A RAPID HIERARCHICAL RADIOSITY ALGORITHM
FOR UNOCCLUDED ENVIRONMENTS

Pat Hanrahan
David Salzman

CS-TR-281-90

; August 1990

A Rapid Hierarchical Radiosity Algorithm
for

Unoccluded Environments

Pat Hanrahan

Department of Computer Science
Princeton University
Princeton, NJ 08540

hanrahan@princeton.edu

David Salzman

John von Neumann National Supercomputer Center
Princeton, NJ 08540
salzman@princeton.edu

Abstract

This paper presents a linear-time radiosity algorithm for scenes containing large mutually
unoccluded polygonal patches. It subdivides pairs of patches adaptively to build a hierar-
chical data structure with n elements at the leaves, and it encodes all the light transport
between component polygonal elements. Given a required numerical precision, determined
here by the specified bounds for maximum solid angle F, and minimum area A, our algo-
rithm reduces the number of form factor calculations and interactions to O(n) in the worst
case and O(4/n) in the best case. Standard techniques for shooting and gathering can then
be used with the data structure. The best previous radiosity algorithms represented the
element-to-element transport interactions with n? form factors.

Introduction

Methods for producing realistic images from geometric descriptions of a scene have always
been one of the central themes of research in computer graphics. The earliest “local il-
lumination” algorithms considered only geometric and material properties of objects in
isolation, and measured the amount of light reflected from a surface to the viewer with-
out considering objects that might shadow or obscure the surface. More modern “global
illumination” algorithms, however, consider the entire environment and produce pictures
with shadows, reflections, refractions, diffuse inter-reflection & color bleeding, and light
focusing or caustics. Although the physics of global illumination can be formulated as
an integral “rendering” equation describing the transport of light within an environment
(Kajiya 1986), fully general solutions are computationally intractable in practice.

Radiosity offers the best case today in which the general rendering equation can be
solved (Greenberg 1989). Radiosity makes the simplifying assumption that all surfaces
scatter light isotropically, so the intensity of outgoing energy has no directional dependence,
and the directional distribution of light at any point on surface can be represented as a
single number. There are two major steps in solving for radiosities. First, geometric
form factors are computed between all pairs of surfaces. These form factors give the
proportion of light leaving one surface that is incident on another. Second, a large system
of simultaneous linear equations involving form factors and brightnesses must be solved
to yield the light energy transported to each surface. Researchers have devised better
methods in recent years both for computing form factors and for calculating brightnesses.

This paper describes a method for applying techniques recently developed for effi-
ciently solving the N-body problem (Appel 1985; Barnes and Hut 1986; Greengard 1988)
to the radiosity problem. We concentrate on the case of k large unoccluded polygonal
patches, discretized into n finer polygonal elements. We show that the form factor matrix
can always be approximated to within some preset numerical tolerance with O(n) terms.
Each term corresponds to coalescing a nj X ny rectangular block in the form factor matrix,
and representing the sum of the entries with a single number. Significantly fewer than n?
independent form factors need to be computed, speeding up the first step in the radiosity
algorithm. The successive matrix iterations needed to compute the brightnesses also run
faster, since the multiplication of the O(n) blocks in the form factor matrix by the column
vector of brightnesses can be done in O(n) time.

Review of the Basic Radiosity Formulation

This section briefly describes the matrix formulation of the radiosity problem. More details
are contained in standard textbooks on radiative heat transfer (Siegel and Howell 1981;
Sparrow and Cess 1978).

Radiosity algorithms assume that all surfaces in the environment are perfect Lamber-
tian reflectors, and hence scatter light equally in all directions. The energy distribution per
unit area per unit solid angle is called radiosity, which we will also refer to as brightness.
The radiosity of a diffuse material has no directional dependence, and can be denoted by
a single number. We assume that a scene description has been discretized into n elements,
where each element is small enough that the brightness does not vary significantly across
its surface. The energy leaving each element ¢ is given by

B;A; = FE;A; + Pi ZFjiBjAj (1)
J

where:
B; is the brightness of element ¢,
E; is the emissivity of element 7,
A; is the area of element ¢,
pi is the diffuse reflectivity of element i,
F;j is the form factor from element 7 to element j.

Equation (1) represents an energy equilibrium. It states that the radiosity (light energy)
leaving element ¢ consists of the light it emits directly plus the sum of all the diffusely
scattered light energy incident on it and retransmitted. The contribution of element 7 to
the brightness of element j is equal to its own brightness times a form factor, giving the
proportion of light leaving element ¢ which reaches j, times the diffuse scattering coefficient
of j. :
The radiosity algorithm involves two steps. First, one calculates the form factors.
The form factor is purely geometric, and is proportional to the solid angle subtended by
the emitter from the vantage point of the element receiving the light, assuming all points
on the emitter are visible from the receiver. The differential form factor between two
infinitesimal areas is given by

cos 0; cos 6;
i

This is illustrated in Figure (1). The angle 6; (or ;) relates the normal vector of element :
(or j) to the vector joining the two elements. The cosine factors arise because the brightness
is measured per unit area in the direction in which light is transported. The form factor
from an infinitesimal area to a finite area is

cos 0; cos 0
Fij = /;1,- ngj——dAp 3)

Figure 1: Differential Form Factor Geometry

and the form factor between two finite areas is

1 . ’
F; = _/‘ /‘ cos 6; (;OSBJdA,-dA,-.
Ai Ja;Ja; 5

For an enclosed environment, where all energy leaving a surface eventually falls on another
surface, the form factors sum to 1,

ZFH:ZF,'J':].. (4)
: J

Moreover, the reciprocity principle states that the amount of light exchanged between
emitter and receiver is unchanged if they are swapped, so

AiFij = A Fj. (5)

Form factors must be approximated numerically, since the integrals in Equation (3)
do not yield closed-form solutions for the geometries commonly encountered in computer
graphics. For example, there appears to be no closed-form expression for the form factor
between two polygons, although there is a simple closed-form solution for the form factor
between a differential area and a polygon (Hottel and Sarofim 1967; Baum et al. 1989).
The calculation of a form factor between two surfaces is further complicated by the need
to determine the mutual visibility of all pairs of points on the two surfaces. A surface
may hide a portion of itself, or be partially eclipsed from another element by intervening
objects.

