VERIFICATION AND SENSITIVITY ANALYSIS OF MINIMUM
SPANNING TREES IN LINEAR TIME

Brandon Dixon
Monika Rauch
Robert E. Tarjan

CS-TR-289-90

July 1990

Verification and Sensitivity Analysis of Minimum

Spanning Trees in Linear Time

Brandon Dixon!?

Monika Rauch!?
Robert E. Tarjan!*®

July 27, 1990

Abstract

Komlés has devised a way to use a linear number of binary comparisons to test
whether a given spanning tree of a graph with edge costs is a minimum spanning tree.
The total computational work required by his method is much larger than linear, how-
ever. We describe a linear-time algorithm for verifying a minimum spanning tree. Qur
algorithm combines the result of Komlés with a preprocessing and table look-up method
for small subproblems and with a previously known almost-linear-time algorithm. Ad-
ditionally, we present an optimal deterministic algorithm and a linear-time randomized

algorithm for sensitivity analysis of minimum spanning trees.

! Department of Computer Science, Princeton University, Princeton, New Jersey 08544.

2Research partially supported by a National Science Foundation Graduate Fellowship.

3Research supported by the German Fellowship Foundation, Studienstiftung des deutschen Volkes.

ANEC Research Institute, Princeton, New Jersey 08540

5Research at Princeton University partially supported by DIMACS (Center for Discrete Mathematics and

Theoretical Computer Science), a National Science Foundation Science and Technology Center, grant NSF-
STCB88-09648, and the Office of Naval Research, contract N00014-87-K-0467.

1. Introduction

Suppose we wish to solve some problem for which we know in advance the size of the
input data, using an algorithm from some well-defined class of algorithms. For example,
consider sorting n numbers, when n is fixed in advance, using a binary comparison
tree. Given a sufficient amount of preprocessing time and storage space, we can in a
preprocessing step compute a minimum-depth comparison tree, store it explicitly, and
then solve any instance of the sorting problem by using the precomputed comparison
tree.

This technique is of course generally useless because it is prohibitively expensive
in preprocessing time and storage space, both being at least exponential in n. There
are situations in which this idea can be used to advantage, however. This is the case in
problems susceptible to very efficient divide-and-conquer. The idea is to split the problem
to be solved into subproblems, which are categorized into classes. If the subproblems are
small enough, they can be solved efficiently as follows: An optimal algorithm for each
class is precomputed and stored in a look-up table, and each instance of a subproblem is
solved by looking up and running the algorithm for its class. For this technique to pay
off, solving all the subproblems must reduce the original problem sufficiently that it can
be solved quickly with respect to the size of the original problem by using a non-optimal
algorithm.

This paper presents an application of this general technique to two problems con-
cerning minimum spanning trees. This approach was first proposed explicitly by Lar-
more [12], who used it to solve a convex matrix searching problem. Related techniques
were used by Gabow and Tarjan [6] to solve a disjoint set union problem and by Harel
and Tarjan [9] to find nearest common ancestors in a tree.

We present an algorithm that verifies a minimum spanning tree in an n-vertex, m-
edge graph in O(m) time. We also give algorithms performing sensitivity analysis of
minimum spanning trees in worst-case time minimum to within a constant factor and
in linear expected time. QOur computer model is a unit-cost random-access machine
with word size O(logn) bits. The verification algorithm uses the comparison bound
of Komlés [11] for the subproblems and Tarjan’s O(ma(m,n)) algorithm [14] for the
reduced problem. For sensitivity analysis we solve the subproblems using a result of
Goddard, King, and Schulman [7] in the randomized case and enumeration of all possible
algorithms in the deterministic case. In both cases Tarjan’s O(ma(m,n))-time sensitivity
analysis algorithm [15] processes the reduced problem. We describe the algorithms in

Sections 2 and 3. Section 4 contains concluding remarks.

