which merely extend those in [6].

We conclude this section by recasting the parallel and series composition
steps so that they more closely match the implementation to be developed in
Section 4.3.

For pair z = (u, c) in flow list L, we use cap(z) and cost(x) to denote the

capacity, u, and cost, ¢, of z; we define the following value:

capsum(z) = Y {u|(u,c) is x or is a pair preceding z in L}.

Parallel composition. Computation of the special pair is the same as before.
Assume |L]| < |L;]; the other case is symmetric. Let L = (ug,¢}), ..., (u], c}).
Initially L, is the empty set. Repeat the following step for i from 1 through j:
Insert: 1f Ly = 0§, add pair (u},c}) to the back of L!. Otherwise find the
first element z in LY such that cost(z) > ¢}. Split L} at z: let A be the list
containing all elements preceding = and let L} contain all elements succeeding
z. If cost(z) = ¢!, set cap(z) = cap(z) + u}! and add z to the back of A.

Otherwise, add the element (u},c}) to the back of A. Concatenate A to the
back of L.
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(b)

Figure 4.5: Shown at the top is an example of the parallel composition pro-
cedure. The graphs shown are the simplest graphs corresponding to a given
flow list. A dashed edges represent a special pair (ly,cg). The remaining edges
represent normal capacity, cost pairs. At the bottom is an example of a series

composition.
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Series composition. Assume |L]| < |L}]; the other case is symmetric.
Step 1. Compute the special pair.
It Iy =0y, gt 8 =&} and.&§ =} 4 c}.

If I§ < I3, set I = 12, and initialize ¢ to ¢}, U to I}, and i to 1. Repeat the

delete step given below until U > I2:

177

Delete: Replace U by U +uj. If U < I2, replace ¢}, by ¢ +ulc}, and increment

2.

If U > 3, replace ¢ by ¢+ (I — U + ul)c! and u} by U — I2. Delete the first

¢ — 1 elements of L].

If I > I¢, perform the procedure given in the previous case, reversing the roles

of L and L.

Step 2. Let Ly = (u],¢}),...,(u},¢}). Repeat the following step for ¢ ranging

from 1 to j or until L} = §:
Add-insert: Find the first element z in L) such that capsum(z) > u}. Split
Ly at z into two lists, letting A be the list containing all pairs preceding z
and L} all the pairs succeeding z. If capsum(z) = u}, add z to the back of A.
Otherwise add the new pair (cap(z) — capsum(z) + u}, cost(z)) to the back of
A and the element (capsum(z)—u}, cost(z)) to the front of L!,. Increment the
cost of each element of A by ¢! and concatenate A to the back of L’. Replace
7 by 2 + 1.

To perform the above procedures we need a representation for the flow lists

that supports the following list operations:

concatenate(Ly, Ly) : return the list formed by concatenating L, to the back
of L1 .

split( Ly, z, A, B) : for z an element of L, construct lists A and B such that
A contains the portion of L; preceding z and B contains the portion of

L, succeeding z.
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add cost(Ll; ¢) : add cost ¢ to the costs of all items in L;.

search cost(Ly, ¢) : return the item = which is the leftmost item in L; with

cost at least ¢; also return cost(z).

search capsum(Ly, U) : return the item z which is the leftmost item in L,

such that capsum(z) is at least U; also return capsum(z),

where L; and L, are lists of capacity, cost pairs, ordered by non-decreasing
cost.

Pseudo-code implementing the composition procedures using the list oper-
ations given above is given in Appendix 4.1. As described in the next section,
the list operations can be implemented quickly by using finger search trees to

represent the lists.

4.3 Representation of Flow Lists as Finger Search Trees

A straightforward implementation of the algorithm of Section 4.2, using
linked lists to represent the flow lists, computes a flow list for an m-edge
series-parallel network in O(m?) time. We obtain an O(mlogm) time bound
by using finger search trees to represent the flow lists. The basis of our method
is the result of Brown and Tarjan [8] that two sorted lists represented as
binary trees can be merged fast, specifically in O(m,log (ﬂ‘ﬂ—flﬂz)) time, where
my and mg are the sizes of the two lists with m; < m,. The similarity
between merging and composition of flow lists is sufficiently high that the
merging algorithm can be extended to do both series and parallel composition
of flow lists. Representing the flow lists as finger search trees gives a cleaner
algorithm with the same running time. The result is an algorithm for flow
list computation (excluding preprocessing) that has a running time bound

satisfying the following recurrence:

T(m)= _ max {T(my) + T(mg) + O(m, log 2} (4.3)
mi+mo=m

Preprocessing can be done in linear time. We can show that this recurrence has

solution bounded by O(mlogm). Assuming that the constant of the last term
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in the recurrence is 1 changes the solution by a constant factor. For the induc-
tive hypothesis, assume for all values 1,...,m —1, that T(m) < emlogm + m
for some positive constant ¢. To complete the proof, it is sufficient to show
that:

emyq logmy + ¢(m — mq) log(m — my) + my log(—::—) < cmlogm
1

for all 1 < m; < m/2 for some positive constant c. Setting ¢ to 1 and
expanding the last term gives: (m — m;)log(m — m;) + m, logm, which is at
most m logm, as claimed.

Finger search trees are an extension of balanced binary trees in which nodes
are accessed via pointers to external nodes, called fingers, rather than through
the root. This has the advantage that access time is dependent on the distance
from the nearest finger rather than on the depth of the tree.

Used here is the second type of finger search tree described in Chapter 2.
Recall that such a structure is created from a red-black tree by reversing the
pointers along the left and right paths and adding pointers to the leftmost and
rightmost external nodes.

To represent a flow list with m normal pairs, create a finger tree and
associate each pair with an external node so that left-to-right order among
external nodes corresponds to increasing cost of the pairs. The special pair in
each list is stored separately. The keys associated with an external node (or
equivalently a pair) z are denoted by u, and ¢, and are the capacity and cost
of z, respectively.

In order to perform search cost, search capsum, and add cost operations,

we store some auxiliary data with each internal node. For each node y let

totcap(y) = X{u.|z is an external descendant of y} and
y

mazcost(y) = max{c,|z is an external descendant of y}.

Observe that if y is an external node, totcap(y) = u, and mazcost(y) = c,.
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null 1,1 3,-2 50 2-1 70 1,-1 60 1,-5 50 1,33 null

Figure 4.6: The finger tree representation of the flow list L, where L' is
(1,1),(3,2),(5,4),(2,6),(7,7),(1,9),(6,10),(1,12),(5,17),(2,21), (3, 30), (1, 33).

Shown with each non-path node are its totcap and Amaxcost values.

A node is called a path node if it is on the left or right path and is
called a non-path node otherwise. Auxiliary values are stored with non-path
nodes only. With each such node y store totcap(y) and the additional value
Amazcost(y) which is mazcost(y) — mazcost(p(y)) if p(y) is not a path node
and is mazcost(y) otherwise.

For any non-path node y, mazcost(y) is the sum of the Amazcost values
associated with all non-path ancestors of y. Shown in Figure 4.6 are a flow
list and its finger tree representation.

The list operations desired are a subset of the operations described in
Chapter 2; search cost and search capsum are equivalent to the two search
procedures described there. For a flow list with n elements, performing add
cost requires O(1+logn) time. Concatenating an n-item flow list with a longer
one requires O(1 + logn) time. If z is the d* element, then the time required
for splitting at = is O(1 + log(min{d,n — d})) and for accessing z via either
search is O(1 + log d).

This leads to an analysis of the time required to perform a series or parallel
composition which will complete the analysis of the running time of the entire

algorithm.
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Lemma 4.1 Let Ly and Ly be two flow lists with my and my pairs respéctively,
my < my. The time required for computing L, or L, is O(mylog (—uﬂz))

ma
Proof: Both composition procedures consist of at most m; iterations of a
general step. Consider the cost of the ** iteration. In both composition
procedures each iteration begins by accessing a pair in L}; let z; be the pair
found in the ¢** iteration and let d; be its position in L} at this stage. For
¢ > 1, d; is one greater than the distance between z;_; and z; in L} before
the procedure starts (note that all d;’s are at least 1). This implies that
o1 di < my + mg.

