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Abstract

In this dissertation, we study the worst-case performance bounds of
various algorithms of scheduling problem and bin packing problem.

For the scheduling problem with m parallel machines and precedence
constraints, let w be the total elapsed time of the execution of all tasks in
the optimal non-preemptive schedule, and let w' be the total elapsed time

in the optimal preemptive schedule. C. L. Liu conjectured twenty years

ago that the ratio % is no greater than %’&1- and this bound is also the

best possible. We will prove the conjecture for a number of cases, such as
when the precedence constraint is empty, or when the task system satisfies
certain conditions; for other cases the previous result & < 2m=1 given by

R. R. Muntz will be substantially improved.

The bin packing, a special scheduling problem, is to pa;ck a list of reals in
(0,1] into unit-capacity bins using the minimum number of bins. Let R[A] be
the limiting worst-case value for the ratio A(L)/L* as L* — oo, where A(L)
denotes the number of bins used when the approximation algorithm A is
applied to the list L, and L* denotes the minimum number of bins needed to
pack L. For Next-k-Fit (NkF') and Best-k-Fit (BkF'), which are linear-time
approximation algorithms for bin packing, it was known that both R[NkF]

and R[BkF)] are in the interval [1.7+ 2;,2]. In this dissertation, two precise

bounds R[NkF] = 1.7+ gyri=yy and R[BkF] = 1.7+ 51 are proved.
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Introduction

1.1 Deterministic Scheduling

The extensive study of deterministic scheduling problems since early
1950’s is mainly motivated by questions that arise in production planning,
computer system controlling, or even everyday activities such as scheduling
an efficient working day in a company, planning examination period in a uni-
versity and so on. As pointed out by E. L. Lawler et al in [23], scheduling

is about all situations in which scarce resources have to be allocated to tasks

or jobs over time. By deterministic we mean that all information that de-
fines a problem instance is known with certainty in advance. Deterministic

scheduling is in fact part of combinatorial optimization.

In a computer system, we have processors or machines which can execute
tasks in a parallel manner, and tasks or jobs which need to be executed on
the processors. At any time, a processor can perform at most one task, and
a task can be worked on by at most one processor. Based on a number of
prespecified requirements concerning the processor environment and the task
characteristics, we wish to find an efficient algorithm for sequencing the tasks
on the processors to optimize or tend to optimize some desired performance
measure. We call a schedule optimal if it minimizes a given performance
measure. A scheduling model can be described by its resources, task systems,

sequencing constraints, and performance measures [5).
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Resources

Resources in a computer system usually include processors. In the sim-
plest case, the resources consist of a set of m processors P = {Py, P,,..., Py},
where the processors may be identical, or identical in functional capability
but different in speed, or different in both function and speed, depending on
different scheduling problems. In more complicated cases, we may also have
additional resources R = {R;, Ry, ..., R,} involved in the scheduling, with g;
denoting the amount of resource of type R; available in the scheduling model,
fori =1,2,...,s. For example, such additional resources may represent pri-
mary or secondary memory, input/output devices and library routines in a

computer system.
Task Systems
In the task system, there is a set of tasks denoted as T' = {11, T3, ..., Tn}.
Let p; be the processing time for task T}, for j = 1,2,...,n, then the total
processing time X of the task system is defined to be E?=1 pj. We also let
partial order < represent the precedence constraints among the tasks. By
T; < T; we mean that task T; must be completed before task T can be
started, and T; is called the predecessor of T;, and T} the successor of T;.
When additional resources R = {R;, R»,...,R,} also have to be consid-
ered, we use R;(Tj) to represent the amount of resource of type R; required
throughout the execution of T;. We always assume R;(T;) < ¢; for all i’s
and j’s. In some cases, each task T; may also have a due date d;, which de-

notes the deadline when T; must be finished, a release date r;, which denotes
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the time when T} is available for execution, or a weight w;, which can be

interpreted as the deferral cost.

A task system can be represented by a directed acyclic graph (DAG) with
no (redundant) transitive arcs. For each task T}, we create a node labeled
T;/pi, where p; is the processing time of T;. There is an edge from T; to T}
if and only if T; < T is in the partial order. The longest path C, which
is also called chain, is defined to be the directed path in the DAG with the
maximum sum of the processing time of all the tasks on the path. Suppose
C=1Ty — T — --- = Tii, then it is not hard to see that Tj; < T <
-+« =< Tk, and that the length of the chain |C| = ZLI pij- Many interesting
results have been obtained for some special precedence constraints, such as
tree-like partial order and empty partial order. Figure 1.1 shows the DAG

representation of a task system.

T, 1 Ty /2

T4  Tyl3 Ts/3

Tgd3
Figure 1.1 A task system.
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Sequencing Constraints

By “sequencing constraints” we mean certain restrictions that scheduling
algorithms must follow. There are mainly two such restrictions. The first one
is based on whether preemption of a task is allowed. In the non-preemptive
scheduling, once a task has begun execution on a processor, it will keep exe-
cuting until it finishes completely; while in the preemptive scheduling, a task
can be interrupted during its execution, and resumed at a later time from the
point at which it was last preempted. The second one is called list schedul-
ing, which is based on an ordered priority list of tasks L = (T};,Ti2,. .., Tin)
given in advance. Whenever a processor becomes idle, we check the list to
find out the first unexecuted executable task in it, and the idle processor will
be allocated to that task. By executable we mean that all the predecessors of
the task have been finished and that all the required resources are available
at that moment. In list scheduling, preemptions are not considered; thus list
schedules form a subset of non-preemptive schedules.

The simplest way of graphically specifying a schedule is to use a timing
diagram, also known as the Gantt Chart, which has, for each processor, a

time axis with intervals marked off and labeled with the name of the task

being processed in that interval. Symbol ¢ or shaded area is used to denote
the idle period. Notice that in a schedule a processor might be left idle

either because there are no executable tasks at that time or because it is an

intentional choice. It is never necessary nor beneficial in a schedule to leave
all processors idle at the same time. Figure 1.2 shows the Gantt Chart’s of

the preemtive, non-preemptive and list schedulings of the task system given
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in Figure 1.1. (The Gantt Chart is formally discussed in [4].)

t: 0 2 5 8
P, | T3 T T, '7//
P [T T Ts Ts ///
1
(@
t: 0 2 5 9
Py T3 Ty T, 7/
7> w U
1
(b)
t: 0 2 5 8 11
P, Ty T, Ts Te 7/
P, | T T 7/////////////////
1
(©)

Figure 1.2 For the task system in Figure 1.1 and two identical processors,
(a) the preemptive scheduling; (b) the non-preemptive scheduling; (c) the list
scheduling for L=(T; ,T,,T5,T,,Ts,Tg).

Performance Measures

For each task T} in the system, let C; be its completion time in a schedule.
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Suppose that C 4z is the completion time of the task that completes last, i.e.,
Cimaez = maxi<j<n{Cj}. Obviously, Cma. is in fact the total elapsed time for
the execution of all the tasks in the system. Most of the time, we want to
find a schedule which minimizes Cp,qz. Such a schedule is called the optimal
schedule. There are other performance measures of interest. For instance,
let d; be T;’s due date or deadline, then L; = Cj — d; is called the lateness,
TA; = max{0,L;} is called the tardiness, and W; = C; — p; is called the
waiting time. In some scheduling problems, we may want to minimize the

maximum lateness, tardiness or waiting time.

" The above four parameters: resources, task systems, sequencing con-
straints and performance measures, are usually needed to define a scheduling
problem. Different choices of the parameters will yield different types of the
scheduling problems. For instance, a lot of research have been done toward
certain special versions of scheduling problems, such as single-processor envi-
ronment [3][21], tree-like precedence constraints [13][26], and unit-processing-
time tasks [27]. Even though we have employed many restrictions on these pa-
rameters, we still have a tremendous amount of problem types of scheduling.
MSPCLASS is a program written by B. J. Lageweg et al [19][20], which col-
lects 4, 536 scheduling problems, and records their complexity results. Among
these problems, 416 are known to be solvable in polynomial time, 3,817 are
proven to be NP-complete, and 303 are still open. That is why people believe
that the field of scheduling problems is still rich and worth exploring even

after so many years of study.



