THE BEST CASE OF HEAPSORT

Robert Sedgewick
Russel Schaffer

CS-TR-293-90

November 1990

The Best Case of Heapsort

Robert Sedgewick* and Russel Schaffer**
Department of Computer Science
Princeton University

Abstract: Heapsort is a fundamental algorithm whose precise performance characteristics are little understood. It
is easy to show that the number of keys moved during the algorithm is N lg N + O(N) in the worst case, and it is
conjectured that the average case performance is the same, though that scems very difficult to prove. In this paper,
we show by construction that the best case for the number of moves is ~ 3 N lg N. This destroys the conjecture that
Heapsort is asymptotically flat (a posmble easy road to the average-case asymptotlc analysis), and also implies that a
variant of Heapsort suggested by Floyd is not asymptotically optimal in the worst case.

The construction was suggested by results of an empirical study that involved generating and analyzing hundreds
of billions of heaps. Other facts learned from this study about the distribution of the number of moves required by
Heapsort are presented.

1. Introduction

Heapsort is a classic sorting method due to Williams [10] and Floyd [3]. It can be used to sort an array inplace in
O(N lg N) steps; its primary disadvantage is that the inner loop is comparatively long, so that implementations tend
to be about twice as slow as Quicksort, for example. Though the empirical evidence in support of this conclusion
is rather persuasive, the algorithm has not been precisely analyzed, and we seek relevant mathematical results.

The method is based on maintaining a heap-ordered complete tree, stored in an array in level order: A heap
of ¥ keys in an array a[1..N] has a[i] greater than a[2i] and a[2i+1] for 1 < i < |N/2|, or, equivalently,
a[i] is less than a[i div 2] for 2 < i < N. Program 1 is a Pascal implementation that builds a heap and sorts
the array after the heap is built, using the common procedure siftdown for both tasks:

procedure siftdown(k: integer);
begin
v:=al[k];
while k<=N div 2 do
begin
j:=k+k;
if j<N then if a[jl<al[j+1] then j:=j+1;
if v>=a[j] then goto 0;
alk]:=a[jl; k:=j;
end;
0: alk]:=v
end;
for k:=N div 2 downto 1 do siftdown(k);
repeat t:=a[1]; a[1l:=alN]; a[N]:=t; N:=N-1; siftdown(1) until N<=1;

Program 1. Heapsort.

If the subtree rooted at a[k] is heap-ordered except possibly at the root, siftdown heap-orders it by exchanging
the root with the larger of its two sons and moving down the tree. The array is heap-ordered in a “bottom-up”
fashion by using siftdown, proceeding backwards through the array. Then, the array is sorted by extracting the
largest element: exchanging it with the element in the last position, reducing the size of the heap by one, and

* Supported in part by the National Science Foundation and in part by the Institute for Defense Analyses, Princeton, NJ.
** Supported by a National Science Foundation Graduate Fellowship.

using siftdown to repair the damage. We call this process “sorting down” the heap. Further information on the
implementation and operation of Heapsort may be found in [6] or [9].

Despite its prominence as a fundamental method for sorting and for implementing priority queues, compara-
tively little is known about the performance characteristics of Heapsort. Though the algorithm is simply stated and
implemented, derivation of a precise mathematical description of its performance seems to be difficult. It is the only
sorting algorithm in [6] for which Knuth is unable to give a precise formula for either the minimum, maximum or
the average running time. This paper describes some approaches to progress on this problem.

It is easy to establish that in the worst case, siftdown needs to travel to the bottom of the heap on each call,
so that the number of data moves made during the algorithm is not greater than

> Ue(N/i)l+ Y llgi]l = NlgN +O(N),

N2i>1 1<i<N

but little precise information about the performance of the algorithm is available beyond this. For example, the
number of times the statement j:=j+1 is executed, in the worst case, is not known ([6], Ex. 5.2.3-30).