A number of researchers have invented projection methods for computing the differ-
ential form factor to any arbitrary shape. Nusselt projected a shape onto a sphere and
measured its cross sectional area when viewed from the top of the sphere (Siegel and How-
ell, 1981; Maxwell et al. 1986). Cohen modified this method by projecting shapes onto a
hemi-cube (Cohen and Greenberg 1985), since the hemi-cube projection is easier to com-
pute with traditional computer graphics techniques. Each pixel on the hemi-cube stores
information about the visibility of objects within the solid angle which projects onto that
pixel’s area. Associated with each pixel is a delta form factor. The total form factor for
an element is equal to the sum of the delta form factors from each pixel which it covers

4

on the hemi-cube. Sillion improved on this further by projecting onto a single plane posi-
tioned close to the differential area (Sillion and Peuch 1989), which entailed only a single
projection where the hemi-cube used five.

Several sources of error arise when computing form factors using a hemi-cube. Most
notable is the aliasing, or beating, that occurs between the sampled patch elements and
the sampled solid angles corresponding to pixels on the hemi-cube. Another source of
error arises because projection methods compute form factors from source to receiver,
whereas the form factor from receiver to source is needed. The reverse form factors can
be computed using the reciprocity principle, but this will be inaccurate when the source is
larger than the receiver or when parts of the source are not visible from the receiver. The
other major source of error arises when two areas are large relative to their separation.
When this occurs, Equation (2) cannot be used to estimate the form factor between them
(Baum et al. 1989). _

Ray tracing offers an alternative to projection methods for computing form factors
(Maxwell et al. 1986; Ward et al. 1988; Wallace et al. 1989). The simplest method is
to break a patch uniformly into small elements, and trace rays between the elements to
determine mutual visibility. If the elements are small, the form factor between two elements
can be approximated by the equation for the differential form factor. A better method,
however, is to approximate the element-element form factor with the simple (closed-form)
differential form factor for a point to a disk; this allows the form factor to be estimated
with fewer larger samples. The accuracy of the form factor can be improved further
by jittering sample positions on the source to prevent aliasing of shadow boundaries, by
supersampling until the form factor converges, and by adaptively subdividing the source
based on the amount of energy received (Wallace et al. 1989). These methods address
many of the sources of error described in the preceding paragraph.

The second step in a radiosity algorithm is the calculation of the brightnesses. This
requires solving a linear system of equations.

Using the reciprocity principle, the basic radiosity Equation (1) can be divided through
by A; and then rewritten in the following form

n
Bi=E;+p:) F;B;. (6)
J
A similar equation can be written for every element. All these equations hold simultane-

ously, so the solution to the radiosity transport equation is the solution of the following
matrix equation.

1 —prlfrz v —prfim-1 —pilim B, E,
—p2Fy 1 vor =p2Fon1 —p2Fan B, E,

: : o : : T (7)
—Pn—an—1,1 —Pn—an—l,z 1 —Pn—an—l,n Bn-1 En1
_PnFn,l _PnFn,2 cen _PnFn,n d B, En

Several methods have been used to solve this system of equations. Direct matrix
inversion (e.g. Gauss’s method with partial pivoting) can solve the linear radiosity system

5

in O(n®) steps. This is the method used in the original radiosity paper (Goral et al.
1984). The matrix can also be inverted using iterative methods such as the Gauss-Seidel
algorithm (Cohen and Greenberg 1985). Each iteration requires multiplying a matrix times
a vector, which requires only O(n?) operations. Moreover, because the form factor matrix
1s strictly diagonally dominant, iterative methods are guaranteed to converge to a solution
(Faddeev and Faddeeva 1963), often after only a few steps. Iterative methods also have
the advantage that form factors can be computed one row at a time, as needed. Thus,
they need not be precomputed and stored, which becomes desirable when the number
of elements is large. On the other hand, when many iterations will be required before
the brightness values converge, it remains preferable to save the form factors rather than
recompute them. Physically, each iteration of the Gauss-Seidel algorithm means that the
new brightness of a patch is computed by gathering the incoming energy from all the other
patches. This is illustrated in Figure (2A).

X X XXXXXXX

I
RV
&
MM b 3

X X
X X
X X
X X
X X
X X

Figure 2: Gathering vs. Shooting

A competing way to organize the iteration is to shoot radiosity from one element at
a time to all the other elements in the environment as shown in Figure (2B) (Cohen et
al. 1988). This entails multiplying a column of the form factor matrix by one brightness
value at a time:

Bt Fi;B;
B§+1 + = FijB;- ! ‘ (9)
Bl Fy;B;

Most of the light energy is initially concentrated in a small number of patches: the light
sources. To take advantage of this, the patches can be sorted by brightness and the
brightest ones shot first. Then, only patches with unshot brightness need be used during
the iteration and dark patches can be skipped, resulting in faster convergence. Another
advantage of shooting over gathering is that each iteration transfers light from a bright
patch to the many patches in the environment, so as the calculation proceeds the image is
“progressively refined.”

