RESOURCE MANAGEMENT IN FEDERATED COMPUTING ENVIRONMENTS

Luis L. Cova
(Thesis)

CS-TR-282-90

October 1990

Resource Management in Federated Computing Environments

Luis L. Cova

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

October 1990

© Copyright by Luis Leopoldo Cova Franco 1990
All Rights Reserved

To Rosaura, my companion for life

Viejos lenios para quemar. Old logs to burn.
Viejos libros para leer. Old books to read.
Viejos vinos para beber. Old wines to drink.

Viejos amigos para confiar. Old friends to trust.

D. Alipio Peréz Tabunero

Resource Management in Federated Computing Environments'

Luis L. Cova

ABSTRACT

This dissertation demonstrates that resource management mechanisms designed to
support several degrees of autonomy allow the establishment of effective cooperation
among autonomous computing sites. Using two distinct resources, storage and process-
ing, this dissertation introduces two distinct notions for autonomy: functional autonomy
and service autonomy. For functional autonomy, it is shown that is practical to imple-
ment a network file system that provides increased client independence from the file
server while maintaining a useful level of functionality. For service autonomy, a load
sharing mechanism has been implemented that provides sites’ owners with ways to con-
trol how much performance degradation local jobs will perceive when remote jobs are
serviced.

This dissertation claims that, although some very large distributed systems will be
formed by the growth of integrated distributed systems, most will be created by joining
together a number of separate, already existing, and independent distributed systems. In
an environment composed of a multitude of cooperating sub-systems the autonomy of
each entity must be respected in order to convince the owners of each of the separate
components to join the federation. Consequently, any viable distributed system architec-
ture must support the notion of autonomy if it is to scale at all in the real world.

T This dissertation was partially supported by New Jersey Governor’s Commission Award No.
85-990660-6, IBM Research Initiation Grant, IBM Graduate Fellowship, and a grant from SRI’s
Sarnoff Laboratory.

ii

Acknowledgments

There are three persons at Princeton that merit my highest gratitude. My advisor Rafael
Alonso, for his constant support and advice in academic and personal matters, as well as
for all the experiences we shared. He was always kind, understanding and friendly.

Daniel Barbard, my friend and honorary co-advisor, who collaborated in parts of this
dissertation and with whom I shared many dreams, doubts and beers. As un-official
reader of this dissertation, his comments were invaluable.

Hector Garcia-Molina, the first friendly face I saw here. He helped me feel welcome
during my first year at Princeton. During my entire stay he was always ready to listen to
my ideas, to provide helpful insights, and to support unusual endeavors. As a reader of
this dissertation, he was influential in making it better. 1 will always remember his
Jfatherly nature.

I would also like to thank Kai Li for being one of my dissertation’s readers. His sugges-
tions helped improved this presentation.

Many thanks to the friends I gained at Princeton, specially, Father Robert Ferrick, Rees
and Carol Thomas, Jane and Fisher Brooks, Brother Bob Berger, Felix Velez, Astrid
Arrards, Linos Frantzeskakis, Karin Petersen, Steve Kugelmass, and Don Ferguson.

I want to make known my deepest appreciation for my parents, my brothers, my sister,
and my grandmothers, for never doubting in me, always being proud of me, and never
letting me forget it. Their love is one of the most important parts of myself.

I am most grateful to Rosaura, my wife, who endure my graduate studies from afar and
from near. Her faith in me is my strength. Her love is my fortress. Her beauty is my
delight.

Luis L. Cova
Princeton, New Jersey
August 24, 1990

il

Table of Contents

.50 s T A, APO S AN 1

ACTINrRIABIORI " . e —— i

DA Of I I o i e i s o e S0 s St smme e mm e asmsm s pmonasOn RS iii

Chapter 1. Federated Computing Environmentsccccoceceeeiiviieisenenenenee 1

1.1 INtroducCtion ..oeeeeeeeeeeeeeeeeeeeeceeeeeeeaeeeveneeens SN = A N 1

1.2 Distributed SyStemsccccceeveeeceevvervenens SRR N 2

1.3 Federationsccccoeeevveveeeeeesennnnenns N S—— I —— 3

1.4 Resource Management R s i inasy 5

LS AUlONOMY caisinnsiismisaasisnsinm i e i RSB R S 6

1.6 Related Work S Sanani sttt bisn ssasmtnnnnelansneninasinsebens et er e e et aeeera———————. 7

1.7 Organization of the DiSSertationccceccevveveereeeeeseeseeseesnnnes SRRy 10

Chapter 2. Stashing ST SO RS 13

2.1 Introductionceceeeeeeeeueeeeennen. T TR 13

2.2 Design ISSUEScccoeeeveereerevennnns A S R R NS EAATA RN e 16

B E P SCIBCHON ...ooviiininiisiscosisanessnssnsssnstases S S S~ T e 17

2.2.2 Data Consistency BT =R N - I a—— 19

2.2.3 Data Integration

2.3 Quantifying Availability Gains

2.4 Related Workiiii i

ooo

--

...

...

Chapter 3. FACE: a file system architecture for Federated Computing

Environmentsccocccoeeeeeevceeeeeeeeecnnnns

...

...

3.1.1 Network File System INterfaceccceccecevmeeierenrnncnerenrerneersenennns

3.1.2 Bookkeeper Processes ...

3.1.3 Integration Modules

3.1.4 User-level Tools

S PIOURYDE sonuimimissimaig

3.2.1 NES Overview

3.2.4 New System Calls

3.2.5 The Bookkeeper Process

...

..

...

...

...

...

...

..

iv

24

26

335

33

35

38

39

39

40

44

45

51

52

54

56

57

57

60

DB BIERRIPIE .o...cooiriviissrissosscosssssisresssssssssssssosnsnssssasssosnssnsossssssossssnsansss 61

S T R R SO SESR S— 62

S BPTOISYRIE 5 WEERNIEREoooovciiinnisimisisisisossinissssssaississhesssssomsssnnsies 67

T IREIEINEY oo cn b e n w5 Sy S R RSB s SRS SRR RS 68
CHADORE I LONE BN ... oo ioissis s R S TS S S aas 69
4.1 The Load Distribution Problemcccceveonirininieninineieieeneseeessseenens 70
4.1.1 Designing Load Distribution Schemescccccovvvienieiiieniennienennens 71

4.1.2 Integrated Distributed Systems & Federated Computing

BOVITOIMIIBATS 1iciveisarirseinemmessionistssiorsennsarsussnsasssssssssesssnssvesssiss sssssssssssanssissasas 71

4.2 The High-Low SChEMEc.coceuinrivineriiiiciniecrenecseieneesee e essssessesessessosesssssens 73
4. 2.1 DIESCIIPHOH ..ovocsvvsssimsspsivnnssrasnsisssimmssinsomssrsesisssbimiminismstisms i fsssss 74
4.2.2 An Analytical Model for Setting High-mark and Low-mark 79

43 HigheRow, 1sh ol Reld (il s B i 80
4.3.1 Experimenty sndl ROSUIMR & iiiiiisicisinmicmminsmsns s s reanserss 82

4.4 High-Low, All-or-Nothing, and Prioritycccccecevnivereerieeeeeeeeeaeessseennns 89
4.4.1 Description of Emulated Acceptance POlCIESccoeereeveverivenenen. 90
4.4.2 Experiments and RESULLSccccoveveerrirreririereineneceircsiseiesesseseseneeenens o1
L RS L VNS TP NS A U e S S 99
Chapter 5. Conclusions & Future Directionsccoooeeeeeeeeeeeieeeeerererenns 101

vi

DT RN LEREINERL <o iinnrcssscnnsositsinsatosssnsnssssssosisssstsnsissstassissatsssssssnsssssssassssnssases 102

B I NI it vt aiviions dandivvvs sh somssprinwsssssiissveoshsmmesnhssveniamrasEEsEYssIESS 103
6.2.1 Propagating Updates to Replicated Copiesccccoceeeeeveirursccraesennenee 103

G L DO INBRORMRIIN .. ot smonivns siimanusss sy G A R 106

6.2.3 Exchanging Data Among Heterogeneous Database Systems 107
L R R . TS S SRR 110

Chapter 1. Federated Computing Environments

Very Large Distributed Systems (VLDS) will most commonly arise by joining
together several independent and previously existing distributed systems in a Federa-
tion. This dissertation presents two resource management mechanisms that illustrate
how cooperation among autonomous components of a federation is effectively esta-

blished when these mechanisms support several degrees of local autonomy.

1.1. Introduction

The next generation of distributed systems will be formed by hundreds of thousands
of autonomous computing sites. These VLDS will arise in either of two ways. One
method is by smaller integrated distributed systems growing from within by the addition
of new users and equipment. Alternatively, VLDS will come into existence by several

independent distributed systems joining together to form a federation.

In federations of autonomous computing systems two main issues will have to be
dealt with. One issue is the heterogeneity of hardware and software among sites. The
other is the interplay between autonomy and cooperation among the federation’s com-

ponents.

This dissertation claims that administrators, user communities and sites’ owners will
not give away control over their local resources for even the most wonderful global sys-
tem. Instead they will want to maintain control as if they were not part of the federation,
but at the same time they would like to to be able to expand their site’s capabilities by
using other sites’ resources. Hence, the focus of this dissertation is to design and evalu-
ate mechanisms that manage shared resources maintaining local autonomy of the

cooperating sites.

In this chapter we explain what a distributed system is and we define the particular
type of distributed systems that we study: a Federated Computing Environment. Then

we describe resource management in distributed systems, explaining the role of

Federated Computing Environments 2

autonomy in this area. We end this chapter describing related work and giving a brief

description of following chapters.

1.2. Distributed Systems

Experimental distributed systems research began at the end of the 1960s with the
establishment of Arpanet by the (Defense) Advance Research Projects Agency. The
development of TCP/IP and networking capabilities for BSD UNIX' were direct results
of this effort. Commercial companies have also been offering for a some time their own
networking solutions to their customers, for example, International Business Machines’
Systems Network Architecture (SNA). But it was the advent of the personal computers,
the workstations and the widespread use of local area networks (LAN) in the eighties that

launched distributed systems from research into everyday life.

The phrase distributed systems has many definitions, but a widely accepted one is:
‘‘a set of loosely coupled processing elements that interact among themselves.”” It is
understood by loosely coupled that no shared physical memory exists among the pro-
cessing elements, ie., the interactions are done by sending and receiving messages

through an underlying communication network.

A distributed system can also be characterized using Schroeder’s list of ‘‘symp-

toms’’ [Mullender89a] :

1) Multiple processing elements , that function independently of each other.

2) Interconnection hardware , through which the processing elements communicate.

3) Components fail independently , i.e., portions of the system will keep providing ser-
vice to its users in the face of a bounded number of failures.

4) Shared distributed state , that represents the status of the system at any given point

in time.

t UNIX is a rademark of A.T.&T.

Federated Computing Environments 3

The most widespread instances of a distributed system found today are those built
around LANs. These systems are characterized by having the processing elements
(mostly minicomputers, workstations, and personal computers) connected by carrier
sense multiple access (CSMA) networks. The best known example of CSMA is the Eth-
ernet [Metcalfe76a]. Main characteristics of this type of systems are that the processing
elements are within a couple of miles and the whole system is under a single administra-

tion domain.

The next most frequent encountered distributed systems are those that provide com-
munication among branches of a company and its main office. Most of this type of sys-

tems use vendors’ specific products, such as SNA.

Today, major efforts by govemnment agencies, academic institutions, research
laboratories, and private companies are in their way to create a national network built
around a loose federation of smaller, private and public networks. NFSnet is a clear
example of this type of effort. Is in this type of computing environment that we are most

interested.

1.3. Federations

In this dissertation we will concentrate ourselves with federated computing environ-

ments. We will define such environments as follows:

Definition 1.1: a Federated Computing Environment is a distributed system
that crosses several administration domains and where a permanent central

authority does not cxist.o

Networks like Internet and Bitnet are the best known examples of federated

environments. This type of environment can be characterized by three properties:

1) heterogeneity , of software and hardware components, as well as of level of

experience among the user communities;

Federated Computing Environments 4

2) scale, which can be in the order of hundred of thousands of components.

3) autonomy , of the federation components from each other and from any cen-

tralized resource.

The heterogeneity of hardware and software among the sites is an important
issue in distributed computing research. The ISO Open Systems Architecture
[Zimmermann8(0a], several research projects ([Kruger88a], [Notkin88a],
[Needham8&2a]) and several development efforts ([SUN88a], [Dineen87a]) directly
address this issue. We can safely say that during the '80s the experimental distri-
buted systems community has actively pursued solutions to many questions related

to heterogeneity.

Scaling has lately become a popular topic of research. A distributed system
protocol is said to be scalable if it can keep working efficiently as the number of
sites in the system increases. To support interactions among large number of com-
ponents, decentralization of resources and control becomes inevitable. Most of the
algorithms traditionally used in experimental distributed systems have been
designed to take advantage of LAN-base technology, therefore they do not neces-
sary scale well. For example, the V kemel [Cheriton88a] and the Emerald system
[Jul88a] both use broadcast messages to locate the address for a given name.
Because of the large number sites in a VLDS, the extensive use of broadcast mes-
sages would quickly congest the communication network. Other systems, like Gra-
pevine ([Birrell82a], [Schroeder84a]) and Amoeba [Tanenbaum89a], restrict the use
of broadcast messages to small subsets of the system. There are dedicated name
servers that handle the name space outside the smaller subsets. Another interesting
research on scale is the work on the Global Name Service [Lampson85a]. It focuses
on the design of a name service that supports a large naming space that changes
very frequently. In [Neumann88a] there is a good survey on the topic of scale in

distributed systems.

Federated Computing Environments 5

The issue of autonomy deals essentially with the interrelation between local
control and cooperation among the federation’s components. This issue is widely
acknowledged by the research community, but its study still is in a preliminary
stage. Its repercussions are best felt when managing share resources in a distributed

system.

1.4. Resource Management

It has long been recognized that network transparency is the fundamental
characteristic to be achieved by resource management mechanisms in distributed
systems. A computer network achieves network transparency when users and user
programs access any resource in the same manner, independent of the resource phy-
sical location or the user physical location. While it is easily achieved for networks
under a single administrative control, through the enforcement of standards and
homogeneous components (e.g., Cambridge Distributed System [Needhamg2a], V-
kernel [Cheriton88a], Locus [Walker§83a]) the concept is less feasible for federated
environments where multiple administrations, each controlling a subset of the com-

puting sites, exist.

Very often, a distributed system is structured so that a given service is tran-
sparently shared among the users (e.g., file storage). This usually is implemented by
having a dedicated machine (a server), or group of servers, that perform the service
for the users, who are unaware of their existence. Although this scheme has many
advantages (e.g., centralized administration of the service), it results in a depen-
dence of the users on the dedicated machines for this particular service. Frequently,
this translates to an inability to obtain the service if the communication with the
servers are not possible, as in the case of a network failure. This is true even in
cases where the user has a powerful local machine that could be capable of perform-
ing the servers’ function, although perhaps with a degraded quality. In federated

environments this issue of autonomy among components 1s even more fundamental.

Federated Computing Environments 6

Thus we believe that what is important in managing resources in federated
environments is how to balance the desire for local control of individual sites with
the wish for cooperation among sites. Is the basis of our work that what is needed
are mechanisms to allow different modes of cooperation depending on the level of
autonomy of the sites interacting. That is, we believe autonomy is not a binary pro-
perty, where either the sites have unrestricted sharing of resources, or have no shar-
ing at all, depending whether they belong to the same administration domain or not.

Instead, several types and degrees of site autonomy will exist.

1.5. Autonomy

We can distinguish two definitions for the concept of autonomy in federated
computing environments. Given two distinct computing sites A and B we define the

following types of autonomy:

Definition 1.2: Functional Autonomy, A is functionally autonomous from B

with respect to a function X, if A can perform X regardless of the state of B. o

Definition 1.3: Service Autonomy, A is service autonomous from B if A can
unilaterally refuse to service a request issued by B at any point in time. In
other words, A does not make any guarantee of service to requests coming

from B. o

In this dissertation we study examples of resources and present techniques that
allow cooperation while guaranteeing the autonomy of each site. We propose that
mechanisms to support cooperation in federated environments should be built to be
fiexible with respect to the autonomy of each component. In this way resource shar-
ing can be done more extensively since it will be customized to the level of

cooperation and autonomy that the interacting sites agrees upon.

We illustrate our ideas by focusing on mechanisms for two types of resources.

First, we study network file service to show how clients can be less dependents on

Federated Computing Environments 7

the status of the servers, thus preserving their functional autonomy (Definition 1.2).
Second, load sharing among autonomous computers is explored to show how a level
of performance can be guaranteed to local processes while still allowing local exe-

cution of remote jobs. In this case we exemplify service autonomy (Definition 1.3).

1.6. Related Work

Several research projects have explored issues related to VLDS. Mainly, they
have concentrated in how to make large, heterogeneous distributed systems work.

In this section we survey several of these projects.

In [Sheltzer86a], the Locus distributed operating system is extended to operate
transparently across long haul links in an internet environment. Their approach uses
semantic-based protocols, exploits locality in the operating system’s functions
(using mostly caching), and selects execution sites (when necessary) on the basis of
data location to minimize data movement across wide area networks. Most of this
work is geared to demonstrate the feasibility of achieving network transparency in
the Interet. They do not consider the issues of authorization, confidentiality of the

data, fault-tolerance or autonomy in this type of environment.

In [Renesse88a], wide-area Amoeba is discussed. Amoeba is a distributed
operating system based on the processor pool model which is completely network
transparent to its users. The goal in this project is to achieve a level of performance
of system functions as close as possible as to the performance of centralized sys-
tems. They achieve this level of performance by using special purpose remote pro-
cedure calls (RPC) to perform the traditional operating system functions. Amoeba
was designed for LAN based systems. When Amoeba was extended to function
across WAN:S, the slow and unreliable nature of the long haul links made their pro-
tocols too slow to satisfy their performance goal. Their solution to the problem was
to establish Amoeba ‘‘domains.”’ Each of such domains represent an intercon-

nected collection of LANs. The key characteristic of an Amoeba domain is that

Federated Computing Environments 8

broadcast messages issued within a domain are only received by all the machines in

that domain.

Communication across Amoeba domains is done by specialized processes that
sit on gateway machines and act as intermediaries. These processes, called agents,
are responsible to convert RPC messages within a domain back and forth to mes-
sages in the appropriate communication protocol of the long haul link connecting
the domains. These agents are under the control of each domain administrator.
Therefore, local control can be exercise over which service are being provided from
and to a given domain. Although this is an appropriate architecture for federated
environments, the Amoeba researchers assume that all the domains are Amoeba sys-

tems. Clearly, this is a lot to expect in a VLDS.

Neumann [Neumann88a] presents several design issues that arise due to the
scale of VLDS. He surveys the proposed and implemented solutions of several
research projects. Neuman states that there are three dimensions to scaling in distri-
buted systems: number of users and computers, distance between the farthest two
sites, and organization of the system. In the latter dimension he includes issues of
trust among components of the system as well as the number of distinct administra-
tions that the system spans. His approach concentrates on ways to allow users to
cope with the large scale of VLDS, since users are generally interested in a small

part of the entire system.

In [Tumbull87a], resource sharing across many organizational boundaries in a
VLDS is explored. He focus on solving the heterogeneity problem by providing a
simple, coherent and consistent base on which to build distributed services. His
approach is based on providing an homogeneous distributed operating system kemel
to all the computers in the VLDS. This kernel provides two functions: process
scheduling and interprocess communication. The rest of the functions are provided

as user level services'. Turnbull acknowledges that for his approach to be accepted

T This approach is similar to the V-kemel [Cheriton88a] and Sprite [Douglis87a] approaches

Federated Computing Environments 9

and used by many organizations there must be a way to make the transition from
their present system to his architecture. He states that this support must be provided
locally and therefore local autonomy and local policies must be taken into account.
He suggests that local operating systems could emulate his homogeneous kernel to

make the transition easier.

Dash [Anderson88a] is a research project that takes into account projections of
future technology on which VLDS will be built. Mainly, they expect that network
bandwidth and processor speed will greatly increase while CPUs will become
cheaper and multi-processors will be more prevalent. Dash also explores the prob-
lems that will arise as administration domains shift from a few large central entities
(e.g., universities, corporations, etc.) to large number of domains formed by indivi-
duals and small groups. Their focus on autonomy centers on the naming mechan-
ism. They state that this mechanism must support organizational autonomy with
respect to delegation of authority for name assignment and with respect to the

impossibility of having central trusted entities for name resolution.

The Desperanto research project [Mamrak85a] explores how to provide operat-
ing system support for distributed applications in networks of autonomous and
heterogeneous computing systems. They acknowledge that linking independent
computing sites, which are each under autonomous control, is a common event.
Desperanto looks for solutions that do not require changes to the existing software
at each site. When characterizing a single component of their distributed environ-
ment they state that its mode of participation should be constrained by its need to
service its local users. Moreover, they acknowledge that individual computing sites
will not accept significant performance degradation in local operations in order to

share resources with other sites.

which are both tailored for LANs.

Federated Computing Environments 10

In [Flavin88a] a different approach to resource sharing in VLDS is presented.
Instead of relying on a distributed operating system that spans the entire network,
their approach is based on the careful separation of server, application and user
interface function of distributed software; on the centralized maintenance of the
application interface function; and on the careful design of the program interface.
By focusing on the structure of each distributed software instead of the distributed
environment where they will run, they achieve a local autonomy of those aspects of

the software that merits it.