1.2 Bin Packing

~ Given a list of positive real numbers and a sequence of bins of capacity
no less than any number in the list, the bin packing problem is to pack all the
numbers in the list into the bins such that no bin contains a sum exceeding
its capacity and that the number of bins used is minimized. Efficient algo-
rithms for obtaining optimal or near-optimal packings have obvious practical

applications—for example, table formatting, file allocation and so on.

We can see from the following analysis that bin packing is actually a spe-
cial version of scheduling. When studying scheduling problems, we sometime
consider those in which due dates must be respected. In theses problems,
we arrange the schedule such that every task T; is completed before its due
date dj, i.e.,, C; < dj, for j = 1,2,...,n. The due dates are also called
deadlines. One such problem to which we pay considerable attention assumes
d; = d, for j = 1,2,...,n; the precedence constraint < is empty, i.e., the
tasks are independent of each other; in addition processors are identical and
no additional resources are involved. The goal is to minimize the number of

processors required to meet the common deadline d.

We should be aware that this problem is not a scheduling problem be-
cause the optimization goal is the number of processors instead of time. How-
ever, this problem is equivalent to the well-known bin packing problem which
packs a sequence of numbers p;, pa, ..., pn into the minimum number of bins
of capacity d such that no bin contains a total exceeding d. Figure 1.3 (a)

and (b) show such equivalence.



Ty T,
T8 T6
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............ .
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T,

©

T=(T,.T,,T5.T,.T5,T¢.T;,Tg . Tg)
{pj]={13, 15,9,6,6,8,5; 3,2}

bin capacity is 18

minimize the number of bins

T={T,.T,.T;3,T4,T5,T¢.T7,Tg Ty}
{pj}={13, 15,9,6,6,8,6, 3,2}
independent, no additional resourses
minimize the number of processors

T={T1 ,T2 ,TS ,T4 ,Ts 'T6 'T7 .Ts |T9}
pj=1, for j=1,2,...,n

no precedence constraints
{R(Tj)}=[13v 15! 9! 6, 69 8a 6' 3! 2}

number of resource R is 18
minimize Cmax

Figure 1.3 (a) Packing {T;,T,,..,T,} or precisely {p,,p,,...,p,} into the
minimum number of bins of capacity 18; (b) Scheduling {T;,T,,...,T,} to

meet deadline d=18 on the minimum numberof processors; (c) Scheduling
{T,,T,,..,T,} with single-resource requirement to minimize schedule length.



Let us consider the following scheduling problem. Suppose we have m
identical and parallel processors P = {P,, Ps,..., Pnh}, and n unit-processing-
time tasks T = {11, T3,...,Tn} with p; = 1, for = 1,2,...,n. Assume that
m > n, and that the precedence constraint among the tasks < is empty. And
also, we have one additional resource type R that needs to be considered
in the scheduling. Suppose the total number of resource R is d, and task
T; needs R(T;) of resource R during its execution for j = 1,2,...,n. The
optimization goal is to minimize the scheduling length Cpaz.

Because m > n, we do not have to concern about the processor alloca-
tion during the scheduling. All we need to take care of is the allocation of
the additional resource R. Figure 1.3 (b) and (c) show that this scheduling
problem is equivalent to the problem described earlier in this section, which
wants to minimize the number of processors. So it is also equivalent to the
bin packing problem.

When we study the bin packing, for simplicity we assume that all the

numbers in the list are in (0,1] and each bin has the capacity of one.

1.3 Computational Complexity and Performance Bounds

In the field of scheduling theory, as in many other areas, some problems
are much easier to solve than the others. For example, the optimal schedul-
ing on two processors of n unit-processing-time tasks can be done in O(n?)
[7], while the same problem with more than two processors appears to re-

quire time exponential in n [5]. The theory of NP-completness, pioneered
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by S. A. Cook [8] and R. M. Karp [18], provides a framework for studying
such problems. Let us classify problems as “easy” and “hard”, where easy
problems are those having polynomial-time solutions while hard problems are
those with no polynomial-time solutions. There is a large class of problems,
called “NP-complete” problems, for which either all or none of them are easy.
It is widely believed that problems in this class are all hard. For computa-
tional problems in general, and in particular the various scheduling problems,
it is of interest to determine whether they are NP-complete. For problems
that are NP-complete, the study of approximation algorithms is important
from a practical point of view. To assess the quality of an approximation

algorithm, we use the criterion of worst-case performance bound.

Definition

Suppose we are considering an optimization problem which needs to min-
imize a function f, and A is an approximation algorithm for the problem. Let
f* be the optimal value of the function, which is also the value of f achieved
by the optimal algorithm, and let A(f) be the value of the function when
algorithm A is used to solve the problem. Then we define R[A], the worst-
case performance bound of A, to be max{A(f)/f*} over all possible problem

instances. &

For an optimization problem, there might be many approximation algo-
rithms for it. For each of them, we wish to find out its worst-case performance
bound so that we could have a better look of how good the approximation

algorithm is.
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Example

Let us consider the general scheduling problem with m identical proces-
sors and n tasks. Suppose that there are no precedence constraints among
the tasks, the number of processors m is greater than 1, and no additional
resources are involved. The performance measure is to minimize Cy,,, With
no preemption allowed. It has been proved that this problem is NP-complete,
so it is of practical interest to study its approximation algorithms and their

performance bounds.

As introduced earlier, list scheduling furnishes a quick strategy to sched-
ule the tasks on the processors. Given a priority list L = (Ti1, Ti2,. .., Tin),
the first unexecuted executable task on the list will be assigned to the idle
processor. Let C}, .. be the totallelapsed time for the execution of all the
tasks in the optimal schedule and LS(Cnaz) be the total elapsed time for the

execution of all the tasks in the list schedule.

t 0 A LS(Cppax)
P, / //

7
Pm 4

Figure 1.4 The list scheduling of independent tasks.

In any schedule, it is clear that a lower bound to the completion time is

12



provided by assuming that all processors are busy all the time. So C%,,, >
2 ;‘=1 pj = 2 X. On the other hand, C},,, > max;<j<n{p;}.
In the list schedule, let T} be the task that finishes last, i.e., LS(Cpnaz) =

Cx = A + px, where A is the time when T} starts. Figure 1.4 shows the list

scheduling.
Because of the nature of list scheduling, and because there is no prece-

dence constraint, no processor is idle from time 0 to time A. Thus, A <
1
;(X - Pk)-

LS(Cmax) =A+ Pk
< (X -p)
== — Pk) + Pk
1 1
=X+ (1-—)p
<O +(1- 2y
— “Ymaz ;,; mazx

=@-2)C;

Since the bound 2 — # can actually be achieved by the problem instance

in Figure 1.5, we conclude that the worst-case performance bound for list

scheduling R[LS] is equal to 2 — L. ¢

1.4 The Outline of the Thesis
In the following chapters, we will study both scheduling and bin packing

problems from the point of view of worst-case performance bounds.
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In Chapter 2, the performance bound of optimal non-preemptive schedul-
ing vs. optimal preemptive scheduling is studied based on the previous work

done by C. L. Liu [24] in early seventies. A new upper bound is given.

O O e, O O

T,/1 Ty/1 Tm(m-l)/ 1 Tm(m-l) 4 /m
()
0 m
P Tn(m-1)41
P, Ty | eeeeveenns i
P T(m-l)2 .......... Tm(m 1)
(b)
0 m-1 2m-1
P A T1 ........ T(m-1)2 Tm(m-l) x

e W Z i
I . M7yt

(©)

Figure 1. 5 (a)Task system with n=m(m-1+1 independent tasks;
(b) The optimal schedule : Cmax"=m ; (¢) The list schedule for L

=(T1 » T2 § sse gy Tm(m-l)i—l) . I..S(Cm)=2m-1.
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In chapter 3 and 4, we will study the worst-case performance bounds
of some approximation algorithms for bin packing, such as Next-k-Fit and
Best-k-Fit. Tight bounds are proved, which resolves a longstanding open

problem.