2

2. Verification of Minimum Spanning Trees

Let G = (V, E) be a connected, undirected graph with vertex set V' of size n and edge set
E of size m. Suppose every edge {v,w} € E has a real-valued cost ¢(v,w). A minimum
spanning tree of G is a spanning tree whose total edge cost is minimum. The minimum
spanning tree verification problem is that of determining whether a specific spanning
tree T is a minimum spanning tree. Since G is connected, m > n — 1. To simplify time
bounds, we assume that m > n; otherwise, G itself is a tree.

Several results concerning the minimum spanning tree verification problem are known.
There are many efficient algorithms for finding a minimum spanning tree, given only
the graph G and the edge costs; see the survey paper by Graham and Hell [8] or
the monograph by Tarjan [16, Chapter 6]. The fastest known algorithm for finding
a minimum spanning tree is that of Gabow, et al. [5], which runs in O(mlogfB(m,n))
time, where #(m,n) = min{i|log/’n < m/n}, and log!) n is defined recursively by
log(o) n=n, log““’ n = log log(i) n. The verification problem was considered by Tar-
jan [14] and subsequently by Komlés [11]. Tarjan proposed a verification algorithm
running in O(ma(m,n)) time, where a is a functional inverse of Ackermann’s func-
tion. Komlés showed that a minimum spanning tree can be verified in O(m) binary
comparisons between edge costs. Unfortunately, his method requires nonlinear time to
determine which comparisons to make. Here we describe an algorithm that verifies a
minimum spanning tree in O(m) time.

Let T be a spanning tree whose minimality we wish to test. For any pair of vertices
v,w, we denote by T(v,w) the path in T from v to w. T is minimum if and only if,
for every nontree edge {v,w}, ¢(v,w) > max{c(z,y)|{z,y} € T(v,w)}. In order to
efficiently verify this condition, we replace each nontree edge {v, w} by a set of up to six
replacement edges, each of cost ¢(v, w). This replacement leaves invariant the minimality
of T. Edge replacement is a two-stage process. To begin the first stage, we choose an
arbitrary vertex r and root T at r. We denote by p(v) the parent of vertex v in the rooted
version of T'. For each nontree edge {v,w}, we compute the nearest common ancestor
of v and win T, say u. If v and w are unrelated in T (i.e., u ¢ {v,w}), we replace
{v,w} by the pair of edges {u,v}, {u,w}, each with cost ¢(v,w). Such replacement
leaves invariant the minimality of T, at most doubles the number of nontree edges, and
results in a graph such that every nontree edge joins two related vertices in T. The time
to perform this replacement is O(m) using either of the known linear-time algorithms
for computing nearest common ancestors [9],[13].

We can now assume that each nontree edge {u,v} is such that vertex u is an ancestor

3

of vertex v. In the second stage, we replace each such edge by a set of up to three
edges. In order to determine the edge replacements, we partition T into a collection of
edge-disjoint subtrees. Let g > 1 be an integer parameter, whose value we shall specify

later. The subtrees have two properties:
(i) there are at most (n — 1)/g + 1 subtrees; and

(ii) deletion from any subtree of its root and all edges incident to the root leaves
a collection of smaller subtrees, called microtrees, each containing at most g

vertices.

We compute the collection of subtrees in O(n) time, as follows. We process all the
vertices except r in postorder [16]. (This order guarantees that a parent is processed
after all of its children.) When processing a vertex v, we compute an integer value s(v)
for it; and, in addition, we may mark it as a subtree root. The computed value of s(v) is
the number of descendants of v in T (including v itself) that are in the same microtree

as v. Initially all vertices are unmarked. The vertex processing step is as follows:

process(v): Compute h = 1+ Y {s(w)|w is a child of v}. If h < g then let s(v) = h;

otherwise, mark v as a subtree root and let s(v) = 1.

Once the vertex processing is completed we mark r, the root of T', as a subtree root.
Condition (ii) is immediate from the definition of the vertex processing. Condition (i)
is also immediate: each subtree, except possibly the one rooted at r, contains more
than g vertices and hence contains at least g edges, which means that there are at most
(n—1)/g + 1 subtrees.