The matrix iteration can be written using changes in brightness rather than absolute
brightness:

n
AB[*' = p; Y F;;AB,. (10)
i

where AB! = B! — B{™" and B! = Zi AB{ . This way of organizing the iteration simplifies
testing for convergence. It also is makes it convenient to sort patches based on unshot
brightness.

Review of N-Body Formulations

The radiosity subdivision algorithm proposed in this paper is inspired by methods recently
developed for solving the N-body problem. In the N-body problem, each of n particles
exerts a force on all n — 1 other particles. The straightforward solution entails calculating
all n(n — 1)/2 pairwise interactions. Appel (Appel 1985), Barnes & Hut (Barnes and
Hut 1986), and Greengard & Rokhlin (Greengard 1988) have each devised algorithms that
compute all the forces on a particle to within a given precision in less than quadratic time.
All three methods recognize the importance of hierarchical data structures for clustering
particles.

Appel was the first to recognize that the forces acting on a particle need only be com-
puted to within some numerical tolerance, and that the interaction between two clusters
whose separation significantly exceeded their sizes could be reduced to a single resultant
force within the allowable error. If two clusters with m particles interact directly, then the
force between the two clusters can be computed in constant time rather than in m(m—1)/2
time. He devised a simple top-down divide and conquer algorithm for computing these
forces in O(nlogn) time (Appel 1985). Barnes and Hut developed an adaptive N-body
algorithm that formed clusters by building an octtree from the bottom up. The leaf nodes
contained single particles and the interior nodes were formed by merging eight-child clus-
ters (Barnes and Hut 1986). The algorithm makes two passes, computing total mass and
center of mass while sweeping upwards, and distributing forces in a downwards traversal
of the tree. Greengard and Rokhlin devised an O(n) algorithm, using a p-term multipole
expansion for the potential due to any cluster, along with algorithms for splitting, merg-
ing, and translating the resulting multipole expansions (Greengard 1988). The algorithm
achieves linear time by estimating the potential for each particle in some constant num-
ber of terms. There exist terms for each of the particle’s nearest neighbors plus a p-term
multipole expansion of the potential from the remaining particles in the system.

Both Appel and Barnes & Hut claimed, but did not prove, that their algorithms ran in
O(nlogn) time. More recently, Esselink has analyzed Appel’s algorithm showing that time
needed to calculate the forces takes O(n) time (Esselink 1989). The observed O(nlogn)
running time is a consequence of the preprocessing time required to build the hierarchical
data structures.

Relationship Between the N-Body and Radiosity Problem

The radiosity problem shares many similarities with the N-body problem. In the N-body
problem each body exerts a force on every other body resulting in n(n — 1)/2 pairs of
interactions. Similarly, in the radiosity problem each patch may scatter light to every other
patch resulting in n? interactions. In the N-body problem, the forces obey Newton’s third
law and are therefore equal but opposite; in the radiosity problem, there is no requirement
that the amount of light transferred between two surfaces is the same in both directions.
However, the reciprocity principle does relate the form factors in both directions. Moreover,
just as gravitational or electromagnetic forces fall off as 1/r?, the magnitude of the form
factor between two patches also falls off as 1/r?. For this reason, the hierarchical clustering
ideas like those used for the N-body problem apply to the radiosity problem.

There are differences, however. The N-body algorithms begin with n particles and
must cluster them into larger groups. The radiosity algorithm usually begins with a few
large patches and must subdivide them into elements. In the classical approach, the
minimum size of elements needed to subdivide a patch is normally given as an input
parameter A, and all patches are divided uniformly into elements with the given area. As
will be seen here, an adaptive algorithm can be used to subdivide large polygons into n
smaller elements. This is done by recursively dividing the large polygon. The resulting tree
decomposition is very similar to the hierarchical clusters used in the N-body algorithms.
Thus, the subdivision requirement provides a convenient way to build the hierarchy needed
for the clustering algorithm to work. The separate problem of building clusters out of
individual patches is more difficult, and not dealt with in this paper.

Another difference is whereas the N-body problem is based on a differential equation,
the radiosity problem requires the solution of an integral equation. However, as has been
described, the integral equation arising from the radiosity problem can be solved efficiently
using iterative techniques. Each iteration is similar to one time step of the force calculation
in the N-body problem, but multiple iterations need to be performed before the solution
converges. Performing this iteration efficiently requires a slightly more complicated data
structure than typically is used with the N-body problem. It should also be mentioned
that while the N-body problem requires the calculations of forces over time because the
bodies accelerate and move to new positions, radiosity calculations are normally done for
static environments with constant form factors (although see (Chen 1990)).

Finally, the N-body algorithms mentioned above all take advantage of linear super-
position, which states that the potential due to a cluster of particles is the sum of the
potentials of the individual particles. The physics of radiosity differs. In radiosity prob-
lems, an intervening opaque surface can block the transport of light between two other
surfaces, which makes the system non-linear. There is no such shielding of gravitational
or electromagnetic interactions in the N-body problem precisely because superposition
applies. Occlusion thereby introduces an additional cost to the radiosity problem. Nev-
ertheless, since occlusion never increases the amount of light transported between two
patches, the form factors between two patches can be still be bounded from above in spite
of occlusion. Although in this paper we ignore the problems caused by occlusion, the basic
ideas reported here can be extended to handle this case.