15



2

Optimal Preemptive and
Non-preemptive Schedulings



Optimal Preemptive and Non-preemptive Schedulings

2.1 C. L. Liu’s Conjecture

In a multi-processor system, scheduling the tasks on the processors can
be done with two different strategies. A scheduling strategy is said to be
non-preemptive if once the execution of a task begins on a processor, it must
continue until its total completion. A scheduling strategy is said to be pre-
emptive if the execution of a task can be interrupted at any time and be
resumed later on. Obviously, preemption generates a faster scheduling than
non-preemption. On the other hand, to determine when to have preemption
during the execution of a task may require extra time. Suppose that we want
to minimize the total elapsed time for the execution of all tasks. Our ques-
tions are: How good is preemption vs. non-preemption? Is it worthwhile to

waste-a lot of time to have a preemptive scheduling?

Let us consider the following scheduling problem. A task system con-
taining n tasks T = {T1,T%,...,Tn} is to be scheduled on an m-processor
system. The processing time of task T is p; for j = 1,2,...,n. Moreover,
precedence constraints < among the tasks are specified. By T; < T}, we mean
that the execution of T; will not begin until the completion of the execution
of T;. Let w denote the total elapsed time for the execution of all the tasks in
set T, i.e., Cmax, when the optimal non-preemptive scheduling is used. Let

w' denote the total elapsed time of the schedule when the optimal preemptive

17



scheduling is used. Figure 2.1 shows both optimal preemptive and optimal

non-preemptive schedulings of a task system on two processors.

Ty /1

T,/1

(®)

1:':1 R k- I ERE Ts%
Py Te 7/// // M

(©)

Figure 2. 1 (a)A task system; (b) The optimal preemptive
scheduling in a two-processor system; (c) The optimal
non-preemptive scheduling.

To compare preemption and non-preemption, we are interested in deter-

18



mining the maximum value of % over all schedules. In the early seventies,
C. L. Liu [24] studied this problem and made the following conjecture.

Conjecture (C. L. Liu)

W 2m
w T m+1
and this bound is the best possible. o

In the next two subsections, we will study this conjecture first for the
case when the precedence constraint < is empty, and then for the case with
a general precedence constraint.

Before doing that, we first review some results, which were derived prior

to Liu’s conjecture.
Theorem 2.1 (R. L. Graham [14])

Let ¢ be the total idle time in the optimal non-preemptive schedule, and
m be the number of processors in the system. Also, let C be the longest
path or chain in the partial order DAG, and |C| be the length of the chain.

Therefore we have,

¢ < (m—1)|C]

Proof  See [14]. ¢
Using Theorem 2.1, R. R. Muntz [25] studied the ratio % and proved

the following theorem.

Theorem 2.2 (R. R. Muntz)

If m is the number of processors, then

19



2m —1
m

L2
w =

Proof  Assume X is the total processing time of all tasks, and ¢ is the

total idle time in the optimal non-preemptive schedule, then it is easy to

show that w = 1(X + ¢). Thus by Theorem 2.1, we have w = L(X + ¢) <

m
L1 X + m=1|C|. On the other hand, the total elapsed time in the optimal
preemptive scheduel w’ must be no less than 1 X since the best possibility

is to let all processors busy all the time. w' must also be no less than the

length of the chain |C| since all the tasks in the chain have to be executed

sequentially. Thus, we have ' > max{ - X, |C|}.

1y 4 mo1
f_<mX+ —|C|

w' = max{1X,|C|}

_ X PR Lo 1 |C|
~ max{1lX,|C|} m  max{1X,|C|}
< 1% m—1 1
m
_2m -1
T om
So the ratio % is no greater than 2=L over all possible schedules. O

The bound which is proved in Theorem 2.2 may not be the tightest

because no schedule that achieves bound % has ever been found. On the

contrary, the largest achievable bound found so far is ,:—:‘_1 So the following

20



question arises: Is there a possibility that the tight bound of the ratio is
exactly "21—;"_1? We will prove in subsection 2.2 that this is indeed the case

when the precedence constraint is empty.

2.2 Independent Tasks

Theorem 2.3

When the precedence constraint < is empty,

and this bound is the best possible.
Proof  First we look at the optimal preemptive scheduling. It is easy to
show that w' > max;<j<n{p;} and o' > 1 X.

Then let us consider the optimal non-preemptive scheduling. Let LPT
stand for the longest-processing-time-first list scheduling, in which we order
the tasks by p; decreasingly; whenever a processor is idle assign the next task
on the list to the idle processor. LPT is actually list scheduling. Since there
are no precedence constraints among the tasks, there won’t be any idle time
during the entire execution of all tasks. See Figure 2.2.

Let Ty be the task that finishes last, i.e., Cx = LPT(Cmaz). Let A be
the starting time of Tx. Because LPT scheduling may not be the optimal one,
w < LPT(Crmaz) = A+pe S (X —pi)+pr = 21X + 2lp < o'+ 21p,

Let us consider the following two cases.

21



A LPT(C,,, )

7

[

ooooooooooo

2

Figure 2.2 The longest-processing-time-first list scheduling.

case 1. A>0

Every task T; starting at time ¢ = 0 has p; > px since it is LPT. And

there are at least m such tasks. Let Y be the sum of the processing time of

these tasks. So,

Then we have,

1 1
T - ) e -
< =Y < —(X—p)

X S

1 1
Pt —pr & —
m m

1 m —
er i ey
PrSw + +1w

22



2m

m+1

w
ey
w

case 2. A=0

In this case, LPT is in fact the optimal non-preemptive schedule. Thus
w = px and W' = pi.

2m

1
4 m-+1

]

The bound %?‘i‘ is the best possible because it can be exactly achieved

by the example in Figure 2.3. ¢

2.3 Tasks With Precedence Constraints

In subsection 2.2, we have shown that Liu’s conjecture is true when
the precedence constraint < is empty. In this section, we will look at the
situation when < is non-empty. Let X be the total processing time of all
tasks, and ¢ and ¢' be the total idle time of optimal non-preemptive and
optimal preemptive schedules respectively. It is easy to prove that if m is the
number of processors in the system, w = L(X + ¢) and ' = L(X +¢'). We

2
m*+1. 9
m+1w’

will consider the following three possible cases: X > ZHw X <
and %%l—w' <X < ziy,

Lemma 2.1

If X > =t then

——
w T m+1
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m m+l T) Tnag

P |- T T

m+1

P T, 7///////////4/
........... 7///////////A
P T 7////////////

(©)

<%
N

S\

N

~ Figure 2.3 (a) An independent task system; (b) Optimal preemptive
scheduling: ®’=m+1 ; (c) Optimal non-preemptive scheduling: ®=2m .

Proof  Since the best we can do in any schedule (non-preemptive as

well as preemptive) is never to leave any processor idle,
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w'=%(x+¢')> Syslr,

2m

Thus, the ratio % is no greater than 27 +1 ¢
Lemma 2.2

X < ""_:'llw' then

ﬁ<2m

wWw T m+1

m24+1 ¥ ' m?41 o _ m—1
Proof Because X < 7w, then ¢' = mw'—X > mw'— v = Eovl.

Theorem 2.1 also tells us that ¢ < (m — 1)|C|.

-1
= (m=1)[C| = (m = DIC| +¢' 2 ¢ = (m— o/ + = Jw
pom(m—1)
P i W
¢-9¢'s m+1 “
mw—-—X-—-—mw + X< T—(—m—_—l)w'
m+1
w 2m
w T m+1
Again, C. L. Liu’s conjecture is true in this case. ¢

Lemma 2.3

If mtl ‘Hw <X <™ty andlet a = g—:, then

w 2m—1_la
w! m m
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Proof Since 2w’ < X < ™1y, then 0 < ¢' < Bl X and ¢ > molX,
The approach we use is simple. We want to increase the idle time of the
optimal preemptive schedule by adding a new task so that this case will

become the case in Lemma 2.2, and we can use the result in Lemma 2.2.

Suppose that the original task system is T = {T},T%,...,T»}. Now
let Th41 with processing time pp4; = #X - ;’,’%i—;"_l—ﬂé' be added to the
task system 7. And also assume that for any task T, 1 < j < n, we have
Tj < Tny1. It is not too hard to prove that the new optimal scheduling with

T, 41 added is in fact the old optimal scheduling with T,,4; appended at the

end. See Figure 2.4.