Most of the above mentioned projects concentrates in making VLDS feasible
by studying different mechanisms to allow interaction among heterogeneous sites,
and solving the problems that arise from scale in naming, authentication, access
control, directory service, etc. Few of these projects have explored how the auton-
omy of the individual computing sites, that are part of the federated environment,
will shape the software of these VLDS. The contribution of this dissertation is to
show how cooperation among autonomous sites can occur while guaranteeing the
autonomy of each site in an environment where no central authority exist and thus

agreements cannot be enforced.

1.7. Organization of the Dissertation

In this dissertation we will proceed as follows. In the next two chapters we
present our work on distributed file systems for a federated computing environment.
In such environments we expect that servers will have the freedom to deny service
to any user (service autonomy), thus we believe that the proper view of a server is
that it is the best place to obtain a resource, rather than the notion of a server being
the only place in which to do so. Consequently, a client has to be ready to take on a
given service when the corresponding dedicated machines are not accessible. In
the case of distributed file services, a possible approach consists of storing at the

server the latest copy of all user files, while keeping at client sites copies of possibly

Federated Computing Environments 11

older versions of the most crucial information. Thus, even after a failure users may
be able to proceed with their work (functional autonomy), although in a degraded

manner.

The idea of keeping local copies of key information has been called stashing
in the literature. We augment the usefulness of stashing by combining it with the
idea of quasi-copies [Alonso90a] (replicas of a data item that are allowed to diverge
from the primary data in a controlled, application-dependent fashion), which eases
the cost of maintaining replicas. With quasi-copies, the notion of controlled incon-
sistency can be introduced in distributed systems. In Chapter 2 we present the main

design issues that arise when incorporating stashing to a distributed file system.

In Chapter 3 we describe the design of a distributed file system architecture
called FACE, that incorporates stashing and quasi-copies. We also discuss a proto-
type built by modifying Sun’s Network File System. We show performance meas-

urements of this prototype

In Chapter 4 we focus our attention to load sharing among autonomous com-
puters. In some systems, load sharing has been accomplished in an all or nothing
fashion, i.e., if a node is idle then it becomes a candidate for executing a remote
workload, otherwise it is not. Other attempts have used priority schemes where
remote jobs are run with lower scheduling priority than local jobs. These styles of
sharing are too restrictive in an environment where most resources are underutil-
ized. Also, they do not scale well as the system load increases. We present a
scheme that replaces these sharing approaches with a gradual one, i.e., where each
machine in the network determines the amount of sharing it is willing to do (i.e. the
level of service autonomy it will preserve). The scheme, called High-Low, makes
sure that the service provided to local jobs of a lightly loaded node does not
deteriorate by more than a predefined amount. It simultaneously helps improve the

service at heavily loaded nodes. In Chapter 4 we empirically compare different

Federated Computing Environments 12

approaches to load sharing and show that it can be effective in a federated comput-

ing environment.

Finally in Chapter 5, we give our conclusions and furure directions of research.
We present the interesting theoretical problem of deciding how to efficiently pro-
pagate updates to quasi-copies disperse throughout a federated environment. We
then discuss the possibility of an automatic process that would allow entities of a
VLDS to negotiate the type of interaction they will permit among themselves (e.g.,
decide the transmission protocol to be used.) We conclude by presenting some
ideas for a layered architecture to allow cooperation among heterogeneous database

systems.

Chapter 2. StashingT

In federated computing environments one type of autonomy that has to be
preserved is the independence of sites from other sites (functional autonomy). This
chapter focuses on the design issues of a technique called stashing for distributed
file system that provides increased client independence from file servers. The use-
fulness of stashing is increased by using a quasi-copy framework to manage the
consistency between servers’ files and the client’s stashed copies. It is claimed that
by allowing applications to specify the degree of inconsistency of the data they use,
users at client sites can continue to access files even when a disengagement from the
server occurs, without the necessary overhead that perfect consistency would
require. It is shown, using probabilistic analysis, that stashing does increase the

availability of data to applications.

2.1. Introduction

Leslie Lamport once described a distributed system as ‘‘one that stops you
from getting any work done when a machine you've never even heard of crashes.”’
[Mullender89a]. It is often the case that by distributing functions among several

machines, the fault-tolerance of the whole systems is reduced instead of increased.

This is a problem of the traditional client-server model, a model which is
widely used in many distributed systems. In the client-server model, there are two
types of machines: clients and servers. Servers are dedicated machines that provide
a specific service (e.g., file storage). Clients are machines that users use and from

where request for services are issued (e.g. reading and writing to a file). The client-

t A paper based on preliminary versions of parts of Chapters 2 and 3 will appear in the
proceedings of the Ninth Symposium on Reliable Distributed Systems, IEEE/CS Press, Huntsville,
Alabama, October 1990. A shorter description appeared in the proceedings of the second
Workshop on Workstation Operating Systems, pp. 1-5, IEEE Computer Society Press, September

13

Stashing 14

sever paradigm is useful to enhance the capabilities of any particular computing ins-

tallation.

The functional dependency of client machines on servers to acquire a given
resource can be more severe in VLDS, since remote services can be overloaded by
many simultaneous requests. Moreover, in federated environments, since servers
and clients may belong to different administration domains, changes to a server, or
to a client, may produce service disruption for which certain sites were not prepared
for. In this chapter we explore how to avoid the Lamport effect we just described,
i.e., we study a mechanism to allow client machines to keep making progress when

they secede from the federation to which they belong.

One commonly used approach is to use redundancy techniques to augment the
availability of the essential information, i.e., to replicate servers to reduce the proba-
bility of a service not being available. (Locus [Walker83a] is an example of a dis-
tributed operating system based on this idea.) This solution is inherently expensive
due to the maintenance of the copies’ consistency and does not ultimately solve the

problem. It just lowers the probability that the service will not be available.

Another approach that has been used in an ‘‘ad-hoc’” manner for a long time,
and was formally discussed and named at the 1988 SIGOPS European workshop
[Birrell88a] is stashing. Stashing designates a class of techniques to store key
information for use when a system disengages from the network it belongs to

(either voluntarily or involuntarily).

Stashing does not mean that the concept of a server becomes useless. Rather, it
indicates that the correct manner to characterize a server is as the best place to
receive service and not as the only place. Consequently, clients can receive a given
service although the best place (the server) is not available. For example, a file
server may contain fast storage devices, the latest copy of all the information,

archival storage, and guarantee frequent backups. If the file server cannot be used,

Stashing 15

users may be happy having slow access to a local storage device containing hourly

snapshots of some of their files (for example, the most frequently accessed ones).

The actual details of maintaining a stash have not been fully discussed in the
literature. In particular, one of the issues that have not been addressed is that of
how to maintain consistency between the stashed information and the remote copy.
In this chapter we present the main design issues of implementing stashing to
increase the autonomy of client machines in a distributed file system. These issues

are:

(1) Selecting which files are vital for functioning when the file server is inaccessi-

ble.

(2) Deciding how consistent the data in these files is going to be. The more con-
sistent the higher the performance cost that we will have to pay. For instance,
if we demand perfect consistency, the local copies become replicated copies of
the files in the remote server, and we have to preserve consistency by resorting
to well known protocols (e.g., two-phase commit [Gray78a].) Since such pro-
tocols will be unacceptable in general, we propose to reduce the overhead by
using the notion of quasi-copies [Alonso90a]. Quasi copies are replicated
““‘copies’’ that may be somewhat out of date, but are guaranteed to meet a cer-

tain consistency predicate.

(3) Integrating versions after a failure. In general, the local users can make
updates to the stashed data while the file server is unavailable. Since more
than one user might be performing updates during periods of disengagement,
we might be faced with diverging copies in the moment of reconnecting the
users to the file server. A mechanism is required to produce a single,

integrated copy of the file to store back in the file server.

We should stress here that stashing should not be confused with the concept of

caching. Stashing differs from caching in that the data is pre-fetched and pre-

Stashing 16

loaded to be used only when a failure makes the server unreachable. The difference
between caching and stashing may be highlighted by pointing out that caching
stores locally for performance while stashing saves locally for fault-tolerance. Both
caching and stashing use remote stores to provide better storing service (e.g., ease of
sharing, larger disk space, archival storage, etc.) during normal operation of the
system, i.e., when failures are not present. It is worth noticing that stashing and
caching are not competitors. Both can coexist in the same design of a distributed
file system, contributing together to the availability and performance of file
accesses. In fact, stashing can be implemented on top of any existing system, to
enhance its availability. It is also possible to study how to make use of the caching
space for stashing purposes. However, we feel that by studying a mechanism solely
to increase clients’ autonomy (and thus file availability), we can isolate the impor-

tant issues and provide tailored solutions.

The format of this chapter is as follows. In the next section we explore in
greater detail the issues presented above. In Section 2.3, we develop a probabilistic
model to quantify the availability gains that stashing might deliver to an application.
In Section 2.4, we compare our work to related approaches in the literature. Finally,

in Section 2.5, we present a summary of our ideas.

2.2. Design Issues

In this section we present in greater detail the relevant issues of stashing, but
before we discuss these issues, we briefly mention how we expect that stashing

might be used.

Before the user starts working on a particular application, he or she selects the
files that are essential to completing the task. Clearly, different users will require
more or less sophisticated methods for selecting the files, and we will discuss some
of them in Section 2.2.1. After the essential files are chosen, the system will make

copies of them in, say, the user’s local workstation. During normal operation of the

Stashing 17

system all updates to the files are installed at the server (i.e., they are not performed
on the stashes), so we have to address the issue of how to keep the stash consistent
with the originals. Keeping the stash perfectly up to date might be expensive, and
in Section 2.2.2 we present a technique for minimizing this cost. This technique
involves letting the stashes diverge from the originals but not so much that they
become useless. For example, for some applications, files that are guaranteed to be
no more than ten minutes old might still be useful even though they are not per-
fectly up to date. If at some point there is a network failure, the user can now use
the stash copies. The copies might be a little out of date (e.g., they might be ten
minutes old in the example above), but they are still useful. If the user proceeds to
modify the stashes, then there must be an integration phase (with the modified
stashes of other users) when the network failure is repaired. This issue is discussed

in Section 2.2.3.

2.2.1. File Selection

We now discuss how a user selects the files that will be stashed (or dropped
from the stash). While considering how the selection process is done we must keep
in mind that the user community of most systems is quite heterogeneous, and users
may differ in their level of computer sophistication. The view of stashing that a
sophisticated user may be expected to have is quite different from that of an inex-
perienced one. Moreover, the less a user understand the application being used, the

more automated the selection process would have to be.

There are a number of ways in which an experienced user will be able to select
the files that need to be stashed. There are both static and dynamic types of choices.
The static approach is more suitable for files which the user almost always needs
stashed (for example, the operating system files, a compiler, a favorite editor). The
method for specifying such ‘‘permanently stashed’’ files is via a list of names kept

in a well-known file in the user’s home directory, e.g., a ‘‘.stashrc’’ file. While the

Stashing 18

knowledgeable user will add and delete file names from the .stashrc file, less experi-

enced users can simply use a default .stashrc provided by the system administrator.

Of course, we require a more dynamic way of specifying files to be stashed. In
general, users will be involved in completing a certain task (or a collection of tasks)
that is important enough that they do not want its completion jeopardized by a pos-
sible communication failure. Users who understand their application very well can
simply use the stash command (i.e., ‘“‘stash filename’’) to select the files to be
stashed. Those involved in more complex projects will probably already have a
mechanism equivalent to the UNIX make facility [Leffler84a] in order to keep track
of the files in their application. Stashing can also be done by extending the stash
command so that it can understand the format of the make file and then proceed to

stash every file that is mentioned in the make file (either data files or commands).

Somewhat less sophisticated users may not be as inclined to think beforehand
about their applications and the files that they will require. For them, another
approach may be offered. Just before the user is about to start on his usual activity
cycle (e.g., edit, compile, run, etc.) the user will invoke the ‘‘record_stash’’ com-
mand. From this point on, and until an ‘‘end_record_stash’’ command is given,
every file (data or otherwise) that is used will be added to the collection of files to
be stashed. Thus, once the user has gone through one application cycle he or she
will be able to continue his or her work, at least for the near future. A way of
implementing this facility in window systems is to associate a stashing attribute
with each window. If the attribute is set, a “‘record_stash’’ is issued on the window,

thus stashing every file touched by commands entered in the window.

Even this last approach may not be appropriate for less sophisticated users.
For them, there are two choices. The first is that the application itself takes care of
the stashing. In general, the designer of an application can determine the essential

files required by the application to run. The application designer can embed stash-

Stashing 19

ing calls into the code of the application so that these required files are stashed in
the user’s local system. For example, a spreadsheet program can, on its user’s
behalf, stash a copy of itself as well as one of the files being processed. This
approach certainly requires very little input from the user. Alternatively, the system
can save a ‘‘working set’’ of files, i.e., stash the files that are accessed in the last &
commands, where d.is a predefined, tunable parameter. In the latter case, the stash-
ing facility will be performing some of the tasks of a file caching mechanism. If
there is such a caching facility already in place, then the stashing mechanism could

take advantage of the cached files.

A final point that must be addressed is that of how difficult it is for users to
determine which files to stash. Our experience with our prototype (to be presented
in the next chapter) suggests that it is straightforward for users to select the essential
files for stashing. In hierarchical file systems such as UNIX-type, users tend to keep
related files in the same directory (or sub-tree). Consequently, after ensuring that
certain obvious tools (e.g., the editor) are available, stashing the files in the current

directory seems sufficient in practice for most of our applications.

2.2.2. Data Consistency

Stashing files is somewhat similar to replicating them throughout the system.
Thus, in stashing we must also consider the issue of consistency between the
stashed copies and the original file at the server. Clearly, we have to keep in mind
that the more consistent we demand the copies to be, the higher the performance

overhead that we will incur in maintaining the consistency.

If one wants to have perfect consistency for the copies at all moments, i.e., to
keep them identical to the file in the server, there is no alternative but to use a two-
phase commit protocol (or an equivalent mechanism). That is, every time an update
is produced at the server, all the copies should be locked and the update propagated

to them. This is costly to perform. Certainly in federated environments (where the

Stashing 20

possibility of thousand of copies exist) this is an impractical solution. Moreover,
for many applications we would be paying a high price for an unnecessary service.
For instance, if a user is working to meet a paper deadline and the network fails, he
or she may be content with having a version that is several minutes old. Of course,
if the application requires perfect data, we must be prepared to pay the price of
using a protocol that maintains the stashed copies consistent with the server copy at

all times.

Using information that might be stale, but still useful is not novel. For exam-
ple, using old data is already common practice in databases (i.e., snapshots
[Lindsay86a]), as well as in distributed caches [Terry87a], just to name two applica-
tions. However, in these applications the degree of inconsistency between the local
version and the primary copy is left unspecified. Clearly, there is a wide spectrum
of possibilities between fully consistent data and data that is simply known to be out
of date. To resolve this issue, the notion of quasi-copies was developed in
[Alonso90a]. Quasi-copies are replicated ‘‘copies’ that may be somewhat out of
date but are guaranteed to meet a certain consistency predicate. Although the idea
of quasi-copies was developed in the context of Information Retrieval Systems, we
feel that the notion of controlled inconsistency can be useful for many other distri-
buted applications. In particular, we feel that this idea is appropriate in a file system

services for federated environments.

With quasi-copies, it is assumed that a central location exists (e.g., a file
server), where all the updates are processed, and several copies are spread
throughout the network. A predicate is associated with each copy, establishing the
degree of inconsistency which can be tolerated. For instance, the predicate can state
that the copy must not be more than ten minutes old. The user is free to choose from
a spectrum of consistency specifications. These may range from demanding a per-

fect, consistent copy, to settling for a stale snapshot. The system guarantees, in one

Stashing 21

of two ways, that the specified predicate is not violated when updates occur. In the
first one, the server constantly watches for updates and becomes responsible for pro-
pagating them when the predicate is about to be violated. Altemnatively, the clients
could be responsible for the consistency of their copies, requesting fresh ones
periodically. (Notice that clients can only maintained age-dependent predicates.)
We call the two ways of maintaining consistency server maintained and client
maintained, respectively. The same file may be client maintained for some of the

copies and server maintained for others.

There are several types of predicates that are useful in keeping quasi-copies of
files. For the following definitions let x be a remote file at a file server and x” a
stashed copy of x. Let x(¢) be the content of the file at time 7. Let v(x(z)) be the

version number of file x at time 7.

(1) Delay Condition. It states how much time a stashed copy may lag behind the file

server copy. For file x, an allowable delay of a is given by the condition

for all times 7 2 0 —ksuchthat 0 £ k < &
and x’(t) = x(t=k)

Since this defines a window of acceptable value, we use the notation W(x) = a to

represent this condition.

(2) Version Condition. A user may want to specify a window of allowable values,
not in terms of time, but of versions. For example, if a file represents a VLSI cir-
cuit, it may be useful to require a copy that is at most two versions old. We
represent this condition as V(x) = B, where B is the maximum version difference.

That is , V(x) = P is the condition

for all times r 2 05 k,tg suchthat0 < k < B
and0 <ty <t
and v(x(2)) = v(x(tg)) + k
and x' (1) = x(tg)

(3) Number of changes. In this condition the maximum number of updates missing

in the stashed copy is bounded by the user. We represent this condition as

Stashing 2

U(x) = &, where x is the file and € is the maximum number of updates missing.

These predicates are only valid while the file server is accessible. Moreover,
transmission delays should be taken into account when enforcing these conditions
from the file server, i.e., in the case of sever maintained consistency. To illustrate,
consider the condition U(x) = € and assume that an update is about to occur in the
file server that would violate the condition, i.e., € + 1 updates will be missing from
some stashed copy. Hence the update to the stash must be performed *‘at the same
time’’ as the remote file is changed. Strictly speaking, this is not possible. Since
we want to avoid using a two-phase commit protocol (or similar strategy), we pro-
pose interpreting every condition C'(x) on file x at server j as

C(x) V W) =06 V S_FAILED())

This means that all conditions have an implicit delay window of &, where & 2 T'p,
the maximum transmission delay, and also that conditions do not have to be

enforced if the server is down (S_FAILED(j) = TRUE).

Of course, if the stashed copy is client maintained, none of these problems
arise. The client machine will be responsible for asking for a fresh copy of the file
when the delay condition is about to become false. The delay in the condition will
have to take into account the maximum transmission time plus the maximum
response time of the server to a service request (server’s time-out). This strategy
leaves the file server oblivious to the existence of the stashed copy, offloading the

work to the client.

Some optimizations can be made to reduce the overhead of sending files over
the network, and to improve the quality of the data stashed. For example, one can
make use of cached data, if a file cache is maintained in the distributed file system
for performance reasons. Very often, the cache contains the latest modifications
made to the file in the local facility. We could copy the contents of the cache to the

stash, whenever a local user has made a modification to the file, thereby improving

Stashing 23

the quality of the data stashed. Note that integrating cached data with stashed data
may be a complex process if the file in question is partially cached in blocks,

instead of in its entirety.

Another optimization involves having the client save the version number of the
stash files it has. When the client requests a fresh copy (in client maintained predi-
cates) this version number is included in the request. The server will then compare
this version number with the actual version of the file, thus determining whether
sending the file is necessary or not. Alternatively, to avoid sending large files, one
could break the file into segments and apply file comparison techniques
[Barbara89a] to find out which segments have changed since the last time the copy

was send, and send only those segments.

It is also possible to reduce the overhead imposed on the server to maintain the
consistency of the stashed copies. For example, for server-maintained predicates,
one could collapse several clients’ predicates into a single one (e.g., delay predi-
cates of 5, 10, and 15 minutes could be collapsed to a single one of 5 minutes). This
would reduce the number of predicates that the server will have to keep track off at
the expense of sending more messages through out the network (e.g., with the above

collapsed predicate of 5 minutes three messages would be sent every time).

For client-maintained predicates, we could arrange a propagation scheme of
updates according to the clients’ predicates, i.e., updating first the clients with the
tightest consistency requirements, and they would in turn propagate updates to other
clients with less demanding requirements. In this manner the server is only directly

contacted by a subset of the clients holding stashed copies.

As a final point, we should mention that so far we have only discussed con-
straints on a single file and its stash copy. It is also possible to have multi-file con-
straints. For instance, it might be important for an application to keep in the stash

the same version number of two different files which might exist in different file

Stashing 24

servers (e.g., the source and the object files of a program.) In this example, the user
can impose a predicate covering both files that guarantees that the files will have the
same version. For example, if f; and f, are the source and the object file respec-
tively, the condition might read as follows.
CHOIERTPAGY

The system should now guarantee that the two stashed copies f; and f, obey that
predicate. This implies that when one of the copies is refreshed, either because the
server propagated it or the client requested it, the other should also be propagated or
requested. The client should make sure that both copies are installed atomically,

thereby ensuring that the condition is not violated.

2.2.3. Data Integration

Stashing is useful when the server is no longer available. At this point the
client sites with stashed copies will begin to use them, possibly making updates.
After the server is once again available, we need to worry about integration of the
possibly diverging copies that coexist in the system.

One trivial way of solving the integration problem is by avoiding diverging
copies altogether, i.e., only allowing updates to occur in a single group of sites

¢

while allowing all sites to read their local copies. The ‘‘updating’’ group can be
composed of the file server and all the sites that kept connected with it, or if we
truly want to operate after server failures, a single group of local sites that remained
connected (perhaps making sure that this group always contains the owner(s) of the
file). This strategy could be implemented using voting schemes [Gifford79a], but it
would be far too restrictive for our purposes, since many local facilities could only

read their stashed data. This strategy corresponds to a pessimistic approach to

recovery.