Outline of the Hierarchical Radiosity Algorithm

Our algorithm for each step in the radiosity problem is summarized below.
e Step 1: Form Factor Computation.

For all pairwise combinations of the k input patches, simultaneously subdivide each patch
recursively with respect to the other patch and build a hierarchical representation of
each patch’s subdivision. During the subdivision process record the interactions between
patches and build the form factor matrix. The hierarchical data structure corresponding
to each patch subdivision occupies O(n) space. Also, as will be shown, the number of
interactions between two patches is O(n), so the total running time of this step is O(n)
and the total storage needed for the trees and the interactions lists is also O(n).

e Step 2: Transport of Radiosities.

Solve the simultaneous linear equations for the patch brightnesses. This is done using
iterative methods just like shooting or gathering. Since the matrix of form factors has
O(n) terms, each complete iteration takes only O(n) time.

Hierarchical Subdivision

The first step in a radiosity algorithm builds the hierarchies and computes the form factor
matrix. This is done recursively using Refine that has as inputs two patches and error
tolerances.

Refine(Patch *p, Patch *q, float Feps, float Aeps)
£
float Fpq, Fqgp;
Fpq = FormFactorEstimate(p, q);
Fqp = FormFactorEstimate(q, p);
if(Fpq < Feps && Fqp < Feps)
Link(p, q)3
else {
if(Fpq > Fgp) {
if(Subdiv(q, Aeps)) {

Refine(p, q->ne, Feps, Aeps);
Refine(p, q->nw, Feps, Aeps);
Refine(p, gq->se, Feps, Aeps);
Refine(p, q->sw, Feps, Aeps);
i
else
Link(p, q);
¥
else {

if (Subdiv(p, Aeps)) {
Refine(q, p->ne, Feps, Aeps);
Refine(q, p->nw, Feps, Aeps);

Refine(q, p->se, Feps, Aeps);
Refine(q, p->sw, Feps, Aeps);
i

else
Link(p, q);

}

Refine says that whenever the estimated form factors between two patches turn out to
be smaller than some predefined F, (Feps in the program), then allow the two patches to
interact directly and terminate the subdivision. Link records the fact that two patches
interact at a particular level in the tree. However, if either of the form factors is larger than
F,, then split whichever patch has the larger form factor, and recursively refine the new
patches. It should be mentioned that if F, is set equal to 0, then each node will always
be subdivided until its area is less than the area limit A, (Aeps in the program). The
resulting set of interactions will be equivalent to the classical O(n?) subdivision method.

FormFactorEstimate returns an upper bound on the form factor from the first patch
to the second patch, assuming the first patch has infinitesimal size and the second patch has
finite size. The differential form factor is defined to be the solid angle that a patch subtends
with respect to a point. This can be estimated by calculating the solid angle subtended by
a disk with cross sectional area equal to the surface area of the patch (Wallace et al. 1989).
If the patches were not planar, then the solid angle could be estimated by circumscribing
a bounding sphere around each patch and estimating the solid angle subtended by each
sphere with respect to the others center as shown in Figure (3).

Figure 3: Method used to Estimate Form Factor

Subdiv subdivides a patch into subpatches. In our implementation a patch is a planar
quadrilateral, and it is subdivided equally into four new quadrilaterals by splitting it at its
center. The subdivision hierarchy is stored in a quadtree; the pointers to the four children
are stored in the parent fields nw, ne, sw, and se. Subdiv returns false if the patch cannot
be split, which occurs if the area of the patch is smaller than some absolute predetermined
area A.. If subdivision is not possible, we force the two patches to interact and use Link
to record this information. Note that the Refine procedure is invoked for all pairs of

10

input patches, therefore each patch is refined multiple times — once for every other input
patch. Thus, the actual subdivision of a patch may have been performed previously when
it was refined versus another patch. If the actual subdivision has already occurred, Subdiv
simply returns true and need do no other work.

This subdivision technique will work in principle for any surface that can subdivided
into smaller pieces. Our decision to use planar quadrilaterals and subdivide them into
fourths is not crucial to the algorithm; other patch geometries (e.g. triangles or bicubic
patches) or subdivision techniques (e.g. halving with a k-D-tree) would also work.

The combination of all the interactions between nodes in the trees built by Refine
represents the part of the form factor matrix corresponding to the interactions between
the two original parent patches. The number of rows and columns in the form factor
matrix is equal to the number of leaves in the trees. The proper union of all the leaf
nodes from a given tree exactly covers the original patch represented by the root of the
tree. Interactions between leaf nodes in the tree would correspond to single entries in the
standard form factor matrix. Interactions between nodes at higher levels correspond to
a rectangular block of entries in the form factor matrix. Thus, the interactions between
nodes in the tree can be interpreted as a coalescing of the standard form factor matrix into
a set of disjoint rectangular blocks.

An example of a tree that might be produced by Refine and its associated form
factor matrix is shown in Figure (4). For simplicity, the example illustrates the interac-
tions between two hypothetical 1D patches. Since the patches are 1D, the subdivision is
represented by a binary tree instead of quadtree. These two binary trees are drawn on
the edges of the form factor matrix. Labelled arcs that connect nodes in the two trees
correspond to interactions represented by blocks in the form factor matrix with the same
label. The figure is drawn so that the left side and top side of each block has the same size
and position as the two patches in the binary tree connected by the arc corresponding to
that block. The diagonal blocks are all zero because patches are assumed not to interact
with themselves. Other blocks are non-zero and contain a single number which is the form
factor between the two patches at that level in the tree. Notice that the size of the block
depends on what level the patches reside in the tree.