In the ™" iteration, some subset of the following operations is executed: ac-
cess z;, split L} at z;, add cost to A, the portion of L), preceding z;, concatenate
A to a larger list, and concatenate a single element to a large list. Note that
A has length d;. Each of these operations requires at most O(1 + log d;) time
if the flow lists are represented as described above. If we ignore the constant
factor, the time required to perform the parallel or series composition, exclud-
ing computation of the special pairs, is at most } ;- (1 +log d;). Concavity of
the log function implies: ;- Y7 log d; < log 42, which implies that time

my

required for composition is O(m, log #+£#2), as claimed. |

Theorem 4.1 Computing the flow list of an m-edge series-parallel graph re-

quires O(mlogm) time and O(m) space.

Proof: By the above lemma, the time required for computing the non-special
pairs satisfies the Recurrence 4.3 given at the beginning of this section, which
has solution bounded above by O(mlogm). |
The time required for computation of the special pairs must be considered
separately. For parallel composition the special pair is computed in constant
time. For series composition the time required is proportional to the number
of pairs deleted. Although this value can be large for a particular composition
step, we can show that the number of pairs deleted overall is at most m.
Consider an m-edge graph G with flow list L. The following fact is the key.
If L is formed by composing lists Ly and Ls, then the size of L is at most the

62



sum of the sizes of L; and L, minus the number of pairs deleted during the
composition of L; and L,. This implies that the length of a flow list for an
m-edge graph, which is non-negative, is at most m. We can show by induction
that the size of L is at most m minus the number of pairs deleted during the
entire flow-list computation, which implies that the number of pairs deleted
during computation of the special pairs is at most m.

The algorithm can be implemented in O(m) space. Constructing and stor-
ing the decomposition tree can be done in O(m) space. Recall that the decom-
position tree is processed bottom-up. The general step consists of processing
node = by performing a series or parallel composition on the flow lists L; and
L, associated with the children of z to compute the flow list L associated with
x. If Ly and L, are then discarded, then the space required is O(m). We can
prove this by induction, using the fact that |L| < |Li| + [Lo]. |

4.4 Finding the Flow Assignment

From the flow list and a valid flow value k, we can compute in O(logm)
time the cost of the min-cost flow of value k as follows. Given flow list
(lo, ¢0); (w1, €1), (u2,€2)y ..., (w,c), if 1 € 7 < land 0 < o < 1 are such
that lo + Zf;ll u; + au; = k then the cost of the min-cost flow of capacity k is
co+ Y00 wie; + aujc;. In this section we show how to compute the min-cost
flow assignment.

The algorithm given in [6] computes the flow assignment in O(nm-+m logm)
time and O(m) space. Any algorithm that uses flow lists will require at least
Q(mlogm) time and any algorithm will require Q(m) space. The algorithms
presented here do not simultaneously achieve these bounds. We present a
simple algorithm that runs in O(mlogm) time and requires O(m logm) space
and two more complicated algorithms, each of which is off by a factor of
O(loglogm). The first requires O(mlogmloglogm) time and O(m) space
and the second requires O(mlogm) time and O(m loglogm) space.

This section contains 4 subsections. Section 4.4.1 contains the basic idea

used in computing the flow assignment from the flow lists. Section 4.4.2 con-
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tains another idea that leads to two simple, more efficient algorithms. Finally,
in Sections 4.4.3 and 4.4.4, we present the two algorithms which are within a

factor of O(loglogm) of optimal.

4.4.1 Distributing Flow

The algorithms presented here all rely on the following observation. Let G
be a series-parallel network formed by composing series-parallel networks Gy
and (5. Given flow value k, flow list L for G, and the flow list for one of (4
or Gy, say Ly, we can compute flow values k; and %k, such that some min-cost
flow of value k on G has values k; and ky on Gy and Gy, respectively.

If G = G, it is clear that ky and ky must both be k since all flow through
G must pass through both Gy and G5. The other case, G = G,, is more
complicated. In any valid flow, k; and k, must be valid flow values for Gy and
Gy respectively and must sum to k. Among the pairs of values satisfying these
contraints we desire the one with minimum cost. This can be computed from
the flow lists.

Recall that the smallest graph represented by a particular flow list consists
of a source and sink with one edge for each pair of the flow list. It is simpler to
consider the problem of distributing flow in the parallel case on these graphs.
Let G', G} and G be the smallest graphs whose flow lists are L, L, and Lo,
respectively. First determine the cost of the min-cost flow with capacity k and
the values j and « as defined above. A min-cost flow having capacity k will
saturate the first 7 — 1 edges of G’ and thus also saturates the corresponding
edges of G} and G which are all the edges with cost strictly less than ¢;. The
remaining ou; units of flow go through the edge or edges in the constituent
graphs with cost equal to ¢;.

We call this procedure the distribution procedure. It is described more

formally below.

Distribution procedure: If z represents a series composition, then k; = k, = k.

If 2 represents a parallel composition, execute the following procedure. Let
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L = (10,17); (1,1)(2,4)(6, 5)(2, 6)(3,9)
L= (57 8); (1! 1)(3v 5)(27 6)
Ly = (579); (274)(37 5)(379)

k=20

j=4a=1/2

i =3
ki=5+14+34+min{1/2%2,2} =10
ko =10

Figure 4.7: An example execution of the distribution procedure.

L = (I, co); (u1, ¢1), (ug,€2), .. -, (u,¢) be the flow list associated with G and

Ly = (I3, cp); (uy, e1), (ud, c3), - - ., (ul,ct) be the flow list associated with Gj.

The following procedure gives k; and ky. Determine 1 < j<land0<a <1

such that k = [y + Z‘f;ll u; + au;. Determine the largest index j’ such that
j'—1

1 . o SH NI 1 . | 1 : L |
¢jr < ¢j. Then if ¢jy = ¢; and uj < uj, set kv = [+ 2! v + min {au;, uji}.

Otherwise set k; = I} + S_, ul. In either case set ky = k — k.

An execution of this procedure is illustrated in Figure 4.7.

Executing the distribution procedure on a list with m elements requires
O(logm) time if the list is represented as described in Section 4.3.

The flow assignment can be computed by processing the decomposition
tree top-down, using this procedure to compute the flow list associated with
each node. More specifically, first run the flow list algorithm and store each
flow list with its corresponding node in the decomposition tree. Then process
the tree top-down, performing the distribution procedure at each node. The
flow values computed for the leaves give the flow function. An example is
shown in Figure 4.8.

The flow lists can be computed in O(mlogm) time if no intermediate flow

lists are stored. However, storing all flow lists may require O(m?) time and
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(12,3):5

P (4,2)(3,4)(10,8)(7,10):18

,2)(3,4)(5,8)(7,10):13
(5,8):5

(4,1)(8,3)(9,5):13

Pw(4,1)(7.5):4

14,2)(4,7):5 Pg(8,2)(2,4):9

(12,3):5 (10,119 (7,5):0 (4,1):4

(142):5  (4.7:0 (24):1 (8,2):8

Figure 4.8: A series-parallel graph and its decomposition tree, without lower
bounds on the edge capacities. Shown with each node of the tree are its flow
list and the computed flow value when 18 units of flow through the graph
are desired. Shown with each edge of the network are its capacity, cost, and

computed flow value.
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space. The running time of the distribution algorithm satisfies the following

recurrence:

T(m)= max  {T(m)+T(m)+O(ogm)}  (44)
Tmitmy=m

This has solution bounded above by O(mlogm). The space required for a
particular decomposition tree is bounded above by the sum of the number of
external descendants of each node. For an m-node decomposition tree this
sum is ©(m?). The worst case occurs when 7' is a chain of length m — 1. Thus

the flow assignment can be computed in O(m?) time and O(m?) space.

4.4.2 Uncomposition

The space can be reduced to O(mlogm) by observing that we do not need
to store every flow list. We can get away with storing the flow list associated
with only one of each pair of siblings in the tree if the flow list associated with
the other member of each pair can be recomputed. Performing the distribution
procedure at node x requires only the flow list for z, the flow list of one child
of z, and the flow value for z. From this plus a small amount of auxiliary
information, we can compute the flow list for the other child and can then
recursively process the children. This procedure is the inverse of composition
and is called uncomposition. Let L be the flow list associated with a node z
and let I, and L, be the flow lists associated with its children. Assume that
L and L, are known. We will show how to compute L.

