A NOTE ON POSET GEOMETRIES

Joel Friedman

CS-TR-292-90

October 1990




A Note on Poset Geometries

Joel Friedman*
Department of Computer Science
Princeton University
Princeton, NJ 08544

October 31, 1990

Abstract

In this note we describe how varying the geometric representation of a poset
can be applied to “poset balancing.” We show that the 1/3, 2/3 balancing prop-
erty holds for a certain class of posets whose number of relations is sufficiently
small, in a certain sense.

1 Introduction

Given a poset (partially ordered set), for elements z and y let p(z < y) denote the
fraction of completions of the partial order to a total order in which z < y. In
[Fre76], M. Fredman, conjectured (and N. Linial in [Lin84]) that any non-total poset
(i.e. poset which is not a total order) has two elements, z,y, for which 1/3 < p(z <
y) < 2/3. This conjecture arose in the context of studying the information theoretic
bound of the complexity of sorting the elements of the poset. The non-trivial non-
total three element poset shows this conjecture to be as optimistic as possible.

To date the conjecture is unresolved, but using convexity in geometric realizations
of the posets, such as the techniques of Stanley in [Sta81], theorems have been proven
with the 1/3,2/3 replaced by different constants. In [KS84], J. Kahn and M. Saks,
proved the above conjecture with 3/11,8/11 as constants. In [KL88], J. Kahn and N.
Linial gave a simpler proof of the conjecture with 1/(2¢),(2e —1)/(2¢) as constants.

Both proofs are based on convex geometry involving a geometric realization of
Sy, the group of permutations on n objects. The point of this note is to remark that
by varying the geometries one can sometimes get better results. This is definitely
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true when the poset has few enough relations, in a certain sense. The geometries we
use are suggested by the standard realization of S, as its associated Coxeter complex
(see, for example, [Ron89]). We combine the varying geometries with the simplified
technique of [KL88] to obtain improved results such posets. In this note we prove:

Theorem 1.1 For any € > 0 there is a C such that the following is true. Let P be
a poset on {z1,...,2,}, and let a; and b; denote the number of elements respectively
> and < than z; in P. If for every permutation o € S, we have

“f o(t) n+4+1-0(i)
g(a,-+1+ b +1 )ZC’

then P has elements z,y with (1/e) —e < p(z < y) <1/2.

This is the precise sense of P having “few enough relations” mentioned earlier. As
applications we have:

Theorem 1.2 For any € > 0 there is a C such that if P either (1) has at least C\/n.
mazimal (or minimal) elements, or (2) has no chain of length > C + 2log, logn,
then P has elements z,y with (1/e) —e < p(z <y) <1/2. For any e > 0 and v > 0
there is a ;1 > 0 such that the same conclusion holds if P has some vn of its elements
each unrelated to at least (1 — p)n other elements.

We also note that other special cases of the poset (1/3,2/3) conjecture have
been resolved. In [Lin84], N. Linial proves the conjecture for posets of width 2. In
[Kom], J. Komlos proves that for any € > 0 there is a function f.(n) = o(n) such
that any poset with at least f(n) minimal elements has two elements x,y such that
|p(z < y) — 1/2| < € here f(n)/n decreases to zero exponentially fast in the inverse
of some Ramsey-type function of n. Also J. Kahn and M. Saks have conjectured that
as the width of the poset tends to infinity, a |p(z < y) — 1/2| < o(1) balancing result
should hold.

The author wishes to thank Nati Linial for useful discussions.

2 Variants of a Standard Realization

A standard geometric realization of S, is its associated Coxeter complex (see [Ron89]).
One views this as a triangulation of the n — 2-dimensional sphere. The convex poly-
tope determined as the convex hull of the simplices of this triangulation (this polytope
looks like a beachball) is a realization of S, such that the realization of every poset
is convex. Of course, there is no reason to insist that this polytope’s vertices all lie
on one sphere. By moving certain vertices further or closer to the center, we get
different convex polytopes.



So consider n points vy,...,v, € R*™! not contained in any hyperplane of dimen-
sion n — 2. Every point v € R"™! can be uniquely written as

v=3 a;, with ) a;=1. (2.1)

For a permutation of {1,...,n}, o = {i1,...,1,}, let

A,,:{Eoz,—v; |ag, > -+ 20{,-“}.