11

TANWAY
=
= |

Figure 4: The Block Form Factor Matriz for a Particular Binary Tree Ezample

Analysis of the Hierarchical Subdivision

The key result of this preprocessing is that each block in the form factor matrix has
approximately the same value and error, and that there are at most a linear number of
blocks.

To see that each interaction has the same error we show that the termination criteria
also places an upper bound on the error associated with the form factor between the two
interacting patches. In the N-body problem, the error in treating the potential of a cluster
as a single particle varies as (r/R)?, where r is the radius of the cluster, and R is the
distance between the two clusters. This error analysis is based on the multipole expansion
of the force due to a cluster (Appel 1985; Greengard 1988). In the radiosity problem, the
error introduced by using a single differential form factor to approximate the interaction
between the two patches also varies as (r/R)?. This can be verified by comparing the
differential form factor to the form factor from a point to a disk of radius r, where the
distance from the point to the center is R. The form factor to a disk is equal to

r2 72 2 r\4
Fa ® 7 = (3) (1—(5) g +) (11)

12

PN PN
w 2N

AN AN A A AN

Figure 5: Interactions Within a Binary Tree

This differs from the differential form factor only in the higher order terms. Thus, the
magnitude of the form factor, as well as the error due to the finiteness of the geometry,
have both been bounded by (r/R)?>. When F = (r/R)? is small, that is, the sizes of the
patches are small compared to the distance separating them, then the differential form
factor is a good estimate of the true form factor to within the error bound. Note that
the size here is relative. Two large patches may interact if they are separated by a large
distance, whereas two small patches may interact if separated by small distances. F, acts
as the error bound in Refine.

The second key result of this preprocessing is the construction of a form factor matrix
with fewer than n? blocks. Recall that for any leaf element, all its interactions with other
patches is represented by a row in the form factor matrix. This row slices through rect-
angular blocks some of whose size may be greater than 1 and which represent interactions
between interior nodes higher in the tree. Recall also that the form factor associated with
each interaction is approximately F,. If it had been larger, Refine would already have
split that node. As stated by Equation (4), the sum of all the form factors from a leaf node
must equal 1. Thus, the total number of interactions from a leaf node including all its
parents is roughly equal to 1/F,, which is constant. It depends on the precision required,
but not on the total number of elements in the system. In effect, 1/F, sets the resolution
of the hemisphere above each patch. It then follows that the total number of blocks in the
form factor matrix varies as O(n) and not n?, since each patch interacts with at most a
constant number of other patches. This savings is the essential contribution of our method.

The above analysis slightly overestimates the number of independent form factors be-
cause interactions of interior nodes are counted more than once. A more precise argument
for the number of form factors scaling linearly is based on simple counting. For simplicity,
consider the 1D problem of n equally spaced patches along a line. Let us construct a
binary tree (not a quadtree) above the patches by merging adjacent contiguous patches
recursively. This is shown in Figure (5). The error criterion says that two patches can
interact directly only if (r/R)* < F.. In other words, two patches of size r can interact
only if the distance R between them is greater than r/\/F,. For concreteness, let us fix
F, so that this criterion is equivalent to saying that two patches at the same level in the

13

binary tree can interact only if at least one other patch at that level is between them. Now
consider the interactions of a patch p in the interior of the tree. At any level in the tree,
the above rule forbids the patch p from interacting with its immediate sibling or with the
closest of its two first cousins, since they occupy positions adjacent to it. Potentially p
may need to interact with all the other patches at its level, but most of these interactions
are handled by p’s ancestors. p’s parent is forbidden from interacting with its immediate
neighbors by the same criterion, but it may interact with neighbors further away. Thus,
p’s parent and ancestors handle all the interactions except those to p’s parent’s immediate
neighbors. So p must connect to the children of its parent’s immediate neighbors unless
they are too close to it. Figure (5) shows a node p and part of a binary tree containing
p. p makes three connections to nodes at its level. These are the 4 children of the two
patches that its parent could not connect to, minus the cousin which is directly next to it.
Interactions with any patches further away will have been handled by ancestors.

This argument applies to all levels of the tree, except the top, the bottom, and the
sides. There are no direct interactions at the top two levels because every patch is too close
to the other patches; at the lowest level there are interactions with nearest neighbors, since
there are no children to handle the interactions otherwise. This yields 5 direct interactions
on the bottom level of the tree in our example. There are also boundary effects at the
sides of the tree, which decrease the total number of interactions and can be ignored for
our purposes. The final result is that each node in the tree connects to a constant number
of other nodes. Thus, the total number of interactions is proportional to the number of
nodes in the tree, which is O(n). A similar analysis has been derived independently by
(Esselink 1989).

Similar arguments can be made with quadtrees or octtrees. For quadtrees, the number
of interactions at the leaf nodes is 62 — 1 = 35, and the number at an interior node
is 6% — (32 — 1) = 28. The quadtree case is similar to the interaction of two parallel
quadrilaterals.

Figure (6) shows the quadtree subdivision of a pair of perpendicular polygons com-
puted by Refine. Also shown in this figure are the actual interactions at each level in
the subdivision. This figure shows that each interior patch undergoes a constant number
of interactions with other patches regardless of their level in the tree. Large patches that
are far apart interact directly, in the same way that small patches near each other in the
corner interact directly.