Let T' be the tree whose vertices are the marked vertices of T', with v the parent of
w in T' if v is the deepest marked proper ancestor of w in T (i.e., the first marked vertex
encountered on the path from w to r in T'). We call T’ the macrotree. By (i), T' has
O(n/g) vertices. Tree T' can be computed in O(n) time by doing a depth-first traversal
of T and maintaining the set of marked proper ancestors of the currently visited vertex
on a stack; when the search visits a vertex v, the deepest marked proper ancestor of v,
which we denote by p/(v), is on top of the stack. (We adopt the convention that p'(r) is
undefined.)

We use the macrotree to define the replacement edges for each nontree edge. Let
{u, v} be such a nontree edge, with u an ancestor of v. Let r; = p/(u) if u is unmarked
or u if u is marked. Similarly, let r3 = p’(v) if v is unmarked or v if v is marked. If

ry = r3, we do not replace {u,v}. If r; # r3, let r; be the child of r; in 7’ that is an

ancestor of r3; replace {u,v} by {u,r2}, {r2,r3}, {rs,v}, deleting any of these edges
that is a loop (an edge of the form {z,z} for some z). Each new edge has a cost of
¢(u,v). This replacement leaves invariant the minimality of T and at most triples the
number of nontree edges.

We can compute the replacement edges for every nontree edge in a total of O(m) time,
as follows. A depth-first traversal of T as described above allows us to compute p'(v) for
each vertex v # r. This gives r; and r3 in the edge replacement construction. It remains
to compute the ry-vertices in the edge replacement construction. The computation of
these vertices requires answering O(m) queries of the following form on T”: given a vertex
z and another vertex y that is a proper ancestor of z, determine the child of y that is an
ancestor of z. These queries can be answered in O(m) time by performing a depth-first
traversal of 7’, maintaining a stack of the ancestors of the currently visited vertex, and
answering the query for a pair y, 2 when visiting z during the search, by reporting as the
answer to the query the vertex just above y on the stack.

Having computed all the replacement edges, we must test, for each replacement edge
{w,z}, whether ¢(w,z) > max{c(y,2)|{y,z} € T(w,z)}. In the rest of this section we
describe how to perform this test for all replacement edges.

For each vertex v # r, we compute a value high(v) equal to the maximum cost of
an edge on the path T'(p/(v),v). These values can be computed for all vertices by doing
a separate depth-first traversal of each of the subtrees of T' that were determined by
the partitioning process described previously. During the traversal of the subtree rooted
at a vertex u, we maintain the path of edges from u to the currently visited vertex as
a stack with heap order [16]; the values that are heap-ordered are the edge costs, and
the high-values are computed using find-maz operations. This data structure requires
O(1) amortized time per push, pop, or find-maz operation [16]. Hence the total time
to compute all high-values is O(n). The high-values suffice to perform the required test
for each of the {rs,v}-replacement edges, in O(1) time per edge: for such an edge,
high(v) = max{e(y, 2)| {y, z} € T(r3,v)}.

We deal with the {ry, r3}-replacement edges by adding all of these edges to T” to form
a graph G’, giving each edge {p'(v),v} in T' a cost ¢(p'(v),v) = high(v), and verifying
that 7’ is a minimum spanning tree in G’. To verify the minimality of 7/ we use the
algorithm of Tarjan [14], which runs in O(ma(m,n’)) time, where n’ is the number of
vertices in T". If g = Q(log") n) for any fixed positive integer i, then n’ = O(n/log!" n),
and a(m,n’) = O(1) [16]. Thus verifying the minimality of T” takes O(m) time.

The remaining edges that must be tested are the {u,r;}-replacement edges. Each

5

such edge has u and r; in the same microtree. Let Ty,T3,..., T be the microtrees. For
1 < i<k, we form a graph G; by adding each {u,r;}-replacement edge to the tree
T; such that u and rp are in T;. Together the graphs G1,G?2,...,Gk contain n vertices
and O(m) edges. By (ii), each G; contains at most g vertices. We complete the task of
verifying the minimality of T’ by verifying that T; is a minimum spanning tree of Gj, for
each 7 in the range 1 <i < k.