Since ¢hep, = ¢'+(M—1)pnp1 = ¢' + BSLX B flgr —molyx L g0

;I'T%‘+—11(X + Pnt1) = ﬁ‘{_‘_—lanew, then the new scheduling actually falls into

the case in Lemma 2.2. Hence we have

Wnew w+Pn+1 < 2m
w:ww w' +Pn+1 “m+1

m2 +1

1
(ot Ty B’ et — By =200+ [~ Ti e Xl e

¢')

(m+1)(2m—1)w,_ m+1

lw <
(m+Lws m m

¢l

" _ ! sl
Assume that ¢' = aw', where 0 < a < 1 then

(m+1)(2m — 1)w' _m+ 1aw'
m m

26

(m+1w<



el 2m -1 B }-a
w'T m m
This proves Lemma 2.3.
><T>n+l / Pn+1
(a)
0 il o +pn+1

.
Pl n+1 //

. /////////
............ iy
. )77

()

0 ® O+

n+1

............ .

©)

Figure 2.4 (a)New task T, , is added to the original task system;
(b) The new optimal preemptive schedulmg (N . =0’ +Ppe1 ©)
The new optimal non-preemptive scheduling : @, =@+pp,; .
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In Lemma 2.3, the bound on the ratio % depends on the value of o, as
can be seen from Figure 2.5. The Iarger a is, the closer the ratio is to the
one in Liu’s conjecture. If a is 0, the ratio becomes the one in Theorem 2.2
given by Muntz in his Ph.D. thesis [25]. However, we don’t know whether
the bound proved in Lemma 2.3 is the best possible or not. It is very likely
that this bound can be improved to that in Liu’s conjecture since no schedule

with the ratio greater than 52-% has been found.

o/’
A
znm]_ 1 Muntz’s bound
The improved bound
2m
m+1 S0 '
Liu’s conjecture
: y gV
0 m-1
m+

Figure 2.5 The improved bound of the ratio when
((m2+1)/(m+1))0)'<X<((m+1)f2)m.

Combining the results in the above three lemmas, we have the following

theorem.

Theorem 2.4
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If m is the number of processors, and let a = %,', then,

2m . m+1 mzil I
w _ i if X > 2u:orXSm_'_lw,
w Tl am—1 1 .

" otherwise.
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Next-k-Fit Bin Packing



Next-k-Fit Bin Packing

3.1 Problem Definition

Given a finite list L = (ay,az,...,am) of reals in (0, 1], and a sequence
of unit-capacity bins, By, Ba,..., the bin packing problem is to pack the
numbers in the list into the bins such that no bin contains a total exceeding
1 and that the number of bins used is minimized.
Example

Suppose L = (0.5,0.2,1,0.9,0.25), Figure 3.1 shows the optimal packing

of L, which uses three bins. )

Figure 3.1 The optimal packing of L=(0.5, 0.2, 1, 0.9, 0.25).

The bin packing problem is proved to be NP-complete by R. M. Karp
[18], and no polynomial-time complexity algorithm has ever been found so
far. A lot of effort has been made to find good approximation algorithms for
the problem.

As we pointed out in Chapter 1, in order to evaluate and compare
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the quality of different approximation algorithms, we need to have a rig-
orous mathematical analysis of the worst-case behavior of these algorithms.
Given an approximation algorithm A, and for any list L, let A(L) be the
number of bins used in the packing resulting when A is applied to L and
L* be the minimum number of bins needed to pack L. Therefore, the
worst-case performance bound of the approximation algorithm A is R[4] =
lim sup max{A(L)/L*} as L* — oo.

Besides those well-studied approximation algorithms as First-Fit (FF),
Best-Fit (BF), First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD),
and Next-Fit (NF) [15][16][17], whose worst-case performance bounds are
shown in Table 3.1, there is another important class of algorithms called
Next-k-Fit (NkF'), where k is an integer greater than 1. In NkF, we process
the numbers in L in turn, starting with a;, which is placed at the bottom
of first bin By. Suppose that a; is now to be packed. We look at the last
k non-empty bins. If a; does not fit into any of them, a new bin is created;
otherwise, a; will go to the lowest indexed one of these k non-empty bins into
which it fits. D. S. Johnson [16] proved that 1.7+ 3 < R[NkF] < 2. In
this chapter, we study the worst-case performance bound for the Next-k-Fit
algorithm. Our result is the following theorem.

Theorem 3.1

3
s=1. —_— >
R[NkF]=1.7+ T

In subsection 3.2 we will prove the theorem for the special case k = 2,
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since in this case the claimed limit equals the previously known upper bound,
all we need to do is to provide a lower bound example. In subsection 3.3, we

look at the general case when k > 3.

A R[A]
1.
BF 1.7
FFD 11/9
BFD 11/9
NF 2.0

Table 3.1 Some approximation algorithms for bin packing
and their worst-case performance bounds.

3.2 Next-2-Fit Algorithm
It was known that 1.85 < R[N2F] < 2 [16]. Here we show that the

precise value equals the old upper bound.

Theorem 3.2
R[N2F]| =2

Proof Consider the following list L, where 0 < e € 1,

------
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Since we can pack the list in a way using only n+ 1 bins (Figure 3.2(a)),
L* < n+1. On the other hand, if we apply N2F to L, we will get the packing
shown in Figure 3.2(b). Thus, N2F(L) = 2n. By definition, R[N2F] =
limsupmax{N2F(L)/L*} > limp_c0 2% = 2. Together with R[N2F] < 2,

we have R[N2F] = 2. ' ¢

----------

n+l

(b)

Figure 3. 2 (a) Optimal packing for L; (b) N2F packing for L.

3.3 Next-k-Fit Algorithm (k > 3)
We already know from [16] that for k > 3, RINEkF] is between 1.7+ 2.

and 2. In this subsection, we will concentrate on finding the exact value for

R[NkF).
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3.3.1 Lower Bound

Let us start from the easier part. As usual, we can prove the lower
bound result by giving an instance of a list which yields a high performance
bound.

Theorem 3.3

3
-3 0 ¢ L R 1. ¥
RINEF) 2 17+ o, k23

Proof Suppose (k—2)|10n,0 < e < 187", ¢; = ex18" % fori =1,2,...,n.
Let us look at the list L which contains the following three groups of numbers
in the order of their appearance.

The first group consists of:

§+33e1,5—3e1,5 —Ter,3 —Ter, § — 131, +9e1, 7 — 261, 1 —2¢1, 1 — 26,1 - 2¢y,
§133€2,5— 32,5 —Tea, 3 —Tea, 3 — 1363, 2 +9€2,3 — 25,1 —265,1 — 26,1 —2¢,,

1 1 1 1 1 1 1 1 1 1
€+336n,g—36n,§—76n,g“"?én,g—13En,€+96n,g"'2€n,6—26;1,-6-—2€n,6——26n.
The second group contains:

P
1 1 1 1 1 1 1 1 1 1
3 +406€1,5 — 34€1,5 +661,5 + 6615+ 1261,5 — 106,55+ 1,5+ @1,5 +e,5+ €,

%"’4662,‘71;' —3462,%+6€2,-1§+6E2,%-]-1262,%“1062,%+€2,%—+62,%+€2,%+62,

3 +46€n,5 —34€n, 1 +66€n,3 +66n,53+12€n,3 —106n,1 +€n, 2 +n, 3+, 2 +en.
The last group has the following numbers, where in each row there are k + 1

numbers, and h is an integer equal to ;OT’;.

B =t

€ 1 1 1
— 3 T6E3TE.,51E¢€
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.........

As we see, the first group, which has 10n numbers, contains numbers

]

slightly greater or smaller than §. The second group, also having 10n num-

bers, contains those numbers slightly greater or smaller than 1. And the

@)

(k+1)x10n

+—5— nhumbers, contains some numbers around

third group, which has

1
2

and some very small numbers.
When we apply NkF' algorithm to L, we find that in the first group
every 5 consecutive numbers will be packed into one bin, and in the second

group every 2 consecutive numbers will be packed into one bin, and in the

third group every number except for the last small one in each row will be

packed into one bin. So altogether we need 137 4 19n 4 kx10n _ 7, 4 10nk

bins. Hence, NkF(L) = Tn + J22¢.