In summary, our hierarchical subdivision method computes the form factor matrix to
within a fixed error tolerance automatically. In the process it reorganizes the form factor
matrix into blocks; the estimated form factor associated with each block has the same
value and error as other blocks. Furthermore, the total number of blocks grows at most
linearly in the number of elements.

14

%

AN

E
|2
B

Figure 6: Interactions Between Two Perpendicular Polygons

Iterative Solution

Once the form factors have been determined, the next step is to solve for the radiosities.
As seen in the introduction the most efficient way to do this is to invert the matrix itera-
tively. Each iteration involves multiplying a matrix times a vector, which normally takes
O(n?) operations. However, because the form factor matrix produced by our algorithm is
represented with O(n) blocks, each matrix multiplication can be done in linear time. In
this section we will show how this is done, and give program fragments that implement
the techniques of gathering and shooting.

The block matrix multiply can be made efficient because the blocks representing the
matrix connect nodes in a tree representing the vector. The leaves of the tree represent
elements of the vector, and the interior nodes in the tree correspond to recursively merging

15

elements of the vector together.

- The matrix multiplication proceeds in three steps. The first step computes a value for
each interior node in the tree. This value is equal to the average value of all the elements
of the vector comprising that node. This calculation can be done in a single depth-first
traversal of the tree propagating averages upward. To compute the average for each node,
the averages of its children are computed, and then the average of the node is set to the
average of its children’s values. The second step multiplies the value of each block times
the appropriate average value of the source node and adds the result to the appropriate
destination node in the tree. For each block this takes constant time. Finally, the third
step distributes the results from the interior nodes to the elements of the vector. This
is done by another depth first traversal of the tree which propagates values values down
to the leaf nodes. Each interior node adds its accumulated value to its children’s values,
recursively. The running time of this algorithm is easy to analyze. The upwards and
downwards traverals of the trees can be done in n time. It also only takes O(n) time to
perform the block multiplies because there are O(n) blocks. By using this algorithm, the
result is that each iteration can be done in linear time.

There is one caveat to this method when used to perform an iterative matrix inversion.
The broadcasting of the output must be deferred until the entire matrix multiplication has
been completed, which requires allocating storage for two vectors. Also, iterations often
converge faster when updated in place. Our method would permit this if additional passes
were made through the tree to update the vector and recompute its averages, but we have
not found this necessary.

It may be instructive to consider the physics of radiosity instead of the mathematics of
general matrix iteration. The first step computes the brightness of the interior patches by
averaging the brightnesses of their children weighted by their relative areas, and the second
step multiplies individual blocks. Each block represents a form factor, and multiplying the
form factor by the average patch brightness corresponds to shooting the energy of that
patch to another patch. Finally, after the energy from some number of patches has been
transported, each patch contains all the incoming energy which it has gathered. The new
brightness of the leaf patches are then computed by summing the incoming energy of all
their parents.

16

Gathering

The classic Jacobi iteration can be implemented using the following simple recursive pro-
cedure. For convenience the iteration is organized around AB’s.

Gather(Patch *p)
{
Patch *q;
float Fpq;
8L 6 J 4
p->dBg = 0.0;
ForAllElements(q, p->arcs) {
Fpq = FormFactor(p, q);
p->dBg += Fpq * p->rho * q->dBs;
¥
Gather(p->sw
Gather(p->se
Gather(p->nw
Gather(p->ne

3
.
3

3

R T

.
]

This procedure assumes the average brightness of each patch is stored in dBs, the delta
brightness that needs to be shot. For leaf patches this is initially set to the amount of
emitted light; for interior patches this is set to the average values, as discussed in the last
section. Fach patch also has diffuse color stored in rho. The delta brightness gathered
is stored in dBg, and is computed by receiving energy from all the patches which interact
with this patch. This process can then be applied recursively to the subpatches.

At this point, the form factor between the two patches needs to be computed. If the
patches are completely visible to each other, then the form factor can be estimated within
the allowable error using Equation (2).

17

Shooting

The radiosity equation can also be solved by shooting instead of gathering. The first step
initializes patch brightnesses. After this, however, all the patches are sorted into a priority
queue based on their brightness. Then a patch at a time is taken off the queue, and its
energy shot to the other patches with this procedure.

Shoot(Patch *p)
{
Patch *q;
float Fqp;
ForAllElements(q, p->arcs) {
Fgp = FormFactor(q, p);
q->dBg += Fqp * gq->rho * p->dBs;
¥
p->dBs = 0.;
ReSort(p);

Shoot distributes the unshot radiosity from a given patch to all the other patches it in-
teracts with directly. Once all the energy has been shot from the given node, that node is
placed at the end of the queue with ReSort. This procedure is called repeatedly until the
amount of unshot energy in the patch at the head of the queue is below some threshold.

Results

Figure (7) plots the number of interactions calculated by Refine for two simple geome-
tries - two parallel and two perpendicular polygons. The graphs show the actual number
of interactions versus the number of potential interactions at a fixed uniform level of dis-
cretization. These plots verify the O(n) behavior for parallel polygons. The number of
interactions for perpendicular polygons surpisingly, however, goes as O(y/n). The reason
for this is that the subdivision induced between two perpendicular polygons is comparable
to a binary tree turned on its side with its leaf nodes along the common edge, as in Figure
(4). The total number of nodes in such a sideways binary tree will be O(y/n). In gen-
eral, the worst case occurs when two equal-sized polygons are near each other and directly
facing; fewer form factors will be needed in all other cases. Note that in Figure 7 there
are several plateaus; these result because of the all-or-none decision to subdivide or not
subdivide. _

To verify the accuracy of the form factors generated by our method, we compared the
computed form factors with the analytical form factors which are available for the same
geometries shown in Figure (7) (see, for example, (Siegel and Howell 1981)). To compute
the form factor between two finite areas, Refine can be modified to return the sum of
the form factors of a patch’s children or, if the patch is a leaf, the product of the patch’s
area and the differential form factor to the other patch. Figure (8) shows the measured
relative error between the computed and the analytical form factors as a function of Fe.