For the parallel case uncomposition is easy. The special pair, ([2,c3) is
(lo— 13, co— ¢}); LY is computed by unmerging L' and L} with respect to cost.
In the series case the computation is more complicated. If £} < I, then Bl
and ¢ is found by performing a calculation very similar to the special pair
calculation used in composing. If I} = I;, then [? cannot be determined. It is
in this case that auxiliary information is needed. In order to uncompose, we
store the special pair of Ly and the pairs of L} deleted in composing Ly and L,
to compute L. We call this list L§**. Note that it is already computed during
the flow list algorithm. After determining the special pair, LY is computed by
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unmerging with respect to capacity sums and subtracting costs (the inverse of
the series composition procedure).

If L has size m and L; has size m; then uncomposing L and L, requires
O(m log(m/m,)) time. Below we give a detailed description of the uncompo-

sition procedures.

Parallel uncomposition. The special pair of Ly is (lp — I3, co — ¢}). Form L} as

follows. Let L} = (uj,cq),...,(uj,c}). Initially L} is the empty list. Repeat

the following step for ¢ from 1 through j:

Delete: Find the element z in L' such that cost(z) = ¢!. Split L’ at z: let A
be the list containing all elements preceding z and let L’ contain all elements

succeeding z. If cap(z) > u}, set cap(z) = cap(z) — u} and add z to the back
of A. Join A to the back of L.

Series uncomposition.

Step 1. Compute the special pair. Initialize L} to the empty set.

If Iy > I3, set 2 = I and initialize j to 1, U to [}, and ¢ to ¢y — c}.

Repeat the following step until U > Io:

Delete. Replace U by U 4+ uj. If U < Iy replace ¢ by ¢ — ujc}, and

increment j.

If U > ly, replace (uj,c}) by the pairs (uj — U + lp,c}) and (U — lo, c}). Set
¢y = ¢ — (uj — U + lp)c} and delete the first i elements of L}.

K Iy = B, seb L; to LY,

Step 2. Let L} = (uj,c}),..., (u},ct). Repeat the following step for 7 ranging

3%
from 1 to j:

Subtract-delete: Find the first element z in L’ such that capsum(z) = u}. Split
L" at x into two lists, letting A be the list containing all pairs preceding = and
L' all the pairs succeeding z. Add z to the back of A. Subtract ¢; from the
costs of all pairs in A. Let v be the last pair in L),. Let y be the first element of
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A. If cost(y) = cost(v), delete y from A and replace cap(v) by cap(v)+ cap(y).
Join A to the back of L5.

Note that in the series case the unknown list may not be completely re-
constructed. If the total capacity of L, was greater than the total capacity of
L, the extra capacity can never be used in the composite graph represented
by flow list L and the portion of L) corresponding to this capacity is lost.

These procedures can be implementeﬂ using the list operations given in
Section 4.2. The analysis of the running time is almost identical to the analysis
of the composition algorithm. Uncomposing lists L and L; of sizes m and m,
requires O(mq log(m/m,)) time.

This suggests an algorithm for finding the flow assignment that requires
less space. For each decomposition tree node z we define the size of x, denoted
s(z), to be the number of external descendants of z. For each pair of siblings
w and v in the decomposition tree, we call one small and one large depending
on the sizes of the nodes. If the nodes have different sizes then the node with
smaller size is called small. Otherwise one node is arbitrarily chosen to be

designated small and the other large.

Algorithm 2 Let z be a decomposition tree node with small child u and large
child v. Let L, Ly, and Ly be the flow lists for z, u, and v respectively and

L3 the auziliary list for v.

1. Run the flow list algorithm on T, storing the auziliary lists of the large

nodes and the flow lists associated with the small nodes.

2. Process T top-down, processing node x as follows. At node z, given its
fow value k: distribute to compute ky and ko, the flow values for u and

v, uncompose to compute Lo, and discard L.

3. For each edge e, the flow value f(e) is the flow value associated with the

leaf representing e in T.

Lemma 4.2 Algorithm 2 runs in O(mlogm) space and time on an m-edge

series-parallel network.
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Proof: Storage is required for the flow lists associated with small nodes and
also for the auxiliary lists. The space required for storing the flow lists of the
small nodes satisfies the following recurrence:

S(m) = max {S(m1) + S(mz) + O(m4)} (4.5)

1<m <my <m—1
mq+mo=m

This has solution bounded by O(mlog m). The auxiliary lists contain the pairs
deleted in computation of the special pairs. We showed in Theorem 4.1 that
these pairs have total size at most O(m).

Space is also required to hold the flow lists of the nodes on the frontier of
the computation - that is, nodes that have been processed but whose children
have not. The nodes in this set are unrelated (i.e., no node in this set is an
ancestor of another). This implies that the sum of the sizes of the associated
flow lists is at most O(m).

Step 1 requires executing the flow list algorithm, which runs in O(m log m)
time. Distributing flow in Step 2 requires O(m log m) time (as shown in Section
4.4.1). The time required for uncomposition satisfies recurrence (4.1). This
implies that the running time is O(mlogm). |

To conclude this section we present an alternative algorithm for computing
the flow assignment, one that requires only O(m) space. Again we process the
decomposition tree top-down, computing the flow list associated with node x
by running the flow list algorithm on the graph represented by z. This requires
O(m) space since at each stage only the flow lists of a set of unrelated nodes
are stored, as above, but is very slow. Use of the uncomposition procedures to
compute the flow lists of the large nodes reduces the running time a bit. This

algorithm is described in detail below.

Algorithm 3 Given as input are the decomposition tree T for a series-parallel
network and the desired flow value. Let z be a decomposition tree node with
small child v and large child v. Let L, Ly, and Ly be the flow lists associated

with x, u, and v, respectively.
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1. Run the flow list algorithm on T, storing the auziliary lists of the large

nodes.

2. Process T top-down. For node x which has been processed but whose
children have not, process the children of x as follows: run the flow list
algorithm on the graph represented by u to compute L,, uncompose to

compute Lo, and distribute to compute the flow values for u and v.
Lemma 4.3 Algorithm 3 runs in O(m) space and O(mlog®m) time.

Proof: The auxiliary lists are stored during the entire algorithm and take
up only O(m) space. Temporarily stored during each stage are the flow lists
associated with the nodes that have been processed but whose children have
not. These nodes are all unrelated; thus the sum of the sizes of their flow lists
is at most O(m). This implies that Algorithm 2 requires O(m) space.

The running time is harder to analyze. Computation of the auxiliary lists,
distribution and uncomposition altogether require O(mlogm) time. The calls
to the flow list algorithm cause the composition algorithm to be executed a
variable number of times per node. The number of times we perform the
composition procedure at a node z is equal to the number of small ancestors
of z. For each node z let /(z) denote the number of small ancestors of z. This
value can be defined recursively as follows: I(z) = 1 if z is the root of T' and
otherwise, {(x) is (p(z)) if z is large and I(p(z)) + 1 if = is small. We call
I[(z) the label of z. The time required for composition can be expressed as a
function of the number of leaves of the decomposition tree and the label {(z)

associated with the root as follows:

F(m,i) = ISml?ma;%m_l {F(m1, i+ 1) + F(msz,1) + O(im, log (m—l))}

We will show by induction that F(m,i) < 2mlog*m + imlogm.
Assuming that the constant factor of the last term is 1 only affects the
constant of the result. It is sufficient to show for all values of my and m,

summing to m, 1 < my; < m/2, that:

2m; log® mq + (i + 1)y log mq + 2mg log® my + imy log my + tmy log(wnl)
mq
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is less than or equal to 2mlog® m + imlog m. It suffices to show that
2m, log2 my + mq log my + 2my log? my < 2mlog®m

and that

i(mq logm + m log mg). < imlogm.

For the first claim, the left hand side is less than or equal to
2m; log?(m/2) + my log(m/2) + 2mg log? m,
which is at most
2m log® m — 3my logm 4+ my < 2mlog® m.

The second claim is obvious.