The distribution of the number of data moves, assuming all permutations to be equally likely as input, seems
to be extremely flat: for example, experiments involving generating random heaps of 2'° elements typically give a
sample standard deviation of less than 15. On the basis of such experiments, it is reasonable to make the conjecture
that the distribution for this quantity is asymptotically flat: that all heaps require N lg N + O(N) moves.

Our main result is a rather intricate construction that shows this conjecture to be false because the best case
is ~ $Nlg N. Thus, the possibility that the coefficient of N lg N in the average case is less than 1 is left open.
Note carefully that each data move involves two comparisons, so this is no violation of the lg N! lower bound for
all comparison-based sorting methods.

Other facts that were learned about the distribution of the number of moves during the development of this
result are also presented.

2. Counting Heaps

Let f(N) = {the number of heaps of N distinct elements}. Since the elements are distinct, we can assume without
loss of generality that they are from a permutation. Since the root must be N and there is no restriction on the
subtrees, we must have
N-1
s = (g) rsossy,

where S; + Sa = N — 1 are the sizes of the subtrees of the root. Dividing by N! gives

FV) _ 1 £(51) £(S2)
N! N 5! Sy

which telescopes to give the result

N!
[T, <r<n{size of the subtree rooted at k}

f(N)=

This formula, derived in a different way, is given in Knuth [6]. The same argument works for any heap-ordered
tree: the number of ways to label any tree with the integers 1 through N such that every node is larger than its two
sons is N! divided by the product of all the subtree sizes.

For example, the number of heaps of 13 elements is

13!

13.7.5.3.3.3 — 000880

Table 1 gives the exact value of f(N) for small N.

=
- N

4 5 6 7 8 9 10 11 12 13 14 15
3 8 20 80 210 896 3360 19200 79200 506880 2745600 21964800

Table 1. Distinct Heap Counts

Two facts are evident from Table 1 and the above discussion and should be carefully noted. First, the
independence of the subheaps can be used to prove that the bottom-up heap construction procedure “preserves
randomness™: if each of the N! permutations is equally likely before the construction process, then each of the
f(N) heaps is equally likely after. This makes it possible for Knuth to derive accurate formulas for the average-
case performance of the heap construction process. Unfortunately, the second fact to be noted is that the sortdown
process does not preserve randomness (far from it): simple numeration says that the sorting procedure cannot
preserve randomness because successive elements in the table do not divide. If each of the 3 heaps of 4 elements
are equally likely before the first sorting step, how could each of the 2 heaps of three elements elements be equally
likely afterwards?

It is a straightforward calculation to continue from the above formula to derive an asymptotic expression:

Lemma. The number of different heaps which can be formed from N distinct elements is
e* \N41 1
AN+D(7) T @+0(5)

where o = T,5) 2 In(525) ~ 440539+,
Proof : Omitted.

Using Stirling’s approximation, this means that

N \n
461“0’)

f(N) ~ e*V2xN3/2(

~ 39N (%)""

For example, for N = 15, this approximation gives 2 x 107, in agreement with the table above, and it says that
there are more than 7 x 10?2 heaps of size 31.

3. Generating Heaps and Exact Results for Small N

Given a heap of size N — 1, it is convenient to consider working backwards to generate all heaps of size N that
yield that heap after one siftdown operation. There are exactly a[N div 2] such heaps, which can be generated
by, for each element less than or equal to a[N div 2], performing the “pulldown” operation given in Program 2.
This procedure can be used as the basis for an efficient program to generate all heaps: for each heap of size N — 1,
generate a[N div 2] heaps of size N by applying pulldown appropriately.

procedure pulldown(k: integer);
begin
a[N]:=a[x];
while k<>1 do
begin j:=k div 2; alkl:=a[jl; k:=j end
al1]:=N;
end;

Program 2. Pulling a new element down into a heap.

Figure 1 shows how the heaps of size 5 are generated. In this “tree of heaps”, the pulldown procedure can
be used to move down, and the siftdown procedure to move up, so only the heap and a small amount of state

3

information about which pulldowns have been done need be kept during the generation procedure. This “bottom-
up” generation method seems more convenient than a “top-down” method corresponding to the counting formula in
the previous section. (It is interesting to contemplate whether there might be some combinatorial identity implied
by that counting method and this generation method.) The full distribution of the number of moves required to
sort-down the more than twenty-five million heaps of 15 elements or fewer, computed using this method, is given
in the Appendix.