Alternatively, we could use an optimistic recovery mechanism, allowing

copies to diverge, and integrating them afterwards. The related problem in

Stashing 25

distributed database systems has received a lot of attention in the past (e.g., see
[Davidson85a]), and some of the solutions are applicable to our problem, with the
difference that instead of transactions, we deal with individual actions to the
involved files. One could construct dependency graphs similar to the ones used by
Davidson [Davidson82a] and analyze them afterwards, rolling back some of the
actions taken to break the conflicts. Or one could provide a patching mechanism
[Garcia-Molina83a] that allows the divergent copies to be merged into a final
integrated file. But whatever solution is used, it is clear that we need to keep a log at
all sites involved which would register all the operations that have been performed
to the file. The file server’s log has to have all the updates that have been made to
the files and are not reflected in some stash. At the clients, all operations done after

losing contact with the server have to be registered.

Our plan is to provide application-dependent solutions for this problem. That
is, knowing the semantics of the application involved, we can analyze the logs of
the different sites making updates to their stashes and determine the set of
conflicting operations. Once we do this, we will take the approach of [Garcia-
Molina83a] in ‘‘patching’’ the file. Briefly stated, this method requires that the
application designer (or the users of the application) define, a priori, a table of
actions to be taken when two conflicting operations are performed to different
stashed copies of the same remote file during a network partition. These actions are
then applied until no more conflicts remain. Of course, the involved users would
have to be notified of the decisions taken. Alternatively, the system could ask for
human intervention, presenting the users with the conflicting actions and requesting
a procedure to be follow to reintegrate. These requests can be made to the commun-

ity of users that updated the file, or to a central authority.

We should note that application-dependent approaches have been studied by

researchers with similar problems. For example, Horwitz et al. ((Horwitz88a]) have

Stashing 26

developed a system to integrate diverging versions of a computer program. Also, as
described in [Hardwick89a], researchers have implemented a system which gen- |
erates scripts from diverging engineering designs. These scripts are then used to aid
users in building a design that consolidates different features from the individual

designs.

2.3. Quantifying Availability Gains

To evaluate the usefulness of stashing, we have implemented a prototype at
Princeton that will be discussed in the next chapter. We have had a successful
although limited experience with this prototype. It would be highly desirable to
have a larger user community taking advantage of our stashing facility for different
applications to qualitatively assess the benefits of the system. Since we do not have
a large number of users at present, we will try to gauge the possible benefits of a
stashing mechanism in two ways. First, we develop a simple probabilistic model,
and examine its predicted performance under a variety of assumptions. Second, we
outline a typical application and measure the benefits it can obtain under a stashing

file system.

Let us define a discrete random variable X that represents the event of an appli-
cation process accessing a particular block of data within the file space of that appli-
cation. Formally, p(x), is the probability mass function for the discrete random
variable X, ie., P{X = x} = p(x) is the probability of the application accessing
block x. For the following analysis we need to determine the cumulative distribu-

tion function F (k) of X, which is computed by

F(k) = ¥ p(xi)

all x; such that i<k
where x; represents a data block within the applications file space and k represents

the number of blocks that have been placed in the local stash. (Without loss of gen-

erality we assume that x; through x; are the data blocks in the stash.) Notice then

Stashing 27

that F'(k) represents the probability of an application process accessing any block of

data within a local stash filled with & blocks.

To measure how much availability an application gains by using stashing we

define the following two terms:

Definition 5.1- Survival: is the number of file accesses that are issued by an

application before the first file access is issued to a file not stashed. o

Survival can be modeled as a discrete random variable S, with a geometric distribu-

tion. Its probabilistic mass function is then given by

P{S = s} = (1-F(k)) F(k)* ! ,s=1,2,3,.

i
)

Definition 5.2- Length of Survival: is the length of time that the application
confinues to run from the moment of a failure until the application issues a file

access corresponding to a file not stashed.o

Length of Survival can be modeled as a continuous random variable L. If we define
T as the interarrival time of the application’s file accesses, and we assume that the
time between accesses is independent of the random variable S, the expected valued

of L can be computed as follows:
E[L] = E[S/T] = E[S] E[T]
For this analysis we are interested in the mean survival, E[S], and mean length
of survival, E[L], as a function of the cumulative distribution function of X, F(k).
Therefore, we need to determine p(x), for all data blocks x in the application file

space. For this, we assume three different probabilistic models for p(x):

(1) Uniform distribution: a file access is equally likely to access any file in the
application’s file space. Let the random variable X have a probabilistic mass func-
tion given by an uniform distribution. Let N be the sum of all the blocks in the

application’s file space. The probability of accessing a stashed file is given by the

Stashing 28

cumulative distribution function,

k
F(k) = —

Using F (k) for X we can compute the probabilistic mass function and expectation

for S (the survival of the application).

s—1
P{S:s}:{N; kJ % =108,
N
E[S] =
[S] N - %

Figure 2.1 shows the cumulative distribution function for a total set of files

occupying a maximum of 473 KbytesT.

F (k)

Figure 2.1: Cumulative distribution function for a uniform random variable
(2) Zipf distribution: several file access characterization studies ([Ousterhout85a],
[Bozman89a], [Staelin88a], [Floyd86a], [Satyanarayanan8la], [Smith81la]) have

observed that file access pattemns are heavily skewed, i.e., most of the file accesses

T For the analysis that we are doing here we are using data from a document processing appli-
cation. Details are given when explaining the ‘‘Empirical distribution’” later in this section.

Stashing 29

go to a small fraction of the files. These studies often quote a 90:10 ratio, i.e., 90%
of the file accesses go to 10% of the files. This is true even if the files are divided
by types [Floyd86a]. Assuming that stashing perfectly guesses the k file blocks that
the application will access next, the probabilistic mass function p(k) follows a Zipf

distribution [Zipf49a]. Consequently, the cumulative distribution function F (k) is

1
F(k) = ———— k =1,2,3,..
W k1L (a+1)
where {(i) = ¥ i is the Riemann Zeta distribution [Olkin80a]. Using this F (k)
j=1

we can formulate the probability distribution function and expectation for S :

s+1
S
s““C(oHI)J

P{S=s}={1- L s sge LBE .

s°‘+1C(a+1)J

st La+1)
st Lla+1) - 1

E[S] =

In Figure 2.2 we show the cumulative distribution function for a Zipf random

variable with a 90:10 ratio, using a value for & = 2.03895i .

(3) Empirical distribution: assuming that we have the exact file access behavior for
a given application, it could be possible to determine the application’s Survival dur-
ing a partition. It is difficult to come up with a probabilistic model that fits the
behavior of a particular application, because it depends on the behavior of its user.
For this model we derived the behavior from traces belonging to a particular session
of a document processing application (vi, troff, and lpr [Leffier84a]). Although this
is not statistically significant, it is indicative of what gains we may expect in a par-
ticular instance of an application. Table 2.1 presents the files accessed by the user

to edit, format and print a particular file. The files are listed in the same sequential

1 This value was computed from the average file size of the application measured, which is

% = 16 blocks of 1 Kbyte, and using the equation B[X] = o2

Stashing 30

F (k)
.64+

Figure 2.2: Cumulative distribution function for a Zipf random variable

order that they are accessed by the user. In Figure 2.3 we show the cumulative dis-
tribution function, F(k), for this empirical measurements. The time that the file is in

use (column “‘Time in use’’) is used as a measure of F (k).

file name size (Kb) | Time in use (mins) Purpose of file
vi 124 128 editor
intro 13 39.58 user’s document
sec2 10 30.58 user’s document
model 3 9.58 user’s document
sec3 11 33.58 user’s document
secd 13 39.58 user’s document
concl 4 12.58 user’s document
troff 2 0.5 formatter shell
ditroff 96 0.5 formatter
ms_macros 1 0.5 macro package
fonts_(RBI) 3 0.5 fonts
lpr 47 0.08 printer software

Table 2.1. Files accessed by a document processing application

Using our models, we plotted length of survival (L) with respect to the size of
the filled stashed space in the local storage (k). Figure 2.4 presents on the ordinate

the expected length of survival (E[L]), assuming that the expected value of the

Stashing 3l

E (k)
1T

100 200 300 400

Figure 2.3: Cumulative distribution function from empirical measurements

interarrival time of the application’s file accesses is E[T] = 0.2 minutes. In the

abscissa we represent the size of the filled stash space in the local storage device (k).

From measurements made to Princeton University Computer Science
department’s main file server, we have observed that the average length of an
unplanned disruption is approximately thirty minutes. An unplanned disruptions
occurs when a given service is unavailable without previous notice to users (e.g. the
server crashed or there was an unpredictable network partition). In Figure 2.4 we
show with a horizontal dashed line this measured average length of disengagement.
The purpose of showing this measure is that it provides a realistic point of reference

to how much availability gain is needed by an application.

The curve representing the uniform model in Figure 2.4 shows that this model
predicts hardly any gain in availability to applications using stashing. Almost all
the files that the application may access have to be stashed so the application can
survive any meaningful amount of time. If we now look at the curve representing

the Zipf distribution, we can see that if this assumption were true, then with little

Stashing 32

E[L] mins. (log)

Locality

Empirical /

Figure 2.4: Expected Length of Survival for different probabilistic models

stash space filled, the system can keep serving application’s file accesses for a rela-
tive long time. Of course, we are assuming that the files being stashed are the best
choices. In practice, those files may be identified automatically (say, based on pre-

vious access pattemns), or users may indicate them to the stash mechanism.

Finally, in the empirical case we can distinguish three types of files used by the

document processing application:
(1) Those files which are essential for the application to run at all (e.g., the editor);

(2) Those files which have the user data, which are relative small in size and are

used extensively (e.g., document’s text);

(3) Those files which are needed by the application to complete its task (e.g.,

fonts, macros, printing command, etc.). These files are often used once and for

Stashing 33

a short period of time.

This classification of files is also true for other applications, like software
development. The empirical curve shows that the measured application can benefit
from a stashing facility to survive for a relative long time compared to the average

length of an unplanned disengagement.

2.4. Related Work

Our approach to augmenting file availability can be compared with two dif-
ferent areas of research: distributed caching and replication. These two areas have
received much attention from different researchers. For this discussion we will
focus on a few representative work done on each of these areas. Table 2.2 shows

the systems we surveyed, the area of research they fall under and the type of availa-

bility they offer.
Distributed . Availability
caching Replication during disengagement
Sprite none
Andrew partially
Coda always
V-kernel partially
Locus always
Deceit user defined
Echo' partially

Table 2.2: Type of availability provided by surveyed systems

2.4.1. Distributed Caching

The purpose of distributed caching is to improve the performance of file access
operations (e.g., read and write). For this, the fetch and replacement mechanisms of
the caching strategy are designed to store locally the latest version of the data

needed by the running application at the moment it is requested.

1 Echo is the only system surveyed that explicitly refers to the term stashing. We discuss Echo
at the end of Section 2.4.2.

Stashing 34

The Sprite file system [Nelson88a] makes extensive use of statefull servers to
support high performance main-memory cache at diskless clients. A problem with
statefull servers is that recovering from server crashes can be complex and time
consuming. Welch et al. [Welch89a] present a mechanism to rebuild the state of a
crashed Sprite server with the server’s replicated state at its clients. Even with this
mechanism, client applications are blocked while their server is not reachable, i.e.,
modifications are not allow to be done at a client’s cache while the server is inacces-

sible (the same as in NFS). They do this to maintain the consistency of the files.

In Andrew [Howard88a], caching is a fundamental part of the architecture.
Andrew caches entire files on demand at client’s disks when an open operation is
issued. After a file is opened, individual read and write operations are directed to
the cache, without any involvement with the server or any client holding the same
file in its cache. On a close operation, if the file has been modified, it is copied back
to the server’s storage. A “‘callback’ mechanism is used by the servers to invali-
date clients’ cache holding a copy of the modified file, ie., servers will notify
clients when to invalidate their cache, instead of clients periodically checking if

their cache are valid.

All of this works fine while there is no network partition or server crash. If at
any moment a client cannot reach its server, the client applications can only use the
currently opened files. Any other un-opened file that happens to be in the client
cache is not usable, since open validation can not be performed, i.e., the client can

not check if it has the latest version of these files.

An on-going project at CMU, called Coda [Satyanarayanan89a] is trying to
build a successor to Andrew that provides a high degree of file availability when
faced with failures (network partitions and server crashes). The goal is to preserve
reasonable usability and performance. As in Andrew, they rely on entire file cach-

ing on client disks.

Stashing 35

Coda’s servers are responsible for file replication and operation during parti-
tion. Coda also allows disconnected operations of clients, i.e., clients can access all
of their cached files even if the corresponding servers are not reachable. Our work
overlaps in many areas with that of Coda, in particular on the problem of discon-
nected operation. The main difference between Coda and the stashing approach is
that Coda is extending the Andrew caching facility to provide increased availability
of files. As we have mentioned before, the objectives of cache fetch and replace-
ment policies may contradict those of policies to increase availability. Although it
is too early to know if Coda’s enhanced caching mechanism is successful increasing
availability, the close design of Andrew and Coda makes their approach inappropri-
ate for a federated environment. (We have to note that Coda researchers are
exploring this issue.) We feel that by studying mechanisms to solely increase client
autonomy (and thus file availability), we can isolate the important issues and pro-

vide tailored solutions.

Gray and Cheriton [Gray89a] have proposed a time-based consistency
mechanism to access cache data in distributed systems. They present the concept of
a lease which is a token - with an expiration time - that grants the client holding it
the right to access the corresponding data item located in its cache. Leases are just
a particular example of quasi-copies, using delay predicates, applied to caching. If
a client holding a lease can not communicate with the corresponding server, then it
can still access its cached files until the lease expires. We see this work as the
application of quasi-copy framework to distributed caching. This approach may
provide a way of merging caching and stashing under the umbrella of quasi-copies.

Further study will have to be undertaken to validate this idea.

2.4.2. Replication

One of the main objective of replicating data has always been to augment avai-

lability when failures occur in the distributed system.

Stashing 36

In Locus [Walker83a] replication of files is implemented to increase availabil-
ity, reliability and performance. We agree with the Locus researchers in that allow-
ing updates in all partitions, when a failure occurs, will not in most cases lead to
conflicting updates. They present automatic conflict resolution schemes for direc-
tories and mailboxes. They use a conflict detection mechanism based on version
vectors [Parker83a]. Locus supports replication at the granularity of entire file
directories (although the replicated directories do not have to contain all the files).
The main difference between stashing and Locus’ replication is the quasi-copy
predicates that stashing uses to control the inconsistency of the replicas. Locus
presents to an user within a partition the ‘‘latest’ version of a file. The ‘‘lateness’’
of a version depends on the synchronization facility and update propagation
mechanism used by Locus and in no way reflects what the user considers ‘‘good

enough’’ to use.

Deceit [Siegel89a] is a distributed file system that allows users to adjust sys-
tems semantics on a per file basis. The users are able to set parameters for different
levels of file availability, performance, and one-copy serializability. The Deceit
first prototype uses the NFS client/server protocol. A set of Deceit servers can
appear to be a single, highly available and reliable NFS server. Deceit concurrency
control is based on a dynamic primary copy scheme using tokens. If a file is going
to be modified in a given server, this server obtains a token from the last server that
modified the file. Once the token is acquire modifications are allowed. All file
operations from other servers and clients are forwarded to the token holder. Deceit
allows different methods of replicated access during network partitions, depending
on the policy used to regenerate tokens. In particular, Deceit allows updates to be
made to replicas across partitions. As in the work presented in this dissertation,
they also acknowledge the need to resolve diverging versions of a file using seman-

tics of the corresponding application.

Stashing 31

The ideas presented in this chapter overlaps with Deceit’s design of client
agents. These agents are software modules that reside at client machines. They pro-
vide the interface between user processes and the NFS protocol to provide caching
and ‘‘failover.”” Failover is the mechanism by which clients access a different
server containing a replica of the desire file, when the current server is no longer
reachable. We believe that the approach taken in this dissertation to augment avai-
lability (i.e. stashing) could well be integrated to the functions of Deceit’s client

agents.

Echo [Hisgen89a], is a distributed file system that employs replication to
increase file availability. The Echo hierarchical name space is divided into two
parts: a lower level that holds the logical files (i.e., identifiers to data repositories)
and an upper level that holds the global name service (i.e., directories). Each of
these parts allow replication, but is implemented with a different consistency
scheme. The lower level uses a dynamic primary site and majority voting con-
sensus to allow updates to a replicated file. Clients cache files and servers use a
““callback’” mechanism to invalidate caches. They chose to do this on the belief
that *‘... a strong guarantee is less confusing to average users than a weaker guaran-

tee would be.”’

The upper level allows a weaker consistency among replicas of a file. It does
not have the notion of a primary site and updates are allowed to any replica during a
partition. Diverging copies are resolved using time-stamps: the most recent one is
preserved. Clients also cache data from the global name service, but in read-only
mode. These caches get invalidated by expiration times. The client cache provides
increase availability for the global name service by being loaded with data that is
important to the user application and only allowing these entries to expire if the
client is connected to its corresponding server. The Echo researchers have used the

term stashing to refer to this behavior of the global name service cache. We feel

Stashing 38

that Echo is just exploiting one aspect of stashing and are limiting its use by not
allowing users (or applications) to access partially inconsistent data that they are

willing to use.

2.5. Summary

In this chapter, we have presented the relevant design issues for a distributed
file systems that allows users to keep local copies of important files, decreasing their
dependency over file servers. Using the notions of stashing and quasi-copies, the
system allows users to specify the quality of the service they want to receive when
the file server is not reachable. We feel that one of the key points of this work is our
focus on the tradeoff between availability and degradation of service. This design is
ideally suited to federated environments, because it provides users of a component
with greater autonomy from other components and tolerance of network partitions

and server failures.

We want to stress that the use of stashing does not preclude the use of other
performance-enhancing or fault-tolerant techniques. Stashing may be used in con-
junction with, say, caching or file replication, and it will serve to increase the avai-

lability of distributed file systems.

In this chapter we also presented a probabilistic model to evaluate how much
availability a stashing facility would provide to a particular application. This model
shows that applications can benefit from a stashing facility to survive for a relative
long time compared to the average length of an unplanned disengagement or failure

of the server.

Chapter 3. FACE: a file system architecture for

Federated Computing Environments

This chapter presents the general architecture of a network file system that
incorporates the notions of stashing and quasi-copy presented in Chapter 2. A pro-
totype of the FACE architecture using Sun'’s NFS is described and it is used to
asses the difficulty of adding stashing to an existing network file system, as well as
to measure the performance overhead that stashing incurs. It is shown that stashing
can be provided with relative few changes to an exiting implementation and with

negligible overhead to user processes.

3.1. Architecture

In Figure 3.1 we show a diagram of FACE’s general design. There are four
main components in this architecture: the network file system interfaces, the book-
keeper processes, the integration modules, and the user-level tools (on the client
side only). The network file system interface directs user file accesses to the
appropriate underlying file system (i.e., local or remote). It also implements the
system support for stashing. The client and server bookkeeper processes provide
the runtime support for keeping the stashed copies of remote files within the user
consistency constraints (recall the discussion in section 2.2.2 about client main-
tained and server maintained predicates). The integration modules implements the
functions presented in section 2.2.3, i.e., an optimistic recovery mechanism to allow
the merging of divergent stashed copies. Finally, the user-level tools provide the
facilities which allow users to select which files to stash. In the following subsec-
tions we discuss in more detail the network file system interface and the book-
keepers. We also sketch an example of how application specific integration

modules should be implemented, as well as discuss what facilities should the user-

T SUN is a trademark of Sun Microsystems, Inc.

39

FACE 40

level tools provide.

CLIENT SERVER

USER PROCESSES

Integration Integration
Bookkeeper Bookkeeper
module module
user—level
tools
NETWORK FILE NETWORK FILE
SYSTEM INTERFACE SYSTEM INTERFACE

Remocte Remote

LOCAL

DISK File System

server

File System

Secondary
client

Storage

daemon daemon

NETWORK

Figure 3.1: FACE general design

3.1.1. Network File System Interface

When enhancing a network file system to support stashing, one decision that
has to be made is where in the architecture should the added functionality be imple-
mented. To make this decision we have to take into account our design goals,
which follow from the federated environment we are considering: large scale and
local autonomy, which implies minimal modifications to be enforced to each federa-

tion component, as well as transparency to user level processes, portability to a

FACE 41

variety of computer systems, and minimal performance degradation.

Clearly, stashing must affect the file name translation process. Depending on
the status of the connection between client and server, the file name use by a client
to refer to a stashed file has to ultimately translate to either the remote file or to the
stashed copy. Figure 3.2 shows the different layers in the file name translation pro-
cess. User processes use file names that are translated to Internal File IDentifiers
(IFID) used by the kemel. These IFDI’s are translated to blocks in main memory
managed by the cache system. If the file has not been brought into the main
memory, the content of the file is brought into the cache space from its physical

location.