The running time of our algorithm is bounded above by F(m,1), which is

O(mlog’m). 1
4.4.3 An Optimal Time, Almost Optimal Space Algorithm

Finally we present two algorithms which are off by a factor of O(log log m)
from optimal, one in space and one in time. The improvement is achieved
by splitting the decomposition tree into pieces and processing the pieces sep-
arately. We will first describe the basic ideas which are common to both
algorithms. The first algorithm requires O(mlogm) time and O(m loglogm)
space and the second requires in O(m logmloglogm) time and O(m) space.

First we need a few definitions. We classify each node of the tree as a
bottom or a top node according to its size, which is the number of leaves in
its subtree. Node z is a top node if s(z) > m/logm and is a bottom node
otherwise. The set of nodes z such that z is a bottom node and its parent is
a top node are called border nodes.

The set of top nodes is a subtree of T" which has the root of T' as its root.
We use T’ to denote this subtree and refer to it as the top subtree of T'. The

set of border nodes is made up of the children of the leaves of 7" plus all
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Figure 4.9: A decomposition tree with m = 16 leaves. Nodes in the top tree

are black and the border nodes are gray. The darker edges are the edges in T".

nodes that are not contained in 7" and whose siblings are. The bottom nodes
are all contained in the subtrees rooted at the border nodes. We will call
these the border subtrees. The border subtrees contain all the leaves of the
decomposition tree. This implies that the sum of the sizes of the border nodes
is m. Figure 4.9 illustrates these definitions.

In both algorithms the tree is processed in three stages. First compute the
flow lists for the border nodes by processing the small subtrees bottom-up;
second, process 7" to compute the flow values of the border nodes; and third,
process the small subtrees to compute the flow values of the leaves.

The first and third stages can be executed in O(m logm) time on an m-edge
network. The two algorithms presented here differ only in implementation of

the second stage. We will first describe and analyze the first and third stages.

Stage 1: For each border node x; run the flow list algorithm, storing no

intermediate flow lists. Store the flow list for each z;.

Lemma 4.4 Performing Stage 1 on an m-edge network requires O(mlogm)

time and O(m) space.

Proof: Let s; denote the size of z;. The time required for computing the flow

list of an m-edge graph is O(mlogm). This implies that the time required for
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computing the flow list for z; is O(s; log s;) since the graph associated with z;
has s; edges. The total time required is proportional to }; s;log s;, which is
O(mlogm). The space required is the sum of the s;’s which is O(m). |

In the third stage we are given the flow lists and flow values for each
border node and wish to compute the flow values at the leaves. To do this,

use Algorithm 2 given in the previous section on each border node z;.

Stage 3 For each border node x;, process the subtree T; rooted at x; by using

Algorithm 2. After processing T; delete all associated flow lists.

Lemma 4.5 Performing stage 3 on an m-edge network requires O(mlogm)

time and O(m) space.

Proof: We showed above that Algorithm 2 requires O(m log m) time and space
on an m-edge network. Let z; be the i** border node, let T} be its subtree,
and let s; be its size. The time required for processing T; is O(s;logs;) and
the total time is proportional to }; s; log s; which is O(mlogm).

Again, O(m) space is required for storage of the flow lists of the z;’s. During
the processing of each ;, O(s;log s;) space is required for storing the flow lists
of the small nodes in its subtree. This implies that the space required for the
entire stage is O(m) plus the maximum over all 7 of O(s; log s;). Since each z;
is a bottom node, s; < m/logm, and thus s;log s; < (m/ log m) log(m/ log m)
which is O(m). This implies that the storage required is O(m). |

We now describe how to perform stage 2. In stage 2 we are given a de-
composition tree T" along with the flow lists for the border nodes and wish to
compute the flow values for the border nodes.

This can be achieved by applying either of the two flow assignment algo-
rithms given in the previous section to the top tree T’. As described in the
previous section, Algorithms 2 and 3 take as input a full binary tree plus the
flow lists associated with the leaves. These flow lists consist of a single special
pair and one or zero regular pairs.

To process T" these algorithms must accept a slightly more general type

of input. The input tree is still a full binary tree but the flow lists associated
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with the leaves can be long; if 7" is the top tree for an m-leaf decomposition
tree T', then the sum of the sizes of the flow lists of the leaves is at most m.
We will call these types of trees truncated decomposition trees.

Both the algorithms given in the previous section can be applied to trun-
cated decomposition trees without any modification.

To process T" in the second stage the first algorithm we will present uses Al-
gorithm 2, in which the flow is computed by preprocessing the tree to compute
and store the smaller flow lists and auxiliary lists. This requires O(m logm)

time and uses O(mloglogm) space.

Algorithm 4

1. Ezecute stage 1 as described above.
2. Apply Algorithm 2 to T'.

3. FErecute stage 3 as described above.

Lemma 4.6 Algorithm 4 runs in ©(mlogm) time and requires ©(m log log m)

space.

Proof: We have already shown that executing stages 1 and 3 requires O(m log m)
time and O(m) space. We will show that the time and space bounds for the
second stage are as stated.

The running time is easy to analyze. On an m-edge network, Algorithm 2
requires O(mlogm) time. For this stage we execute this algorithm only on
the top subtree of 7'. Clearly the time required for this is bounded above by
O(mlogm). There exist series-parallel graphs for which the decomposition
tree T' is a chain of length equal to the number of edges. That is, T' consists
of a path of length m — 1 with m external nodes. In this case, T" consists of a

chain of length m — m/logm. For appropriate assignment of edge capacities

og m

and costs, using Algorithm 2 to process T" will require at least Ez’;l m_log: =

Q(mlogm) time.
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Executing stage two requires linear space for storing the flow lists of the
border nodes and for temporary storage of flow lists used by Algorithm 1.
Storage is also required for the flow lists associated with the small top nodes.

Let T' be an m-leaf decomposition tree with top tree 7”. Observe that the
sibling of a small node in 7" must also be contained in 7". Thus the storage

required for storing the small flow lists in stage 2 can be expressed as :

> {min{s(z), s(sib(z))}|z, sib(z) € T'}, (4.6)

where sib(z) denotes the sibling of z.
It is easier to bound this quantity by considering a more general problem

first. For T" a full binary tree with m leaves and k a non-negative integer, we

define:
S(T, k) =Y {min{s(z), s(sib(z))}|s(z) > k and s(sib(z)) > k}

and define f(m, k) to be the maximum S(T', k) value taken over all full trees T
having m leaves. Thus the expression given in equation 4.6 is bounded above
by f(m,m/logm). We will show that this is O(m loglog m) by showing that
f(m, k) is O(mlog(m/k)) for m > k.

Consider a particular full binary tree T' with m leaves. Let 7} and T,
denote the two subtrees of T. Let m; be the size of T} and ms the size of
T3; assume my < my. Clearly, S(7,k) is 0 if m < k. Otherwise, S(T, k) is
S(T1, k) + S(Ty, k) + my if mq > k and is S(Ty, k) if m; < k. Note also that
S(T,k) < f(m,k).

This implies that f(m, k) can be expressed recursively as follows:

f(mlyk)+f(m27k)+ml if k S mq

flm, k) = ,.max f(ma, k) my<k<m
ol
- 0 m <k

It is easy to show by induction that f(m, k) < max{mlog(m/k),0}. This
is clear for m < k. Now assume that m > k. It is necessary to show for all m,

and my such that m; + my = m and m; < ma, that:

my log(mq/k) + malog(ma/k) + my < mlog(m/k) if my > k and

76



mq log(may/k) < mlog(m/k) if my < k.

The latter is obvious.

The former is true if :
mq logmy + mlogmsy + m; < mlogm and

mlog k < mylog k + mylog k.

The first equation given above is easy to show and the second is obvious.
This completes the proof that f(m,k) < max{mlog(m/k),0}, which implies
that the storage required for stage 2 is bounded by O(mlog(m/(m/logm))),
which is O(mloglogm).

This is also a lower bound on the space required. Consider a complete
binary tree T' having m leaves where m is a power of 2. The top tree, T’
consists of the first loglogm levels of T' and is also a complete binary tree.
The 7" level contains 2¢ nodes, half of which are small. Since each of these
nodes has size m/2¢, the sum of the sizes of the small nodes at any level i,
¢ < loglogm, is O(m). Thus the sum of the sizes of the small nodes in 7", a

lower bound for the storage required for stage 2, is mloglogm. |

4.4.4 An Optimal Space, Almost Optimal Time Algorithm

The final algorithm we present is also sub-optimal by a factor of loglog m.
The running time is O(mlogmloglogm) and the space required is O(m).
This algorithm has the same first and third stages as Algorithm 4, but has a
different second stage. Now to process the top tree T”, use Algorithm 3, the
assignment algorithm in which no intermediate flow lists are stored. Note that

Algorithm 3 is again applied only to the truncated tree T".