S

(4) (4) (4)
@2 ® @ @ ® @
@ @ @
A3 7
(5) (5) (5) (5) (5) (5) (5) (5)
@ @ (4) @ @) @ 3 @ @ @ 3 @ 3 @ @) @
@0 06 @@ @@ @3 @D 06 06

Figure 1." Generating Heaps.

In the present context, our interest is in the fact that this heap generation procedure naturally converts to a
backtracking procedure to search for the best case. We simply rearrange the order of doing pulldown so that the
best is done first, and maintain a cutoff to not generate heaps which cannot beat the best generated so far. This
substantially reduces the number of heaps to be examined, though not as much as one might hope: for N = 25
hundreds of billions of heaps still pass the cutoff. Table 2 shows the cost of (number of moves required to sort
down) the best heaps for N < 25. On the one hand, 25 is a dangerously small number from which to draw
conclusions; on the other hand, the fact that this function grows only by 2 as N increases by 1 from 16 to 25
(except for 19) lends credence to the conjecture that the coefficient of N lg N in the best case is not 1, but 1/2.

N 4
1

78910 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Best Case i

56
2346 9 11 12 14 16 17 20 22 24 26 29 31 33 35 37 39 <41

Table 2. Best-Case Costs

Furthermore, a careful examination of how a known best case heap operates gives some intuition on how to
construct larger best-case heaps. Figure 2 shows the sortdown process for a best heap of size 24: A low cost seems
to be achieved by alternating short paths with long paths, for an average cost of about half the heap height. In
the next section we show how to generalize this to construct heaps of N nodes for which the average cost of a
siftdown is 3 Ig NV for any large N.

4. Tight Asymptotic Bounds on the Best Case

Heap construction is linear for an array which is already a heap, so to study the best case of Heapsort, we need only
consider the cost of sorting-down a heap. If equal keys are allowed, the best case is clearly linear [2]: consider

4

Figure 2. A best-case heap.

5

the case of a heap with all keys equal. For distinct keys (or equivalently, a permutation) the situation is far less
clear. Do all heaps require asymptotically the same number of moves as the worst case for sorting down? If not,
are there heaps which can be sorted down in linear time? In this section, we settle these questions by showing that
the best case of the number of moves taken by Heapsort is ~ %N Ig N.

First, we consider the lower bound. This is developed by observing what must happen to the largest keys as

the heap is sorted down. We have:
Theorem 1. Heapsort requires at least 3N g N + Q(N) data moves for any heap composed of distinct keys.

Proof : Consider the cost of sorting-down a large heap of size N = 2" — 1. Specifically, we count the number of
moves made during the first half (2”~!) of the sort-down operations. Note that the 2"~ largest of the keys in the
original heap must be displaced by these sort-downs, and that they form a heap-ordered subtree within the original
heap.

Now, the cost of sorting-down is at least the internal path length of this subtree, except that nodes at level n
are not counted. This cost is minimized by a subtree that has the root plus either its left or right subtree (complete).
Such a subtree has 2"~ nodes at level n, with the average level of the other 2”2 nodes about n — 2. This gives
an average cost for the first 2"~ siftdown operations of at least n/2 + Q(1).

The same argument holds each time the size of the heap is halved, and can easily be extended to handle all
values of N. g

We develop a matching upper bound by constructing a heap which has the “alternating” flavor of the heap
of size 24 shown in the previous section. The construction is more easily seen by working backwards (using
pulldown): the goal is to build a heap in this way using only ~ %N lg N moves. We do so by pulling some
large elements down to the bottom of the heap, then using those large elements to pull down an equal number of
elements from near the top of the heap, then iterating the process.

Theorem 2. The best case of Heapsort requires 2N 1g N + O(N loglog N) moves.