To verify the minimality of the microtrees, we use a preprocessing and table look-
up technique. For each possible connected graph with no more than g vertices and
specified spanning tree, we construct a short integer encoding by numbering the vertices
consecutively from 1, encoding each edge by the pair of numbers of its end vertices,
and concatenating the encodings of the edges, listing the spanning tree edges first. (It
does not matter that this encoding is not unique.) The encoding for a graph-tree pair
contains at most [logg]g?/2 bits, since there are fewer than g?/2 edges. The total
number of possible code strings (not all of which are legal encodings of graphs) is not
more than 2M°8919°/2, We will choose g such that each graph encoding fits into one
computer word and such that there are at most \/n possible code strings. Choosing
g < e3(logn)'/? for a suitably small value of ¢; more than suffices for this purpose.

Consider a connected graph with at most g vertices and e < g?/2 edges and having a
specified spanning tree T*. The result of Komlés [11] implies that there is a decision tree
D whose nodes represent binary comparisons of edge costs that will verify the minimality
of T* and has a depth of at most ¢, e, for some sufficiently large ¢;. The number of nodes
in D is at most 2°***!, Furthermore, an inspection of the construction of Komlés shows
that D can easily be constructed in O(g?) time per node, for a total of 0(g?2%9"/2) time.

Choosing g < ey(logn)!/3 for a suitably small value of ¢, guarantees that the con-
struction time for one decision tree is O(y/n), and the total time required to construct
decision trees for all possible graphs with at most g vertices is O(n). Furthermore, the
space needed to store all the decision trees is O(n).

We construct one decision tree for each possible graph with at most g vertices and then
build a table that maps code strings for graphs to the corresponding decision trees. Then
we use the table to verify the minimality of the microtrees T; in the respective graphs G;,
by computing a code string for each G;, T; pair, accessing the decision tree corresponding
to the code string, and following the path through the decision tree determined by the
edge costs of G;. The total time to perform all the verifications is O(m). This completes
the verification of T'.

The only constraints imposed on the choice of g in this construction are g = Q(log'") n)

6

for some fixed positive integer i and g < ea(log n)!/® for ¢3 = min{co,cz}. Thus it suffices

to choose g = c3(log n)'/3.

3. Sensitivity Analysis of Minimum Spanning Trees

An extension of the minimum spanning tree verification problem is the sensitivity anal-
ysis problem. Let G be an undirected graph with edge costs and let T' be a minimum
spanning tree of G. The sensitivity analysis problem is to compute, for each edge {v, w}
of G, by how much ¢(v,w) can change without affecting the minimality of G. Tarjan [15]
has extended his verification algorithm to an algorithm that solves the sensitivity anal-
ysis problem in O(ma(m,n)) time. For the special case of planar graphs, Booth and
Westbrook [2] have given an algorithm running in O(m) time. We shall describe a ran-
domized O(m)-time algorithm and a deterministic algorithm that runs in time minimum
to within a constant factor, although all that we can say for sure about the running time
of the latter algorithm is that it is O(ma(m,n)) and Q(m). Our technique is the same
as that of Section 2; namely, we reduce the original problem in O(m) time to a collection
of subproblems, each of which is small enough to solve by using a decision tree selected
from a precomputed set of such trees.

Let {v,w} be a nontree edge. Let a(v,w) = max{c(z,y)|{z,y} € T(v,w)}. Then T
remains minimum until the edge cost of {v,w} decreases by more than ¢(v, w) — a(v, w).
Similarly, let {v,w} be a tree edge. Let b(v,w) = min {c(:r,y) |{z,y} is a non-tree edge
such that {v,w} € T(x,y)}. Then T remains minimum until the edge cost of {v, w}
increases by more than b(v, w) — ¢(v, w). (See [15).)

The value of a(v, w) for every nontree edge {v,w} can be computed in O(m) time by
a simple extension of the verification algorithm in Section 2: instead of verifying that
¢(v,w) < a(v,w), we compute a(v,w) explicitly.