For the first layer, file name, there are different naming conventions among
operating systems. Therefore translation mechanisms from file names to IFID, are
different for each type of system. Implementing stashing at this level would require
keeping two disjoint file spaces together by maintaining a correspondence between
file names on the remote file system and file names on the local file system. A
user-level mechanism would use this correspondence to decide what file name to
use whenever a user process tries to access a stashed file. Although this could be
provided by ‘‘enhanced’’ library functions, and it would be relatively easy to imple-
ment, it would have to be done on a per language basis. Clearly, our goals of porta-
bility and transparency at the user level would not be met. Moreover, the overhead
cost to maintain the name correspondence, and the monitoring of the status of the
connection between client and server, at the user level would be too time consuming
and redundant, since in many operating systems it is already in the kernel.

The cache layer also differs from implementation to implementation. Although
in some cases (CFS [Schroeder85a], Andrew [Howard88a], Amoeba [Renesse89a])
there can be a file oriented cache instead of the more traditional block cache, this is

not yet the general case nor we foresee it being a de-facto standard. In the cases

FACE 42

FILE]]\IAME user

kernel

PHYSICAL LOCATION 4,0
(file server or local disk)

Figure 3.2: Name translation process

where clients have a block oriented cache, the cache system of the clients would
have to be significantly modified to allow it to cache entire files. In the introductory
paragraphs of Chapter 2 we discussed why we belief that caching and stashing
should be treated separately. Forcing a client caching system to also handle stash-
ing may result in a negative impact on the cache performance since decisions made
by the stashing fetching and replacement policies may worsen the caching hit ratio.
For example, take a large font file that has been stashed together with a data file to
display a picture. Since this font file is used infrequently, it would quickly become
a good candidate for caching replacement. When it becomes necessary to replace a
file in the cache, it is not obvious which replacement policy should prevail. If the
caching one wins, then the purpose of stashing the data file would have been
defeated (i.e., to produce the picture even if the file server is no longer reachable). If
the stashing policy prevails, then the caching system might start to ‘‘thrash.”” How-
ever, one common implementation that could handle both caching and stashing

would provide many advantages. At the end of section 2.4.1 we suggested that the

FACE 43

quasi-copy framework could be this common implementation, but more study is

needed to evaluate this idea.

The IFID layer provides a way for the operating system to identify the content
of a file independent of the file’s name. In this way, several different file names can
be mapped to the same physical location. By slightly modifying the implementa-
tion of this layer we can achieve the inverse functionality: the same file name
mapped to different physical locations. Therefore, a file name can be translated
either to one physical location in a local disk (the stashed copy) or one in a file
server (the remote file), depending on the status of the connection between client
and server. Figure 3.3 shows the name translation process of Figure 3.2 when a

stashing facility is implemented at the IFID layer and the remote file has a stashed

copy.

FILE NAME

IFID——35TASH IFID

!
CACHE CACHE

Y
FILE SERVER LOCAL DISK

Figure 3.3: Modified name translation process to support stashing
In the Sun’s Network File System (NFS) [Sandberg85a], this layer is imple-
mented by the use of vnodes, an extension of the UNIX inodes that corresponds to a

triplet: (computer-id, file store number, inode number).

FACE L

To support stashed copies of remote files we have extended the data structure
that NFS has representing remote files’ IFID (called modes). Two new data fields
are associated to this data structure. The first is a pointer to the IFID corresponding
to the stashed copy. This IFID belongs to the local file system that the client uses as
the stash space. The second field saves the quasi-copy predicate associated with the

stashed file.

The routines in the network file system interfaces have to be able to select,
depending on the status of the network and the file server, which IFID to use for a
given file name. Each file operation has to be implemented following the structure

of Figure 3 .4.

<file operation> :
IF (IFID represents a remote file) AND
(stash IFID is not NULL) AND
(there is no connection to the file server)
THEN
(use the file operation corresponding to the stash IFID)
ELSE
(use the file operation corresponding to the remote file IFID)

Figure 3.4: General structure for file operations
There are also specific stashing routines in the network file system interface to take
care of adding and removing stashed copies’ IFID to the corresponding IFID of the
remote files. Also, there are routines to install and delete the internal data structures for

the stashed copies’ IFID in the local stash space.

3.1.2. Bookkeeper Processes

Client and server bookkeepers are processes that work with the network file system
interface to provide the quasi-copy support for the stashing facility. The network file sys-

tem interface, at the client or server side, informs the corresponding bookkeeper of what

FACE 45

files the user has stashed and provides the consistency constraint associated with each

file.

The management of a quasi-copy predicate will be performed in general by the
server bookkeeper, although in the case of delay conditions, there is the option of unload-
ing this task to the client bookkeeper. Regardless of which side maintains the con-
sistency, the actions taken are the same. When the predicate condition is about to be
violated, the bookkeeper acts and updates the stashed copy from the remote file’s con-

tent.

At the server side, if the coherence is other than a delay condition, in principle, each
update to the remote file has to be intercepted to check whether the condition will be
violated or not, a possibly expensive task. However this requirement can be made less
expensive if the server bookkeeper can be built as an internal module of the network file

system interface and not as an external (user-level) process.

At the client side, the bookkeeper only needs to maintain expiration times for each
of the remote files being stashed by it with client-maintained predicates. In contrast to
the server bookkeeper, the client bookkeeper can be implemented as an user-level pro-

CESsSs.

In the case that the system includes predicates among different objects, like those
discussed in Section 2.2.2, the bookkeeper process should make sure that the multi-file
constraints are obeyed. For instance, if two files must have the same version number at
all times, the bookkeeper must guarantee that their installation is atomic. In this case it
would be enough to restrict the access to a new version of one of the files (by raising a

condition flag) until the corresponding version of the other is in place.

3.1.3. Integration Modules

Several file usage characterizations studies in a diverse of computing environments

([Floyd86a] in academic and research UNIX environments, [Ousterhout85a] in academic

FACE 46

UNIX environment, [Staclin88a] in data processing environments using CMS,
[Bozman89a] in research and development environments using CMS,
[Satyanarayanan81la] in an academic distributed environment, and [Smith81a] in a pro-
duction center running IBM’s MVT operating system) agree that files can be separated in
two large groups: private and shareable files. Moreover, for sharable files three classes
can be distinguished: read-only (e.g., executables), append-only (e.g., logs), and read-
write. It should be clear that the only type of files that is a real problem to integrate is
sharable read-write files. Private files, by definition, are only accessed by one user, there-
fore after a disengagement is over, the integrating mechanism just have to installed at the
server the last modified version of the stashed file. For sharable read-only files no
integration is needed since diverging copies will never occur. Sharable append-only files
can be integrated in the following way: during a disengagement, each client keeps all
their new additions to the sharable append-only file in a local file. When the disengage-
ment is over, these local files would be used one after another (in any predefine

sequence) to perform the additions to the file at the server.

A second aspect of file usage that the above mentioned studies agree on is that in
the computing environments they studied, the probability of a shareable read-write file
being used at the same time by more than one user is extremely low. For example, in
[Floyd86a] they report that in their traces, only 1.3% of the events collected accounted
for two or more users simultaneously reading the same file, 0.84% of the events collected
accounted for two or more users simultaneously writing to the same file, and 2.7% of the
events collected accounted for two or more users simultaneously reading and writing to
the same file. Therefore, we have taken an optimistic approach to integrate diverging
stash copies after disengagement periods are over. Our belief is that, for those few cases
where concurrent use of files is a common case, time and effort can be spent in building
integration tools that are specific to such cases. We build these tools by using an

approach based on the data-patching mechanism proposed in [Garcia-Molina83a] for dis-

FACE

tributed databases.

47

remote

file

Server

/\

stash 1

Site 1

log

stash 2

Site 2

log

stash 1

Site 1

log

stash 2

Site 2

conflict table

remote
file

Server

log

time

all file accesses are
directed to the server

DISENGAGEMENT

file accesses are directed
to the corresponding
stash copy at each site

— 1 DISENGAGEMENT

ENDS

integration period

during which a new version
of the file is installed at the
server

—1 . NORMAL ACTIVITY

RESUMED

all file accesses are
directed to the server

Figure 3.5: General integration process

In general, the data integration process is application driven. A conflict table is

defined per application and it specifies what are the possible conflicting actions that can

occur during a disengagement period to different stash copies’. (It is assumed, without

lost of generality, that conflicting actions can be paired.) For each pair of conflicting

actions, a resolution action is defined. A possible resolution action could be informing

the appropriate users that a conflict has occurred, or invoking an interactive tool to help

1 Later in this section we show an example in the context of replicated directory.

FACE 48

users come up with a version of the file that reflects the actions they performed during the

disengagement period.

The general process of integration is shown in Figure 3.5. While there are no parti-
tions or disengaged clients, all file accesses to the remote file are directed to the
corresponding file server. When there is a disengagement from the server, users at sites
with stashed copies direct their file accesses to their quasi-copies. The file operations to
these stashed copies are recorded as intended actions in log files at each site. These
intended actions will become permanent once they are applied to the server’s copy of the

file, after the disengagement is over.

In Figure 3.5 we show the canonical situation of two sites with stashed copies of the
same remote file (stash 1 and stash 2) disengaging from the same file server. Note that a
similar situation could arise if only one site with a stash copy disengages from the file
server. In this case, the integration process would occur, if during a disengagement

period, both the file at the sever and the stashed copy at the client are modified.

Once communication to the server is reestablished, an integration period begins.
During this period, the integration process uses the conflict table and the logs of intended
actions of each site to reconcile the individual actions done to each stash copy. After all
the conflicting actions are resolved a new integrated version of the file exists. It is

installed at the server and user file accesses are once again directed to this server.

To illustrate the data-patching approach, let us show an example for the particular
case of replicated directories. In an abstract sense, a directory is a file that contains a col-
lection of entries, each of which contains a (key, value) pair, with a unique key. Opera-
tions on directories can be listed as follows: lookup(key), delete(key), insert(key,value),
and update(key,value). The lookup operation returns true if the key requested exists in

the directory, and false otherwise. The other operations are self-evident.

In Figure 3.6 we show an initial replicated directory configuration for a two site sys-

tem (site 1 and site 2). During a disengagement period, users at these two sites issue the

FACE 49

key value key value

Site 1 Site 2

Figure 3.6: Initial configuration of a replicated directory
following commands on the directory:
Site 1: insert(3,Z), lookup(2), update(2,U)
Site 2: lookup(3), insert(3,V), delete(2)

There are ten possible pairing of directory operations that can occur during a disen-

gagcmcnt?- Only four of these pairs are in conflict as is indicated in the conflict table
(Table 3.1). Using Table 3.1 the integration process would allow the following opera-

tions to be installed at the server’s directory file:

operation] operation 2 resolution action
msert(A, o) insert(A,) user intervention
update(A,cr) update(A,B) user intervention
delete(A) update(A,at) ignore the delete
delete(A) lookup(A) ignore the delete

Table 3.1: A conflict table defined for the replicated directory example

Intended operations issued at site 1: lookup(2), update(2,U)

1 There are six pairs combining different operations plus four pairs of identical operations.

FACE 50

Intended operations issued at site 2: lookup(3)

The integration process would require user intervention to determine which insert
operation (insert(3,Z) or insert(3,V)) would be installed. The integration process will
also ignore the delete(2) operation issued at site 2. Figure 3.7 shows the final result of

the integration process for this particular case.

key value

Pending:
1 X key value user

2 U 3 Z Site 1
3 YV | Site2

Server’s directory

Figure 3.7: Result of the integration process on a replicated directory
It is important to recognize that specific algorithms to manage replicated directories
during partition exist ([Daniels86a], [Jia90a]) which do not require user intervention.
These approaches could be implemented to allow automatic integration for this particular

case.

In the case of replicated directories we have just showed, we have assumed that
both sites have an identical quasi-copy at the moment the disengagement began. In gen-
eral, this is not always required. Take for example a banking application; the stashed
files may represent information on bank accounts. In this case, since each account has a

unique identifier and operations on bank accounts can be stated in a stateless form (e.g.,

FACE 51

‘‘increment by $100 account 13045°’), the stash copies can be completely different, and
still an integration mechanism would be able to reconcile the operations done to accounts

during a disengagement period.

Anyway, most of the time the system will have to decide (most probably with user
intervention) what version of the file (the one at the server or the stash copy) to leave as
the remote file. In our present prototype, the last modified file is the one installed at the

server after a disengagement is over.

With respect to maintaining logs, it is desirable to have as little logging activity as
possible. For some cases, always maintaining logs at the server and at the clients with
stashed copies will be unavoidable. In particular, in those cases where there is a need of
a common origin for the integration process (e.g., the replicated directory example). In
other cases, just maintaining logs at clients during disengagement periods is sufficient

(e.g., applications for which operations can be specified in a stateless way).

Finally, in our modified data-patching approach, during disengagement, stashed
copies are used as a ‘‘reference’’ for the users to issue operations. These operations are
entered into the logs as intended operations which will be permanently installed at the
remote file once the disengagement is over and if the intended operation does not create a
conflict. The actions are also installed at the local stashed copy, but the stashed copy is
only use by the application (during disengagement) as a “‘hint”’ so that the application

can decide what other actions to perform.

3.1.4. User-level Tools

User-level tools aid users in selecting the files needed to keep a given application
running when disengagement from the server occur. These tools provide the facilities

described in Section 2.2.1. We can classify these tools in two types:

1) Static: where users explicitly name the files their applications require. These tools

just function as front-ends to make the task of file selection easier. Examples of this

FACE o

type of tools are a list of file names edited directly by the user that specify those
files that always have to be stashed, as well as tools that can interpreted
specification files used by software maintenance programs (e.g. make or SCCS

[Leffler84a].)

2) Dynamic, where the tools, on behalf of the users, select the files required by the
application. The more sophisticated these user tools are the more they will be able
to capture those files indirectly required by the application, e.g., font files in docu-
ment processing applications or libraries used in software development ones. An
examples of this type of tools is a ‘‘record-stash’’ command that is used to capture
the files used during an user activity cycle (e.g., using something similar to script
[Leffler84a].) Also, the application itself can issue stashing calls, but in this case the

application developer has to add these calls into the application’s code.

All these tools use the system calls provided by the network file system interface to
stash and unstash files. For example, in our prototype (see Section 3.2.4) the tools must
use the system calls stash and unstash, supplying to them the pathnames and the

corresponding quasi-copy predicates of the files needed by the application.

3.2. Prototype

In this section we present the description of a prototype based on the architecture
previously described. The prototype is an extension of Sun’s NFS software [Walsh85],
and has been implemented to test the stashing concepts that were presented in Section
2.2.2 (Data Consistency). The prototype has been implemented on the facilities of the
Princeton Distributed Computing Laboratory, and was developed on a Sun 3/50 com-

puter running Sun’s UNIX 4.2 release 3.3 (SunOS 3.3).

In the prototype, all file accesses are directed to the file server during normal opera-
tion, and to the local stash if there is a local copy and the connection to the server is

down. This access decision is made at the vnode layer for the reasons already discussed.

FACE 53

CLIENT FILE SERVER

FACE
Bookkeeper

daemon SYSTEMS CALLS

SYSTEMS CALLS I S—
VES /VNODE
SERVER LOCAL
daemon UNIX
LOCAL NE'S
FILE
UNIX T
SYSTEM
FILE SYSTEM
SYSTEM £
AN RPC/XDR
N] TOcAL RPC/XDR DISK
DISK
STASH

NETWORK

Figure 3.8: Block diagram of the FACE prototype based on NFS

The initial implementation utilizes a client-maintained strategy to guard the stash con-

sistency, and thus only supports delay conditions.

Figure 3.8 shows a block diagram of the FACE prototype. The server side does not
change at all from the NFS implementation since, as mentioned before, this stashing
facility is client maintained. On the client side, the VFS/vnode component has been
modified. Extra data structures were added to support the stashing facility. Several ker-
nel routines were modified and new ones were added to perform stashing operations
(e.g., initiating and maintaining the necessary data structures, redirecting users file
accesses to the stashed copies when the client machine disengages from the file server,

etc.). New system calls were introduced to stash files, and to unstash them. These sys-

FACE 54

tem calls are privileged and are utilized by users through the library routines mkstash and
rmstash, respectively. Also, we implemented a bookkeeper process, which runs in user
space. The bookkeeper is the runtime support system that maintains the consistency con-

straints (i.e., the quasi-copy predicates) between the remote files and their stashed copies.

In the next subsections we present a detail description of the prototype’s implemen-

tation. For completeness, we begin by presenting a brief description of NFS.

3.2.1. NFS Overview

NFS is a system by which different computers share a file space. Its user interface
is similar to the UNIX file system one [Leffier89a). Currently, several operating systems
support the NFS protocols. Among them we find SunOS, System V release 4, Mt. Xinu’s
BSD UNIX implementation, CMU Mach [Spector87a], and MSDOS [SUN89a].

In NFS all file activities are centered around the vnode, a data structure whose role
is equivalent to the inode in traditional UNIX file systems (for an extended description of
vnodes see [Kleiman89a]). NFS splits the kemel file system functionality into a file-
system-dependent and a file-system-independent parts. For example, in SunOS, the

former is represented by the inode and the latter by the vnode

In Figure 3.9 we present the architecture of NFS. User processes perform file
operations by using system calls. These system calls operate on the Virtual File System
(VES). VFSs are logical storage units that contain files and consist of data structures and
operations for each file system ‘‘mounted’’ on the computer. This is similar to the mount
table information in standard UNIX. Each file in a VFS is represented by a vnode, and
any file operations on it are translated to the specific routines of the particular VES to
which the file belongs. For example, if the vnode represents a local UNIX file, then a
read system call is translated to the appropriate routines to handle inodes (e.g., iget,
bread, etc.) [Leffier89a]. If instead the vnode represents a remote file the appropriate

Sun’s RPC and XDR routines are invoked [SUN88a].

FACE 55

USER SPACE

SYSTEM CALL INTERFACE

VIRTUAL FILE SYSTEM
VNODES
KERNEL
SPACE
LOCAL
REMOTE MSDOS UNIX
UNIX
FILE FILE FILE DEVICES
SYSTEM SYSTEM SYSTEM SYSTEM
(rnodes) (pcnodes) (inocdes)
BUFFER CACHE
RPC
DISK
XDR
uDP DRIVER
NETWORK

Figure 3.9: NFS architecture

Figure 3.10 shows the contents of the VFS data structure and the vnode data struc-
ture. Each structure contains a pointer to an array of function entry points for the specific
routines of each particular VFS or vnode. The private data field also points to file-

system-dependent information.

FACE

56

VFS Structure
ptr | ptr ptrdto f native | file :fiorted :#ﬁorted ptr to
vnode ile ile
bleock system
to to it is c 2 [- " system system private
next | VFS id
mounted | g user flags data
vEs | °PTS | on s id ;
I
A 1
: . !
! d Points to a mount
I
ptr to mount | : table entry in
I
ptr to unmount " : BSD UNIX.
I
ptr to root | ! Points to a
|
ptr to statfs . : mountinfe in
I
ptr to sync i ! remote file
1
ptr to get " : systems
: :
H i
\ I
) I
1 1
1 I
i I
1 I
\ I
1 I
| 1
I
vnode Structure & L
i
£ count count |ptr te
ref tr to
i of of ptr to | socket |F vnode |device |PET e
a | count VES my i
shared |excl. | . +ted |Vnode or type type private
g VFS
locks locks | here oprs stream
o |) daﬁa
v v !
ptr to open normal Points teo an
ptr to close regular incore inode
ptr to rdwr directory table entry
ptr te ioetl bleck in BSD UNIX.
Always exist character Points to a
link rnode in
socket remote file
===> May exist
bad systems
fifeo
""" > takes one value
Figure 3.10: VFS and vnode structures
3.2.2. New Data Structures

Figure 3.11 shows the data structures added to the NFS’ data structures to support

stashing. The data structures enclosed in solid boxes are provided by NFS. We have

added the fields inside dashed boxed to support stashing. These four new data fields have

been added to the mode data structure used by clients to represent remote files. The first

added is a pointer to the vnode corresponding to the stashed copy (stash vp). The vnode

FACE 57

pointed by stash vp belongs to the VFS of the client local UNIX file system. The second
field, predicate , contains the user consistency constraint (the quasi-copy predicate). For
this prototype, only time related predicates are allowed, i.e, the length of time a stashed
copy is valid from the time it is copied from the file server. The time of last modification
is already maintained in the vnode structure. The third field, strategy, indicates the
user’s preference toward directing all file accesses to the stashed space during normal
activity, i.e., using the stash copy as either a backup facility or a file cache. The latter
option is only useful for read-only files. Finally, a valid field is added to indicate if the
stashed copy conforms or not with the user predicate. This field is only added for con-
venience of user application. During partitions, applications could check if the stashed

copy still conforms to the user predicate or not.

3.2.3. New and Modified Kernel Routines

In NFS, kemel code for all file related operations consists of macro definitions.
These macros translate vnode operations to actions on the underlying file systemT- In our
prototype we redefined these macros to allow the use of either the remote files or the

stashed copies. In pseudo-code, these macro definitions are presented in Figure 3.12.

There are a number of new routines in the kernel. The first two handle the linking
and unlinking of remote files’ modes with the corresponding vnodes of stashed copies.
Two others are used for allocating and de-allocating the new vnodes of the stashed copies
in the local file system’s stash partition. There are also routines for saving and deleting

values from the mode stash fields.

~ 3.2.4. New System Calls

The new system calls added to the NFS system calls interface to support stashing

are the following:

T See Figure 3.9 and the discussion in Section 3.2.1.