Proof : This is a long, technical proof, so we begin by sketching its general plan. We build a heap of size N = 2" —1
by starting with a large heap with certain properties and using the pulldown process to finish the construction. For a
large heap with somewhat fewer than 2" — 1 elements, and a parameter ¥ whose value will be chosen appropriately
later, consider two consecutive subheaps A and B of size 2* at the bottom of the heap with the property that all
the elements in the second can be “pulled down” by the elements at the bottom of the first. (For example, if all the
elements in A were larger than each of the elements in B, this property would be satisfied.) Now, 2¥+! pulldowns
can be performed in such a heap at an average cost of %n, as follows: First, pull down each element in B by the
elements in A (average cost: n — 1). Now note carefully that this makes all but n — k of the elements of B larger
than every element in the original heap. In particular, the elements of B can be used to pulldown the elements in
the 2% subtree on the other side of the root from B (average cost: k — 1). This analysis ignores what happens to
the nodes along the path from the root to A and B. If k is chosen to be ©(log n) = ©(loglog N) these costs are
absorbed, and the average cost of the 25+! pulldowns is 1n.

To iterate this construction, we must start with a sufficiently large heap for which the bottom heaps of size 2F
are ordered as required above. Then it suffices to show that the pulldown operations described above preserve the
ordering property. They do not do so exactly, but they leave a symmetric property on the next level that suffices
to keep the process going.

To complete and give precision to the proof sketch just given, we consider the heap structure shown in Figure 3.
Let k be the smallest even integer not less than Ig n, and let « be a variable initialized to 0. The construction process
maintains a heap of height n — k + 2a, beginning with height n — k and finishing with height n and o = k/2.
At the top, we define C and D to be the height 2(k + «) + 1 subheaps rooted at a[3] and a[2] respectively. In
the figure, the roots of these subheaps are labelled, and the subheaps explicitly drawn, for k + o = 2. Now, let
p = 2""3k=1_ Across the bottom, for 1 < i < p we define A; to be the subheap rooted at a[2"~3* 4 2i — 2] and
B; to be the subheap rooted at a[2"~3F 4 2i — 1]. Since the roots of the 2p subheaps remain fixed, they grow as
we add nodes to the bottom of the heap. ,

We begin by placing the smallest 2("~¥) — 1 keys into the initial structure given in Figure 3, then we complete
the construction by pulling keys down into the heap in k/2 passes. Each pass increases the variable o by one; this
increases the height of the heap by 2.

To describe relationships among sets of keys in the heap structure, we adopt the following notational conven-
tions: First, For sets S and T', take § > T to mean that every key of S is greater than any key of 7. Second, given

6

Figure 3. Initial Structure for Building the Best-Case Heap (k + o = 2)

a subheap H and a positive integer z, we define L(H, z) to be all but the smallest z keys of H and S(H, z) to be

all but the largest z keys of H.

Now, define { = 2na. The following “pass invariants” are required to hold for all i, initially and at the end of

each pass:
(i) L(A;t) > S(Bi,t).
(i) L(C,2%k+2) — 1 4+t 4 n) > A fori, 1 <i < p/2.
Gii) L(C,22+2) — 1 4t 4 n) > B; fori, 1 <i < p/2.

Each pass is broken down into two phases, the steps of which we now give in detail. For each step, we give at the

right an upper bound on the number of moves required to execute it once:

Phase AB:
(i) for ¢ from 1 to p/2 do
(@) Pull down the ¢ + 1 smallest keys in A;.
(b) Pull down all but the largest ¢ keys in B;.
(c) Pull down each of the smallest ¢ 4+ n keys in B;.
(d) Pull down the largest 22(*+) _ ¢ _ p keys in C.
(ii) for i from p/2 + 1 to p do as in (i), replacing C with D.
Phase BA: ‘
(i) Pull down the smallest key in A;, 22(k+e)+1 times,
(if) for ¢ from 1to p/2 — 1do
(a) Pull down the smallest ¢ + n + 1 keys in B;.
(b) Pull down all but the largest ¢ + n keys in A;4;.
(c) Pull down each of the smallest ¢ + 2n keys in A;,;.
(d) Pull down the largest 22(k+@)+1 _ ¢ _ 95 keys in C.
(iii) for ¢ from p/2 to p — 1 do as in (i), replacing C with D.
@v)
(a) Pull down the smallest ¢ + n + 1 keys in B,,.
(b) Pull down the smallest 22(k+2)+1 _¢ _ n — 1 keys of A;.
(v) increment o