How about the optimal packing? Clearly, we can arrange the packing in
the following way. In the third group, we pick out the first, second, and the
1ast numbers in each row, which in fact form the list in the proof of Theorem
3.2. We can use h + 1 bins to pack them. As to the remaining numbers
in our list, they are in fact the same list used in proving the lower bound
result for R[FF] by D. S. Johnson et al in [17]. We can employ the same

method, using 10n + 1 bins, to pack them. Then L* < h+1+10n+1 =

lon 4100 42= 20000 Lo
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R[NEkF] = limsupmax{NkF(L)/L*}

10nk ., , 10n(k — 1)

2 it el = 19
3
Ty

This proves the lower bound result for Next-k-Fit. o
3.3.2 Upper Bound

Theorem 3.4

RINKF] <17+ ——> . k>3
-7 U 10(k-1) -

This is the more difficult part. We need some preliminary results.
Given any list L, after applying NkF to L, we get NkF(L) non-empty bins,
By, Ba,...,BNkr(L)- Foreach bin B;, its content can be divided into k areas,
Aii,Aig2,...,Aik, where A;; contains all the numbers coming to B; when
B; is the rightmost, or in other words the most recently created non-empty
bin in the packing, and A; 2 contains all the numbers coming to B; when B;
becomes the second rightmost non-empty bin, etc. Finally, 4; x contains all
the numbers coming to B; when B; becomes the oldest among the k active
bins and is about to be thrown away. As we will see, this kind of analysis gives

us a deeper insight of the packing. Figure 3.3 shows the division for N3F.
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i+l i+2

B, is thrown away.

B. B.

i i+l

Figure 3.3 How the three areas of B; in N3F packing are formed.

Weighting function is a classified method for proving upper bounds,

though it is not always easy to find a suitable weighting function. To prove
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Theorem 3.4, we wish to show that NkF(L) < (1.7 + Wf_—n-)L* + ¢ for all

L, where c is a constant. With the help of the following weighting function

W : (0, 1] » R*, we will find the relation between NkF(L) and L*.

[ Sa ifa€ (0, §);

- J-g—a—% ifae(é—, %;
e Sa+ & if a € (3, 3;
5 10 3» 20

| fo+ i+ Hee(d 1

WA
1.6+3/(10(k-1)) [

1+3/(10(k-1)) —

i K8 o

i %

| I | | | | >
0 ve 13 12 23 56 1 o

Figure 3. 4 The weighting function W(o).
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For any number a; in L, W(a;) is called the weight of a;. We define
W(B;), the weight of the bin B;, as the sum of the weight of all numbers in B;,
ie. W(Bi) =} v,;ep, W(aj). And W(L), the weight of the list L, is defined
to be the sum of the weight of all numbers in L. i.e. W(L) = 3y, ¢1 W(a;).

When there is no possibility of confusion, we also use B; to denote the sum
of the numbers in bin B;, A; the sum of the numbers in area A;p,and b;

the bottommost item in bin B;.

Claim 3.1

For any bin B of items of total size 1 or less,

3

W(B) <17+ m

Proof See the proof of Lemma 1 in the paper “Resource constrained
scheduling as generalized bin packing”, by Garey, Graham, Johnson and Yao

[10]. We note that our weighting function differs from that in the reference
only by the addition of W%T for the items of size exceeding %, and there
can be only one such item in B. So the bound in the claim exceeds the bound

1.7 in the reference by precisely this amount. ¢

Claim 3.2
For any list L,

W(L) < (1.7+ m(:’—_l))rf

Proof Apply the optimal algorithm to L. We get L* non-empty bins.
Thus,
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”
W(L) =) W(Bi)

i=1

L* 3
< ;(1.7+ STCE] 1))

3

=(1.7+ T()TE"ZT))L‘

Notice that we used the result in Claim 3.1. O
Claim 3.3

There exists a constant ¢ such that for any list L,
NEF(L)<W(L)+c

Proof Given a list L, after applying NkF to L, we get a sequence of

non-empty bins By, Bs,...,Bykr(r). We prove the claim by induction on
the value of NkF(L).
Inductive basis: If NkF(L) < k, then NkF(L) = FF(L), where FF(L) is

the number of bins in the First-Fit bin packing. In the paper “Worst-case
performance bounds for simple one-dimensional packing algorithms”[17], D.

S. Johnson et al showed that FF(L) < W'(L)+2, in which W' is a weighting

function similar to W except that for any item b > %,W'(b) = 1, while
W(b) > 1. SoW'(L) £ W(L). Thus, we have NkF(L) = FF(L) < W'(L)+
2<W(L)+2.

Inductive hypothesis: If NkF(L) =t — 1, then NkF(L) < W(L) + 2.
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Inductive step: Assume NkF(L) > i. By inductive hypothesis, we know that

i—1< A W(Ba)+2. EW(B;) 21, theni < Yh_, W(Bx)+2 We
are done by induction. Otherwise, when W(B;) < 1, we will show that there
exists a j such that W(B;)+---+W(Bitj-1)+W(Bit;j) 2 j+ §Biy;. This
means we can borrow weight A = W(Bi4;) — $Biyj, from B, j to make up
the shortfall of B;, ..., Biy;-1, and reconstruct B;y j, so it has the same size
but has its weight reduced by the amount loaned to B;,..., Bt —1. Thus,
i+j—1< 307 W(BK)+A+2. Since the weight left in B;y; is £ Biy j, we
can equivalently assume B;;; has all its numbers no larger than % with the
total unchanged. Since our inductive step will never care about the content
of B; except its size, i.e., we will only use W(B;) = £B;, the inductive step

can again be applied to Bj; ;. (Figure 3.5 )

.................

B, B, , B, Bitj-1 Biyj
Inductive hypothesis: Inductive step: Weight left
i-1<=W(B)+..+W(B;_1)+2 J<=EW B+ AW (B, )+A =W(Bj,;)-A

Figure 3. 5 Inductive proof of Claim 3. 3.
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Because W(B;) < 1, B; must be less than %, and items in A;4;; and
Ait2,1 must be greater than %. For notational simplicity, we assume ¢ = 1.
Let us consider the following cases.

Casel. If B; < , then B; must be followed by k bins with their bottommost

items greater than 7, i.e. by,...,bx41 > 3. (Figure 3.6)

----------

B, By

Figure 3. 6 The possible packing when B,<=1/2.

W(B1) + -+ W(Bi) + W(Bi+1)

2 §A1’1+(gbﬁ+%+ﬁ(fﬁj)+'"+(§bk+%+m£_—1)‘)+§3k+l+§+mﬁj
> 2(A1+ b))+ S(bs 4+ i)+ (2 + i‘i('lf‘:ﬁ)k'F $Bina
Z%X]-‘f"%x%X(k—z)'l'(%'*‘mf—_l)')k"'g'Bk-{-l

>k+ &+ oo + 4B

= 10 T To(k=1) ' 5k+1

>k+ B

CaseIl. If < B; < %, then we consider the following subcases. (Figure 3.7)
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case 1: B2 has one item >1/2

case 2: A, ,>1/2, with at least

one of two bottommost
items in (1/6, 1/3]

case 3: A;,>1/2, with its two

bottommost items in
(1/3,1/2] and A3’1>1f2

case 4: A2.1>1/2, with its two

bottommost items in
(1/3,1/2]and A3'1<=1/2

case 5: A2,1 <=1/2.

B, B,

Figure 3.7 The possible packings for 1/2<B,<5/6.
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subcase II.1. B; has one item greater than %, then,
W(B;) + W(B,)
2 231 + %‘82 + % + 10(}?—15

>

wje

x2+2+8B,
21+ ng
Starting from the following case, we assume that all the items in B, are

1

no greater than

subcase I1.2. Az; > 1. Since Az, has at least two items, assume at
3 2 ]

2

least one of its two bottommost items is in (F, 3]. B is greater than 2.

