RECONFIGURABILITY AND RELIABILITY OF
SYSTOLIC/WAVEFRONT ARRAYS

Edwin Hsing-Mean Sha
Kenneth Steiglitz

CS-TR-280-90

August 1990

Reconfigurability and Reliabilty of Systolic/Wavefront Arrays’

Edwin Hsing-Mean Sha
Kenneth Steiglitz

Department of Computer Science
Princeton University

Princeton, NJ 08544

ABSTRACT

In this paper we study fault-tolerant redundant structures for maintaining reliable
arrays. In particular we assume the desired array (application graph) is embedded in
a certain class of regular, bounded-degree graphs called dynamic graphs. We define
the degree of reconfigurability DR, and DR with distance DR?, of a redundant graph.
When DR (respectively DR?) is independent of the size of the application graph, we
say the graph is finitely reconfigurable, FR (resp. locally reconfigurable, LR). We show
that DR provides a natural lower bound on the time complexity of any distributed
reconfiguration algorithm, and that there is no difference between being FR and LR on
dynamic graphs. We then show that if we wish to maintain both local reconfigurability,
and a fixed level of reliability, a dynamic graph must be of dimension at least one greater
than the application graph. Thus, for example, a one-dimensional systolic array cannot
be embedded in a one-dimensional dynamic graph without sacrificing either reliability

or locality of reconfiguration.

1This work was supported in part by NSF Grant MIP-8912100, and U. S. Army Research Office-
Durham Grant DAAL03-89-K-0074.

1 Introduction

Highly parallel pipelined structures such as systolic or wavefront arrays are attractive
architectures for achieving high throughput [HKu]. Examples of important potential
applications include digital signal processing [SKu, CaSt], and large-scale scientific
computation on arrays for solving partial differential equations [KAGB], or simulating
lattice-gas automata [KuSt]. As such array processors become larger, the reliability of
the processing elements (PE’s) becomes a critical issue, and it becomes necessary to
use fault-tolerant techniques — both at the time of fabrication [LeLe] and at runtime.
Defective PE’s must be located, and the architecture reconfigured to substitute good

PE’s for bad.

In certain runtime applications like avionics and space flight, fault tolerant tech-
niques must be able to restore proper operation after failures as fast as possible. For
this purpose, distributed reconfiguration algorithms executed in parallel by the PE’s
themselves have been studied in [KuJeCh]. In this paper, we give a lower bound on

the time required to reconfigure different redundant structures.

In most literature on fault tolerance, faults are confined to processing elements only
and it is assumed that all switches and connections [ChLeRo, KuLa, GrGa, SaSt] are
perfect. This is not valid when the number of switches and connections becomes large.
In this paper we will use a graph model that takes into account failures of switches
and interconnection wires as well as PE’s. PE’s and switches will be represented by
nodes of the graph in the obvious way, and a connection between two elements in the
computational structure will be represented by a node inserted in the edge between the
appropriate two nodes in the graph model. Each node of the graph will have associated
with it a probability of failure €.

To achieve fault tolerance, we add redundancy to the system. After a failure the

original working architecture is reconfigured by replacing some nodes that were being

o

used by redundant nodes. A good fault tolerant structure is one where the number of
nodes that need to be changed after failure is as small as possible. In this paper, we
define a measure of this adaptability, the degree of reconfigurability (DR), and analyze
this measure on a class of very regular graphs called dynamic graphs [Or, IwSt1, IwSt2,
Iwst3]. We also analyze a stricter measure, called the degree of reconfigurability with
distance, DR?, which takes into account the total distance between original nodes and
replacing nodes. Our goal is to investigate the relation between the structure of dynamic
graphs, their reliability, and their fault-tolerant capability as measured by their degree

of reconfigurability.

The case when DR is independent of the size of the system is especially important
because it represents the situation when the amount of change necessary to repair
the system depends only on the number of failed nodes, but not on the size of the
system. In this case, we say the graph is finitely reconfigurable. Similarly, if DR?, the
total distance cost of changes is independent of the size of system, we say that it is
locally reconfigurable. Actually, we show if the redundant system is a dynamic graph,
it is locally reconfigurable if and only if it is finitely reconfigurable. Given a desired
working structure, we will discuss what kinds of redundant structures are possible or
impossible to maintain at a fixed level of reliability, while at the same time being
locally reconfigurable. In particular, our main result is that if we wish to maintain
both local reconfigurability, and a fixed level of reliability, the dynamic graph must be

of dimension at least one greater than the application graph.