18

8000 g
6000 -
] o M
4000 o i
i O
2000 - o
0 100 200 300 400 500 600
n
2000
+
1000 + Wyt + + O+
+4 +
T
0'—!“.' T T T
0 20 40 60 80

NG

Figure 7: Number of Interactions between Parallel (above) and Perpendicular (below) Polygons

401
O % Underestimate for Parallel Patches
+ % Underestimate for Perpendicular Paiches u] o
30
m] o
204 o m] m] m]
104
II!:F'U * + + + *
EE+ Y X + 2 "
C o L} 1 L L] bl]
0.010 0.020 0.030 0.040 0.050

Figure 8: Measured Relative Percentage Error vs. F,

As expected, the actual error in the form factor is proportional to the F, given to Refine
as predicted by the theory.

As a final test of these ideas we modeled the interior of a barren room with 6 polygons
of different diffuse colors, following (Goral et al. 1984). For simplicity, the scene was

19

DY i A SN 4
=7
S, O
E=r i

i 0 O
NN

. v, T
W —— |

7 Y]
¥ R LN T I R

\ /
o \ A [N l’r >l
e VT AN
NS 71 L
"\\ //
& N IZ A
= g 7
L N
1 ™~
LT | 4 ™~
|/ AN
PN L
// \\
A7 \ T 74 s s e o e s
AN \ I / N Y i 7
\\ 7 \
X A1
™ A
™~ N E L4 NN VTN ?}ﬁ YNTIY L
MU 4 ‘\J V|\l & 1%y H L4
1] %7— E T gl 3 2| |
P = 23 =
7 | E I S =2
e ~ = ay 18 3 £ L
H < = H
r] M M 2 E! H
L] AN ™~ M = M
1 L I~ nARARANANANN ™M
= 0
- f’ X ™
7 e 7
7 T 1 AN d 1 N
i ! i N Tt i —— <

Figure 9: Hierarchical Subdivision of a Room

illuminated with a single point light source at the center of the room. Figure (9) shows
the hierarchical subdivision produced by Refine with a F, = 0.05 and a A, = (1/16)2.
The top figure is the quadtree subdivision; each subsequent row shows all interactions of
the rear wall at that level of the hierarchy with all walls except the front wall, which is

20

100 A Uniform

A Hierarchical
A‘
g 10
= A
8 A A
3 A ik
=1 A A
2 A A A
=
§ A A A AAAM
i A
O e LR as | e S a—
10 100 1000 10000 100000

Equivalent Elements per Wall

Figure 10: Comparison of Hierarchical and Uniform Speeds

not shown. A, was chosen so that each wall was divided into a grid of 16 x 16 elements.
The additional refinement near the walls is a consequence of Refine improving the error
bounds. Using the uniform subdivision, 983,040 form factors were computed (6 walls
interacting pairwise, with 162 x 16% elements interacting for each of the 15 pairs). Using
hierarchical subdivision, only 2940 were computed. Of the 15 interactions between walls
of the room, 12 are between perpendicular polygons and 3 are between parallel polygons.
Thus the number of interactions in this example is dominated by terms that vary as O(y/n).
Each iteration using our hierarchical method took approximately 0.15 seconds, versus 40
seconds for the uniform case. If we merely increased the subdivision to 64 x 64 subdivision,
our method would run more than thirty thousand times faster than uniform subdivision.
Figure (10) shows relative timings for the uniform and hierarchical methods as a function
of the desired precision. As previously mentioned, the time spent per iteration is varying
as n? using the uniform method and as y/n using the hierarchical method.

21

Discussion

We have presented a new algorithm and data structure for radiosity calculations. It is
based on an adaptive subdivision algorithm which automatically estimates form factors to
a fixed error tolerance. More importantly, this algorithm allows patches in the subdivision
to interact at different levels of detail. Large patches which are far away from each other are
allowed to interact directly, whereas nearby patches are subdivided to the appropriate size
based on their separating distance. This technique reduces the number of interactions from
n? to O(n) and in some cases O(y/n). This work illustrates the importance of numerical
analysis in the design of graphics algorithms. The algorithm is also easy to implement and
we think will make global illumination calculations more practical for both realism and
interactive applications.

Currently, the most common method for reducing the size of the form factor matrix
involves breaking it into a two levels (Cohen et al. 1986). The first level contains the
patches, and the second level contains the elements into which each patch is broken. The
number of elements that a patch is broken is normally fixed a prior:, but could be de-
termined adaptively. In the patch-element method, radiosity is always shot from patches
to elements, even if they are far away, and the new radiosity of a patch is computed by
averaging the brightness of its elements. In our algorithm, radiosity from a patch is shot
to patches at the appropriate resolution. Only if the receiving patch is very close will that
patch be an element, Also, the patch-element method always treats sources as patches.
This may lead to errors when the source is large, both because its brightness is propor-
tional to its area, and because the form factor to a large source may have a large error
when it is near to the receiver. In these cases, our algorithm automatically causes the
source to be broken into smaller pieces. '

The ideas developed in this paper can be used to speed up conventional hemi-cube
algorithms. Remember that one way of explaining why our algorithm is linear is that each
element subdivides the hemisphere above it into a fixed number of subdivisions independent
of the number of other elements, but dependent on the precision required. Once the
precision is fixed, the patch size of all other patches in the environment should be chosen
so that their projection covers approximately one pixel on the hemi-cube. There is no need
to subdivide them further, since all the subdivided pieces would all project onto the same
pixel and no new information would be gained.