If the other item is also in (§, 3], then,

W(B:) + W(B3)

28B1+§B:+3(1-B) - +31-B) -
>1+8B;

If the other item is in (3, 1], then,

W(By) + W(By)

28B4+ B+ 3(1-Bi) -4+ &

v

$Bi+ 3+ ¢B,

v

L N

FX3 vy 5 v 5 -5-B2

>1+¢B;

subcase I1.3. Az, > }, with its two bottommost items in (1, 1], and

Az > % It is clear that By > %
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If A3 has one item greater than J, then,
W(B1) + W(Bz) + W(Bs)

6 6
2331+532+1L0+i%+§33+%+mf—_17

v
ooy

1.6,2,3.¢
XzgtgX3+z+355s

[V

22+ ¢B;3

oo

If the two bottommost items of As,; are in (3, 3, then,
W(B1) + W(Bz) + W(Bs)

>8B1+ B+ 55+ 5 +iB+i(1-B)-&5+31-B)- &

v

$4+8B:4+iB:+Bs

v

S+iB1+3(1-Bi+31)+ 8B
> 2+ ¢B;
If one of the two bottommost items is in (§, 3], and the other is in (}, 1],

then,

W(B,) + W(B;) + W(B3)

A\

8B+ B+ 5+t B+ i1-B) -5+ &

v

$B1+iB;+ £+ ¢Bs

v

$B1+31-B1+1-B))+ 4+ 8B,

v

2+ §B;

If A3 has two bottommost items in (, 1], then,
W(B,) + W(B;) + W(B;)

>iB1+ 8B+ 5+ 5+ B+ L+ &
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> %B1+%(1—B1+%)+§+§Ba
>2+ %33
subcase IL.4. Az; > %, with its two bottommost items in (%, 1], and

A3; < L. We need to consider several possibilities according to the area

- g
distribution of Bs. In Figure 3.8, on the right side of the vertical line are the

three such possible packings that may follow the bins B; and B,.

Bh+3

Bk+2

B, By Byi2 Byys

Figure 3.8 The possible packing when A, ;>1/2, with
its two bottommost items in (1/3, 1/2], and A3.1<=1/2.
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W(B1)+ -+ W(Bpys)

IfA3,1+"'+A3,h < %, but A3.1+"'+A3,h+1 > %, forl<h< k —2, then,

2 §B1+§Br+ 55+ 75+ §Ba+ §(ba+ -+ bus2) + (3 4 ori=py )b + £ Bhas
2 B1+§Bo+ 3+ $(Asn+Ashg1) + Ex L x(h—1)+ 2h + EBuys
28B1+§B+§(1-Bi+1-B2)+h—2+4$Biys
> h+2+ §Bats
If Asi+ -+ Ask—1 < 3, but Agy + - + Ak > , then,
W(B1) + -+ + W(Bi+2)
> §B1+§B2+f5+15+§Bs+§(bat - +bes1)+(3+ iy )(k—1)+ £ B
> 8B+ (1-Bi+ )+ 4+ 8x+8xix(k-2)+2(k—1)+ 2 + EBis2
>k+1+ §Bit2
If A+ + Asp < 3, then,
W(Bi) + -+ + W(Bk4s)
2 gBl+%Bz+i%+11—0+§Bs+%(b4+-°-+bk+2)+(%+ﬁﬁ:_—1;)k+%Bk+3
28B4+ 81-Bi+ 1)+ i+ 8450+ b+ Ex I x(k—2)+2k+ & + EBiys
> $(Asa +bs)+ k+ % + EBiya
2 ex1+k+ 3+ EBiys
>k+2+ $Biys

subcase IL.5. 433 < % Check the subcases in Figure 3.9.
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Bh+2

By

Bist Bys2
Figure 3.9 The possible packing when A, ;<=1/2.

IfAz,l-l-' . '+A2,h < %, but A2,1+' . '+A2,h+1 > %, wherel < h < k—-2, then

it is easy to prove that W(By) > $a+ 2, where a is the smallest item among
Az1,...,A2 h4+1. We know that Az ; and Aj p4+1 are both non-zero, so there
are at least two items in these areas. Since Az + -+ Az p41 > 3, then
(A2,14--+ Az p41)—a > 1. If there is at least one item in Az 1, ..., A2,441
in(3,3], then W(B;) > $a+§((Az1+ -+ A2h41)—a)+ & > Sa+ 2. Ifall

1

3 and there are only two numbers

numbers in A3 1,..., A2 r41 are less than
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in (3,3), then W(Bz) > $a+ §((A21+ -+ Ao py1) —a) + 2(Ag1 + - +

Aspr1)— > Sa+exi+ixi-2Z=2%a+2 IfAz,...,Az p41 have

at least three items in (3, 3], then W(B2) > ga+ ¢ x (2 +3)=%a+ 2. So

we have proved that W(B;) > ga + 2. Therefore,

W(Bi1) +---+ W(Bh+2)

2§Bi+ia+ i+ E(bs+ o +bnt1) + (3 + ri=py)h + §Ba+2

>8Bi+a)+2i+8xix(h—1)+2h+EBuyy

>8x1+2+%h—-1)+2h+ §Buso

> h+1+4 §Bata

If Agi + -+ + Agp—1 < 1, but Ayy + -+ + Az x > 1, then it is easy to

prove that W(B;) > $4,, + 1. Because if A has at least one item in
3+ 3], then the inequality is obvious. If all the items in A, are in (1, 3],

then there are at most two such items in Ay, since Az is less than %

So W(B;) > 2421 — 15 x 2+ $(Az2 + -+ + A2p) > 845, - 1 + 2B, >
%A2,1 - §+ % X % = gAz,l + 1_16‘ Therefore,

W(B1) + -+ W(Bk+1)

2 §B1+-§—A2,1+-]-15+g(bs+"-+bk)+(§+ﬁ(%;ﬁ)(k—l)-I-gBkH

> x5+ (A1 +b)+ 5+ Ex i x(k=3)+3(k—1)+ &+ $Brys
>34+ 8x1+L4+2(k-3)+2(k-1)+ 3+ ¢Bips
> k+ $Biya
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IfAs 14 +A2 < %, then it is easy to prove that W(B,) > %Bg-l—%Az,l—%.
Because if A; ; has at least one item in (%—, -;—], then W(B;) > -g-Bz - 11—0 =
§B2+$x3—% > 8By +$4;, - L. Ifall the numbers in Ay ; arein (1, 1],
then W(B2) > 3421 — 15 X2+ §(Ag2 + - + Ao x) = §By + 2421 - L
Therefore,

W(B1) + -+ + W(Bis2)

> 8B+ $Br+ 3420 — E+ S(bs+ -+ brgr) + (2 + ﬁa‘:{_—ﬁ)k+ $Biy2

v

$Bi+3(Bi+42,1) -+ 8(A21+b3)+ § X 3 x (k—2)+ Ek+ & + EByys

v

EX3H+Ex1-1+8x1+3(k-2)+2k+ 3+ EBiys
> k+1+ §Bi+2

So far, we have checked all possible cases. If the packing ends without
matching the above cases, then it is not hard to show that we need no more
than weight 1. So we can assume the constant ¢ iﬁ Claim 3 tobe 2+ 1, i.e.
c=3. ¢

Now we are prepared to prove Theorem 3.4.
Proof of Theorem 3.4
R[NkF] = limsupmax{NkF(L)/L*}

<limpeoo(W(L) +¢)/L* (by Claim 3.3)

< limpeoo((1.7 + mg—__l)-)L* +¢)/L* (by Claim 3.2)

By Theorem 3.2, Thoerem 3.3 and Theorem 3.4, we have our Theorem

3.1, which solves a longstanding open problem.
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Best-k-Fit Bin Packing

4.1 Some Observations

At the beginning of Chapter 3, we mentioned some approximation al-
gorithms for bin packing problem. First-Fit(FF') is an algorithm in which
we pack each number in the list into the first bin that can hold it; while in
First-Fit-Decreasing( FF D), we first sort the list decreasingly and then apply
First-Fit to the sorted list. Similarly, Best-Fit(BF') is an algorithm in which
we pack each number into the fullest bin that can hold it; while in Best-F'it-
Decreasing( BF D), we first sort the list decreasingly and then apply Best-Fit
to the sorted list. And finally, Next-Fit(NF) is actually Next-1-Fit, which
does not need any explanation. Figure 4.1 shows the FF', FFD, BF, BFD,
and NF packings of the list L = (0.3,0.8,0.2,0.7,0.5).

Also in Chapter 3, we have shown that the worst-case performance bound
of Next-k-Fit algorithm for bin packing is 1.7 + Wﬁ' Let us compare this
result with the worst-case performance bound of First-Fit. It is not difficult
to notice that the fraction part of R[NkF] becomes 0 when k goes to infinity,
and therefore R[NkF] becomes 1.7, which is exactly the same as R[FF).
This fact is no coincidence since we know that the Next-k-Fit algorithm is
actually the restricted First-Fit in the sense that Next-k-Fit only keeps the

last, or youngest, k non-empty bins created in the packing instead of all of

them as in First-Fit. So Next-k-Fit behaves like First-Fit when k is large.
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(e)

Figure 4. 1 (a) First-Fit ; (b) First-Fit-Decreasing ; (c) Best-
Fit ; (d) Best-Fit-Decreasing ; and (e) Next-Fit packings for
list L=(0.3, 0.8, 0.2, 0.7, 0.5).