Cost Bound

n(2na + 1)
n22(k+nr)

n(2na + n)
(2(k +) + 1)22C+=)

n22(k+a)+1

n(2na+n+1)
n22(k+a)+1
n(2na + 2n)
(2(k + a) + 1)2%k+a)+1

n(2na+n+1)
n22(k+a)+1

Before tallying the number of key moves required by the above construction we must check that every step in
the algorithm can be executed. This requires establishing that all three parts of the pass invariant can be made to
hold initially and at the end of each pass. First we show that all three parts of the invariant can be made to hold
initially. Then, we show that Phase AB followed by Phase BA preserves the invariant: if it holds after o passes
have been completed, then it will hold after pass (a + 1) has been completed.

Initially Establishing the Invariant:

It is clear that one can place keys into the structure of Figure 3 so that the invariant is satisfied. We
move through the structure, assigning the keys in increasing order, as follows: Fill in the A; and B;
moving from right to left, preserving heap order by moving in reverse level order from bottom to
top within each, then complete by proceeding in reverse level order.

Correctness Proof for Phase AB:

(i) The purpose of this loop is to add keys to the bottom of the left half of the heap. During the loop
we maintain the invariant that L(C, 22(¥+®) — 1 4 ¢ 4+ n) > A; and L(C,2°*+®) — 1414 n) > B;
for j > i. This invariant holds at the beginning of the loop by (ii) and (iii) of the pass invariant.
As we begin the i’th iteration of the loop we know that L(A;,t) > S(B;,t); this was implied by (i)
of the pass invariant at the beginning of the loop, and A4; and B; have not been touched since then.

(@) We begin level 2(k + o) + 1 of A; by pulling down the ¢ + 1 smallest keys in A;. We note
that any key that enters A; in this step is greater than every key of B; since at one point it had
the root of B; as its right child. Also, any key of A; that is smaller than some key of B; ends
up at level 2(k + a) + 1. It follows that every key at level 2(k + o) of A; is greater than any
key of S(B;,1).

(b) Since every key of S(B;,t) is smaller than any key at level 2(k + a)of A;, we can pull down
22(k+a) — 1 — ¢ keys of B; to complete level 2(k + a) + 1 of A;.

(¢) In step (b) only t keys of B; failed to be replaced; by pulling down the smallest ¢ + n keys
in B;, we can pull to the bottom level these ¢ keys plus any keys that had been along the path
from the root of the heap to the root of B; at the beginning of step (b). This fills the first ¢t + n
positions of level 2(k 4+ o) 4+ 1 of B; and ensures that all keys at or above level 2(k + a) of
B; are new to the heap since the beginning of step (a).

(d) Since all keys at or above level 2(k + a) of B; are new to the heap since the beginning of step
(a) and since C' has not been touched since before step (a), the largest 22(¥+2) _ ¢ — p keys in
C can be pulled down to complete level 2(k + a) + 1 of B;. Since the largest 22(*+2) —¢ — p
keys in C are replaced with keys that are new to the heap they remain greater than any key
contained in A; or B; for j > ¢; this satisfies the loop invariant.

(ii) This loop serves the same purpose as (i) except that it adds keys to the bottom of the right side of the
heap. Note that in step (i), every key of D was replaced by a key that is new to the heap since the be-
ginning of this phase; since none of the A; or B; for i > p/2 have been touched since the beginning of
the phase we know that L(D, 22(F+®) — 1 4+t 4 n) > A; and L(D,22*+2) — 1 4 ¢t 4+ n) > B; forall
i > p/2. We can thus maintain the invariant that, during this loop, L(D,2%*+®) — 14t 4+ n) > A4;
and L(D,2%*¥+%) — 14 ¢4+ n) > B; forall j > i.