As described in this paper, we subdivide patches first and then solve the equations
for the radiosities. A better implementation would be to perform subdivision on demand
using lazy evaluation. One application of this capability would be to successively solve
for radiosities by gradually decreasing F,. Each time F, decreases, the patches would be
subdivided further. This type of refinement algorithm would allow coarse solutions to
be computed very quickly, with few elements, and gradually patches would be adaptively
subdivided into finer pieces as the picture was refined. This idea is similar to the multi-grid
method.

Another variation that would work effectively with lazy evaluation would be to sub-
divide based on brightness and angle instead of angle alone. During each iteration, the
brightness of each patch increases, so its chances of being subdivided do too. Initially, when
the brightness is low, a patch need not be subdivided much. As its brightness increases, so

Z2

do its interactions with neighbors, so it needs to be computed more accurately and further
subdivision should occur. Many of the interactions occur between pairs of patches in cor-
ners and along edges. However, these patches tend to be darker than large central areas
near the light sources, so subdividing these based on brightness would avoid the needless
calculations of their interactions until light was actually transported onto them.

We have begun to extend the algorithm described here to handle environments with
occlusion. Occlusion exists in all systems of useful complexity, but violates the principle of
linear superposition. The first fact to note is that the true form factor between two patches
in the presence of occlusion can never be greater than the form factor estimate used in this
paper. This is because intervening occluding surfaces can only decrease the percentage
of light that is transported between two surfaces. Thus, the form factor estimate sets an
upper bound on the form factor; the true form factor lies between 0 and this bound. This
means that the methods used in this paper can still be used to estimate the appropriate
resolution of two interacting patches. Once this is done, the exact form factor can be
computed using ray tracing to test for visibility. Since the form factor for all interactions
has approximately the same magnitude, it is also reasonable to perform the same number
of visibility tests per interaction. This means that the total number of visibility probes
varies as the number of interactions, which is linear. Each probe, however, could require
n intersection tests against other patches, which increases the total running time of the
algorithm. These results will be reported in a companion paper.

Acknowledgements
The authors wish to thank Andrew Appel, Toby Orloff and Jeffrey Posda.mer

References

Appel, A.A. (1985) An efficient program for many-body simulation. SIAM J. Sci. Stat.
Computing 6(1), 85-103

Barnes, J., Hut, P. (1986) A hierarchical O(NlogN) force-calculation algorithm. Nature
324, 446-449

Baum, D.R., Rushmeier, H.E., Winget, J.M. (1989) Improving radiosity solutions through
the use of analytically determined form factors. Computer Graphics 23(3), 325-334
Chen, S.E. (1990) Incremental radiosity: An extension of progressive radiosity to an inter-
active image synthesis system. Computer Graphics 24

Cohen, M.F., Greenberg, D.P. (1985) The hemi-cube: A radiosity approach for complex
environments. Computer Graphics 19(3), 31-40

Cohen, M.F., Greenberg, D.P., Immel, D.S., Brock, P.J. (1986) An efficient radiosity
approach for realistic image synthesis. IEEE Computer Graphics and Applications 6(2),
26-30

Cohen, ML.F., Chen, S.E., Wallace, J.R., Greenberg, D.P. (1988) A progressive refinement
approach to fast radiosity image generation Computer Graphics 22(4), 75-84

Esselink, E. (1989) Computing Science Note KE5-1, Department of Computer Science,
University of Groningen

Faddeev, D.K., Faddeeva, V.N. (1963) Computational methods of linear algebra W.H.
Freeman and Co San Francisco

23

Goral, C.M., Torrance, K.E., Greenberg, D.P., Battaile, B. (1984) Modeling the interaction
of light between diffuse surfaces. Computer Graphics 18(3), 213-222

Greengard, L. (1988) The rapid evaluation of potential fields in particle systems. MIT
Press, Cambridge, MA

Greenberg, D.P. (1989) Introduction to radiosity. SIGGRAPH ’90 Course Notes

Hottel, H.C., Sarofim, A.F. (1967) Radiative transfer. McGraw-Hill, New York

Kajiya, J.T. (1986) The rendering equation. Computer Graphics 20(4), 143-150

Maxwell, G., Bailey, M.J., Goldschmidt, V.W. (1986) Calculations of radiation configura-
tion factor using ray tracing. Computer Aided Design 18(7), 371-379

Siegel, R., Howell, J.R. (1981) Thermal radiation heat transfer. Hemisphere Publishing
Co., Washington, DC

Sillion, F., Peuch, C. (1989) A general two-pass method for integrating specular and diffuse
reflection. Computer Graphics 23(3), 335-344

Sparrow, E.M., Cess, R.D. (1978) Radiation heat transfer. Hemisphere Publishing Co.,
Washington, DC

Wallace, J.R., Elmquist, K.A., Haines, E.A. (1989) A ray tracing algorithm for progressive
radiosity. Computer Graphics 23(3), 315-324

Ward, G.J., Rubinstein, F.M., Clear, R.D. (1988) A ray tracing solution for diffuse envi-
ronments. Computer Graphics 22(3), 85-92

24