Computing b(v, w) for every tree edge {v, w} is harder. We first replace the nontree
edges exactly as in Section 2: each nontree edge {z,y} is replaced by a set of up to six
nontree edges, each of cost equal to {z,y}, in a way that preserves b(v,w) for every tree
edge {v,w}. In the process of performing this replacement, we choose a root r of T
and compute subtree roots, subtrees, and microtrees exactly as in Section 2. After the
replacement, each nontree edge {z,y} is such that z and y are related in T, say z is an

ancestor of y. In addition, such an edge is of exactly one of three types:

Type 1: r is a subtree root, y is not a subtree root, and z = p/(y), where p’ is defined

as in Section 2: p'(y) is the deepest ancestor of y that is a subtree root.

Type 2: z and y are subtree roots.
Type 3: z and y are in the same microtree.

We compute each value b(v,w) using the equation
b(v,w) = min{b, (v, w), b2(v, w), b3(v,w)},

where b; for i = 1,2,3 is defined exactly like b(v, w) but with the minimum taken only
over nontree edges of type i.

To compute the b;-values, we begin by computing, for each vertex v # r, the value
min;(v) = min {c(z,y) | {z,y} is a type-1 edge such that z = p/(y) is a proper ancestor
of v and v is an ancestor of y}. The min;-values can be computed in O(m) time by vis-

iting the vertices of T in postorder and applying the recurrence

if v is a subtree root;

min(v) = { 20

min ({c(:r, v)|{z,v} is a type-1 edge} if v is not a subtree root.

U {min(w)| p(w) = v})
Then, for every vertex v # r, bi(p(v),v) = miny(v).

We compute the by-values in three steps. First, we form the graph G’ as in Section 2
by adding to the macrotree T' each type-2 edge. Second, we compute, for each tree
edge {v,w} of the macrotree T, the value ¥'(v,w) = min {c(m,y) | {z,y} is a type-2 edge
such that (v,w) € T’(a:,y)}. All the b’-values can be computed in O(ma(m,n’)) time
by applying the sensitivity analysis algorithm of Tarjan [15] to the graph G’ and the
tree T'. Choosing g (the size parameter for the macrotrees) to be Q(log(!) n) for any
fixed positive integer i results in an O(m) time bound for this computation. Third, we
compute, for each vertex v # r in T, the value miny(v) = min {b’(p’(y),y) [{p'(y),y} is
an edge of T” such that y is a descendant of v and p’(y) is a proper ancestor of v}. The
miny-values can be computed in O(n) time by visiting the vertices of T in postorder and

applying the recurrence

. { b'(p'(v),v) if v is a subtree root and
ming(v) =

min{minz(w) | p(w) = v} if v is not a subtree root.

Then, for every vertex v # r, ba(p(v), v) = miny(v).

All that remains is to compute the bz-values. Since the definition of a type-3 edge
{z,y} implies that z and y are in the same microtree, we can compute the bs-values by
adding the type-3 edges to the appropriate microtrees to form graphs Gy,G3,...,Gk as

in Section 2 and then process each G;,T; pair separately. We again use preprocessing to

8

construct a fast decision-tree algorithm for each possible graph-tree pair and then use
table lookup to select the correct algorithm for each actual pair G;,T;.

It is only in the construction of the decision trees that the randomized and deter-
ministic algorithms differ. We first consider the deterministic case. A decision tree for
the sensitivity analysis problem consists of a binary tree, each internal node of which
specifies a comparison between the costs of two edges, and each leaf z of which provides
a mapping f; from the tree edges of the problem graph to the nontree edges, such that
the bs-value of any edge e is c(fz(e)), assuming that the edge costs are consistent with
the outcome of the comparisions leading to leaf z. The algorithm of Tarjan [15] implies
the existence of an O(ma(m,n))-depth decision tree for the sensitivity analysis of an n-
vertex, m-edge graph and given spanning tree. Since a(g?,g) = O(1) [16], these decision
trees have depth O(g?).