2 Definitions and Mathematical Framework

A VLSI/WSI array architecture can be represented as a graph G = (V, E). Each node
of the graph G can be regarded as a processor, and an edge of G is a connection between
two processors. We assume that the nodes failed independently, each with probability

€. As mentioned above, a node in our graph model can represent a PE, a switch, or

3

interprocessor connection.

Real working architectures are considered to be a family of graphs, G,, called appli-
cation graphs; G', = (V!, E') denotes the ith application graph of G,. For example, G,
can be a family of linear arrays indexed by number of nodes, so G? is an n-node linear
array. We always assume each G’ is connected and that for each value of n, there exists
a unique :. Since we need to add redundant nodes or edges to increase reliability, the
embedding structures, G,, called redundant graph, are also represented as a family of
graphs; G! = (V/, E!) denotes the ith redundant graph of §,. Each pair of nodes in
V! is associated with a value, distance, defined by a function D' : V/ x V! — N, where
N is the set of natural numbers; D'(a, a) = 0. This distance can be regarded as the

physical distance between two nodes, or some cost, such as the communication cost.

Given two isomorphic graphs Gy = (V4, E;) and G, = (V;, E;), define the isomor-
phism function u: Vi — V; such that (v, v;) € Ey iff (u(vi), u(v;)) € Ez. Let u(V;) be
the image of V;. Given an isomorphism function x : V; — V3, let the mapping set S(u)

be the set of pairs, {(v,u(v))| v € V1}. Thus, S(u) — S(u') represents the difference

between two isomorphism functions y and p'.

Given G, and G,, the following function will determine which graph in G, will be

the redundant graph of the :th application graph.

Definition 2.1 An Embedding Strategy for G, and G, is a function ES : G, — G,,
i.e., if ES(GL) = Gi, G is the redundant graph for G.

If ES(G.) = GZ, and k nodes of G! have failed, the failed nodes and all the edges
incident to them will be removed and G becomes a new subgraph Gi = (VE-‘") Ei)- The

procedure of finding a new isomorphism function u}: V! — V7 is called reconfiguration.

Definition 2.2 Given G,, G, and ES, the mazimum fault-tolerance of G:, MFT(G"),

18 the mazimum number of nodes that can be allowed to fail arbitrarily in ES(G:) such

~0
© 0
w0
O
|
|
I
|
|
|
|
|
|
|

NS A
2 3 4 n-1 n

O
1

G7: n-triple-modular-redundancy (TMR) array
Figure 1. Example of G, and G,.

that ES(G.) can still find a subgraph isomorphic to Gi. In addition, FT(G') is given
which is some fized number < MFT(G}) for each i.

Definition 2.3 Given G,, G,, ES and Fault Tolerance FT(G') < MFT(G:) for each
t, the quadruple (G,,G,,ES,FT) is called an Embedding Architecture, EA.

For example in figure 1, G, is a family of linear arrays, and G, is a family of triple-
modular-redundancy(TMR) arrays obtained by triplicating each node of a linear array
to be three nodes, called a module. Let G} = ES(G?") be the n-module array, and let
its corresponding FT(G?) be 2 for all n.

For simplicity, if the context is clear, we will always assume the ith application
graph maps to the sth redundant graph, i.e., ES(G.) = Gi. Let ui : G — G:, be the

initial isomorphism function for the ith application graph G:.

Definition 2.4 Given an Embedding Architecture, define the Initial Embedding, IE,
to be a set of ui for all Gi in the family.

For the above example in figure 1, an initial embedding can be a set of yf such that

each node of G% maps to the bottom node of each module of G:.

5

Given an embedding architecture for a G¢, after k nodes have failed , obviously there
may be many different isomorphism functions p;’s. But, the difference between S(u})

and S(u}) should be as small as possible for the purpose of real-time fault-tolerance.

Suppose that the number of nodes in G, is n. Given EA, IE and that k < FT(G!)
nodes have failed, let the cost of reconfiguration of G, A(k,n), be the minimum of

|S(pb) — S(ui)| over all the possible isomorphism functions i, i.e.,
A(k,m) = min [S(4) ~ S
k

When there is no u}, A(k,n) = co. We also want to measure the total distance
between original nodes and replacing nodes after reconfiguration. The total distance
cost of reconfiguration for G, A%(k,n) is similarly defined to be the following:
pYkym)=min Y Di(ui(a), b).
B (ab)eS(uh)-S(ul)
When there is no i, A%k,n) = co. Under a given EA and IE, let DR(k, n), the
Degree of Reconfigurability for G , be the maximum of A(k,n) over all possible k
failures in Gi, k < FT(G:); i.e.,
DR(k, n) = max A(k,n).

failures of k nodes
k<FT(G})

The Degree of Reconfigurability with distance, DR%(k, n), is defined similarly (change
A to be A? in the above equation).