If U is any convex body, say, containing the v;, then 0 — U, = A, NU is a realization
of S, in which every poset corresponds to a convex subset of U. U, will be adjacent
to U,, i.e. will share a facet (i.e. an (n — 2) dimensional face), iff ¢ and 7 differ
by some transposition (4,7), and in that case the facet lies on the hyperplanes H;;
containing (v; +v;)/2 and all v, with k # ¢, . When no confusion will occur, we will
often simply refer to this facet as H;;.

For future reference, the a;’s in equation 2.1 are called the barycentric coordinates
of v (with respect to the v;’s). If U is the simplex spanned by the v;’s, the barycentric
distance of v to a facet, F, of U (i.e. a simplex spanned by any n — 1 distinct v;’s),
is the barycentric coordinate of v with respect to the v; not contained in F.

We now make some explicit calculations to describe various of choices of U. For
simplicity, we perform them in R" restricted to the hyperplane z; + --- + z, = 1.
For a subset S C {1,...,n} let es be the vector which is 1 on the i-th coordinate if
¢ € S and 0 elsewhere. Let @Q = (1/n,...,1/n). For positive real ,,...,6, consider
the collection of points

vg = fOses + (1 — |S|93)Q

with #s = 65|, ranging over all non-empty proper subsets, S, of {1,...,n}. Clearly
all these vertices lie on the hyperplane z; +---+z, = 1. Let U be their convex hull.

Lemma 2.1 The following two conditions are equivalent: (1) no vs is in the interior
of U, and (2) for alli < j

ia; S jHJ and (n. = 2)9, 2 (n = j)BJ (22)

Proof By symmetry the first condition is equivalent to saying that for any |S|, the
centers of mass of the sets

Ejx={er |ITNS|=j,IT - 5| =k}

for all k, j lie between (or on) @ and es. Each of these gives an inequality between
65| and 6,4 which is exactly of the form of those of equation 2.2, (except when
j + k = |S| which is trivial), and conversely each inequality in equation 2.2 arises in
this way.



For future reference we note that the distance of vg to a halfplane H;; is just
85/+/2 if exactly one of 4, are in S (and 0 otherwise); this is seen by noting that
the reflection through H;; merely exchanges the i-th and j-th coordinates. We also
note some familiar choices of #;. The choice §; = 1/i and 6; = 1/(n — 1) are simplices
with vertex sets {vgs} ranging over S of respective sizes 1 and n — 1. Choosing the
vs’s to be equidistant from P gives

9=m

We now describe some features of varying the geometry. First we make the
observation that in any poset there exists an ordering of the elements 0 = {zy,---,2,}
such that p(z; > x;41) > 1/2 for all ;. We call such a o optimal. Its existence follows
from the fact that any tournament has a Hamiltonian path. This statement also
implies that p(z; > ;) > 2/3 for all ¢ > j if P is a counterexample to Fredman’s
conjecture. The point to our method is that fixing P and such an ordering we can
choose the geometry best suited to the situation at hand. We will apply this to the
centroid method used in [KS84] and [KL88|, using the simplified technique of the
latter. We explain this in the next section.

It is sometimes easier to visualize the problem, and amusing, if not particularly
useful, to state the poset problem in the “real-estate” terminology (see [Ron89]).
Given a Coxeter complex, there are two natural notions of convexity for a subset
of chambers— that of metric convexity, and that of being an intersection of half-
apartments. It is easy to see that these two notions are equivalent; in the case of S,
a convex set is merely a poset, and our question is to try to find a wall which divides
a given convex set P into roughly equal parts. For example, since any collection of
chambers is non-trivially divided by some wall, it follows by descending induction
that there is a collection of size 1 all of whose bounding half-apartments contain more
than half of P; this proves the existence of an optimal o.