Algorithm 5

1. Ezecute stage 1 as described above.

2. Apply Algorithm 3 to T".
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3. Frecute stage 3 as described above.

Lemma 4.7 Algorithm 5 runs in ©(mlog m loglogm) time and requires ©(m)

space.

Proof: We have already shown that steps one and three require O(mlogm)
time and O(m) space. We showed in Section 4.4.2 that the space required for
executing Algorithm 3 is ©(m). The upper bound of the running time required
for the second stage can be analyzed as follows.

Recall that Algorithm 3 works by processing the decomposition tree top
down. To process node z having flow list L and flow value k, run the flow list
algorithm on the small child of = to get L;, uncompose to get L, distribute
to get the flow values for the children, and recurse on the children. Note that
all operations are executed only on T'; nodes not in 7" are never encountered
during this stage.

Distribution and uncomposition on 7" can be done in O(m log m) time. Re-
call from the proof of Lemma 4.3 that for node z the value {(z) gives the num-
ber of times the composition procedure is executed at z. If u is the small child
of z, composing at x requires time proportional to s(u) log((s(z) + s(u))/s(u)).
This implies that for a particular decomposition tree T' with top tree 7”, the

time required for executing Algorithm 3 on 7" is on the order of

)

The running time of Stage 2 is the maximum such value taken over all decom-

S(T)= > I(z) (s(u)log

zeT!

position trees having m leaves. We will show that this is ©(m log m log log m).

First we show that for any decomposition tree T with m leaves, S(T) =
O(mlogmloglogm). Let T be a tree with m leaves and top tree 7”. From the
definition of the node labels, it is easy to see that for all z, I(z) > k implies
that s(z) < m/2*. This implies that all nodes z in T” have labels less than or

equal to loglogm, since all such nodes have size at least m/logm.
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Figure 4.10: The tree used to prove the lower bound on the running time of
Algorithm 5.

This implies that S(7') is bounded above by loglogm times the following

sum: s(x)
> s(u)log m Tk

zeT!

But this is exactly the cost of running the flow list algorithm on T'. By
Theorem 4.1 this sum is bounded above by O(mlog m) which implies S(7T') =
O(mlogmloglog m).

This bound is tight. We will show that for all m there exists an m-leaf
tree T such that S(T) = Q(mlogmloglogm). Such a tree is constructed as
follows.

Let Ty be a complete binary tree having loglogm levels. Hang from each
leaf of Ty a chain of length (2m/logm) — 1 so that the root of the chain is
a leaf of Tp. Each node of the chain (except for the last) has 2 children; one
is on the chain and the other is an external node. The leaf of the chain has
two external nodes as children. Figure 4.10 gives an example. The tree T so

formed has m leaves.
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The set of top nodes, T”, contains Ty plus the first m/ logm internal nodes
of each chain (see Figure 4.10). The cost of performing the composition pro-

cedure on the chain nodes alone, denoted by S'(T'), is given by:

SHT) = ) (s(u) log S(”’)) I(z).

z a large chain node S(’U.)

Clearly, S'(T) < S(T).
Let z be a leaf of Ty. Each large descendant of z has the label I(2), the
same label as z. In addition, the small child of each large chain node has size

1. Thus the value S’(T') can be rewritten as:

2m. [ logm
oo lz) Y logi,
z a leaf of Tp i=m/logm

which is at least em Y _{I(z)|z is a leaf of Tp} for any constant 0 < ¢ < 1. The

corollary below gives a lower bound for this sum.

Claim 1 Let T be a complete binary tree with at least d levels. Associated
with each node = of T is an integer label such that the label of the root is 1 and
the children of a node with label i have labels i and i + 1. Then at level d the

number of nodes with label 1 is (f:ll)

Proof: We will show this by induction. Let n! be the number of nodes with
label 7 at level I. At level 1 the root is the only node and n! = 1. At any
level [, each node with label i has two children, one with label i and one with

label i + 1. Thus for i > 1, nl = nl™! 4+ n!Zl. If the claim is true for levels
1,2,...,d -1, then nf = (127) + (122) = ().

Corollary 4.2 The sum of labels of nodes at level d is 24~%(d + 1).

By Claim 1, the sum is ¥%_, (‘::11)7,, which is 2¢72(d + 1).
This implies that the sum of the labels of nodes at level log log m is at least
(1/4)logmloglogm and hence that S/(T) is Q(m logm loglog m), completing

the proof. |1

30



4.5 Remarks

There are several open problems arising from this work. We would like
to find an algorithm for finding the flow function that runs in O(mlogm)
time and uses O(m) space. The algorithms presented here all require a factor
of O(loglogm) more in either space or time. It is not known whether this
algorithm is optimal with respect to time alone. Finding a faster algorithm or
proving that O(mlogm) time is required is a second open problem. A final

problem is that of finding a minimum-cost flow in parallel.

Appendix 4.1

Given below are the procedures for performing parallel and series composi-
tion on the lists Ly = (ly,cp); Ly and Ly, = (i%,¢2); L}, where L) is
2

(uisci)s---, (), ¢}) and Lf is (u?, d),..., (ud,c}).

Parallel Composition

BB+l d=d+d
fori=1,2,...,5
x =search cost(L}, c})
split( Ly, z, A, L})
if ecost(z) = c}
cap(z) = cap(z) + u}
replace A by concatenate( A, z)
else replace A by concatenate(A, create list(u}, cl))

replace L, by concatenate(L;, A).

Series Composition

i =12
lo=1Iyco=cy+¢h
else
i1 < 12
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If e 8
¢ = ey =0
let (u',c') be the first pair of L]
while (U < 12) and (L} # 0)
U=U+u
o< e
g =cg+ ule

delete the first pair of L}

1

let (u',c') be the new first pair
if Li=0and U < 2
exit; /* no valid flow exists */
if U il
lett=u' +012-U
¢ = ¢+ hct
replace u' by u' — 4
else /* perform the same procedure as above,
reversing the roles of L] and L} */
g =1
while ¢ < j and L, # 0
& = search capsum (L}, u})
split( LYy, =, A, L})
if capsum(z) = u}, replace A by concatenate(A, )
else
let I = create list((cap(z) — capsum(z) + u}, cost(z))
replace A by concatenate (A, L)
let I = create list((capsum(z) — ul, cost(z)))
replace L} by concatenate(L, L)
add cost( A, c})
Replace L) by concatenate(L,, A)
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5. Linear Algorithms for Analysis of Minimum Span-
ning and Shortest Path Trees of Planar Graphs

5.1 Introduction

We give an algorithm which solves several related graph problems. The
algorithm runs in linear time and space when the input graph is planar. It
can be used to analyze the sensitivity of a minimum spanning tree to changes
in edge costs, to find its replacement edges, and to verify its minimality. It
can also be used to analyze the sensitivity of a single-source shortest path tree
to changes in edge costs, and to analyze the sensitivity of a minimum cost
network flow. The algorithm is simple and practical. It uses the properties
of a planar embedding, combined with a heap-ordered queue data structure.

Let G = (V,E) be a planar graph, either directed or undirected, with
n vertices and m = O(n) edges. Each edge e € E has a real-valued cost
cost(e). This cost is allowed to be negative. A minimum spanning tree of a
connected, undirected planar graph G is a spanning tree of minimum total
edge cost. If G is directed and r is a vertex from which all other vertices are
reachable, then a shortest path tree from r is a spanning tree that contains
a minimum-cost path from r to every other vertex.

Sensitivity analysis measures the robustness of a minimum spanning tree
or shortest path tree by determining how much the cost of each individual
edge can be perturbed before the tree is no longer minimal [42,50].