For each possible connected graph with no more than g vertices and specified spanning
tree, we construct a minimum-depth decision tree for sensitivity analysis by brute-force
enumeration. We restrict our attention to complete binary trees, enumerating all possible
decision trees of each possible depth in increasing order by depth until finding a correct
one. A complete binary decision tree of depth d has 2% — 1 internal nodes and 27 leaves.
Each internal node corresponds to one of the less than g* possible binary comparisions
of edge costs; each leaf can correspond to one of the less than g?9 possible mappings of
the tree edges to the nontree edges. Thus there are less than (g4)?'~1(¢%)?* < g9***
possible decision trees of depth d, assuming g > 2. The total number of trees that must
be considered before encountering a correct one is O(g“‘”z) for some suitably large
constant c3. This is 0(2293). The space needed to store a decision tree of depth d is
0(2%glogg) = 0(29°), if d = O(g?). To determine whether a particular decision tree
correctly solves the sensitivity analysis problem, it suffices to test that the correct answer
is obtained for each of the at most (g?)! = O(29") possible permutations of edge costs.
Testing one permutation requires O(g?) time. The time to test a particular decision
tree is thus 0(92293) = 0(29'), and the time to find a minimum-depth decision tree
is 0(29‘ 2293) = 0(229‘). If we choose g = c4(loglogn)!/4 for some sufficiently small
constant ¢4, then the time to find minimum-depth decision trees for all possible graph-
tree pairs is O(n), as is the space needed to store them in a table.

We compute the bz-values for all tree edges in a microtree T; by indexing the lookup
table with the code string of the pair G;,T; to get a decision tree and evaluating the
decision tree with the given edge costs.

The total time needed for sensitivity analysis is O(m) plus time proportional to the

9

sum of the minimum numbers of comparisons needed to perform sensitivity analysis for
all of the Gy, T; pairs. Performing sensitivity analysis for all of the G;, T; pairs is at
most a constant factor more time-consuming than performing sensitivity analysis for a
worst-case n-vertex, m-edge graph. Thus the sensitivity analysis algorithm runs in time
minimum to within a constant factor, assuming that only binary comparisons between
edge costs are used as tests.

In the randomized case, we replace the deterministic decision trees used for sensitivity
analysis of the microtrees by randomized decision trees. In a randomized decision tree,
each internal node corresponds either to a comparison of two edge costs or to a test of a
distinct random bit. As in the deterministic case, we require every path of the decision
tree to give the correct answer, but as a measure of the complexity of the tree we use the
weighted average depth of a leaf, rather than the worst-case depth, taking the weight of
a leaf to be 1/2, where i is the number of tests of random bits along the path from the
root to the leaf.

Goddard, King and Shulman (7] have found a randomized algorithm to compute the
maxima of n subsets of an ordered universe of size n in O(n) comparisions on the average.
Their result, together with the observation of King [10] that their algorithm needs only
O(n) random bits on the average, implies the existence of a randomized decision tree of
average depth O(m) for the sensitivity analysis problem. Such a decision tree can be
converted into a decision tree of O(m) average depth and O(mlogm) worst-case depth
by trimming the decision tree at depth mlogm and replacing each subtree that was cut
out by a decision tree that merely sorts by cost the edges of the problem graph. A brute-
force enumeration can be used to find minimum-average-depth randomized decision trees
for all possible microtree problems. The details mimic the deterministic case, so we omit
them. The Goddard-King-Shulman result then implies that the resulting randomized
sensitivity analysis algorithm runs in O(m) expected time, for a suitable choice of the

microtree size bound g.