Fix i, 1 < i < p/2. At the end of Phase AB, A; contains the keys it contained at the beginning of the phase
and all but { of the keys that B; contained at the beginning of the phase. It follows that with the exception of fewer
than ¢ + n keys, every key in A; at the end of the phase was in A; or B; at the beginning of the phase.

Now consider the origin of the keys in B;_; at the end of Phase AB. As observed above, at the end of step (c)
of the ¢ — 1’st iteration of loop (i), all but at most ¢ + n keys of B;_,; are new to the heap since the beginning of
the phase; by the previous paragraph, these are greater than any key in S(A;,t + n) at the end of Phase AB. Also
by the invariant maintained during loop (i), the keys in C that are pulled down into B;_; in step (d) are greater
than any key in S(A;,t 4 n). We conclude that at the end of Phase AB, L(B;_1,t + n) > S(4;,t + n).

8

The same reasoning shows that at the end of Phase AB, L(B;_1,t + n) > S(Ai,t + n) for i > p/2. Further-
more, every key pulled down from D into B, is new to the heap since the beginning of the phase and is thus
greater than any key in S(4,,t + n); we conclude that L(B,,t + n) > S(A;,t+ n).

Finally, note that every key of C' was replaced during step (ii) by a key that had not been in the heap prior
to step (ii); at the same time, no key of A; or B; for i < p/2 was touched during step (ii). We thus have the
following situation as we begin Phase BA:

() L(Bj-1,t+n) > S(Ai,t+n) fori> 1.

(ii) L(Bp,t+n) > S(A;,t+n).

(iii) L(C,t+2n—1) > A; forall i < p/2.

@v) L(C,t+2n—1) > B; forall i < p/2.

Correctness Proof for Phase BA:

(i) Pulling down the smallest key in A; 22(*+2)+1 times completes level 2(k +) + 2 of A;.
(if) This loop extends level 2(k + a) + 2 across all but B,/ on the left half of the heap. As before, we

know at the beginning of the 7’th iteration of the loop that LSB,-,t +n) > S(Aig1,t + n).

(@) When we begin this step there have been at least 22(¥+2)+1 pulldowns of keys of A; since the
beginning of Phase BA. Every key along the path from the root of the heap to the root of B;
has thus been replaced with a key that is new to the heap since the beginning of Phase BA. This
implies that every key to enter B; in this step is new to the heap since the beginning of Phase
BA. Since A;4; has not been touched since Phase AB and since this step pulls the t +n + 1
smallest keys of B; down to level 2(k + a) + 2, it follows that every key at level 2(k + a) + 1
of B; is larger than any key of S(A;41,t+ n).

(b) This step completes level 2(k + &) + 2 of B;.

(c) This step ensures that every key at or above level 2(k + o) + 1 of A;;, is new to the heap
since the beginning of Phase BA.

(d) This step completes level 2(k + @) + 2 of A;41. Asin Phase AB, the largest 22(k+a)+1 — ¢ — 2p
keys in C are replaced with keys that are new to the heap so they remain greater than any key
in .AJ'+1 or BJ fOl'j > 1.

(iii) This loop acts in the same way as (ii), extending level 2(k + a) + 2 to all but the bottom of B,.
(iv) This step fills in level 2(k +) + 2 of B,.

(a) Pulling down the smallest ¢ + n + 1 keys in B, has the same effect as step (ii)a. above; every
key at level 2(k + a) + 1 of B, is now greater than all but at most ¢ + n keys that were in A,
prior to beginning Phase BA.

(b) We complete level 2(k 4 @) + 2 of B, by pulling down the smallest 22(F+a)+1 — 1 ¢ —p
keys of A;. With the exception of the keys that were between the root of the heap and the root
of A, at the beginning of the phase and the smallest ¢ + n keys not pulled down in this step, a
total of fewer than ¢ + 2n keys, every key in A, is new to the heap since the beginning of the
phase.