We consider the following problems:

¢ Finding the replacement edges of a minimum spanning tree, and veri-

fying its minimality.
e Performing sensitivity analysis of a minimum spanning tree.
o Performing sensitivity analysis of a shortest path tree.

e Performing sensitivity analysis of a minimum-cost network flow.
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Let e be some edge in a minimum spanning tree of G. The replacement
edge for e is the non-tree edge that replaces e in the minimum spanning tree
of G' = (V, E — {e}). Finding replacement edges is an important component
of an algorithm for determining the k smallest spanning trees of a graph
[19,22].

Sensitivity analysis of shortest paths and network flows has been studied
by Shier and Witzgall [42] and Gusfield [30]. The fastest known algorithms
for all these problems are due to Tarjan [50,46] and run in time and space
O(ma(m,n)), where « is the functional inverse of Ackermann’s function.
Gabow [23] also achieves these bounds.

Here we show that in the special case of planar graphs, these problems
can be solved in O(n) time and space.

Our result also remedies a lacuna in Fredrickson’s proof of Theorem 9,
reference [22], which is incorrect without an O(n) algorithm for finding re-
placement edges in a planar graph. |

The above problems can all be solved by an algorithm for what we call the
critical edge problem. We are given an undirected planar graph G containing
a spanning tree T', rooted at vertex r. We allow G to have multiple edges
and loop edges, but for convenience we will continue to call G a graph, rather
than a multigraph or a pseudograph. For each vertex v we wish to determine
the minimum-cost non-tree edge with exactly one endpoint a descendant
of v. We call this edge the critical edge for vertex v. In this chapter we
first give a critical edge algorithm and then describe its application to the
problems listed above. The results of this chapter are joint work with Jeffery
Westbrook.

5.2 Preliminaries

We assume we are given an embedding of G = (V, E) in the plane in
which r, the root of T, is on the outer face. Such an embedding always
exists (see Harary [31], p. 105) and can be generated in O(n) time using the
algorithms of Hopcroft and Tarjan [33] or Booth and Leuker [7] (see Chiba et
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al. [12]). The embedding of G specifies the order in which edges incident to
v € V are encountered as we walk around v in the counterclockwise direction
(this ordering defines the embedding). We assume a standard representation
of the embedding in which the counterclockwise successor of an edge around
a vertex can be found in constant time.

Since a loop edge cannot be a critical edge, we assume that any loops in
G have been removed in an O(n) preprocessing stage. If u and v are vertices,
{u,v} denotes the undirected edge with endpoints u and v, (u,v) denotes a
directed edge from v to v and p(v) denotes the parent of v in T.

From the embedding of G we construct for each vertex, v, a linear edge
list {eg,e1,...,eqs} where d+ 1 is the degree of v. Edge ¢ is the edge from v
to its parent in 7" and the remaining edges ey,...,eq are listed in the order
in which they are encountered by walking counterclockwise around v from
eo. At the tree root r, ey is the edge such that ey and its counter-clockwise
predecessor eg both lie on the outer face. Note that the edge list contains
both tree and non-tree edges. We assign preorder and postorder numbers
to the vertices of T according to a topological depth-first search. This is a
depth-first search [48] in which each child of a vertex is visited according to
the order in which it appears in the edge list. Figure 5.1 gives an example.
Note that no edges can cross above r since, in our embedding, it lies on the
outer face.

We denote the preorder and postorder numbers of v by pre(v) and post(v),
respectively. It is well-known (see e.g. [49]) that for any pair v and v of
vertices, v is an ancestor of u if and only if pre(v) < pre(u) and post(u) <
post(v). '

Let f be a non-tree edge {u,v}. We denote by nca( f) the nearest common
ancestor of v and v. We use P(v, f) to denote the tree path from nca(f)
to v. Edge f is a potential critical edge for every vertex on the tree path
connecting u and v except for their nearest common ancestor. The cycle
formed by f taken together with the tree path between u and v separates

the plane into two regions, one finite and one infinite. We call the finite
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Figure 5.1: A planar graph with spanning tree rooted at a.
Solid edges are tree edges. Vertices have been labeled by the
preorder and postorder numbers given by a topological depth-
first search. Edge {e, ¢} is a right edge of e and a left edge of
g. Edge {g,b} is right edge of ¢ and a dead edge of b.
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region interior and denote it by R(f). Given a tree edge e = {v,p(v)} in the
boundary cycle of R(f), we say R(f) is a left or right region of e if R(f) lies
to the left or right, respectively, of e as we look along e from v to p(v).

The edges incident to a given vertex v are partitioned into three classes.
Edge f is called a dead edge of v if v = nea(f) or if f = {v,p(v)}. Note that
every tree edge is a dead edge of some vertex. If f is not a dead edge of v, it
is called a left edge of v if R(f) is a left region of the tree edge {v,p(v)}, and
a right edge of v otherwise. Thus a non-tree edge f is a left edge of one of its
endpoints and is a right edge of the othef, unless the endpoints are related,
in which case f is a dead edge of the ancestor endpoint and a left or right
edge of the descendent endpoint. Note that if f is a left edge of v, then R(f)
is a left region of all vertices on P(v, f). The analogous property holds for
right edges.

We can determine whether an edge f = {u,v} is a dead, left, or right
edge of v by using the topological preorder and postorder numbering in the
following manner. If v is an ancestor of u or if u = p(v), then f is dead. If
u and v are unrelated then f is a left edge if pre(u) < pre(v) and a right
edge otherwise. If u is an ancestor (but not parent) of v, then let e = {u,z}
be the first tree edge following f in the edge list of u. If there is no such
tree edge, or if pre(xz) > pre(v), then f is a right edge of v; otherwise f is a
left edge. As mentioned above, ancestor queries can be answered in constant

time using the preorder and postorder numbering.

Lemma 5.1 Let f be a left edge of u and let g be a non-tree edge that pre-
cedes fin the edge list of u, i.e., is encountered before the tree edge {u,p(u)}
in clockwise order around u from f. Then g 1s also a left edge, and nca(f)

is a (not necessarily proper) ancestor of nca(g).

Proof. Since g lies between f and {u,p(u)} in clockwise order, g must
be contained wholly within the region R(f), by the assumption of planarity.
This implies that R(g) is a left region of {u, p(u)}. Let g = {u,w}. Either w
is on the boundary of R(f) or lies within R(f); i.e., is a proper descendent of
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a node on the boundary. Since all boundary nodes are descendents of nca( f)

by definition, nca(g) must also be a descendent of nca(f). O

The analogous result holds for right edges.

Let v be a leaf of T with edge list {eo, fi, f2,..., fa}, where g = {v, p(v)}
and fi ... fy are non-tree edges. We use fi,..., f; to denote non-dead edges.
Since v is a leaf with no incident loop edges, ¢, is the only dead edge incident
on v. Lemma 5.1 implies that there is an index ¢, 0 < £ < d, such that the
edges in {fi,..., fr} are left edges and the edges in {fs41,..., fs} are right
edges. Furthermore, let f; and f; be edges such that 1 < i < j < d. Then
nca(f;) is an ancestor of nca(f;) for 7, j < £ (the left edges) while nca(f;) is
an ancestor of nca(f;) for ¢, > £ (the right edges).

Let e = {u,v} be a tree edge, with v = p(u). A contraction of e shrinks u
into v leaving only the single vertex v. The new edge list of v is constructed
by removing e from the list of u and v and inserting the edge list of u into
the edge list of v at the position formerly occupied by e. Edge contraction
preserves planarity [38, Lemma 1]. and the edge list produced by the con-
traction specifies a valid embedding. It may, however, produce new loop and

multiple edges.

5.3 The Critical Edge Algorithm

The algorithm is based on the approach of Shier and Witzgall [42].

If v € T is a leaf its critical edge is simply the minimum-cost edge in its
edge list, excluding the tree edge from v to its parent, which we will ignore
from now on.

To compute the critical edges for the remaining vertices, we construct a
series of graphs Go, G, . . . , G; with corresponding spanning trees Ty, 11, ..., T},
where G is G minus its loop edges and j is the number of non-leaf vertices

in Go. Graph Gj is constructed from G;_; by the following procedure:

1. Choose any vertex v in G;_; all of whose children in T;_; are leaves.
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2. Contract the edges from v to its children and delete any resultant loop

edges. This produces graph G; and tree T; in which v is a leaf.

3. Set critical(v) to be the minimum weight non-tree edge incident to v

in G;.