Return to the example in figure 1. Let the distance between two nodes in the same
module be one, and the distance between two nodes, one in module i and the other in
module j, be [¢ — j| + 1. In this case DR(k, n) and DR?(k, n) for G* are both k, since
for any k < FT(G?) = 2 faults, we need only change k nodes in the same modules as

the k faulty nodes, and the distance between two nodes in the same module is one.

Definition 2.5 An Embedding Architecture, EA is finitely reconfigurable (resp. locally
reconfigurable), if there exzists an Initial Embedding, IE, such that for all the G € G,,
DR(k,n)(resp. DR%(k,n)), can be bounded from above by a function of k but not n.

6

Figure 2: Hayes’ 4-FT single loop.

For example, the embedding architecture for linear arrays in the example above is both

LR and FR, since for each Gi, DR(k,n) = DR4(k,n) < k.

We show in the following lemma that Hayes’ h-FT (n 4+ h)-node single loop [Ha],
which is an h-fault-tolerant graph for an n-node loop application graph, is not finitely

reconfigurable.

The nth application graph G is an n-node single loop, and the embedding strategy
is to map G, to its so-called Hayes’ h-FT (n + h)-node single loop. Thus, G" is defined

by the following procedure, where we assume for this example that h is even.
1) Form a single-loop graph Cy4s with n + h nodes.

2) Join every node z; of C,4p to all nodes at index distance j from z;, for all j

h
satisfying 2 < j < 3 + 1.

The resulting graph G7 is an h-FT (n+h)-node single-loop graph. Hayes [Ha] shows
that its MFT(G7) = h. Let the distance between node z; and z; be |i — j| mod n + h.
All the computations in the proof are based on indices mod n + h, and all the indices

are in G,. The graph in Figure 2 is an example for n = 8, h = 4.

Lemma 2.1 The above embedding architecture with FT = MFT = h, mapping the
n-node single loop to Hayes’ h-FT (n + h)-node single-loop graph, is neither FR nor
LR if h is o(n?).

Proof: We assume there is an adversary A who always tries her best to select failures
that show that DR(k, n) is not bounded by a function of k only. No matter what the
initial pg is, n working nodes must be distributed among the n + h nodes of G. Define
a segment S to be a sequence of consecutively numbered working nodes (z;, zi31,...,z;)
in G} , where z;_; and z;4, are non-working redundant nodes. Denote the length of
the segment S by I(S) = j — ¢ + 1, and suppose the h non-working nodes, ordered by
their indices, form the sequence (z;,,zi,,...,%;,). For each z; there is a segment S;
(it may be null) starting from z; 4;. Thus,

SUS) +1) =n+h

§=1

There must exist a segment S* such that /(S*)+ 1 > bt

e, 1(S7) > % Without

loss of generality, assume that S* is from node ; to node z; S*)-

The adversary can choose the middle node z4 of segment S* to be faulty, that is
d= [2%] Pick a reconfiguration that is optimal in the sense that the fewest possible
number of nodes in G*** are changed. Let m be the number of nodes in $* which are
changed in this reconfiguration, Let C be such a sequence of m nodes, (z,,zj,,...,;,),
ordered by their indices. We know z4 must be replaced by one node, say z/;, and if z/,
is a working node, it must be replaced by another node. Thus, there is a sequence C C
of working nodes in S* in this sequence of replacements, starting with z; and ending
at a working node that is replaced by the first node z, outside S*. First, we divide S*
into many small subsegments with length w, where w = 2. (g + 1), and represent them
as a sequence (Sy,...,S;). Let z4 be in subsegment S7. Without loss of generality,

assume that the index of z, is larger than the largest index of a node in C;i.e., r > jn.

We claim that there must exist at least one node in C in the subsegment S} or Sj.