We can now show that for i > 1 and « unincremented, L(A;,t+ 2n) > S(B;,t+ 2n) holds by the same
reasoning used to establish the analogous result for the B;_; and A; at the end of Phase AB; as before, the keys in
S(B;,t + 2n) were in B; and A;,, at the beginning of the phase while those in L(A;,? + 2n) are either new to the
heap or come from C or D whose keys are larger than those in S(B;,t + 2n). That every key of L(A;,t + 2n) is
new to the heap during Phase BA follows from the comment at the end of (iv)b. above. When we increment « to
begin a new pass, we find that (i) of the pass invariant continues to hold.

Parts (ii) and (iii) of the pass invariant continue to hold by the reasoning used before, that since the beginning
of Phase BA, every key of C has been changed while for 4, 1 < i < p/2, A; and B; have remained untouched.

We now compute an upper bound on the number of key moves required to complete the construction. We
proceed by summing the bounds given earlier on the number of moves performed in individual steps. The following
is an upper bound on the work performed in the (c) steps of both loops in both phases. It is also an upper bound
on the work performed in the (a) steps of BA(iv) and of both loops in both phases:

2°=% 3" n?(2a+2) = O(n?*2°%k?)
0<a<k/2

29n 2
=O(n2 laog n)
n

= O(N)
The total work performed in the (b) steps of BA(iv) and of both loops in both phases is bounded above by:

gn—3k-1 Z ng2(k+a) | gn-3k—1 Z n92k+a)t1
0<a<k/2 ‘ 0<a<k/2

s 2n—3k-—1n22E (Z 22a + Z 22a+1)
0<a<k/2

0<a<k/2

o n2n—k—] Z 9a
0<La<ck
o n2n-1 e n2n—k—1
1
= §N lgN + O(N)
The total work performed in the (d) steps of both loops in both phases is bounded by:

gn—3k Z (2(k+a)+1)22(k+a)+1 < 2n-3k3k22k E 92a+1
0<a<k/2 0<a<k/?

< 3k2n—kot
= O(Nloglog N)
The total work performed in BA(i) is bounded above by:

Y iRt g BT W0 < knt™ =00
0<a<k/2 0<a<k/2

So far we have counted the costs of all phases of the construction, or, equivalently, the cost of sorting down the
final heap to the initial heap of height n — k where the construction started (with o = 0). To this we must add the
cost of sorting down that initial structure. As noted in Section 1, this number is bounded above by

(n— k2" +0(2"4) < 2= +0(N) < =~ 4 O(N) = O()
We conclude that total number of moves required to sort down the constructed heap is $ N lg N + O(N loglog N)
as desired. g

5. Concluding Remarks

As mentioned above, if only comparisons are counted, Heapsort seems to be relatively inefficient because, during
the siftdown operation, two comparisons are used at each step, one to determine the larger of the two sons of
the current node, the other to determine whether the current node is larger than both its sons (so the loop should
be exited). Floyd (see [6]) suggested that comparisons could be saved by eliminating the latter type (so the loop
terminates at some point of the bottom of the heap), then moving up the heap, using a procedure like pulldown,
until the proper place for the element being sifted down is found. Most of the time, only a few steps back up are
required.

Note that the best-case results for Heapsort of the previous section translate into worst-case results for the
variant just described. Thus, Floyd’s method requires ~ %N lg N comparisons in the worst case, not the optimal
Nlg N + O(N) that might have been hoped for. If extra storage is available, Gonnet and Munro [5] have pointed
out that ~ Nlg N can be achieved simply by relaxing the constraint that the heap be a complete tree, and sorting
down by removing the root to an auxiliary array, then promoting the larger of the two sons down the tree, marking
the spot reached on the bottom as vacant. But the inplace feature is one of Heapsort’s main virtues.