The correctness of the algorithm is proved in [42] and is easily seen. For
a vertex v € G, let the relevant edges, denoted rel(v), be the set of non-tree
edges with exactly one endpoint in the suBtree of T rooted at v. By definition,
critical(v) is the minimum weight edge in rel(v). A simple induction on i
shows that when v becomes a leaf in stage 7, its edge list contains exactly its
relevant edges.

So far our algorithm does not particularly depend upon the planarity
of G; this algorithm solves the critical edge problem in any general graph,
and can be implemented in O(mlogm) time using a mergeable heap data
structure to store the edges at each vertex [30]. To improve the running
time of the algorithm to O(n) in the planar case, we take advantage of the
properties discussed in Section 5.1. '

Given G and T rooted at r, we first perform a topological depth-first
search on T as described in Section 5.1, computing and storing preorder and
postorder numbers and constructing the edge lists for each vertex. As part
of this preprocessing, we determine for each edge whether it is dead, left, or
right with respect to each of its endpoints. This requires two scans of the
edge lists, one to determine for each non-tree edge the first subsequent tree
edge in its edge list, and one to classify each edge using the constant-time test
described in Section 5.1. These scans can be combined with the topological
depth-first search. Loop edges can be removed at the same time.

Let v be a leaf with edge list {eq, f1, f2,..., fs}. Lemma 5.1 implies that
there is an index £ such that all edges f; to f; are left edges of v and all
edges fer1 to fy are right edges of v. Using £ we split the edge list into two
lists L, = fi, fa,..., fe and R, = fa, fa—1,..., fe41. By Lemma 5.1 the edges

in L, and R, are nca-ordered; i.e., if edges a and b belong to the same list
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and edge a precedes edge b, then nca(a) is a descendant of nca(b).

At each stage of the processing, our algorithm explicitly maintains the
two nca-ordered lists L, and R, for each leaf node v. The lists for each leaf
of the initial tree T' are constructed during the preprocessing. The lists are
maintained in a heap-ordered concatenable queue data structure that supports

the following operations:

1. make queue(z): Create and return a new queue containing the single

element z.
2. pop(gq) : Delete and return the first item from queue g¢.

3. concatenate(q:,q2): Return the queue formed by concatenating ¢, to
the back of ¢;.

4. find min{q): Return the item of minimum weight in ¢ without removing

it from ¢. If ¢ is empty return null.

5. first(q): Return the first element in ¢ without removing it. If ¢ is empty

return null.

Let v be a non-leaf vertex of T processed in the i* stage. Any child u of
v must be a leaf, with left and right lists L, and R, respectively. In Step 2
of the above procedure, the edges from v to its children are contracted, and
two lists L, and R, are constructed from the non-tree edges incident to v
and from the left and right lists of the children of v. The union of L, and
R, is exactly the set of relevant edges for v. Step 3 is simply performed by
finding the minimum of find min(L,) and find min(R,). Thus the bulk of
the work occurs in Step 2.

Let {e,e1,...,€eq4} be the edge list of v. To begin Step 2, with each
edge e;, ¢ > 0, we associate two lists L; and R;. If ¢; is a tree edge {u,v},
where u is a child of v, then L; = L, and R; = R,. If ¢; is a left edge then
L; = make queue(e;) and R; = make queue((). If ¢; is a right edge then then

R; = make queue(e;) and L; = make queue((). If ¢; is a dead non-tree edge,
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l.e., if both endpoints of e; are descendants of v, then both L; and R; are
empty queues.

Next we delete the loop edges formed by the contractions. The loop edges
are those edges f with nca(f) = v. Since each left or right list is nca-ordered,
all such loop edges are grouped at the front of the lists. Each edge contained
in a left or right list of v at this stage has as its nearest common ancestor
either v or an ancestor of v. If f is an edge in one of the lists of v, then
nca(f) = v if and only if both endpoints of f are descendants of v. This can
be tested in constant time by using the preorder and postorder numbers. as
described in Section 5.1. Thus to delete loop edges, we simply examine each
list and pop edges off until reaching the first edge whose nearest common
ancestor is not v, i.e., the first that is a relevant edge of v.

After deleting loop edges, the collection of left and right lists contains
only relevant edges. We form L, by concatenating the left lists from left to
right and form R, by concatenating the right lists from right to left. That
is, we form L, by initializing L, to the empty queue and then performing
L, = concatenate(L,, L;) for i = 1,2,...,d. The same is done for R, except
the index runs from d to 1. Code for the general processing step is given in
Figure 5.2.

The edge list of v in G}, after performing the concatenations, contains the
edges of L, in order followed by the edges of R, in reverse order. Since G;
is planar and v is a leaf, Lemma 5.1 implies that L, and R, are nca-ordered
and, further, that there is an index £ such that for i < ¢, R; is empty and for
t > £, L; is empty.

Let d be the degree of v. Excluding the work involved in popping loop
edges, the processing of vertex v requires O(d) queue operations plus O(d)
additional work. The total number of pops is O(n), since each edge is in-
serted into at most two queues and so can be popped at most twice. The
preprocessing phase requires O(n) time. If each queue operation takes O(1)
amortized time, then the total running time of the algorithm is O(n).

We now describe the heap-ordered concatenable queue data structure.
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ProcessVertex(v : vertex) begin
/¥ Let v have edge list {eg, f1, fa,.-., fa} */

/* Delete loop edges */
for : = 1 to d do begin
if f; is a tree edge
while nca( first(L;)) = v and L; #
pop(Ls);
while nca( first(R;)) = v and R; # 0
pop(R;);
end
/* Initialize lists */
for i = 1 to d do begin
if f; is a non-tree edge begin
L; = make queue(d);
R; = make queue(();
if f; is a left edge L; = concatenate( L;, make queue( f;));
if f; is a right edge R; = concatenate( R;, make queue( f;));
end
end
/¥ Compute L, and R, */
L, = make queue();
R, = make queue(();
fori=1,2,...,d do L, = concatenate(L,, L;)
fori=d,d-1,...,1do R, = concatenate(R,, R;)
/* Compute critical(v) */
set critical(v) = min{find min(L,),find min(R,)}

end

Figure 5.2: Algorithm for processing one vertex. In the algorithm, nca(e) = v
if and only if pre(u) < pre(v) and post(u) > post(v) for both nodes u that

are endpoints of e.
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The data structure we present is a simple extension of ideas presented by
Gajewska and Tarjan [25]. The items in queue g are stored in a linked list,
with additional pointers to the front and back items. In order to answer the
find min queries a second list r is maintained, consisting of the rightward
manima of ¢. The first rightward minimum is the minimum element of the
entire list g. The i** rightward minimum is the minimum element occurring
after the (¢ —1)**. We store r as a doubly-linked list, with pointers to the first
and last elements. To make a new queue containing item z, we initialize both
lists to contain x. The operations first(q) and find min(q) are implemented
in O(1) worst-case time by using the pointer to the front of the appropriate

linked list. The operations pop and concatenate are implemented as follows:

e pop(q) : Delete the first element from ¢ and if it is also the first element

of r, delete it from r.

e concatenate(qy,q2): Link the list of ¢y to the back of ¢;. Let y be the
first element of r;. Remove the elements of r; from the last element
forward, until reaching an element a with cost(z) < cost(y). Link y to
r, concatenating r; to the back of the modified ry. Reset all pointers

to first and last elements appropriately.

The worst-case time required for pop is O(1). The time to perform a
concatenation is O(1) plus the number of items removed from the rightward
minima list of the first queue. The removal of an element z is charged to
the make gueue that created z. Once x is removed from the minima list it
can never be put back on it; = is removed because there is some other item
y of lesser key following it in the queue, and y cannot be popped before z.
Thus the amortized time per make queue and concatenate is O(1). This in
turn implies that the critical edge algorithm runs in time O(n). The space
required is also O(n), since at any time each edge appears in at most two

lists.

5.4 Minimum Spanning Tree Analysis
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In this section we use the critical edge algorithm to solve the following
problems in linear time: finding all replacement edges of a minimum spanning
tree, verifying the minimality of a spanning tree, and performing sensitivity
analysis on the edges of a minimum spanning tree. The following lemma will

be useful.