FACE 58

rootvfs — UNIX NFS
_1 vEs vis
vEis next vis_next
private data private data
server’s address
ptr root vnode
vnode | vnode ptr active vnode
ptr to vfs ptr to vfs :
server’s name
mount information
structure
private data private data
\
[inode entry rnode
ptr to vnode
mount table entry rnode next
file handler
nfsattributes
! 1
 stash vp ! | Added
: predicate : fields to
. 7inmnbeawiee ki 1 t
L strategy : SIEPaE
| valid | Stashing

(Stash fields)

Figure 3.11: New NFS data structures to allow stashing
handle = stash(pathname predicate strategy):

the stash call assigns the values provided by the user (predicate and strategy) to the
corresponding rnode fields of the remote file to be stashed. Predicate is a positive
integer that indicates the amount of time in minutes before a “‘refresh’” of the
stashed copy is attempted. The remote file is identified by the pathname given by

the user. The call also creates a new vnode in the stash partition, with its

FACE 59

DEFINE <file operation>

IF (vnode represents a remote file) AND

(stash vp is not NULL) AND

(strategy 1s local or there is no connection to the file server)
THEN

(use <file operation> pointed by the mode’s stash vp pointer)
ELSE

(use <file operation> pointed by the current vnode)

Figure 3.12: New NFS macro definitions (in pseudo-code)

corresponding inode entry. If the data structures for the stashed copy are success-
fully allocated, handle has the value of an identifier to the remote file being stashed.
This handle is an ‘‘opaque’’ identifier,i.e., it is not understood by the receiving pro-
cess, just by the kernel. In the current implementation, kandle is a vnode identifier.
The value of handle is sent as an interprocess message to the bookkeeper so that it
can keep track of the files being stashed. If the call is not successful, handle takes
the value -1 and an error number is assigned to the variable errno indicating the

type of error that occurred.

handle = unstash(pathname):
the unstash call deletes from the local file system the vnode of the stashed copy
(and its inode entry) corresponding to the remote file represented by pathname. It
also clears the stash fields in the remote file’s mode. Handle behaves as in the
stash system call. If the call is successful, it sends a message to the bookkeeper

indicating that the file represented by handle is no longer stashed.

status = strategy(pathname strategy):
the strategy call directs all subsequent file accesses, either to the remote file
represented by pathname , or to its stashed copy, depending on the value of the vari-
able strategy. The default is to direct access to the file server. Status has the returmn

value indicating the success or not of the call.

FACE 60

status = stashopen(handle,rfd sfd):
Stashopen is a system call used only by the bookkeeper process to obtain file
descriptors for the remote file and its stashed copy corresponding to the value in
handle . If the call is successful, rfd and sfd contain file descriptors to the remote
file and its stashed copy, respectively. The file descriptors are equivalent to the one

returned by a successful open system call [Leffier84a].

status = setvalidity(handle):
setvalidity toggles the content of the field valid in the stash data structure of the
stashed copy identified by handle, to indicate if the stashed copy conforms or not

with the user predicate. This system call is used by the bookkeeper.

3.2.5. The Bookkeeper Process

The bookkeeper process is an user level program that provides quasi-copy support
for the stashing facility. The bookkeeper keeps information about all the files that have
been stashed, i.e., opaque handles to the remote files that have a stashed copy. It also
keeps the expiration times for each stashed copy. Thus, the bookkeeper can keep track of
predicates, determining the validity of the contents of the stashed copies, and obtain fresh
information from the file server. The information is kept in an ascending time ordered

linked list of remote file handles (Figure 3.13).

The bookkeeper sends itself an alarm signal with the value of the earliest expiration
time. When the signal arrives, the bookkeeper checks all those remote files which do not
conform with the user consistency constraint, marks them invalid (using the system call
setvalidity), and tries to back them up from the file server (using the system call stasho-
pen to get file descriptors to use in read and write calls). For each successful backup the
bookkeeper rearranges the ordered linked list of handles and marks the stashed copy as
valid. When the bookkeeper finishes with this procedure it sends itself a new alarm sig-

nal with the next expiration time.

FACE

61

A

Internal to the Bookkeeper

handle | expiration | —‘—’ihandle expiration l—‘l"—"[handle’expiration I\I
r

T
|
1
!
1
1
1
1
i
1
i
i
1
1
i
i
1
v

ptr to vis

private data

rnode

ptr to vnode

rnode next

file handler

nfsattributes

ptr to vEs

private data

rnode

ptr to vnode

rnode next

file handler

nfsattributes

|
! stash wvp

==—--= Points to a kernel structure

T
(]
]
]
I
1
]
1
]
I
[
i
I
I
|
|
1

v

vnode

ptr to vis

private data

rnode

ptr to vnode

rnode next

file handler

nfsattributes

Figure 3.13: Data structures used by the Bookkeeper
3.2.6. An Example

To clarify the design presented in this section we present an example of how the

data structures are used to support stashing. Figure 3.14 shows the link between the data

structures of a remote file and its stashed copy. Figure 3.14¢ shows the commands being

issued by an user of our FACE prototype. The user changes directory to ‘‘/usr”’, edits a

remote file (‘‘a’’) and then requests a stash copy of it. Figure 3.14a shows the vnode and

FACE 62

VFS data structures for the remote file. There are three file systems mounted: root (*‘/’)
from which the machine boots, a remote file system (‘‘/usr’’) and the stash partition
(““/stash’”). ““/"” and ‘‘/stash’’ are UNIX 4.3 BSD file systems and reside in the client
local disk. “‘/usr’” is a NFS file system representing a UNIX 4.2 file server. The vnode
labeled *‘/root’’ is the vnode for the root directory of the user mounted file system. The
vnode labeled *‘/usr’’ is the vnode corresponding to the mount point for the remote file
system ‘‘/usr.”” The *‘/usr/a’’ vnode represents the remote file that has been edited by the
user. Once the user issues the command - stash a Ihour remote - the added data struc-
tures in the rnode of “‘/usr/a’’ (stash vp, predicate and strategy) are filled by the system
call stash. This system call allocates a vnode in the ‘‘/stash’’ file system for the stash file
*‘/stash/usr/a’’ (Figure 3.14b). It also sends an interprocess message to the bookkeeper
process with the information that a new stash copy has been created. The bookkeeper
stores the needed information to backup the content of the stashed copy with the content
of the remote file. It uses the value in the predicate field of the mode of *‘/usr/a’’ to send
itself an alarm signal for when the stash copy ‘‘/stash/usr/a’’ not longer conforms with

the user consistency constraint.

Since the strategy field is set to remote, all file accesses to ‘‘/usr/a’’ are done exactly
as In NFS, i.e., to the file server. In NFS, the client periodically checks for the status of
the server, toggling a flag when communication cannot be established. At the moment
that the file server is not longer reachable the user is informed of such an event, with a
message to the user console, and subsequent accesses are done to the stash copy
“‘/stash/usr/a’’ through the stash vp field. The stash copy is used until the server is again

reachable.

3.2.7. Performance

To evaluate the overhead caused by our code, we have measured the time to per-
form file system calls - open-close, read, write ([Leffler84a]) - in three different situa-

tions: first with a file stored at the server (remote file), then with a file stored locally (not

FACE

/

vis next

/usxr

vEs next

private data

/root

1 vhodecover

private data

\\\\\\ /usxr

ptr to vfs

ptr to vis

vismounthere -

private data

private data

/usxr/a

Ptr to vis

private data

/stash

vis next

private data

/stash I

T
ptr to vis

private data

l

incde entry

' !

inode entry |

| inode entry

Ptr te vnode

rnode next

(a) file handler
/stash/usr/a
nfsattributes
1 i ptr to vfEs
petash VP e i
| predicate
! strategy
e derinn), o SN oS o '
| wvalid H
private data
1> ed /usrx l
2> edit a

inode entry |

3> stash a lhour remote

(b)

(=)

Figure 3.14: An example

a stashed copy), and finally with a stashed copy of a remote file. The tests were made
with the FACE kemel and the SunOS 3.3 one (without the FACE modifications). The
tests consisted of 100 samples of 10,000 iterations of calling each of the system calls for

a 2.5 Mbytes file. For the read and write system calls 256 Kbytes blocks were used.

Table 3.2 shows the times (in milliseconds) that we measured. These results show

that the added overhead introduced by FACE to support stashing is negligible compared

FACE 64

file : remote local stashed copy

kernel operation mean st.dev | mean | st.dev | mean | st.dev
write 4354 | 0394 | 3249 | 0.064 | 3.251 | 0.202
read 1.664 | 0.122 | 1.401 | 0.018 | 1401 | 0.021

FACE open-close | 11.092 | 0.343 | 2.223 | 0.004 | 2.116 | 0.004
write 4334 | 0.353 | 3.256 | 0.027 not
read 1.698 | 0.058 | 1.406 | 0.018

Sun0S33 | en-close | 11.503 | 0370 | 2.153 | 0.047 | Supported

Table 3.2: Comparison of system calls overhead (in milliseconds)
to the base kernel (SunOS 3.3). The low cost of our stashing service means that there is
no degradation of normal service when partitions are not present or stashing is not being

used by an application.

Figure 3.15 and 3.16 show the response time of executing a mkstash library routine
and a rmstash library routine, respectively. These routines allow users to obtain a
stashed copy of a remote file and to remove it. Mkstash invokes the stash system call to
allocate the kemnel structures corresponding to the remote file (vnode and mode). It asso-
ciates a local vnode with the remote vnode, and allocates the local inode for the stashed
copy. It then copies the remote file’s content into the stashed copy“‘, and passes a handle
(representing the remote file) to the client bookkeeper. Rmstash invokes the unstash
system call to remove the association between the vnode representing the remote file and
the stashed copy. It then sends a message to the bookkeeper indicating the remote file is

no longer stashed. Finally, it removes the stashed copy from the local disk.

The performance measurements were gathered by executing a thousand times
mkstash followed by rmstash , in an otherwise empty Ethemet between a Sun 3/50 acting
as client and a Sun 3/180 acting as file server. In the figures we used a horizontal line to
show the average response time of the stashing routines. We also used a vertical line,

intersecting the horizontal one, to show the standard deviation.

There are two modes for each of the stashing routines: synchronous or asynchro-

1+ Note that the NFS protocol is using a block size of 2 Kbytes.

FACE 65

14 -
13
12 —
11 —
10
9 |
g _
time 7

response

(secs.)

- -

o]
2 _

14
N [~

I 1 I] I i l E il
256B 512B 1Kb 4Kb 8Kb 500Kb IMb 2Mb ASYN

Size of remote file

Figure 3.15: Mkstash routine’s response time depending on the remote file’s size
nous to the calling process. As Figure 3.15 shows, the response time of the mkstash rou-
tine in the synchronous case depends on the size of the remote file. The main part of this
cost is attributed to the copying of the remote file’s content into the stashed copy. In the
asynchronous case (labeled ‘‘ASYN™ in Figures 3.15 and 3.16) the mkstash routine
allows the user to do this first backup asynchronously from the requesting user process.

The response time of the rmstash routine in the synchronous mode (Figure 3.16) also

FACE 66

1.4 4
1.3 4
1.2 -
1.1 =

1 e
0.9 —
0.8 -
time (.7 —

(secs.) 0.6 - ‘ ' ‘ ‘
0.5+ +
o]l TT T €
0.3
0.2 -

0.1
0—

response

] I I] | | [I I
256B 512B 1Kb 4Kb 8Kb 500Kb IMb 2Mb ASYN

Size of remote file

Figure 3.16: Rmstash routine’s response time depending on the remote file’s size
depends on the size of the stashed copy, but to a lesser degree. Most of this cost is due to
the deallocation of the data blocks pointed by the stashed copy’s inode. As with the
mkstash routine, in the asynchronous option the deallocation of the data blocks is done

asynchronously from the requesting process.

FACE 67

3.2.8. Prototype’s Weakness

One problem we encountered implementing the prototype was how to stash the
pathname of remote files at client machines. In NFS, the client name resolution pro-
cedure takes each component of a pathname and asks the server for the corresponding
vnode. To improve the response time of this procedure a directory cache is often imple-
mented. The directory cache maintains a set of triples of the form (parent vnode, com-
ponent name, component vnode), that are consulted by the name resolution procedure
before asking the server. The problem we encountered was how to stash all the triples

corresponding to the pathname of a remote file.

One solution would be to provide another pathname resolution procedure to be used
when the client disengages from the server. The client could use the name given to the
stash copy in the client local space to construct the adequate entries in the directory
cache. Alternatively, when stashing a file, as part of the mkstash call, every component
in the remote file’s pathname would be mark ‘‘special’’ in the directory cache. These
specially marked tuple would not be considered for replacement by the directory cache

replacement policy.

Another problem we encountered had to do with the names we were using for the
stashed copies in the clients’ local space. For our prototype we had the goal of making
the local names of stashed copies unimportant to the user. The reason was that in this
way the client and the server could use different naming convention, and a translation

mechanism for these conventions would not be necessary.

The problem is that when a client crashes the cache directory content and the incore
vnode structures get cleared. If after the client recovers from the crash, the server is una-
vailable, then the client cannot access the stashed copies through the normal mechanism
provided by the FACE architecture (using the rmode’s stash vnode pointer). We realized
that we could provide a recovery mechanism for client crashes if the names used for

stashed copies had some meaning. Consequently, we could use the stashed copies local

FACE 68

names to reconstruct the incore vnode structures and the directory cache corresponding

to the stahed copies, thus providing more fault-tolerance and autonomy to client sites.

3.3. Summary

We have presented in this chapter the design of FACE, a network file system that
lessen the dependency of clients to servers. This system provides file stashing to increase
the availability of important information when file servers are not reachable. This
feature enhances both the autonomy of the local nodes as well as the degree of fault toler-

ance of the overall system.

We deal with the issue of stashed copy consistency by incorporating into our design
quasi-copy techniques. Thus, users may decide the level of consistency that stashed
copies must have in order to meet the demands of their particular applications. We feel
that this is an important feature with broad usefulness. It also liberates the system from
the burden of keeping perfectly consistent copies in cases where perfect consistency is

not required.

We also presented the first prototype implementation of FACE. The goals that
governed our design were fast prototyping, transparency at the user level and minimal
modifications to the underlying implementation. These considerations led us to imple-
ment the FACE prototype by modifying NFS because the latter has become a de facto
standard for sharing files in distributed environments. Performance figures are reported

herein. These figures show that the overhead of providing the service is negligible.

Chapter 4. Load Sharing?

One of the reasons for the existence of distributed systems is to allow resources to
be shared across a computer network in the same way they are shared in a centralized
system, ie., in a way that is transparent to users. One network resource which has
received much attention has been the processing capability of the sites. Because each
site usually has its own user community and CPU scheduler, an imbalance of the system
workload throughout the network can be a common situation. One solution to this imbal-
ance is to allow users at one site to run processes on other sites in the network. The usual
mechanisms used are remote sessions (e.g. rlogin [Leffler84a] and reinet [Postel80a]), or
explicit remote process executions (e.g. rsh [Leffler84a]), but for these mechanisms the
selection of the execution site and the control of the remote execution is completely up to
the users. It is more desirable to dedicate a system program to the task of sharing the pro-
cessors in much the same way that memory management software allocates the use of
memory. Users can then rely on it to automatically handle remote execution of their jobs
in order to take advantage of less loaded processors, thus possibly achieving better aver-

age response time.

In federated computing environment, load balancing schemes are not appropriate
since one cannot consider the whole network as a single unit and thus cannot try to
optimize average response time or system throughput. In any load balancing scheme,
heavily loaded sites will obtain all the benefits while lightly loaded machines will suffer
poorer response time than in a stand-alone configuration. Users of a frequently heavily
loaded machine will cheer for a load balancing scheme while users of mostly underutil-
ized ones will strongly oppose participation in such a scheme. What is desirable is a fair
strategy that will improve response time to the former without unduly affecting the latter.

In this chapter we present an approach to load distribution in federated environments that

t A paper based on a preliminary version of this chapter appeared in the Proceedings of the
8th. International Conference on Distributed Computing Systems, San Jose, California, pp. 282-
288, June 1988.

69

Load Sharing 70

guarantees a level of performance to local site’s users. We empirically compare our

approach to other approaches used to preserve ownership of local resources.

In the following section we give an introduction to load distribution in distributed
systems. Then Section 4.2 presents the definition and description of the High-Low
scheme, a way of allowing load sharing in federated environments. In Section 4.3 we
describe a load balancing algorithm based on running jobs at the least loaded machine in
the network. We empirically compare this scheme to High-Low and to the case when no
load distribution takes place. In Section 4.4 we present other load sharing schemes and

we empirically compare them to High-Low. We conclude by summarizing our findings.

4.1. The Load Distribution Problem

The load distribution problem consist of reallocating the workload in a computer
network to achieve better service performance. There are two ways of distributing load.
One is load balancing, which has the objective of equalizing the workload at each site in
the network. In this way the same level of service is provided to all the users in the net-
work. Alternatively, load sharing reassigns jobs from heavily loaded sites to other ones,
chosen through some specific criteria (e.g., ‘‘idleness’’). With load sharing the objective
is to improve the service rendered at heavily loaded nodes by taking advantage of

underutilized resources in the network.

Most of the literature on load distribution has concentrated on load balancing. This
trend can be seen in the many load balancing schemes that have appeared in the pub-
lished literature: see [Wang85a] for a proposed taxonomy and a review of the various
approaches that have been pursued, or [Zhou88a] for a comparative performance study of
several load balancing policies. Load balancing schemes can be divided in two types:
static policies, as in [Ni85a], which ignore the current system state when making deci-
sions and which usually follow average system behavior, and dynamic policies, as in

[Eager86a], which rely on system state information.

Load Sharing 71

4.1.1. Designing Load Distribution Schemes

A load distribution scheme has traditionally been composed of three parts: a transfer
policy, a load information policy, and a location policy. The transfer policy determines if
a locally invoked job should be served locally or remotely. The information policy is
given by the load metric that is used to determine the load in any given machine. For
example, a possible load metric could compute the average number of running processes
during a certain period of time. If the transfer policy decides to service a job remotely,
then the location policy (using the information policy) determines where in the network
that job is going to be executed. For example, a possible location policy would run jobs
on the machine which has the lowest load. Clearly, the selection of a particular load
metric depends in the type of jobs submitted to the machine as well as the site’s resources
and capabilities. Ferrari and Zhou [Ferrari87a] suggest that an appropriate load metric is
a linear combination of resources queue lengths. We define the load" of a machine as the
value of a given load metric for that machine, and the load of a distributed system as a

function of the load of all the sites in the network.

Implementors of load distribution systems have to take into account the type of dis-
tributed environment where their systems will be implemented. In the next subsection
we present why different types of distributed environments merit different types of load

distribution systems.

4.1.2. Integrated Distributed Systems & Federated Computing Environments

Distributed systems have some typical configurations. For example, an integrated
distributed system comprises a group of interconnected computers dedicated to evenly
serve a group of users. The goal is to provide the user community with improved ser-

vice. Most of the work described in the load balancing literature has dealt (explicitly or

T Throughout this chapter, whenever we refer to the load of a machine we mean a consistent
load metric that characterizes the usage of that machine.

Load Sharing 72

implicitly) with this type of environment ([Stankovic84a], [Alonso86a], [Eager86a],
[Zhou88a]). In this environment all the sites in the network functionally belong to one
organization. The appropriate load balancing scheme for this environment should focus
on enhancing the overall system performance which is the system’s goal. Examples of

this type of system are most of the computer centers in industries and universities.

Another type of distributed system is the federated computing environment . In this
environment each site of the network functionally belongs to a different user, whether
that is a single person or a group. Instances of this environment are networks of inter-
departmental machines, and wide area networks like Internet. Although a load balancing
scheme can be used in this type of system, it cannot be treated with the same techniques
used in an integrated distributed system. For this type of environment, load sharing is

more appropriate.

In some systems the issue of maintaining the autonomy of each site has been
resolved by implementing an ‘‘all or nothing’’ strategy. If a machine is completely idle
then it becomes a candidate for executing a remote workload. If a machine is being used,
even if it is underutilized, then no remote workload is allowed. Basically, any machine
can take over an idle one in a master-slave relation, but as soon as the owner of the idle
machine uses it (even slightly) all the remote jobs are either put in the background (run
with low priority) [Hagmann86a], moved back to their originating site [Theimer85a],
moved to another idle machine [Litzkow87a] or just killed (abnormally terminated)
[Nichols87a].) While all of these techniques guarantee the ownership of resources to the
owner of an idle machine, they do not assure any performance improvement to the
remote jobs the idle site may be servicing. It is desirable to have a more gradual style of
sharing that would attempt to guarantee certain level of performance to site owners as

well as offer some help to the remote jobs that may have been submitted to a site.

Our purpose is to adapt the results obtained for the load balancing problem to load

sharing in federated computing environments. To do this we suggest the use of a fourth

Load Sharing 73

policy: the acceptance policy.. The acceptance policy reflects the disposition of a site
owner to accept a certain level of remote jobs to be serviced by his or her machine. In
other words, our interest is to provide the owners with control over their machines

independently of the load distribution scheme being used.

In this work we are only concemed with the initial placement problem, i.e., where
in the network a job should be run. We will not consider the migration of jobs once they

have started running at a site .

4.2. The High-Low Scheme

Computing sites participating in a system where load sharing takes place may be
viewed as being at any one time either sources of jobs or servers of jobs. When a
machine is viewed as a source of jobs, a machine should only try to execute remote jobs
if transferring some of them to another site will greatly improve the performance of the
rest of its local jobs. This observation parallels the usual banking practice of borrowing
only when necessary. On the other hand, when a computer is viewed as a server of jobs
it should only accept remote jobs if its load is such that the added workload of processing
these incoming jobs does not significantly affect the service to the local ones. This
approach mirrors the sound banking practice of only lending excess funds’. These two
notions can be adapted to a load sharing environment via two policies that we denote by

High-mark and Low-mark.