The major open problem is still the analysis of the average case. Is the coefficient of N Ig N in the expression
for the average number of moves required to sortdown a random heap of N elements 1, or not? We do have the
following result:

10

Lemma. In a random heap, the average cost of the first “sort-down” is between [lg N| and [IlgN] — 1.

Proof: Consider the correspondence between each heap of size N — 1 and heaps of size N which “sort-down”
to it implied by pulldown. Given a heap A with N — 1 nodes, find the highest element less than a[N div 2].
This element is at the root of a complete subheap of elements all less than a[N div 2]: the average level of these
elements is between the bottom and one up from the bottom. The result follows from iterating this process until
all nodes less than a[N div 2] have been considered. j

(This quantity was also studied by Doberkat [1].) This proof does not work beyond one step of the Heapsort
algorithm, because after one sort-down we no longer have the property that all heaps are equally likely.

The average case is difficult because Heapsort does not “preserve randomness”. One reason for studying the
algorithm so closely is the possibility that there exists a variant which does preserve randomness (for example some
variant of pairing heaps [4]) which would perhaps not only submit to analysis but also have some better perfonnance
characteristics. Full understanding of Heapsort might lead to the discovery of such a variant.

The results of this paper destroy the attractive conjecture that Heapsort’s running time is asymptotically flat,
but leave open the door for the development of a variant of the algorithm that uses half as many comparisons as
the standard algorithm. Floyd’s variant would seem to be a likely candidate for this, but the results of this paper
also suggest that average-case results are needed to prove that heaps can be used as the basis for an asymptotically
optimal sort.

References

1. E.-E. DOBERKAT. “Deleting the root of a heap,” Acta Informatica 17, 3 (1982).
2. H. Erxi10. “On Heapsort and its dependence on input data,” Technical Report No. A-1979-1, Dept. of Computer
Science, University of Helsinki, Finland.
3. R. W. FLOYD. “Treesort 3: Algorithm 245,” Comm. of the ACM 7, 12 (1964).
4. M. FREDMAN, R. SEDGEWICK, D. SLEATOR, and R. TARJAN. “Pairing Heaps: a new form of self-organizing
priority queue,” Algorithmica 1, 1 (1986).
5. G. H. GONNET AND I. MUNRO. “Heaps on heaps,” SIAM J. on Computing 15, 4(1986).
6. D. E. KNUTH. The Art of Computer Programming. Volume 3: Sorting and Searching, Addison-Wesley, Reading,
Mass. (1973).
7. D. E. KNUTH AND A. SCHONHAGE. “The expected linearity of a simple equivalence algorxthm " Theoretical
Computer Science 6, (1978).
8. T. PORTER AND I. SIMON. “Random Insertion into a Priority Queue Structure,” IEEE Trans. on Software
Engineering SE-1, 3 (1975).
9. R. SEDGEWICK. Algorithms, Addison-Wesley, 1983.
10. J. W. J. WILLIAMS. “Algorithm 232: HEAPSORT,” Comm. of the ACM 7, (1964).

11

Appendix

The full distribution of sorting-down costs for Heapsort, computed using the method described at the beginning of
section 3, is given in Table 3. Though few simply expressed relationships among these numbers are evident, the
underlying distribution seems to be rather stable. We may infer that an exact formula to describe the average-case
for all IV are likely to be unavailable or too complicated to be useful, but that approximate formulae may be within

reach.

DO LA W

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

(S5 I S V]

o 3 00 W

21

31 6

19 46

4 86
59
13

2
32
163
314
270
102
13

10

97
462
975

1051
594
159

14

11

465
1988
4426
5676
4322
1866

387

24

12

5

128
1142
5142
13336
21139
20865
12552
4230
639
22

13

56
799
5312
21664
58776
107700
132629
107582
54769
15665
1898
30

14

171
2481
16843
71465
209573
436963
645556
662679
455735
195602
44837
3610
85

Table 3. Full Distribution of Sorting-Down Costs

12

15

10

858
11868
82046
360027
1111286
2516164
4214038
5165140
4525046
2719507
1035933
209319
13193
365