3 Centroid Type Arguments

We review the techniques in [KL88]. They start with the observation:

Lemma 3.1 Let C be a convez body in R™ such that the centroid of C has x, coor-
dinate —a, and contains points with z1 coordinates u and —w, with some u, w,a > 0.
Then

|C U {z, 2 0}

m—1
1 1
> min . (3.1
. () oy o




Furthermore the right-hand-side above 13 minimized at U = u, W = w if u > u* and
otherwise at U = u*, W = w, where

wm(w —a(m+ 1))
w+ a(m? —1)

u* =

Proof The proof is a simple argument which shows that the worst case C is a
“double cone,” in the spirit of B.S. Mityagin (see [Mit68]). Calculating the worst
case volume ratio on this basis is easy, and yields equation 3.1, which is essentially
straight from [KL88]. Differentiating in U and W yields the second part, using the
fact that w > (a(m + 1) + u)/m always holds in the above situation.

(|

If a = 0 in the above, the above volume ratio is at least 1/e, which is Mityagin’s
result. So we can expect volume ratios close to this if a is small enough.

The argument in [KL88] is as follows. Fix a realization of S, as in the previous
section. Let o be an optimal total order, and let ¢ be the centroid of the poset P,
where we identify P with its realization. We can assume ¢ € A, (or else we can
apply Mityagin’s result), so consider ¢’s barycentric coordinates with respect to the
vertices of A,. If H;; is a facet of A, with ¢ and j related in P (i.e. either i < j or
¢ > j in the partial ordering), then P itself lies to one side of H;; and it easily follows
that the barycentric distance of ¢ to H;; is at least 1/n. Hence there must exist some
facet, H;;, of A, whose barycentric distance is < 1/n such that ¢, j are unrelated in
P, and in particular A, lies in P where o’ is ¢ followed by the transposition (i, j).
Then we can apply lemma 3.1 withm =n—1,u =w =1,a = 1/(m+1) which gives
a volume ratio > 1/(2e).

Actually, the realization used in [KL88], [KS84], and [Sta81] is different from ours;
namely, they use the cube [0,1]" with A, being the set z,4q) < --- < To(n)- In this
realization, when H;; is a facet of A,, there is never any point in P which is further
away from H;; than one of the vertices of A,. If we use our realizations, then it can
happen that some of P’s points are futher away, and we can get better results. This
can be guarenteed to be the case when P is “sufficiently sparse.”

More precisely, recall from the last section that the distance from a vertex vg
to is proportional to #s. The choice of 8; = 1 would yield a situation like the cube
realization, but varying the 6;’s allows some improvement. Varying the 6;’s involves
slightly different applications of lemma 3.1, namely:

Lemma 3.2 For any positive € there is a positive § = &(€) such that if, in lemma 9.1,
a 1s less than du/m or éw/m in lemma 3.1, then
|IC' U {z, >0} 51

C| T




Proof This is an easy calculation. If we have (m + 1)a/U < é for some small §
(slightly different than the § in the statement of the lemma), then the right-hand-side
of equation 3.1 with U = u is bounded below by

1 "
(1+L+_5+ (J—v‘f)u) 1+

m=1 u

By substituting ¢ = W/u and differentiating, we can see that for any fixed m there is
a 6 making the above expression > (1/e) — € for all positive W. On the other hand,
for large m the above expression is

1 - §) W/iu 1
2 (1‘!‘0(;))6 (+ )6 /ﬂs

and as before we see that this is > (1/e) — e for m sufficiently large and some positive
6 (independent of m). This proves the first case of the lemma. In the second case
we write (m + 1)a — W < —(1 — §)W and proceed similarly, showing that a small
enough § yields the desired lower bound.

O

Returning to the situation at hand, given a poset P fix settings of the 8,’s, consider
any optimal ¢ = (z;,...,2,), and let ¢ be the centroid of P. Being interested in
bounds of the form 1/e,1 — (1/e) or worse, we can assume that ¢ lies in A,. The
vertices of A, are vg, with S; = {z;,...,z;},1 <i<n-—1. Let

n-1

Cc = Z Vs, Us;

=1

be the barycentric representation of ¢ in A,. For each ¢ fix a set T; which contains
exactly one of z;,z;4; and with vy, € P; usually we'll take T; to be the smallest or
largest such set, depending on the choice of 8;’s. T; is any set whose elements are not
< any element not in T; (in the partial order P).

Corollary 3.3 If z; > z;, in P, then

1 ér
. > —
o n—1 93..

If not, then y
1 6r
7% il
aSt — 6(6)n e 1 85' ?

unless p(x; < ziy1) 2 (1/€) — €, for any € with § as in lemma $.2.