We can also look at this fact from the point of view of complexity. As-
sume that our list L contains n real numbers. Then FF, FFD, BF, and
BFD can all be done in O(nlogn) since we can always keep a sorted se-
quence of bins created so far according to their current sizes, and when a
number comes, a binary search is necessary and sufficient to determine which
bin that number will go to. As for NkF', as well as N F, since only k bins are

involved in the packing at any time, we only need O(nlog k), which is linear
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for constant k. When k is very large, the number of active bins which are in-
volved in the packing will never be greater than n. Thus the time complexity

of NkF also converges to that of F'F.

In the same way that Next-k-Fit is a restricted form of First-Fit, we
can consider a restricted form of Best-Fit, to be called Best-k-Fit, in which
we also keep the last k non-empty bins in the packing active and a number
will be packed into the fullest bin among these k bins. As proved by D. S.
Johnson et al [17], First-Fit and Best-Fit happen to have the same worst-case
performance bound 1.7. A natural conjecture is that perhaps Next-k-Fit and
Best-k-Fit also have the same worst-case performance bound 1.7 + W%—_IT'

We will prove, surprisingly, that this turns out not to be the case.

4.2 Best-k-Fit Algorithm

When k = 1, Best-1-Fit, also called Best-Fit, is in fact the same as Next-
Fit, thus R[BF] = 2.0. From now on, we assume that k is an integer greater

than 1.

4.2.1 Lower Bound

Surprisingly, when we try to use Best-k-Fit algorithm to pack the long

and complicated list in the proof of Theorem 3.3, the lower bound we get

turns out to be smaller than 1.7 + WJ?_—IT' This means either we have to

find another list in order to get the 1.7 + y5ri—y lower bound or the lower

bound of R[BkF)] is indeed smaller than that of RINkF]. After careful study
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of both possibilities, we are inclined toward the latter, i.e., Best-k-Fit might
have a better (smaller) performance bound than Next-k-Fit. Interesting!

Theorem 4.1

3
> 1. —_—
R[BkF] > 1.7+ To%
Proof Let us consider a list similar to the one in the proof of the lower
bound for Next-k-Fit in Theorem 3.3. Everything is the same except that
last group in the list. In this case, we assume (k —1)|10n and the third group

in our list contains the following real numbers, where in each row there are

k 4+ 1 numbers, and h is an integer equal to 2=.

1 1 1 1
'2'—%, §+6, §+€, “uny 5""5,
g 1 1 1
22t gt ezt
%_Eth'a %'{’"z‘hi:ﬁ %""j‘h‘eﬂ'a sisiey %‘i' 2—;71'

After we apply Best-k-Fit algorithm to this special list, we find that
similar to Next-k-Fit, the first group and second group will consume %‘1 bins

and an bins respectively. As to the third group, each number has to occupy
one bin, which requires h(k + 1) bins. Thus BkF(L) = Tn + h(k + 1).

In the optimal packing, the first two columns in the third group can be
packed diagonally, using h 4+ 1 bins. All the remaining numbers in the list
actually form the same list in the proof of R[FF] given by D. S. Johnson et

al [17], which will use 10n + 1 bins. So altogether, L* = 10n + h + 2.
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R[BkF)] = limsup max{ ———= BkF(L) R

Tyl 10n(k+1)

2 lim Ton
n—oo 10n + =5 +2

3
_17+m

Hence, the largest lower bound of R[BkF] found so far is 1.7 + 3¢. v

4.2.2 Upper Bound
We can employ the same method we used in Chapter 3 to prove the upper

bound result for R[BkF]. Let the weighting function W be the following.

(Sa if a € (0,1);

52— 15 if a € (3, 3);
W(a):{

6 1 11

3a+1—0 lfOlE(g 5]

Lg¢:>z+%+% ifae(;-,l].

Claim 4.1

For any bin B of items of total size 1 or less,

<
W(B) < 1.7+ — mk

Proof See the proof of Claim 3.1. O
Claim 4.2
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For any list L,

X

< (1.
W(L) < (L7+ o

)L*

Proof See the proof of Claim 3.2. 0
Claim 4.3
For any list L,

BkF(L) < W(L) +c

Proof The method we will use is exactly the same as in the proof of Claim
3.3 except for a few details in the case analysis.

Given a list L, after applying Bk F to L, we get a sequence of non-empty
bins By, Ba,...,Bgkr(r), where BkF(L) is the number of bins generated in
BkF packing. As what we did in the proof of Claim 3.3, we can prove this
claim by induction on the value of BkF(L).

Inductive basis: It is easy to show that if BkF(L) < k, then BkF(L) =

BF(L) < W(L) + 2.
Inductive hypothesis: Assume that if BkF(L) = ¢ — 1, then BkF(L) <

W(L) + 2.

Inductive step: Assume BkF(L) > :. By inductive hypothesis, we havei—1 <

'\, W(B4) + 2. Therefore if W(B;) > 1,1 < Y 4_, W(Bi) + 2. We are
done by induction. However if W(B;) < 1, all we need to do is to prove that
there exists a j such that W(B;)+ -+ -+ W(Biyj-1)+ W(Biy;j) 2 j + $Biyj-
This inequality means that by borrowing weight A = W(B,4 ;) — g—BH ; from
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Bi,j, bins B;, ..., Bi;;—1 have weight greater than the number of bins j. So
i+j—1< 37 W(B4) + A +2. The unused weight left in Biy; is By j.
So the inductive step can again be applied to B4 ;.

The following comes the case analysis, which is almost the same as the
one we went through in Claim 3.3. The only difference is caused by the
properties of NkF and BkF. In NkF, an item is packed into a certain bin
but not any previous bins is because none of the previous active bins can hold
the item. However in BkF, it is because of the two reasons: either none of
the previous active bins can hold it or there are some previous bins that can
hold the item but the current bin it chooses has the fullest content.

For simplicity we assume that ¢ = 1, and we wish to prove that if
W(B;1) < 1, there exists j such that W(B;) + --- + W(B;) + W(Bj41) 2
1+ %B j+1. We will list all the possible cases and will only do those that are
different from those in Claim 3.3.

Casel. B; < %
Case II. £ < B; < 2. We have the following subcases.
subcase IL.1. B, has one item greater than 1.

subcase IL.2. A;; > 7. The two bottommost items in Az ; are obviously

greater than }. Suppose that at least one of them is in (},3]. The case

analysis of case 2 in Claim 3.3 can be applied to this case.

subcase II1.3. A2,1 = i

3 with its two bottommost items in (3, ;] and

Az > 1. The old case analysis still holds when the two bottommost items
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in As,; are greater than %. However right now this might not be the case since

when k£ = 2 only the bottommost item in A3 ; is guaranteed to be greater
than }. Suppose the other item is in (0, ;]. Then B; > $.
If the bottommost item b3 of A3 is in (, 3], then,

W(B1) + W(Bz) + W(Bs)

Vv

$Bi+ 8By + H+ L+ 8B+ 3 — &

\Y

$(Bi+b3)+ 2B1+ 8By + 55 + £Bs

v

3 3 1 6 5 1 6
EX1+EXE+§xﬁ_+ﬁ+§B3

A%

2+ ¢B;

If the bottommost item b3 of A3 is in (3, 3], and assume the smaller of the
two bottommost items in A; ; to be a, then,

W(B,) + W(B;3) + W(Bs;)

28B1+ 8B+ +5+8B+ 5

v

%(Bl +a) + %(Bz —a)+ 1—35 + %Ba

\Y

Ex14Exh B
22+%Ba

1 1

subcase I1.4. Az; > %, with its two bottommost items in (3, 7], and

Az < %. The case analysis is done by checking the following subcases: (i)
Asg+---+Asn < %, but Agy +---+ Agpp1 >, where 1 < h < k- 2; (ii)
Az +--+Az -1 < 3, but Ag1+---+Asx > §; and (iii) A1+ -+ 43k < 1.