The High-mark policy behaves as follows: each time the execution of a new job is
requested at a site the load of the machine is compared against its High-mark value. If
the former is greater than the latter then the load sharing mechanism tries to execute the

job in a remote host. Otherwise the job is processed locally. Thus, High-mark sets a

7 Load balancing in distributed systems with process migration capabilities was studied in
[Kyrimis90a].

1 It should be pointed out that the banking analogy does not hold completely. In contrast to
the banking situation, borrower sites need not return their borrowed cycles and lender sites may
not receive back their lent cycles.

Load Sharing 74l

lower level on the load a machine must have before it begins to transfer jobs to other
hosts. Its purpose is to try to reduce processing overhead by load sharing only when the

workload of the machine degrades its service dramatically.

The Low-mark policy sets a ceiling on the load a computer may have and still
accept incoming remote jobs for service. Its purpose is to be able to handle these incom-
ing jobs while the service to the local ones is not significantly affected. Low-mark works
as follows: whenever a request to execute a remote job arrives at a machine, the system
checks if its load is less than its Low-mark value. If so, the request is accepted and the

job 1s processed locally. Otherwise the request is rejected.

Clearly, High-mark and Low-mark may be implemented together. We refer to this
combined policy as High-Low. At this point we should contrast this work with that of
Eager et al. [Eager86a], who also proposed threshold policies for load sharing. Their
analysis used the same threshold value for deciding when to offload work to other sites
(transfer policy) and for deciding where to run a remote job (location policy). In our
scheme, the High-mark plays the role of the transfer policy, while the location policy can
be chosen depending on the situation. Low-mark represents the acceptance policy.
High-mark and Low-mark would be used in addition to location policies to control when

a remote interaction should take place.

4.2.1. Description

Figure 4.1 presents the algorithm for the High-Low scheme. In our first implemen-
tation we chose a random allocation of jobs as the location policy, although it is not a
particularly good choice. Under this location policy, the executing site for a job is
selected at random and the job is transferred there. No exchange of information is done
between the machines in the network. It is simple to implement and no system state has
to be gathered by the sites. In [Eager86a] and [Zhou88a] it was shown that randomly
selecting where to run a job reduces the system’s average response time when compared

to the case when no load distribution takes place. These two studies also showed that the

Load Sharing 75

random location policy is very unstable, i.e., its improvements depends on the system’s
workload. As will be seen later, our scheme reduces the instability of the random alloca-
tion policy. This is so because the acceptance policy allows a given site to reject requests
for remote execution even when the location policy selects such site. We also imple-
mented another version of High-Low using a least loaded site selection as location pol-

icy.

At each node:
When a local job is invoked:

IF local_load > High-mark THEN

BEGIN
executing_node = location_policy();
<request execution at executing_node>;
IF <request accepted> THEN

<transfer job to executing_node>;

END

ELSE
<execute job locally>;

When an executing request arrives to a node:
IF local load < Low-mark THEN
BEGIN

<accept request>;
<receive remote job>;
<execute remote job>;
END
ELSE

<reject request>;

Figure 4.1: The High-Low algorithm

The salient feature of the High-Low scheme is that two different thresholds are used
to decide if a job is to be run remotely. This allows a computer to play multiple roles
depending on the values that High-mark and Low-mark take. For example, Figure 4.2a
shows that if the High-mark value is greater than the Low-mark value then the space of

possible load values that a machine can have is divided into three regions:

Load Sharing 76

1) overloaded (above the High-mark and Low-mark values);
2) normal (above the Low-mark value and below the High-mark value);

3) underloaded (below both values).

infinity
Overloaded Overloaded
Overloaded
High-mark Low-mark
Undesirable
Normal High-mark
Low-mark
Low-mark High-mark
Underloaded
Underloaded Underloaded
0

(@) (b) (©

Figure 4.2: Load regions
When the load of a machine is in the overloaded region, new local jobs are sent to
be run remotely and remote execution requests are rejected. In the normal region, new
local jobs run locally and remote execution requests are rejected. In the underloaded

region, new local jobs run locally and remote execution requests are accepted.

Most load sharing algorithms use a single threshold (typically the ‘‘average’ load
among all the sites in the network), and thus only have overloaded and underloaded
regions (Figure 4.2b). High-Low defines a third region (normal) by its use of two dif-

ferent thresholds. This normal region guarantees a predefined level of performance to the

Load Sharing 77

site owners. It may account for the overhead that the load sharing scheme incurs in
transferring and receiving a remote job, or for the level of service that the owner expects.
Consequently, a job will not be transferred to another site unless it is worthwhile and a

remote job will not be accepted unless there is enough excess capacity to handle it.

Notice in Figure 4.2c that if the Low-mark value is allowed to be greater than the
High-mark value, then a fourth region could be recognized: the undesirable (above the
High-mark value and below the Low-mark value). In the undesirable region the machine
would send its new local jobs to remote sites while accepting remote jobs to be executed
locally. This is clearly a wasteful use of the resources. To avoid this anomaly, the High-
mark value should always be greater than or equal to the Low-mark value. However, if
High-mark and Low-mark have the same value (Figure 4.2b) then the implementation of

High-Low behaves as a load distribution algorithm that uses a single threshold.

Figure 4.3 shows how particular settings of the High-mark and Low-mark parame-
ters correspond to known modes of operations of a computer. For example, by setting
both the High-mark and the Low-mark to 0 (or the lowest possible value), a computer
acts as a job dispatcher (Figure 4.3a). The computer behaves as if it were always over-
loaded, thus placing all of its new local jobs in any available remote machine. This set-
ting could be used to distribute jobs to a set of machines acting as a pool of processors.
If instead, both parameters are set to the maximum possible load value (Figure 4.3b),
then the machine would act as if it were always underloaded, i.e., it would accept any

remote process for execution. Thus, the computer is behaving as a compute server.

It could be possible to vary the High-mark and Low-mark parameters dynamically
to allow the computers to change their role in the load sharing scheme. A system process
could set these parameters depending on the number of users, or user processes, in the
computer. For example, when the last user signs off, the High-mark and Low-mark
values could be set to leave the machine in the compute server mode (Figure 4.3b). As

soon as a user signs in, these parameters could be set back to leave the computer in its

Load Sharing 78

infinity High-mark

Low-mark Elghmx
Job Compute Stand
dispatcher server alone
0 High-mark Low-mark
(a) Low-mark (b) ©

Figure 4.3: Known modes of operations of a computer

normal operational mode. If a computer is needed exclusively by its owner then the
High-mark and Low-mark parameters could be set to the stand-alone mode (Figure 4.3c).
The attraction of this scheme is that different modes of operation can be easily imple-

mented by dynamically setting the High-mark and Low-mark parameters.

An important observation is that the degree of participation of each computer in this
load sharing scheme is completely distributed. It does not depend on any global informa-
tion or central controller, just on the site’s local use and purpose. This is an important

characteristic for federated environments.

Finally, since the load information of a machine represents the available resources
in that machine and Low-mark represents the amount of resources that the site’s owner is
willing to lend, in schemes that require sites to make known their load, the Low-mark

value could be included with the machine’s load information. In this way other sites

Load Sharing 79

would know in advance the available resources in the network and could plan to use

them.

4.2.2. An Analytical Model for setting High-mark and Low-mark

Choosing appropriate values for High-mark and Low-mark is not a simple task. An
automatic fine tuning mechanism together with specifications submitted by machine
owners could be used to obtain the best results. For example, a user could specify that he
will allow his machine to process remote jobs if the average response time for his jobs
does not deteriorate by more than 10% of the stand-alone time. Below, we use a simple

analytical model to estimate the High-mark and Low-mark values.

We will model a site as a M/M/1 queue [Kleinrock75a], with A being the number of
jobs arriving at the site per time unit, and & being the number of jobs that can be pro-

cessed by the site per time unit. Then we know that the average response time (T) of a
1

_ . 08 . e A

job in that system will be I—p (where p is the CPU utilization, p = I) and on average

there will be N = TPF jobs at the site.

Suppose that the users of that site request that the range of response time for local
jobsbe T = A. Thus, the High-mark should be set to a load average of N;g;, , such that
with N, jobs in the system, a job obtains a response time of 7 + A , and the Low-
mark should be set to a load average N,,, , such that having N, jobs running con-
currently will lead to a response time of T — A.

Thus, the new T’ (T') will be :

1
T =T+A l—fp—,

which implies,

1
M =1 l_p
T'xA 1(1=p) pL-A

Load Sharing 80

and hence
R = p e I+(l-p)pA-1+p _(d-p)uA+p =ﬁ+uA
1-p 1~p 1-p
and similarly,
Niy = N = pA

For example, consider a system with an arrival rate of 8 jobs/second with a CPU
that can process at most 10 jobs/second. Then, p = 0.8 and on average N =4 jobs, and
T = 0.5 second. If A =10%, then High-mark is 4 + 10(0.1) = 5, and the Low-mark is
4 — 10(0.1) = 3 . This means that the site, to guarantee the specify response time
(TxA), should try to execute some of its jobs remotely when its workload is greater than
5 jobs (load average > N j;g;) and that it could serve jobs from other sites when its work-

load is less than 3 jobs (load average <N ,,).

4.3. High-Low, Ish and no-ld

In [Alonso86a] a load balancing scheme (called Ish) was developed based on broad-
casting local system state to all the sites in a local-area network (LAN) and on transfer-
ring jobs to the least loaded site. Each site reaches load balancing decisions in a decen-
tralized fashion, i.e., without the existence of a central controller. The purpose of the
prototype was to demonstrate that sizable overall system performance gains could be
achieved using a simple load balancing mechanism on top of an existing system with
small overhead and making very few changes in the underlying software. It was noticed
that having accurate information about the entire system was expensive because process-
ing broadcast messages from other sites takes a substantial amount of CPU cycles. There
is a tradeoff between the broadcasting interval and the processing overhead which
directly affects the accuracy of the information on which a machine has to base its local-
ity decision. In a follow-up study [Alonso86b], this tradeoff was discussed and the issues

involved in evaluating load metrics and decision policies were described.

Load Sharing g1

Lsh was revised and improved to take care of obvious flaws that a simple ‘‘least
loaded’” scheme has. These flaws are the swamping and drought effects. These effects
are produced by the same factor: outdated system state information due to update interval

and communication delays.

In the swamping effect many jobs are sent to one machine (the least loaded at that
moment) before it can broadcast its new load. This occurs because several machines may
choose to transfer jobs to the least loaded site within the same small interval of time,
before new state information from the least loaded machine is broadcasted. Therefore,
the response time of these transferred jobs may even be greater than if they had been pro-

cessed in their originating sites.

In the drought effect, truly least loaded sites do not receive remote jobs. This hap-
pens because the moment a machine gets less loaded or even idle is not synchronized
with its broadcast interval. A site may be the least loaded site in the network, but until it

broadcasts its new state, no other site will know it.

To correct the above described anomalies two policies were incorporated into lsh:
required load difference and implied load. The required load difference limits a machine
to send jobs to a remote site only if the difference between its load and the load of the
remote machine is greater than some specific amount. This would reduce remote execu-
tion overhead. With implied load the system load information kept at a machine is
updated each time a local job is migrated to another site. For example, when a machine
transfers a job to another site, it reflects this event in its local information about the
receiving site. This is done to compensate for the added workload at the remote site. In
this way the sending machine has more accurate information when making the next load

balancing decision.

As stated in Section 4.1, the objective of load balancing schemes is to equally distri-
bute the workload among all the participating sites. We will show empirical measure-

ments of Ish to compare it against different implementations of High-Low. Also for

Load Sharing 82

comparison purposes, we will show performance measurements for the case when no

load distribution is done.

4.3.1. Experiments and Results

The system we used for our experiments uses a network of workstations. Our
environment consists of four identical machines (SUN 2) connected by an Ethernet
[Metcalfe76a] and using a fifth machine as a file server. The load metric we used for our
experiments is the 4.2 BSD UNIX ‘‘load average’’ metric provided by the uptime com-
mand [Leffler84a] and defined as the exponentially smoothed average number of jobs in
the run queue over the last 1, 5 and 15 minutes. In our experiments we use the average
over the last minute. This is the load metric we used for all the experiments in this study.
Our implementation also uses numbers related to this ‘‘load average’’ metric as High-

mark and Low-mark values.

Using this facility we first implemented the High-Low scheme using a random allo-
cation of jobs as location policy. We ran several tests with our implementation and com-
pared the obtained results against the situation when there is no load distribution and with
the Ish implementation (labeled respectively no-ld and Ish in our figures). In our experi-
ments, each user is simulated by a script and the time it takes to complete is what we
define as response time. The script consist of repeated cycles of editing, compiling and

running a C program. The C program performs several arithmetic operations.

Emphasis was not only on the average response time of the entire system, but also
on the average response time of the jobs at each individual machine. This last measure-
ment gives an idea of the changes in local service time when a machine participates in a
load sharing scheme. Therefore, indirectly the local average reflects how much service

autonomy each site has.

Figures 4.4 through 4.6 show the average response time of the High-Low scheme
with a fixed High-mark value (1.75) and several Low-mark values. The High-mark value

Load Sharing 86

was selected after running several experiments with just the High-mark parameter
[Cova88a]'. Each figure represents a system with a different system load. Each machine
in the network has a particular number of users. For example, the distribution “*5,1,1,1"°
represents the number of users in the system, i.e., five users in one computer and a single
user in each of the other machines. This distribution, ‘‘5,1,1,1"", represents a low system

load, ““5,5,1,1"" represents a medium one and “‘5,5,5,1”" represents a high system load.

The abscissa depicts a range of increasing Low-mark values and two special values
one for no-1d and one for Ish. These values represent the amount of CPU cycles that each
particular machine dedicates to service remote jobs: from no sharing to full sharing. That
is, it represents the level of acceptance that the local machine has agreed to have. It is
the degree of service autonomy that each machine has. The labels of the ordinate denote
the average response time of jobs submitted by the local users at each site. In each figure
there are three bars labeled ‘‘5”’,*‘avg’’, and ““1”’. The “*5”’ and *‘1”’ bars represents the
average response time perceived by the users submitting jobs at machines with five users
and a single user, respectively. The ‘‘avg’’ bar is the average response time of the entire

system.

The first noticeable result from all these figures is that no user perceives an average
response time for its jobs close to the average response time of the system. This last

measurement is what is usually reported in load balancing studies.

Figure 4.4 also shows that even maintaining a high degree of service autonomy (i.e.,
a small willingness to share represented by a Low-mark value of 0.4), there is a substan-
tial improvement in the performance of heavily loaded sites while the lightly loaded ones
are not significantly penalized. Also, as the Low-mark value increases more sharing is

allowed and thus less service autonomy the site has. In this case, the response times of all

1 In [Cova88a], after testing High-mark values ranging from 0.5 up to 3.25, we concluded that
using a High-mark value that represents the average load of a user is a good threshold for deciding
if a local invoked job should be run locally or remotely.

Load Sharing 87

the sites tend to show a balanced effect, i.e., High-Low’s performance is similar to Ish’s.

Figures 4.5 and 4.6 show that even with increased system workload it is still possi-
ble to obtain performance improvements at the heavily loaded sites without significantly
affecting the service at the lightly loaded ones. This is not true when there is complete
sharing, as is the case of load balancing schemes. As you will note in the same figures
the response time of the Ish scheme does not scale well as the load of the system
increases (a low system’s load in figure 4.4, a medium system’s load in Figure 4.5, and a
high system’s load in Figure 4.6). Also, notice that in these figures the average response
time (avg.) does not uniformly decrease as the Low-mark increases (Low-mark 1.4 in
Figure 4.5 and Low-mark 1.2 in Figure 4.6). These ‘‘bumps’’ are produced by the ran-
dom nature of the location policy. As it can be seen, even with this anomalous behavior
the response time of all the heavily loaded sites is still lower than in the no-1d case and,

in some cases, lower that the 1sh scheme.

Figure 4.7 presents a summary of the results for a High-Low implementation that
uses a ‘‘least-loaded’’ allocation of jobs as location policy. In this figure the abscissa
represents the system workload, as explained before. For each abscissa label, there are
three columns: one for each type of machine in the experimental system (heavily loaded
ones, with five users, and lightly loaded ones, with a single user), and one for the average
response time of the system. In each column the response time for each Low-mark
value, no-ld and 1sh is represented. The High-mark value is fixed to the same value as

before (1.75).

From Figure 4.7 we can see the incremental changes in performance as we change
the Low-mark value. It is clear from this figure that even when there is a lot of activity in
the system (user distribution *‘5,5,5,1"’), some improvement in response is achieved by
sharing resources with High-Low. Also, the higher the value of the Low-mark parame-
ter, the more the response time of heavily loaded machines improves, but the more the

response time of lightly loaded machines degrades. Notice the excessive penalty that

Load Sharing 89

lightly loaded sites are paying when there is complete sharing (Ish case). This behavior
gave us the insight that load distribution algorithms in order to support autonomy should
not behave in a binary fashion (share all or share nothing). Instead they should be gra-
dual as is High-Low.

Also note that, as with the first implementation, there are some values for the High-
Low parameters, under medium and high system load, that have lower average response

time than lsh. In the next section we discuss this observation.

For the rest of the figures in this chapter we use the formats just described for the

figures in this section.

4.4. High-Low, All-or-Nothing, and Priority

Informally, there have been other acceptance policies discussed and used in the load
sharing literature. First, is the extensively used All-or-Nothing scheme where idle sites
are used to service remote jobs until they are claimed by their owners ([Nichols87a],
[Litzkow87a], [Theimer85a], [Agrawal87a], [Mutka87a], etc.) Second, is the Priority
acceptance policy where remote jobs are accepted at a site with lower scheduling priority
than local jobs ([Hagmann86a], [Leland86a], etc.). These methods clearly guarantee
ownership of resources to the machine’s owners and allow different degrees of service
autonomy. We will empirically compare them against our High-Low scheme by using a

synthetic workload.

We decided that to fairly compare the different acceptance policies we had to use
the same schemes for the other policies involved in load distribution algorithms, i.e., the
information, transfer and location policies. For this, we chose to emulate the different
acceptance policies by using our High-Low implementation. Also, to have more general

results, we used two different sets of information, transfer and location policies.

One set of policies consisted of no information exchange among the sites, a thres-

hold transfer policy and a random selection of execution site as the location policy. The

Load Sharing 90

other set consisted of a periodic exchange of load average information among the sites as
the information policy, running each job in the least loaded site as the location policy and
using a required load difference between the least loaded site and the originating site as
the transfer policy [Alonso86a]. We denote the implementation of the former set by ran-
dom and the implementation of the latter set by Ish' (the Ish name is used because the

corresponding set of policies is based on the Ish scheme described in Section 4.3).

4.4.1. Description of Emulated Acceptance Policies

As explained in Section 4.2.1, High-Low can be used to emulate different modes of
site operations. By slightly modifying our High-Low implementation we were able to

emulate the All-or-Nothing policy and the Priority policy.

The All-or-Nothing policy was emulated by using High-Low with a High-mark set
to the lowest possible value (0.01) for the Ish implementation. This setting forces High-
Low to always consider the least loaded site in the network to offload all locally initiated
jobs. For the random implementation the High-mark was set to a a median value (1.75),
thus acting as the threshold for the transfer policy. The Low-mark was set to the lowest
possible value (0.01) for both sets. In this way remote jobs are only accepted for execu-
tion at a given site if the load average of that site is almost zero, i.e., if the machine is
idle.

The Priority policy was emulated by running the process that handles remote execu-
tions (the Ishd daemon [Alonso86a]), with the lowest scheduling priority possible (a
nice(1) value of +20 [Leffler84a]). This process behaves as follows: when a remote job
is accepted for execution at a site, it will instantiate (fork) a child process that will take
care of getting the environment information of the job and running a local instance of it.
This child process will have the same scheduling priority as its father , thus the remote

1 There are many parameters involved in each set of policies. A limited sensitivity analysis on
these parameters was done for the Ish set in [Alonso86a) and in [Cova88a).

Load Sharing 91

job will run with low scheduling priority, too. For both sets, High-mark was set to the

same value than for the All-or-Nothing emulation. The Low-mark was set to a large

value (100) for both implementations to assure that every remote request would be

accepted.

4.4.2. Experiments and Results

The experiments we ran were similar to the ones described in Section 4.3. Along

with the two previously mentioned acceptance policies, we gathered results from three

different instances of the High-Low algorithm:

A configuration where all the sites have their High-mark set to the average load of
the network (1.75), and the Low-mark set to a very small value (0.4), thus providing
a high level of service autonomy (i.e, allowing little remote workload service). This

configuration is labeled **0.4/1.75" in our figures.

A configuration where heavily used sites, i.e. sites with 5 users, are completely ser-
vice autonomous. Consequently they do not allow remote workload service (Low-
mark = 0.01). Their High-mark was set to the average system’s load (1.75). The
lightly used sites, i.e. sites with a single user, allow some remote workload service
(low-mark = 0.6), and their High-mark is set higher than the system’s average (2.0).
In this way these sites will not try to offioad their own workload during transient
conditions due to remote workload service. This configuration is labeled ‘‘0.01/1.5-

0.6/2’" in our figures.