Suppose not. Let z, replace z; in C and let a and b be the two nodes connected to z;

8

in the initial working subgraph. Since connections must be of length at most g—+ 1 and
the distance between z; and the last node in S* (and also the first node in §*) is > w,
we know a and b must be in S*. If a or b is not in C, say a, because a is not replaced,
z, must be connected to a after the reconfiguration. But we know that : < j,, and
r > [(S*) from the assumption, so it is impossible that z, is connected to a. Thus, we
know that a and b are in C, say that a is replaced by a’. Denote the sequence of original
working nodes starting from z; toward one direction in the original working subgraph
by {zi,a,a;,a,...}, and the sequence after reconfiguration by {z,,d’,a},a},...}. If
a' € §*, because a’ replaces a, a’ must be in C. Since the index of a’ is < j,,, it is
impossible for a’ to be connected to z,. Thus, a’ is not in S*. In summary, we know
that if z; € C and z, ¢ S, then a is in C and @’ is not in S*. Repeating the argument,
using a instead of z; and ¢’ instead of z,, we can get the result that a, is in C and d}
is not in S*. Continuing in this way, it follows that all the nodes a, a,,a,,... are in C
and nodes d',a}, a3, ... are not in S*, but this is impossible, since there are only finite

number of nodes in C. Thus, our claim is correct.

We claim next that in each pair of the subsegments (S}, S;_,,), where I =1,...,1,
there exists at least one node in C. We have proved that it is true for the first pair of sub-
segments (S}, Sf). Assume it is true for all the pairs of subsegments from [= 1 to k — j,
and ¢ < j. We represent C' = {z;|z; € C,z;j not in S},...,S;_;, and S7,,,...,S;t}.
Since z4 € C', from the way that z, is chosen we know there must exist one node in
C’ which is replaced by a node outside of C’. If, in S;_ j+1 and S7, there does not exist
a node in C’, the same argument as above results in the same contradiction. Thus,
in each pair of subsegments in S*, there is at least one node which has been replaced.
The number of nodes in C must therefore be at least n/2hw = Q(n/h?). If h = o(n%),
a number of nodes that is an unbounded function of n need to be changed. Thus,
DR(k, n) is not bounded by a function of k only, under any initial isomorphism func-

tion ug, and therefore the Hayes’ embedding architecture is not finitely reconfigurable.

It is obvious that the total distance between original nodes and their replacing nodes

1 > 3 n ntl n+h
Initial embedding

1 2 9 n n+l n+h

After reconfiguration

G?: (n + h)-node complete graph
Figure 3: An example that is FR but not LR.

is also an increasing function of n, so it is not LR either. O

Our next example is an embedding architecture that is finitely reconfigurable, but
not locally reconfigurable. Choose G, as in figure 1 to be a family of linear arrays, and
G, as in figure 3 to be a family of complete graphs on a row. Let ES map G? to G"+*
and let FT(G}) = h, for each G? in G,. The distance between node i and node j is
defined to be |i — j|. After one node has failed, say node 2, we can take any spare node

to replace it , say node n + 1, as shown in figure 3.
Lemma 2.2 If h is o(n) the above embedding architecture is FR, but not LR.

Proof: It is obvious that such an E A is finitely reconfigurable, since any spare node can
replace any other node, so that only k faulty nodes need be changed after k nodes fail.
Considering G7 and GI**, under any initial embedding, there must exist a sequence
of working nodes in G7'** with consecutive indexes of length > n/(h + 1), by the same

argument as in lemma 2.1. Choosing the middle node of such a path to be faulty, the

10

distance between any spare node and the faulty node must be > n/(2(h + 1)). Since
h = o(n), the distance is an increasing function of n. Thus, this EA is not locally

reconfigurable. O

3 Degree of Reconfigurability for Dynamic Graphs

In applications we are interested in graphs which are very regular and of bounded
degree. An interesting and useful class of such graphs are called dynamic graphs [Or,
IwSt1, IwSt2, IwSt3], which model regular systolic and wavefront arrays in a natural
way. An undirected k-dimensional dynamic graph G* = (V¥ E* T*) is defined by a
finite digraph G° = (V°, E®), called the static graph, and a k-dimensional labeling of
edges T* : E° — Z*. The vertex set V, is a copy of V° at the integer lattice point z
and V* is the union of all V,, where z € Z*. Let a, be the copy of node a € V° in the
vertex set V; and let b, be the copy of node b € V° in the vertex set V,. Nodes a, and
b, are connected if (a,b) € E° and the difference between the two lattice point y and z
is equal to the labeling T*(a,b). Therefore, the dynamic graph is a locally-finite infinite
graph consisting of repetitions of the basic cell V? interconnected by edges determined
by the labeling T*. In figure 4, we show an example of a two-dimensional static graph
G° and its corresponding dynamic graph G2.