Lemma 5.2 [22,46] Tree T 1s a minimum spanning tree if and only if for
each non-tree edge f = {u,v}, the cost of f is greater than or equal to the
cost of each edge on the path from u to v.

Let: T be -the: minfomm spanning tree of G = (V,E). As defined in
Section 5.1, the replacement edge of edge e € T is the non-tree edge f that
replaces e in the minimum spanning tree of G' = (V, E — {e}). The removal
of edge e breaks T into two fragments 7" and T"”. It is well-known ([46]) that
the replacement edge f is the edge with minimum cost in the cut induced
by (T",T"). We arbitrarily root T at some vertex r. Then for each tree
edge e = {v,p(v)}, f is the minimum-cost edge with one endpoint in the
subtree rooted at v. Thus to find replacement edges we run the critical edge
algorithm and set the replacement edge of e to be critical(v).

Lemma 5.2 implies that a tree T is a minimum spanning tree if and
only if for each tree edge e = {v,p(v)}, the cost of critical(v) is greater
than or equal to the cost of e. This gives an algorithm for verification of a
minimum spanning tree in a planar graph. An alternative method is to run
the O(n)-time algorithm for computing minimum spanning trees of Cheriton
and Tarjan [11], comparing the cost of the computed minimum spanning tree
with cost of the given one.

To analyze the sensitivity of a minimum spanning tree T we determine
for each edge e how much its cost can be perturbed before T is no longer
minimal. We compute lower and upper bounds [a, b] such that T' remains
minimal as long as a < cost(e) < b. If e is an edge in T', then the lower bound
is —oo. The above discussion implies that the upper limit is the cost of the

replacement edge of e. Now consider a non-tree edge f = {u,v}. The upper
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Figure 5.3: (a) A planar graph (bold) and its dual (shaded).
(b) Primal and dual spanning trees for the graph of (a).

limit for the cost of f is +00. By Lemma 5.2, the lower limit for cost(f) is
the cost of the maximum cost edge on the path from u to v. To compute the
non-tree edge lower bounds in linear time we find critical edges in the dual
graph G* = (V*,E*) of G.

Let S denote the planar subdivision given by the embedding of G. For
each face in S there is a corresponding vertex in G* and for each edge e in
G there is a dual edge e* connecting the dual vertices representing the two
faces adjacent to e in S. Thus G* is dependent on the embedding of G.
The dual graph is clearly planar; an embedding S* is given by placing each
dual vertex inside the face it represents and placing each dual edge so that it
crosses only the primal edge corresponding to it. We set cost(e*) = cost(e).
Some representations of planar graphs simultaneously maintain both primal
and dual graphs; in any case, given the embedding of G the dual can easily
be computed in O(n) time. Further discussion of dual graphs can be found

in Harary [31]. An example is given in Figure 5.3.

Lemma 5.3 [20,24] Given a spanning tree T in G, let T* be the set of
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dual edges {e*|e is not in T'}. The set T* is a spanning tree for G* and,
furthermore, T is a minimum spanning tree for G if and only if T* is a

mazimum spanning tree for G*.

Lemma 5.4 Let f = {u,v} be a non-tree edge in G with dual edge f*. The
replacement edge for f* in G* is the dual of the mazimum-cost edge on the

path between u and v in T.

Proof. As in Section 5.1. let R(f) denote the interior region of the plane
bounded by f and the path in T from u to v. Removal of f* breaks T*
into two fragments, T* and T*”. All the vertices of one of these fragments
(which are faces in the embedding of G) lie inside R(f). Thus the edges in
the cut (T, T*") are exactly the duals of the boundary edges of R(f). The
replacement edge for f* is the minimum-weight edge in this cut. O

Lemma 5.4 implies that the lower limits for the non-tree edges can be
computed by finding replacement edges in the dual graph and setting the
lower bound for each non-tree edge to be the cost of its dual replacement

edge. The result of this section are summarized in the following theorem.

Theorem 5.1 The problems of computing replacement edges and determin-
ing the sensitivity of & minimum spanning tree of a planar graph can be solved

in linear time and space.

5.5 Shortest Path Tree Analysis

Let G be a directed graph whose edges each have an associated cost and
let T' be a single-source shortest path tree from source vertex s. In shortest
path sensitivity analysis we are interested in finding bounds [a, b] on the cost
of each directed edge e such that, in the absence of other changes, T remains
a shortest path tree for a < cost(e) < b.

Let d(v) denote the distance from s to v, which is the sum of the costs of

the edges on the path from s to v in T. The following lemma. is well-known.
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Lemma 5.5 [50] A spanning tree T in G is a shortest path tree if and only
if for all non-tree edges e = (u,v), d(u) + cost(e) > d(v).

Let e = (u,v) be a non-tree edge. By Lemma 5.5, T remains a shortest
path tree for (d(v) — d(u)) < cost(e) < +o0o. Now consider a tree edge
e = (p(v),v). Adding A to cost(e) changes the distances d(v) for all nodes
z in T, the subtree rooted at v. Lemma 5.5 implies that for T to remain a

shortest path tree, A must satisfy the following constraints:

1. for each non-tree edge f = (z,y) such that = € T, and y & T, (the
outgoing edges), A > d(y) — d(z) — cost(f)

2. for each non-tree edge f = (z,y) such that y € T, and = ¢ T, (the
incoming edges), A < d(z) — d(y) + cost(f).

For each non-tree edge f = (z,y) we compute a transformed cost cost'( f) =
cost(f) 4+ d(x) — d(y). Then the lower bound on the cost of tree edge
e = (p(v),v) is cost(e) — cost'( four), Where f,y; is the edge going out from T,
of minimum transformed cost. The upper bound for e is cost(e) + cost'( fin),
where f;, is the edge coming in to T, of minimum transformed cost. To
compute fou for each vertex v we initialize the edge lists of each vertex
to contain only outgoing edges and run the critical edge algorithm, set-
ting four = critical(v). To compute f;, we initialize the edge lists to con-
tain only incoming edges and again run the critical edge algorithm, setting

fin = critical(v). (Note that these initializations preserve the planarity of

G.)

Theorem 5.2 Sensitivity analysis of a single-source shortest path tree in a

planar graph can be performed in linear time and space.

5.6 Minimum Cost Network Flow

We consider the network flow problem in which each edge e of the network

G has upper and lower capacity bounds [/, u] and a cost per unit flow through
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e, and each vertex has a demand D(v). If D(v) > 0, v is a source; if D(v) < 0,
v is a sink. A minimum-cost flow in G assigns flow values z(e) to the directed
edges of G that satisfy the flow constraints and minimize the sum over all
edges of z(e)cost(e). Sensitivity analysis determines how much the edge costs
can be perturbed without changing the optimality of the flow.

If there is any feasible flow there is an optimal flow with basis T; T is
a spanning tree of G such that any non-tree edge has flow z(e) = I(e) or
z(e) = u(e). There exists a price function on the nodes 7 such that the
transformed cost of e = (z,y), cost'(e) = cost(e) + n(z) — 7(y), is zero for
all tree edges. The flow is optimal if and only if for all non-tree edges f,
cost'(f) 2 0if z(e) = l(e) and cost'(f) < 0 if z(e) = u(e) [42].

If we root T at some vertex r, we can regard T as a shortest path tree from
r, with 7(v) the distance from r in the tree, by replacing any edge e pointing
up the tree by a reversed edge e’ with cost —cost(e). Then the sensitivity of
the flow can be found by computing the sensitivity of the shortest path tree,
reversing upper and lower bounds for reversed edges. Further details can be
found in [42].

Theorem 5.3 Sensitivity analysis of a minimum-cost network flow in a pla-

nar network can be performed in linear time and space.

5.7 Remarks

We have considered here only planar graphs; it is natural to ask whether
the same problems can be solved in general graphs in linear time. Dixon,
Rauch, and Tarjan [17] have recently addressed this problem. They have a
linear-time algorithm for verification of a minimum spanning tree in a gen-
eral graph and a randomized linear-time algorithm for finding its replacement
edges. In addition, they have discovered a deterministic algorithm for the
replacement edge problem which is provably optimal although the running
time is unknown. This leaves open the deterministic replacement edge prob-
lem. The best time bound known is O(ma(m,n)) [46].
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