Proof In the first case, the facet, H, of A, opposite vg,, bounds P, and yet there is
a point of P, vz, whose distance to H is 67./v/2. ¢’s distance to H must be at least
1/(n — 1) of T}’s distance to H. On the other hand, ¢’s distance to H is precisely

0{3‘93‘/\/5.

The second case follows from lemma 3.2, with similar distance considerations.

O

Corollary 3.4 If
n—1 % |
=1 0s. — 6(e) ’

then there exists an ¢ with p(z; < Ti41) 2> (1/e) —e.

(3.2)

We now seek situations in which we can guarentee equation 3.2 will hold for appro-
priate 6;’s.

Theorem 3.5 For any € > 0 there i3 a C such that if P contains at least Cy/n
mazimal elements, then there exists elements x,y

1 1
SR < < -,
S espE<y) <y
Proof Take 6; = 1/i in the above. If, in the above circumstances, z; is maximal,

then taking T; = {z;} gives 0r,/8s, = |S;|. Hence

for sufficiently large C.

More generally we have

Theorem 3.6 For any € > 0 there is a C such that the following is true. Let P be
a poset on {xy,...,,}, and let a; and b; denote the number of elements respectively
> and < than z; in P. If for every permutation o € S, we have

g} (c:(j)l +5 +bj; 3 (i)) 2 C, (3.3)

then P has elements z,y with (1/e) —e < p(z <y) < 1/2.

Proof Consider the two choices for 6;, 1/i and 1/(n — ). Taking C' to be 2/§(¢), we
find that if equation 3.3 holds then we can apply corollary 3.4 for one of these two
choices of 6;.



O

While the condition in theorem 3.6 requires optimizing over ¢ and is not entirely
explicit, in many cases it is not hard to check that it holds, such as when there exist
C+/n maximal elements. We give some other examples to which theorem 3.6 can be
applied.

Theorem 3.7 For any € > 0 the condition (and therefore conclusion) of theorem 3.6
holds if every chain in P has length < C'(e) + 2log, log n.

Theorem 3.8 For any €,v > 0 there is a pu > 0 such that the condition (and there-
fore conclusion) of theorem 3.6 holds if some vn of P’s elements are each unrelated
to more than (1 — p)n (possibly different) elements of P.

Proof For the latter theorem, each element z; unrelated to more than (1 — y)n has
both a; and b; less than un. Hence it suffices to chose u so that v/u exceeds C(€) of
theorem 3.6. To prove the former, let X; be the number of nodes whose longest chain
from a maximal element is of length i + 1; for example, X; is the set of maximal
elements. Then any two elements of any X; are unrelated. Then

o) & i

Z a;+1 + 1 Z

=1 =1 1—n1+1 i=ni+n2+1 n + n2 + 1

which, within a constant, is
n2  n
nf+—=24+=24.... (3.4)

ny ng

A similar estimate holds for the sum in equation 3.3 involving the b;’s. Now let k
be the length of the longest chain in P. If the condition for theorem 3.6 is not met,
then the expression in equation 3.4 must be bounded by Cn for some constant C.
Then we conclude n; < v/Cn, and then ny < (Cn)®*, and more generally

nj < (Cn)' "%

Now let k be the length of the longest chain in P. Applying the same argument to
the sum in equation 3.3 involving the b;’s we conclude that

k- < (Cn)'™w
for all 5. Hence,
n=ny+ -+ ng < k(Cn) " THIE

and thus (k4 1)/2 > log, logn + C’. Hence if £ < C" 4 2log, logn theorem 3.6 must
apply.

O



4 Concluding Remarks

There are some other possible variants on these techniques. For one thing, we can
vary the fg’s even over S’s of the same size. Of course, it may no longer be true
that the A,’s all have the same volume, but if we are only interested in 1/3,2/3 type
results we might have some room for slight variations of volume.

On some level it seems appealing to phrase the poset question in terms of finding
a wall separating a convex set of chambers in a Coxeter complex into roughly equal
sizes, but it is not clear if this is of any use. It is easy to see that any convex set
of a general Coxeter complex on k generators has a wall separating it into sets of
fractional sizes between 1/(k + 1),k/(k + 1), and that this is the best one can say.
From this point of view it is clear that for the poset problem one is making use of
the special fact that most of the generators of S, commute.
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