4. Concluding Remarks

We have illustrated by means of two related examples a general technique of speeding
up divide-and-conquer algorithms by a preprocessing and table lookup technique. A
curious phenomenon is that the technique can give algorithms running in time minimum
to within a constant factor, but for which we can not presently offer a tight asymptotic
time analysis. This is the case for our deterministic minimum spanning tree sensitiv-

ity analysis algorithm and for Larmore’s convex matrix searching algorithm[12]; both

10

have running times somewhere between linear and an inverse Ackerman function times
linear. Providing tight analysis of these algorithms amounts to bounding the number
of comparisons needed to solve the corresponding problems. Obtaining tight bounds
remains open. A related question is whether the randomized maxima-finding algorithm
of Goddard, King, and Shulman can be made deterministic.

The technique we have illustrated is not limited to comparison-based problems. We
can allow arithmetic operations in the decision trees used to solve the subproblems. Test-
ing the correctness of such a decision tree amounts to testing the validity of a first-order
sentence about the real numbers. Such sentences can be tested in double-exponential
time[1], which suffices for the use of the method: we merely reduce the size of the sub-
problems to double-logarithmic, triple-logarithmic, or further, as needed. As an example,
the technique can be applied to the O(nlog” n)-time algorithm of Chazelle[3] for trian-
gulating a simple n-sided polygon, to produce an algorithm running in time minimum
to within a constant factor. The bound for this algorithm is in fact O(n), because of the
even more recent result of Chazelle[4] giving an explicitly linear-time algorithm. Further

applications remain to be discovered.

References
[1] M. Ben-Or, D. Kozen, and J. Reif, The Complexity of Elementary Algebra and
Geometry, J. Comput. System Sci. 32(2) (1986) pp. 251-264.

[2] H. Booth and J. Westbrook, Linear Algorithms for Analysis of Minimum Span-
ning and Shortest Path Trees in Planar Graphs, Yale University, Department of
Computer Science, TR-768, Feb. 1990.

[3] B. Chazelle, Efficient Polygon Triangulation, Princeton University, CS-TR-249-90,
Feb. 1990.

[4] B. Chazelle, Efficient Polygon Triangulation to Proc. 31" Annual IEEE Sympos.
on Foundation of Comput. Sci., 1990, to appear.

[5] H.N. Gabow, Z. Galil, T. Spencer, and R.E. Tarjan, Efficient Algorithms for Finding
Minimum Spanning Trees in Undirected and Directed Graphs, Combinatorica 6(2)
(1986) pp. 109-122.

[6] H.N. Gabow and R.E. Tarjan, A Linear-Time Algorithm for a Special Case of
Disjoint Set Union, J. Comput. System Sci. 30(2) (1985) pp. 209-221.

[7] W. Goddard, V. King, and L. Schulman, Optimal Randomized Algorithms for

11

Local Sorting and Set-Maxima, in Proc. 22" Annual ACM Sympos. on Theory of
Computing, 1990, pp. 45-53.

[8] R.L. Graham and P. Hell, On the History of the Minimum Spanning Tree Problem,
Ann. Hist. Comput. T(1) (1985) pp. 43-47.

[9] D. Harel and R.E. Tarjan, Fast Algorithms for Finding Nearest Common Ancestors,
SIAM J. Comput. 13(2) (1984) pp. 338-355.

[10] V. King, personal communication.

[11] J. Komlés, Linear Verification for Spanning Trees, Combinatorica 6 (1985) pp. 57—
65.
[12] L.L. Larmore, An Optimal Algorithm with Unknown Time Complexity for Convex

Matrix Searching, Information Processing Letters, to appear.

[13] B. Schieber and U. Vishkin, On Finding Lowest Common Ancestors: Simplification
and Parallelization, SIAM J. Comput. 17(6) (1988) pp. 1253-1262.

[14] R.E. Tarjan, Applications of Path Compressions on Balanced Trees, J. Assoc.
Comput. Mach. 26(4) (1979) pp. 690-715.

[15] R.E. Tarjan, Sensitivity Analysis of Minimum Spanning Trees and Shortest Path
Trees, Information Processing Letters 14(1) (1982) pp. 30-33. Corrigendum, Ibid
23(4) (1986), p.219.

[16] R.E. Tarjan, Data Structures and Network Algorithms, Society for Industrial and
Applied Mathematics, Philadelphia, PA, 1983.

12