Notice for k¥ = 2, only (ii) and (iii) can happen. Subcases (i) and (iii) are
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exactly the same as those in Claim 3.3. Now let us look at subcase (ii).
If Asp+--+ 4341 < %, but Azg1+---+ A3 > %, then we need to

consider the following two possibilities. If £ > 3, then ﬂi’fﬁ“_fu > % Therefore,

the previous case analysis for the proof of Claim 3.3 can be used. On the other

hand, let us assume k = 2. Because it is Best-k-Fit, then A3 x + B4 > 1.
If the bottommost item b3 in As; is in (3, ], then,

W (Bi) + W(B:) + W(Bs) + W(Bs)

v

$B1+ 8B+ 5+ 5+ EiBi+ 5+ 8B+ i+ 5

>8(Bi+45,1)+ 8B+ 5+ HAsk + B+ 2+ 5
>8x1+8x2+ 3 +8x1+24+3
>4

If the bottommost item b3 in A3 ; is in (%, —;—], then,

W(B1) + W(B;) + W(Bs) + W(By)

A%

SBi+ 8B+ + 5+ B+ i —H+ 8B+ i+ 5

v

$(Bi+Asn) + 8Bo+ 5 + $(Asi + Ba) + H1-By) + 2+

v

$x1+3B+LE+8x1+3+2+ 23

v

6 3 2 1 6 3 2 3
stsXgt+tptstststax

v

4

subcase I1.5. A;; < 1. Similar to case 4, we need to look at the following
subcases: (i) Az + -+-+ Ap < %, but Azy + -+ + Az a1 > §, where
1<h<k-2(G) A2+ + Az -1 < J, but Aoy + -+ Az > 3; and
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(iii) Az +---+ Az x < 3. Again for k = 2, only (ii) and (iii) can happen. It
turns out that the case analyses for (i) and (iii) are exactly the same as those
in Claim 3.3, so we only have to look at (ii), which eventually makes R[BkF)
to be smaller than R[NkF).

IfAz 1+ -+ Agp-1 < 3, but Aoy + -+ Aop > 3, then we need to
look at the two simple possibilities. Because it is Best-k-Fit, A, § is put into

B; because the fuller B3 cannot hold it, thus Az x + B3 > 1. If k£ > 3, then,
W(B1)+ -+ W(Bi41)

>EtBi+ B2+ $Bs 4 S(ba+--+ b))+ (24 35)(k— 1)+ §Biya

= %(31 + A1)+ %(A2,k + B3)+ % X % x (k—3)+ %(k -1)+ 3(:‘0_,:1) + -S—Bk+1

2g—x1+§x1+%(k—3)+§(k—1)+§ﬂk+1
> k+ £Biy

On the other hand, let us assume k = 2. Let b, be the bottommost item

in Az,; and a be the smallest item in A » which has the property that right

before a is packed into Bj, the size of B; is no greater than % We claim

that W(Bz) > £(b; + a) + 3. If By has at least one item in (},1], then

11
$3
W(Bz) > £(b2+a)+ & > (b2 +a)+ . If Az 1 has at least two items, then
W(B;) > &(ba +a)+ & x ; > (b2 + a) + &. Now we assume that all items

1

in B are less than 3

and A;; only has b;. If there is no item between b,
and a, and by +a > 1, then at least one of them is greater than . Therefore
W(Bz) > §(by+a)+Exi—& > &(ba+a)+ 5. If Az ¢ has at least two items,
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then As  — a must be greater than le— otherwise By = by + (A2 —a)+a <
3 +is+ 15 = . Therefore W(B;) > §(bs+a)+ §(A2x—a) > S(b+a)+ 2.
So,

W(B;) + W(Bz) + W(B3)

v

§B1+§(bz+a)+ 2%+§Bs+%+%

v

$(Bi+b)+8a+Bs)+ 5 +2+ 5

v

6 6
Ex1+gx14%

v

3

So far, we have checked all the possible cases. Therefore we can say that
for any list L, BkF(L) < W(L) + ¢, where ¢ is a constant less than 3, as
proved in Claim 3.3. ¢

Theorem 4.2

3
< 1. —
RIBRF| S 17+ o

Proof The proof is straightforward using Claim 4.1, Claim 4.2, and Claim

4.3. o
Combining Theorem 4.1 and Theorem 4.2, we have the tight worst-case

performance bound of Best-k-Fit bin packing.

Theorem 4.3

3
=1. S >
R[BRF] =17+, k21

Why does Best-k-Fit algorithm have a better (smaller) worst-case per-

formance bound than Next-k-Fit? To get an intuitive idea, let us look at the
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following example.
Example

Let the weighting function used in proving the upper bound of R[Nk F] be

W1, which results in the 1.7 + Tﬁ(‘é‘—ﬂ bound, and let the weighting function

used in the Best-k-Fit proof be Wa, which results in the 1.7 + bound.

1o
After checking the case analysis of Next-k-Fit, we find that the only case that
prevents us from getting the 1.7 + 3¢ is subcase IL5(ii). To understand this
point, consider the list given in the proof of Theorem 3.3.

The list L consists of three groups L, L, and L3. After we use NkF
to pack the list, we get NkF(L) bins as discussed in Theorem 3.3. The case

analysis can be used to classify different sections of the packing. Subcase
I1.5(ii) does happen in the third list L3. If weighting function W; is used,
Wi(L) = Wi(L1) + Wi(Lz) + Wi(Ls) = 2n + c1€ + 5n + cae + 1228 + ¢3¢ >
NEF(L), which means that list L satisfies Claim 3.3 and the 1.7 + m
bound can be verified.

However, if we use W3 to calculate the weight of the list, Wy(L) =
Wa(L1) + Wa(L2) + Wa(Ls) = 2n + c1e + 5n + cze + 3228 m)— + cze =
NkF(L)— g5y + (c1 +c2 + c3)e, which can never satisfies Claim 3.3 for the
unbounded n. This is why the 1.7+ 13 bound is not good for NkF. On the

other hand, BkF' can prevent this because the small items e, $3¢+09 gheT IN

sublist L3 go to the fuller bins with size greater than 7 instead of those with
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size less than %, which saves space for the upcoming items less than ;— O
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Conclusion

5.1 Summary

The theory of NP-completeness has provided possibilities to study dif-
ferent kinds of difficult problems. The worst-case performance bound study
has become an efficient method to analyse the quality of approximation al-
gorithms for NP-complete problems.

The research in this thesis was first inspired by the study of the Next-2-
Fit algorithm for bin packing problem three years ago. The complete solution
of the problem gives a promising start for the Next-k-Fit algorithm study,
which has remained open since the early seventies. Best-k-Fit algorithm is
a natural extension of Best-Fit, as Next-k-Fit is of First-Fit. The following

table shows what we have achieved on this problem.

i R[NKF] R[BKF]
Old results New results | Old results New _results
1 2 2 2 2
2 [1.85, 2] 2 [1.85,2] 1.85
3 [1.8,2] " 1.85 [1.8,2] 1.8

.................................

.................................

Table 5.1 The comparison of new results with old results for NkF and BKF.
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One thing I should mention is that at the time I just finished writing
this thesis, I found that the results R[N2F] = 2 and R[NkF] > 1.7+ m{’_—l)-

were proved by J. Csirik and B. Imreh [9] in 1989. As part of my thesis
which shows the continuous work I did from 1986 to 1990, I still present my
version of these results in this thesis. However I do think that Csirik and
Imreh should get the credit for the work.

We have also studied scheduling problems, which are closely related to
bin packing. We have focused on the relation between preemptive and non-

preemptive schedulings, and the results we obtain are summarized in the

following table.
o/
Old results New results
[ 2m/(m+1), (2m-1)/m-0/m] , where o=¢’/w’
[ 2m/(m+1), (2m-1)/m ] if (m2+1)0’/(m+1)<X<(m+1)®/?2
2m/(m+1) otherwise

Table 5.2 The comparison of new results with old results of ratio w/w’.

5.2 Future Work
The field of scheduling and bin packing problems is rich and colorful

for researchers. There are many versions of the problems that are unknown
to be NP-complete or not. For those we already know their classification

in NP theory, there are still many algorithms that need to be designed and
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analysed. For the problem we studied in Chapter 2, it is very possible that

the bound can be improved to the one conjectured by C. L. Liu.
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