A configuration where heavily used sites have a high level of service autonomy,
thus they allow very little remote workload service (Low-mark = 0.4) and have their
High-mark set to a much higher value than the system’s average (2.4). In this way
they will only try to offload their workload when their local service has greatly
degraded. The lightly used sites allow a considerable amount of remote workload

service (a small degree of service autonomy reflected by a Low-mark = 0.8) and

Load Sharing 92

only will try to offload their own workload when their load is well above the aver-

age (High-mark = 3.0). This configuration is labeled *‘0.4/2.4-0.8/3"" in our figures.

We also gathered results for the cases where no acceptance policy is used, ie, the
random and Ish sets of policies by themselves, as well as for the case when there is no
load sharing (no-ld). Thus, a total of seven load sharing situations were tested per set of
policies.

In Figures 4.8 through 4.10 we present the response time of the different acceptance
policies using the Ish set of policicsT and under different system loads (user distribu-
tions). The first noticeable result is that for all the system loads the performance of the
All-or-Nothing policy can always be improved, i.e., the All-or-Nothing policy is only
better than the no load distribution case (labeled no-1d in the figures), but in some cases,
when the system load is extremely high (Figure 4.10), it can even be worse than this case.
As can be seen in Figures 4.8 through 4.10, there are other policies that have the same
characteristics than the All-or-Nothing policy, but do not have this observed anomaly.
The other policies behave well under increasing system load and even do better under
low system load. The only observation in favor of this policy is that its standard devia-
tion (Figure 4.11) tends to be lower than other policies, in particular for medium and high

system load. This happens because less interaction among sites occurs as load increases.

In brief, our results suggest that the All-or-Nothing acceptance policy can always be
improved, no matter the system load. It does not have any feature of merit except that it
is the obvious way (and simplest to implement) to guarantee ownership of resources.
The All-or-Nothing policy has worked well for many researchers because their systems
load is constantly low [Mutka87b]. There is always a high probability of remote process-
ing availability due to idle sites in the network.

T Although we have collected results using the random set, we will not present the correspond-

ing figures in this work. We do this to limit the number of figures in this presentation, even though
they support the conclusions drawn from the Ish set.

Load Sharing 96

Examining now the results from the Priority scheme, we notice that it achieves con-
siderable performance improvement for the heavily loaded machines, but it also penal-
izes more the lightly loaded sites in comparison to other acceptance schemes. As the sys-
tem load increases the average response time of the lighﬂy loaded sites degrades. Also, a
higher variability (Figure 4.11) is present for both type of sites. This anomalous behavior
has to do with the load information policy used for Ish. The load average measure we
use in these experiments does not distinguish between local jobs and remote jobs, i.e., it
expresses the actual load of a site regardless of what type of job is producing it. Thus a
lightly loaded site may get a number of remote jobs to service (placed in the background)
which increases its load average value. The next local job that arrives will see a high
load average value which will induce the load sharing software to place such a local job
in a remote site with low scheduling priority This is reflected in a poorer response time
than if it was run locally. Therefore, the lightly loaded sites are effectively being penal-
ized.

One way to correct this anomaly in the Priority policy is to be able to distinguish at
each site the load generated by local jobs from its load average. In other words, the load
sharing mechanism could use two load measurements: one for local jobs and one for the
entire workload. Clearly, this improved Priority policy relies on the use of more infor-
mation to based its load balancing decisions, i.e., a different information policy that the

ones we have been using.

The Priority scheme has the largest standard deviation for all system loads (Figure
4.11). The variability increases in direct response to the increase in system load. This is
an undesirable behavior because users of the load sharing software cannot estimate the

response time for their jobs.

Researchers using the Priority policy explicitly allocate jobs throughout the network
([Hagmann86a], [Mutka87a].) Users of lightly loaded sites do not use the load sharing

mechanisms, while users of heavily loaded sites explicitly request that part of their work-

Load Sharing 97

load be placed at remote machines. This approach to using the load sharing software
goes against our belief that such mechanisms should transparently take care of remote
executions on behalf of inexperienced users (as stated in the introductory paragraphs of

this chapter).

With respect to the load sharing algorithms not using an acceptance policy (Ish), we
notice that the lightly loaded sites are heavily penalized. The system improvement
comes from equalizing the system workload among all the sites. The degradation is
more noticeable when the system load is high. As we have already noted in Subsection
4.1.2, this scenario is acceptable if the entire network belongs to the whole user commun-
ity, i.e., the system is being shared equally by all its users. This situation is not appropri-
ate when each site is part of a federated environment because the components loose con-
trol over their resources. Again, local autonomy to guarantee resource ownership is the

motivation behind our work, and thus behind the acceptance policy.

Let us now consider the High-Low results. Since High-Low allows a gradual shar-
ing of resources, it offers a marked improvement over the All-or-Nothing policy and the
no-1d case. It also provides better control of the local resources than the Priority scheme,
ie., a lightly loaded site participates in the load sharing mechanism only to the extent
that its owner allows. Also, because each site pledges a portion of its resources to service
remote jobs, any remote job once accepted for execution, has some assurances over the
quality of service it is going to receive. This property is not present in any of the other

acceptance policies.

A final observation is that the standard deviation of High-Low tends to decrease as
the system load increases, in contrast to Priority and similarly to All-or-Nothing. As with
All-or-Nothing this is due to the fact that less remote processing occurs as the system

load increases.

Load Sharing 99

4.5. Summary

We have discussed the federated computing environment, a type of distributed sys-
tem where sharing the processing capabilities among the sites improves performance. We
have argued that load balancing algorithms are not appropriate for this type of environ-
ment because of its characteristics of autonomy and local ownership of resources at each

site,

The sharing scheme we have presented, called High-Low, replaces the notion of
stealing CPU cycles with the notions of lending and borrowing CPU cycles. Users in
federated environments do not have to be concern with their resources being abused.
The degree of participation of each site in this load sharing scheme is completely distri-
buted. It does not depend on any global information or central controller, just on the

site’s local use and purpose.

The All-or-Nothing and Priority acceptance schemes of load sharing are too restric-
tive in an environment where most resources are underutilized. Also, they do not scale
well as the system load increases. Instead, by allowing a moderated sharing among the
sites, good performance is guaranteed to the site local community and to jobs originated

at other components

Our results suggest that the All-or-Nothing acceptance policy can always be
improved, no matter the system load. It does not have any feature of merit except that it

is the obvious way (and simplest to implement) to guarantee ownership of resources.

High-Low has the desirable characteristic that an All-or-Nothing scheme has, i.e., it
guarantees to the owners of lightly loaded machines that their local resources will not be
abused by remote jobs. This is achieved by fixing the maximum degradation that a user
of a lightly loaded site might perceive (which reflects the level of service autonomy
desired). At the same time, it avoids the anomaly of having poorer performance for the
heavily loaded machines as the load of the network increases (when it should have an

opposite behavior since it is in this situation that improvement is most needed). The

Load Sharing | 100

High-Low scheme improves the performance of heavily loaded sites in a greater amount
than All-or-Nothing or Priority, and is close to the performance of the load balancing

schemes tested (Ish and random).

We realize that the performance of a computer does not depend solely on its CPU
utilization. We have just used this resource to illustrate our ideas. The notions behind the
acceptance policy and service autonomy could also be applied to whatever local resource

18 being shared in the federation, such as physical memory or disk space.

Chapter 5. Conclusions and Future Work

This dissertation has empirically shown the practicality and desirability of resource
management mechanisms that support local autonomy in distributed systems. It has been
demonstrated that by using resource management mechanisms that support several

degrees of autonomy, cooperation among autonomous sites is effectively established.

This dissertation claims that the next generation of distributed systems will arise by
joining together several administratively autonomous computing sites into a federated
computing environment. Consequently, cooperation among sites will occur only with the
express consent of the participating sites, and only as long as the service obtained from

this cooperation does not interfere with the service rendered to local users at each site.

The approach taken in this dissertation was to study the management of two
resources, storage and processing, to explore two distinct notions for autonomy: func-
tional autonomy and service autonomy, respectively. For functional autonomy, we stu-
died the concept of stashing files. By implementing stashing using a quasi-copy frame-
work, the resulting network file system allows users to fine-tune the quality of the service
they require when the file server is not reachable. The key point of this particular work is
the trade-off between data availability to applications and degradation of service due to
“‘imperfect’” information. For service autonomy, we studied load sharing in federated
environments. We proposed the use of an acceptance policy to provide local control to
each site participating in the load sharing system independently of the location, informa-
tion, and transfer policies used. With the acceptance policy sites’ owners control how
much local processing they are willing to offer to remote jobs, depending on the perfor-
mance degradation that local jobs will perceive. It was shown that even when some sites
are only willing to accept few remote jobs, substantial improvement is obtained at

heavily loaded sites while service at lightly loaded ones does not deteriorate significantly.

101

Conclusions and Future Work 102

5.1. Lessons Learned

Many of the issues related to autonomy in distributed systems are also connected
with fault-tolerance. While we were working on our scheme to make a client site more
mdépendcnt of server machines (i.e., stashing, Chapters 2 and 3), we concemed our-
selves with problems of logging, checkpointing, transaction execution, time-out periods,
etc. It is our belief that in a fault-tolerant distributed system local autonomy can be
achieved almost at no cost, since many of the protocols used to achieve fault-tolerance
can also be used to achieve autonomy. For example, when a client detects that a server is
unavailable, it makes no difference to the client whether the server crashed, or there was

a network partition, or that the server decided to exercise its service autonomy.

One issue that often arose during the work on stashing was the relationship between
caching and stashing. This dissertation maintains that because of their distinct goals,
caching and stashing have to be kept separate, but they do not compete with each other.
If we had to design an entirely new distributed file system for a VLDS, we would use
caching between clients and servers to improve performance, stashing between clients
and servers to increase service availability when disengagement occurs, and replication
among servers to increase the fault-tolerance of the service. Another idea that arose from
the work on stashing was the possibility of using the quasi-copy framework to build a
single mechanism that would manage caching and stashing at the same time. The operat-
ing system would be responsible for selecting the quasi-copy predicates for files being
“‘cached’’ (as indirectly proposed in [Gray89a] with the notion of leases’), while user

application would be responsible for the *‘stashed’’ files.

We have leamed from our implementations that support for autonomy is easy to
introduce to existing resource management mechanisms in distributed systems. The real

problem is deciding what is the right policy to use, since autonomy is intrinsically related

1 See discussion in Section 2.4.1.

Conclusions and Future Work 103

to user applications and the level of service that users expect. For example, among my
colleagues at Princeton, we have had many interesting conversations trying to decide
what would be the best set of values for our load sharing scheme (Section 4.2). All our
conversations have ended with no consensus, since what is fair for someone, is not fair
for someone else. We believe that having flexibility to adapt to different levels of auton-

omy is the key to sharing resources in VLDS.

It is interesting to note that most interactions among autonomous organizations can-
not be enforced, but have to be agreed upon, and will terminate as soon as any of the
involved parties so wishes (e.g., The United Nations, The Open Software Foundation, or
the Arab League). It is this organizational dynamic that we have tried to capture in our

resource management mechanisms for VLDS.

5.2. Future Work

There are several open issues that were generated from the work of this dissertation.

We now present three of these problems which we have started studying.

5.2.1. Propagating Updates to Replicated Copies

One particular problem we are exploring is how to keep sufficiently consistent
quasi-copies in the presence of updates to the central data. Maintaining quasi-
consistency implies deciding how to efficiently propagate updates to the quasi-copies

throughout the system. We denote it as the quasi-copy update problem

In the basic quasi-copy scheme, each client that wants to have a quasi-copy does so
directly to its local disk, thus there is a one-to-one correspondence between quasi-copy
requests and the number of quasi-copies created. Our objective is to minimize the
number of messages needed to maintain the consistency requirement defined for each

quasi-copy when updates occur at the server.

Formally, the problem can be stated as follows. Given a graph G = (V,E) that

represents a network, where V is the set of computer nodes, E is the set of all

Conclusions and Future Work - 104

communication links between nodes, for all ve V, p(v) is a consistency requirement of

quasi-copies at v, and for all ee E , c(e) is the cost of sending an update through e.

The question we would like to answer is what is the minimum cost propagation
scheme to update all v € V so that the consistency requirements, p(v), are satisfied at all

times.

In general, the quasi-copy update problem seems to be an NP-complete problem
since we believe it is possible to show that the *‘Steiner tree’’ problem [Garey79a] can be
reduced to an instance of the quasi-copy update problemf- The approach we are taking to
deal with the quasi-copy update problem is in two stages. First, we would like to restrict
the problem and develop algorithms that provides spanning trees for update distribution
under the assumption that no dynamic changes will occur to the network configuration.
Second, we would like to relax this assumption, and solve the quasi-copy update problem
adapting the algorithm proposed in [Eppstein90a] for maintaining a minimum spanning
forest subject to dynamic changes in the costs of sending updates, c(e), as well as inser-

tions and deletions of nodes and communications links, V' and E.

For the first stage of this research, although the general problem most probably is
NP-complete, we can define restricted versions of the quasi-copy update problem and
find solutions to them. In Table 5.1, we show a progression of these simplified problems
and the techniques for solving them. Clearly, if we consider only the normal replicated
copy case (i.e., perfect consistency is required), then each time an update occurs at the
server, all the copies have to be locked and the updates also propagated to them. Since all
the copies have to received the update ‘‘at the same time’’ the least expensive way to
propagate updates is using the minimum cost spanning tree (MSP) connecting all sites

1 An instance of the Steiner tree problem can be reduced to an instance of the quasi-copy up-
date problem by adding to the statement of the former a *‘perfect consistency’’ quasi-copy predi-
cate for all the vertices in the specified subset of the Steiner tree problem statement. If there were

a polynomial algorithm to solve the quasi-copy update problem, it would find the minimum cost
spanning tree to the problem, which would also be a solution to the Steiner tree problem.

Conclusions and Future Work 105

with copies. Several algorithm for finding the MSP of a graph have been proposed in the
literature. For our purpose it is sufficient to use Reingold’s algorithm [Reingold77a] of

order | E| log log | V]

Problem Technigue Complexity

Perfect copies minimum-cost O(] E] log log | V]
spanning tree (Reingold)

Fixed consistency algorithm based on O(max(| V| % J E| log | E])
requirements depth first search (Cova)
Flexible consistency 1-server with 3-competitive
requirements and triangle excursion problem (Black and Sleator)
Inequality holds
Flexible consistency OPEN
requirements and triangle
inequality does not hold

Table 5.1: Progression of problems to propagate quasi-copy updates

If we now consider relaxing the perfect consistency assumption, and assume that the
system cannot modify the user consistency requirements, then we have developed an
| V]? algorithm that constructs the particular spanning tree satisfying such requirements.
Our algorithm constructs a particular spanning tree that satisfies a ‘‘less restricted than’’

relation among the consistency predicates of the quasi-copies in the network.

Finally, we would allow the system to maintain quasi-copies that are more con-
sistent than what the users requested. This gives the system greater flexibility to send
update messages and thus could allow the use of a cheaper spanning tree than what our
previous algorithm would find. Finding the minimum spanning tree in this case becomes
more complex, and its solution depends on whether the triangle inequality holds. If the
triangle inequality holds, then we can reduce the quasi-copy update problem to an
instance of the k-server with excursion problem, studied by Black and Sleator
[Manasse88a). They show that a 1-server problem on a tree has a competitive factor of
three (which has also been proven to be the best possible factor). A competitive factor of

three means that there is an on-line algorithm that can produce an answer to the problem

Conclusions and Future Work 106

within three times of the ‘‘performance’ of the optimal off-line algorithm that solves the

same problem.

To conclude, we have outlined a problem of theoretical interest that arose from our
implementation of a network file system using quasi-copies to support file stashing
(Chapter 3). We believe that the study of algorithms to manage controlled inconsisten-
cies in replicated data is important, since achieving perfect consistency in VLDS is an

unrealistic goal.

5.2.2. Bootstrap Negotiation

Since in a VLDS there are potentially tens of thousands of machines, it is very
difficult to have complete homogeneity across all the components, neither it is desire in
many cases. What is required is to establish the role of homogeneity in this type of
environment, ie., set the lowest common denominator that allows the components to
interact among themselves. There are others researchers also looking for this common

denominator.

Several researchers have proposed sets of protocols to be used by different vendors
and implementors to develop their distributed applications, and therefore allow interoper-
ability across machines ([Zimmermann8Qa], [SUN88a].) Others have proposed homo-
geneous kemels to support distributed operations ([Cheriton88a], [Turnbull87a],
[Schmidtke82a].) A third group of researchers, represented by the HCS project
[Notkin88a], works on a basic set of network services (mail, filing, printing, naming,
authentication and remote computation) that adapt to the demands of a heterogeneous
environment, mainly through dynamic binding.

Our idea is to take this search for a common denominator one step lower to what we

call a bootstrap negotiation process. This process must be based on a simple language

1 The triangle inequality property of a graph states that the total cost of a path between two
vertices is proportional to the number of edges in that path. Thus, the shorter the path the less ex-
pensive it is.

Conclusions and Future Work 107

to express basic operations and ways to iterate to higher levels of interactions. The com-
mon language should be very simple, which means a restrictive type of interaction. This
common language should be use to agree on some higher level of cooperation among the
nodes. In this way, implementation of this language for new members would not take
much effort. Even more, there could be more than one common language (more that one
standard) and nodes that know several standards could help other nodes to "learn" new

common Ianguages.

An example where the bootstrap negotiation process will solve many questions is in
the discussion between stateless and statefull interactions. This is another aspect of an
interaction that should be negotiated. Stateless interactions are easier to implement (no
crash recovery mechanism necessary), but cost more since each message has to be self-
contained. In many cases, using statefull protocols will reduce the costs of communica-
tion. Again the nodes can agree on what style of interaction they are going to use and
what type of state they are going to save. The protocol should also allow each node to

check with the other nodes to make sure that they are all in the same state.

An aspect of federated environments is that it is very difficult for an entity of the
system to know what happens when something goes wrong in another entity, e.g., maybe
a new operating system was brought up in another machine or a new RPC protocol is
being used. By way of the bootstrap negotiation process, the interaction between these
entities could again be resumed from the lowest common level, iterating to the appropri-

ate level of cooperation. Therefore allowing new configurations to take place.

5.2.3. Exchanging Data Among Heterogeneous Database Systems

In this dissertation we have focused in operating system’s resources (storage and
processing), but many organizations want to share information that they already keep in
databases. However, these organizations are not willing to surrender local control of
their database management systems (DBMS) as the price for cooperation. Moreover, the

choice of software and transaction operation should be a local decision. Heterogeneity in

Conclusions and Future Work 108

hardware and software will prevail across the different organizations. Consequently, we

are in the presence of a federated computing environment.

To share databases in federated environments, we propose an architecture that

preserves the autonomy of each site. Figure 5.1 shows the software layers in the pro-

posed architecture . The architecture would establish a set of *‘standard’’ protocols to be

implemented independently by different DBMS vendors.

Resource Resource
Discovery | SR Discovery
Manager Manager

Parameters to decide if cooperation
can procee between two sites

Negotiation PO s e i i Negotiation
Manager Manager
Parameters to establish, translate
Bookkeeper and maintain exchanged information Bookkeeper
e GREELEEEEPT PP T LY. D
E protocol 1o E protocol to
| communicate with | communicate with
é local DBMS ‘:(local DBMS
Local Local
Database Database
Management Management
System System
Site A Site B

Figure 5.1: Layer architecture for data exchange among heterogeneous DBMS
The top layer is the Resource Discovery Manager (RDM). This layer would imple-
ment a protocol to inform other nodes in the network what information it has available
for sharing in its local database. The protocol would also allow each node to collect such

information about other node’s local databases.

T Note that the architecture shown in Figure 5.1 was inspired in the NFS architecture
[SUN88a] for network file systems (see Section 3.2.1 for an overview).

Conclusions and Future Work 109

The middle layer, the Negotiation Manager (NM), would implement a protocol to
exchange a particular information (*‘view’’) between two sites that desire to cooperate.
It is at this layer that local control would be enforced. It is the NM layer that decides,
based on user provided parameters and the present ‘‘load’’ of the system, if a new
interaction among two nodes will be establish. This layer receives from the RDM layer
parameters indicating the site that holds the information desired and a specific way of
identifying such information. It uses these parameters to talk to the NM layer of the

remote site.

Finally, the Bookkeeper layer takes care of the actual transfer, translation and
maintenance of the information being exchanged. This could be done by implementing
quasi-copies of the remote information or by allowing remote queries to the site holding
the desired information. This layer would perform equivalent functions to the Book-
keeper process of the stashing implementation described in Section 3.2.5. The Book-
keeper would receive from the NM layer the identifier for the required information as
well as the parameters agreed on by the cooperating sites to maintain the desired level of
autonomy (e.g., the rate of remote queries to the exchanged data). This layer will com-
municate with the underlying DBMS to extract and install the exchanged information,

using a protocol specifically designed for the local DBMS.

The proposed architecture is just a general description of an approach to the multi-
database problem in federated environments. The design, development and evaluation of

particular protocols for each layer is still an open research field.

References

Agrawal87a.
Rakesh Agrawal and Ahmed K. Ezzat, ‘‘Location Independent Remote Execution
in NEST,”” Transactions on Software Engineering, vol. SE-13, no. §, pp. 905-912,
IEEE, August 1987.

Alonso86b.
Rafael Alonso, ‘‘The Design of Load Balancing Strategies for Distributed Sys-
tems,’’ Proceedings of the U.S. Army Research Office Future Directions in Com-

puter Architecture and Software Workshop, May 5-7, 1986.

Alonso86a.
Rafael Alonso, Phillip Goldman, and Peter Potrebic, ‘‘A Load Balancing Imple-
mentation for a Local Area Network of Workstations,’” Proceedings of the IEEE

Workstation Technology and Systems Conference, March 18-20, 1986.

Alonso90a.
Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina, ‘‘Quasi-Copies:
Efficient Data Sharing for Information Retrieval Systems,’’ (to appear) Transactions
on Database Systems, ACM, 1990.

Anderson88a.
David P. Anderson and Domenico Ferrari, ‘‘The DASH Project: An Overview,”’
Technical Report 88/405, UC Berkeley CS Division, FEB 1988.

Barbara89a.
Daniel Barbara and Richard J. Lipton, ‘‘Randomized Technique for Remote File
Comparison,”” Proceedings of the 9th. International Conference on Distributed

Computing Systems, Computer Society Press, Newport Beach, California, June

1989.

Birrell§2a.

110

References 111

Andrew D. Birrell, Roy Levin, Roger M. Needham, and Michael D. Schroeder,
“‘Grapevine: An Exercise in Distributed Computing,”’ Communications of the

ACM, vol. 25, no. 4, pp. 260-274, April, 1982.

Birrell88a.
Andrew D. Birrell, ‘‘Position Paper ,”’ Proceedings of the 1988 ACM SIGOPS

European Workshop, Cambridge, England, September, 1988.

Bozmang9a.
G. P. Bozman, H. H. Ghannad, and E. D. Weinberger, ‘‘A Trace Driven Study of
CMS File References,”” technical report, IBM Hawthome Research Laboratory,
Yorktown Heights, NY, July, 1989.
Cheriton88a.
David R. Cheriton, ‘“The V Distributed System,”’” Communications of the ACM, vol.
31, no. 3, pp. 314-333, Association for Computing Machinery, March 1988.
Cova88a.
Luis L. Cova, ““Load Balancing in Two Types of Computing Environments,’’ Tech.

Report #CS-TR-165-88, Princeton University Computer Science Department, June

1988.

Daniels86a.
Dean Daniels and Alfred Z. Spector, ‘‘An Algorithm for Replicated Directories,’’

Operating Systems Review, vol. 20, no. 1, pp. 24-43, SIGOPS, January, 1986.

Davidson82a.
Susan B. Davidson, An Optimistic Protocol for Partioned Distributed Database

Systems, Ph.D. Thesis, Princeton University, Princeton, N.J., October, 1982.

Davidson85a.
Susan B. Davidson, Hector Garcia-Molina, and Dale Skeen, ‘‘Consistency in Parti-

tioned Networks,”” Computing Surveys, vol. 17, no. 3, pp. 341-370, ACM, Sep-

References 112

tember, 1985.

Dineen87a.
Terence H. Dineen, Paul J. Leach, Nathaniel W. Mishkin, Joseph N. Pato, and Geof-
frey L. Wyant, *“The Network Computing Architecture and Systems: An Environ-
ment for Developing Distributed Applications,”” Proceedings of the USENIX Techn-

ical Conference, pp. 385-398, Summer, 1987.

Douglis87a.
Fred Douglis and John Ousterhout, ‘‘Process Migration in the Sprite Operating Sys-
tem,”” Proceedings of the 7th. International Conference on Distributed Computing
Systems, pp. 18-25, Computer Society Press, Berlin, West Germany, September
1987.

Eager86a.
Derek L. Eager, Edward D. Lazowska, and John Zahorjan, ‘‘Adaptive Load Sharing
in Homogeneous Distributed Systems,’’” IEEE Transactions on Software Engineer-

ing, vol. SE-12, no. 5, pp. 662 - 675, May 1986.

Eppstein90a.
David Eppstein, Giuseppe F. Italiano, Roberto Tamassia, Robert E. Tarjan, Jeffery
Westbrook, and Moti Yung,, ‘‘Maintenance of a Minimum Spanning Forest in a
Dynamic Planar Graph,”’ technical report CS-TR-243-90, Princeton University

Computer Science Department, Princeton, N.J., January 1990.

Ferrari§7a.
Domenico Ferrari and Songnian Zhou, *‘An Empirical Investigation of Load Indices
for Load Balancing Applications,”” Tech. Report #UCB/CSD 87/353, University of

California at Berkeley Computer Science Division, May 1987.
Flavin88a.

Robert A. Flavin and John D. Williford, ‘‘Management of Distributed Applications

in Large Networks,”’ Proceedings of the 21st Hawaii International Conference on

References 113

System Sciences, pp. 232-241, IEEE/CS Press, Kailu-Kona, Hawaii, January, 1988.

Floyd86a.
Rick Floyd, ‘‘Short-Term File Reference Patterns in a UNIX Environment,”” TR-
177, Computer Science Department, University of Rochester, Rochester, NY 14627,

March 1986.

Garcia-Molina83a.
Hector Garcia-Molina, Tim Allen, Barbara Blaustein, R. Mark Chilenskas, and
Daniel R. Ries, ‘‘Data-patch: Integrating Inconsistent Copies of a Database After a
Partition,”” Proc. of the 3rd IEEE Symposium on Reliability in Distributed Software
and Database Systems, pp. 38-48, IEEE, October, 1983.

Garey79a.
Michael R. Garey and David S. Johnson, Computers and Intractability: A guide to
the theory of NP-Completeness, p. 208, W.H. Freeman & Co., first edition, 1979.

Gifford79a.
D. K. Gifford, ‘“Violet: An Experimental Decentralized System,’” Computer Net-
works, vol. 5, no. 6, pp. 423-433, December 1981. also in

Gray89a.
Cary G. Gray and David R. Cheriton, ‘‘Leases: An Efficient Fault-Tolerant
Mechanism for Distributed File Cache Consistency,”’ Operating Systems Review,

vol. 23, no. 5, pp. 202-210, SIGOPS, December, 1989.

Gray78a.

4]

Jim Gray, ‘‘Notes on Data Base Operating Systems,”’ in Operating Systems: An
Advanced Course, ed. R. Bayer, R. M. Graham and G. Seegmuller, pp. 393481,

Springer-Verlag, 1978.

Hagmann86a.

Robert Hagmann, Process Server: Sharing Processing Power in a Workstation

References 114

Environment Proceeding of the 6th International Conference on Distributed Com-

puting Systems., pp. 19-23, IEEE Society, Cambridge, May 1986.

Hardwick89a.
Martin Hardwick, David Spooner, Ebba Hvannberg, Blair Downie, Alyce Faulstich,
David Loffredo, Alok Mehta, Don Sanderson, Rick Harris, Ghassan Abou-Ezzi, Jie
Gong, and Jeffrey Young, ‘“‘ROSE: A Database System for Concurrent Engineering
Applications,”” Rensselaer Design Research Center technical report No. 89062,

Rensselaer Polytechnic Institute , 1989.

Hisgen89a.
Andy Hisgen, Andrew Birrell, Timothy Mann, Michael Schroeder, and Garret
Swart, ‘‘Availability and Consistency Tradeoffs in the Echo Distributed File Sys-
tem,”’ in Proceedings of the 2nd. Workshop on Workstation Operating Systems, pp.
49-54, IEEE/CS Press, Pacific Grove, California, September 1989.

Horwitz88a.
Susan Horwitz, Jan Prins, and Thomas Reps, ‘‘Integrating Non-Interfering Versions
of Programs,’’ in Proceedings of the 15th. Annual ACM Symposium on Principles of
Programming Languages, pp. 133-134, ACM, January 1988.

Howard88a.
John H. Howard, Michael L. Kazar, Sherri G. Menees, David A. Nichols, M.
Satyanarayan, Robert N. Sidebottom, and M. West, ‘‘Scale and Performance in a
Distributed File System,”” ACM Transactions on Computer Systems, vol. 6, no. 1,

pp. 51-81, February 1988.

Jia%0a.
Xiaohua Jia, Hirohiko Nakano, Kentaro Shimizu, and Mamoru Maekawa, ‘‘Highly
Concurrent Directory Management in the Galaxy Distributed Systems,”’ Proceed-
ings of the 10th International Conference on Distributed Computing Systems, pp.

416-423, IEEE/CS Press, Paris, France, May 1990.

References 115

Jul88a.
Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black, “Fine-grajped
Mobility in the Emerald System,’’ Transactions on Computer Systems, vol. 6, no. 1,
pp- 109-133, ACM Press, February, 1988.

Kleiman89a.
S.R. Kleiman, ‘‘Vnodes: An Architecture for Multiple File System Types in Sun
UNIX,”" Tutorial T6: Open Network Computing and NFS, USENIX, San Diego,
California, February 1989.

Kleinrock75a.
Leonard Kleinrock, ‘‘Queueing Systems, Vol. 1: Theory,”” Wiley-Interscience, John
Wiley & Sons, New York, 1975.

Kruger88a.
G. Kruger and G. Muller, Hector: Heterogeneous Computers Together. A Joint of
IBM and the University of Karlsruhe. Volume II: Basic Projects, Springer-Verlag,
first edition, 1988.

Kyrimis90a.
Kriton Kyrimis, Placement of Processes and Files in Distributed Systems, Ph.D.

thesis, Princeton University, Princeton, N.J., June 1990.

Lampsong&5a.
Butler W. Lampson, ‘‘Designing a Global Name Service,”” Proceedings of the ACM
Symposium on Principles of Distributed Computing, ACM Press, 1985.

Leffler84a.
S. Leffler, W. Joy, and K. McKusick, 4.2 BSD System Manual, Computer Systems
Research Group, University of California, Berkeley, 1984.

Leffier89a.

Samuel J. Leffler, Marshall K. McKusick, Michael J. Karels, and John S. Quarter-

References 116

man, The Design and Implementation of the 4.3BSD UNIX Operating System,
Addison-Wesley Publishing Company, 1989.

Leland86a.
Will E. Leland and Teunis J. Ott, ‘‘Load-balancing Heuristics and Process
Behavior,”” Proceedings of PERFORMANCE 86 and ACM SIGMETRICS 1986,
pp. 54-69, May 1986. ata

Lindsay86a.
B. Lindsay, L. Haas, C. Mohan, H. Pirahesh, and P. Wilms, ‘‘A Snapshot Differen-
tial Refresh Algorithm,”” Proceedings of the ACM SIGMOD International Confer-
ence on Management of D, pp. 53-60, Washington, D.C., May 1986.

Litzkow87a.
Michael J. Litzkow, ‘‘Remote UNIX: Turning Idle Workstations into Cycle
Servers,”” Proceedings of the 1986 Summer USENIX Technical Conference and

Exhibition, pp. 381-384, Phoenix, Arizona, June 1987.

Mamrak85a.
Sandra A. Mamrak, Dennis W. Leinbangh, and Tony S. Berk, *‘Software Support
for Distributed Resource Sharing,”” Computer Networks and ISDN Systems, vol. 9,
pp. 91-107, North-Holland, 1985.

Manasse88a.
Mark Manasse, Lyle McGeoch, and Daniel Sleator,, ‘‘Competitive Algorithms for
Server Problems,”’ technical report CMU-CS-88-197, Carnegie-Mellon University

Computer Science Department, Pittsburgh, Pennsylvania, December 1988.

Metcalfe76a.
R. M. Metcalfe and D. R. Boggs, ‘‘Ethemet: Distributed Packet Switching for Local
Computer Networks,”” CACM, vol. 19,7, pp. 395-404, July 1976.

Mullender89a.

References 11}

’

Sape J. Mullender, ‘‘Chapter 1: Introduction,”’ in Distributed Systems, ed. Sape

Mullender, p. 5, ACM Press, first edition, 1989.

Mutka87b.
Matt W. Mutka and Miron Livny, ‘‘Profiling Workstation’s Available Capacity for
Remote Execution,”” Tech. Report #697, University of Wisconsin-Madison Com-

puter Science Department, May 1987.

Mutka87a.
Matt W. Mutka and Miron Livny, ‘‘Scheduling Remote Processing Capacity in a
Workstation-Processor Bank Network,”” Proceedings of the 7th. International
Conference on Distributed Computing Systems, pp. 2-9, Computer Society Press,

Berlin, West Germany, September 1987.

Needham82a.
R. M. Needham and A. J. Herbert, in The Cambridge Distributed Computing Sys-

tem, Addison-Wesley Publishers Limited, 1982.

Nelson88a.
Michail N. Nelson, Brent B. Welch, and John K. Ousterhout, ‘‘Caching in the Sprite
Network File System,”” ACM Transactions on Computer Systems, vol. 6, no. 1,

February, 1988.

Neumann88a.
Barry Clifford Neumann, ‘‘Issues of Scale in Large Distributed Operating Sys-
tems,”” FR-35, University of Washington Computer Science Department, Seattle,
Washington, May, 1988.

Ni85a.
Lionel M. Ni and Kai Hwang, ‘‘Optimal Load Balancing in a Multiple Processor

System with Many Job Classes,’” IEEE Transactions on Software Engineering, vol.

SE-11, no. 5, pp. 491-496, May 1985.

References 118

Nichols87a.
David A. Nichols, ‘“Using Idle Workstations in a Shared Computing Environment,”’

Operating System Review, vol. 21, no. 5, pp. 5-12, ACM Press, November 1987.

Notkin88a.
David Notkin, Andrew P. Blank, Edward D. Lazowska, Henry M. Levy, Jan San-
islo, and John Zahorjan, ‘‘Interconnecting Heterogeneous Computer Systems,”’
Communications of the ACM, vol. 31, no. 3, pp. 258-273, Association for Comput-
ing Machinery, March 1988.

Olking80a.
Ingram Olkin, Leon J. Gleser, and Cyrus Derman, Probability Models and Applica-
tions, pp. 209-211, Macmillan Publishing Co., Inc., New York, first edition, 1980.

Ousterhout85a.
John K. Ousterhout, Herve Da Costa, David Harrison, John A. Kunze, Mike Kupfer,
and James G. Thompson, ‘‘A Trace-Driven Analysis of the UNIX 4.2 BSD File
System,’’ in Proceedings of the 10th ACM Symposium on Operating System Princi-
ples, pp. 15-24, ACM, New York, New York, 1985.

Parker§3a.
D. Stott Parker, Gerald J. Popek, G. Rudisin, A. Stoughton, B. Walker, E. Walton, J.
Chow, D. Edwards, S. Kiser, and C. Kline, ‘‘Detection of Mutual Inconsistency in
Distributed Systems,’’” Transactions of Software Engineering, pp. 240-247, IEEE,
May, 1983.

Postel80a.
J. Postel, “‘DOD Standard Internet Protocol,”” RFC 760, Information Sciences Insti-

tute, January 1980.

Reingold77a.
Edward Reingold, Jurg Nievergelt, and Narsingh Deo, Combinatorial Algorithms -

Theory and Practice, p. 325, Prentice-Hall, first edition, 1977.

References 119

Renesse88a. _

'R. van Renesse, J. M. van Staveren, J. Hall, M. Turnbull, A. A. Janssen, A. J. Jan-
sen, S. J. Mullender, D. B. Holden, A. Bastable, T. Fallmyr, D. Johansen, K. S. Mul-
lender, and W. Zimmer, ‘‘MANDIS/Amoeba: A Widely Dispersed Object-Oriented
Operating System,’” Proc. of the EUTECO 88 Conf., pp. 823-831, North-Holland,
Vienna, Austria, April 1988.

Renesse89a.
R. van Renesse, A. S. Tanenbaum, and A. Wilschut, ‘‘The Design of a High-
Performance File Server,”” Proc. of the 9th Int. Conf. on Distr. Computing Systems,

Newport Beach, CA, June 1989.

SUNS88a.
Sun Microsystems, Inc., SUN, ‘‘ONC/NFS Protocol Specifications and Service
Manual,”” Part No. 800-3084-10, Revision A, of 26 August 1988.

SUNg9a.
Sun Microsystems, Inc.SUN, PC-NFS User’s Manual, 1989.

Sandberg85a.
R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, ‘‘Design and Imple-
mentation of the Sun Network File System,”’ Proceedings of the Summer 1985

USENIX Technical Conference, Portland, Oregon, 1985.

Satyanarayanan8la.
M. Satyanarayanan, ‘‘A Study of File Sizes and Functional Lifetimes,”’ in Proceed-

ings 8th Symposium on Operating System Principles, ACM, December 1981.

Satyanarayanang9a.
M. Satyanarayanan, James Kistler, Puneet Kumar, Ellen Siegel, and David Steere,
““CODA: A Highly Available File System for a Distributed Workstation Environ-
ment,”” Technical Report No. CMU-CS-89-165, Camegie Mellon University

Department of Computer Science, July 1989.

References 120

Schmidtke&2a.
F. E. Schmidtke, ‘A Communication Oriented Operating System Kemel for a Fully
Distributed Architecture,’’ Pathways to the Information Society. Proceedings of the
6th International Conference on Computer Communication, pp. 757 - 762, North-

Holland, Amsterdam, Netherlands, 1982.

Schroeder84a.
Michael D. Schroeder, Andrew D. Birrell, and Roger N. Needham, ‘‘Experience
with Grapevine: The Growth of a Distributed System,’’ Transactions on Computer

Systems, vol. 2, no. 1, pp. 3-23, ACM Press, February, 1984.

Schroeder85a.
Michael D. Schroeder, David K. Gifford, and Roger M. Needham, ‘‘A Caching File
System for a Programmer’s Workstation,”” Operating Systems Review, vol. 19, no.

5, December 1985.

Sheltzer86a.
Alan B. Sheltzer and Gerald J. Popek, ‘‘Internet Locus: Extending Transparency to
an Internet Environment,”” Transactions on Software Engineering, vol. SE-12, no.

11, pp. 1067-1075, IEEE, November, 1986.

Siegel89a.
Alex Siegel, Kenneth Birman, and Keith Marzullo, *‘Deceit: A Flexible Distributed
File System,’’ Technical Report No. TR 89-1042, Comell University Department of

Computer Science, November 1989.

Smith81a.
Alan J. Smith, ‘‘Analysis of Long Term File Reference Pattemns for Application to
File Migration Algorithms,”” Transactions on Software Engineering, vol. SE-7, no.
4, IEEE, July 1981.

Spector87a.

et al, Alfred Z. Spector, ‘‘Camelot: A Distributed Transaction Facility for Mach and

References 121

the Internet - An Interim Report,”” CMU-CS-87-129, Computer Science Dept., Car-

negie Mellon Univ., Pittsburgh, PA, June, 1987.

Staelin88a.
Carl Staelin, ‘‘File Access Patterns,’” CS-TR-179-88, Department of Computer Sci-

ence, Princeton University, Princeton, NJ 08540, September 1988.

Stankovic84a.
John A. Stankovic, ‘‘Simulations of Three Adaptive, Decentralized Controlled, Job
Scheduling Algorithms,”’ Computer Networks, vol. 8, no. 3, pp. 199-217, North-
Holland, June 1984.

Tanenbaum89a.
Andrew Tanenbaum, Robbert van Renesse, Hans van Staveren, Gregory J. Sharp,
Sape J. Mullender, Jack Jansen, and Guido van Rossum, ‘‘Experiences with the
Amoeba Distributed Operating System,’’ technical report, Vrije University Depart-
ment of Mathematics and Computer Science, Amsterdam, The Netherlands, 1989.
Terry87a.
Douglas B. Terry, ‘“Caching Hints in Distributed Systems,’’ IEEE Transactions on
Software Engineering, vol. SE-13, no. 1, pp. 48-54, January 1987.
Theimer85a.
Marvin M. Theimer, Keith A. Lantz, and David R. Cheriton, ‘‘Preemptable Remote
Execution Facilities for the V-System,”” ACM, vol. 1, pp. 2-12, 1985.
Turnbull§7a.
Martin Turnbull, ‘‘Support for Heterogeneity in the Global Distributed Operating
System,”’ Operating System Review, vol. 21, no. 2, pp. 11-21, SIGOPS, April 1987.
Walker83a.
Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel, ‘‘The

LOCUS Distributed Operating System,’’ in Proceedings 9th ACM Symposium on

References 122

Operating System Principles, ACM, 1983.

Wang85a.
Yung-Temg Wang and Robert J. T. Morris, ‘A Survey and Comparison of Load
Sharing Strategies in Distributed Computer Systems,”” New World of the Informa-
tion Society, Proceedings of the 7th International Conference on Computer Com-

munication, pp. 392 - 393, North-Holland, Amsterdam, Netherlands, 1985.

Welch89a.
Brent Welch, Mary Baker, Fred Douglis, John Hartman, Mendel Rosenblum, and
John Ousterhout, *‘Sprite Position Statement: Use Distributed State for Failure
Recovery,”” Proceedings of the 2nd. Workshop on Workstation Operating Systems,
pp. 130-133, IEEE/CS Press, Pacific Grove, CA, September, 1989.

Zhou88a.
Sognian Zhou, ‘‘A Trace-Driven Simulation Study of Dynamic Load Balancing,”
IEEE Transactions on Software Engineering, vol. 14, no. 9, pp. 1327-1341, IEEE

Computer Society Press, September 1988.

Zimmermann80a.
H. Zimmermann, ‘*OSI Reference Model: The ISO Model of Architecture for Open
Systems Interconnection,”’ IEEE Transactions on Communications, vol. COM-28,

no. 4, pp. 425-432, April 1980.

Zipf49a.
George Kingsley Zipf, Human Behaviour and the Principle of Least Effort,
Addison-Wesley Press, Cambridge, MA, 1949,