For z,y € Z*, let E,, = {(as,b,) | (a,b) € E°}. The graph with vertex set V, and
edges with both end points only in V; is called the z-th cell of G*, C, = (V,, E.).
Given a dynamic graph, we can contract all the nodes in the same cell to one node and
delete the edges totally within the cell. This contracted graph is called the cell-dynamic
graph, G. = (V,, E.), where V. = Z* and E° = |] E,,. We give an example in figure

z#y
5, which is the cell-dynamic graph corresponding to G? in figure 4.

Given a static graph G°, we define F; to be the finite subgraph of G* such that

11

G} (0, 0) @

(1,0) (@, 1) (0, 0)

A static graph G°= (V° E?)

Figure 4: An example of G° and the corresponding dynamic graph G2.

12

o o @
J

7
o e /
o e e

Figure 5: The cell-dynamic graph G. of G°.

each dimension of Fj has j cells, i.e., Fj = (|JVz,|J Ezy), where z = (21,23,...,24),
T z,y

1<z; <j,andy = (y1,¥2,.--,¥k), 1 L y; < j. We define the family F of k-dimensional
dynamic graphs to be the set of F}, where j > 1.

There are different ways to define distance in dynamic graphs. For example, one
reasonable definition of the distance function D is to define the distance between two
nodes, one in vertex set V, and the other in V,, to be the Euclidian distance in k-
dimensional space between point z and point y if ¢ and y are in different cells, and
one if they are in the same cell. We say that a distance function D satisfies property
V (triangle inequality), if the distance between nodes a and b is less than or equal to
the total distance of any path from a to b. Of course Euclidian distance satisfies 7.
The following lemma will show that when the set of redundant graphs G, is a family of

dynamic graphs and the distance function satisfies ¥7, then any embedding architecture

13

is LR if and only if it is FR. In the rest of paper, we assume that D satisfies property
Vv

Lemma 3.1 When G, is a family of dynamic graphs and its distance function satis-
fies v7, the embedding architecture is locally reconfigurable if and only if it is finitely

reconfigurable.

Proof: Given an EA, if this EA is LR, we know by definition that the total distance
cost of any k failures can be expressed as a function f(k), where f is a function of k

only. We know the distance between any two nodes is at least one, so the number of

nodes changed must be < f(k). Thus, this EA is also FR.

Suppose that it is FR. We know that for each G% € G, , after k nodes have failed, at
most a function of k, say f(k), nodes must be changed in the original working subgraph.
Let a; be the node in G such that the distance in G} between u}(a,) and pg(a,) is

the maximum over all the nodes in V.

Because there are at most f(k) nodes which are changed by u7, there exists a path
in the application graph G7 with at most f(k) edges from a; to an unchanged node
az, i.e. pg(az) = pp(az). Let ¢ be the maximum distance between any two nodes
connected by an edge, which is a constant independent of k¥ and n by definition. The
distance D between node pj(a;) and node uf(az) is at most ¢ - f(k) by property v,
the triangle ineqality. Similarly, the distance between node u}(a;) and node u}(a;)
is at most ¢ f(k). Since u}(az) = pug(az), the distance between uj(a;) and uf(a,) is
at most 2c - f(k). Therefore the total distance of the f(k) changed nodes is at most
2¢- f(k)? because there are at most f(k) pairs that are changed. E A is therefore locally
reconfigurable from the definition. D

Finite reconfigurability is desirable in practice, especially for real-time fault toler-
ance, because it shows that after k£ nodes have failed, at most a function of £ nodes need

to be changed, independent of the size of the application graph. Lemma 3.2 will show

14

that the degree of reconfigurability DR provides a lower bound on the time complexity
of any distributed reconfiguration algorithm, and shows one reason this measure DR
is important. We assume in what follows that it takes one time step to send a message

through an edge.

Lemma 3.2 When G! is an n-node application graph and G, is a family of d-dimensional
dynamic graphs, the time complexity of any distributed reconfiguration algorithm, is
Q (%}—2) ’), where k is the number of nodes that have failed.

Proof: After k nodes have failed, we must change at least DR nodes to reconfigure.
We can assume that a distributed reconfiguration algorithm is initiated by a neighbor
node, called a source node, of each faulty node after this neighbor node has detected
the failure. We need to inform at least DR nodes in G that they are assigned different
nodes in Gi. Thus, the time to broadcast this fault information is a lower bound on

the time complexity of any distributed reconfiguration algorithm.

Let the corresponding static graph be G° = (V° E°), and its labelling be T?.
The maximum edge distance ¢ in one dimension is the max {|t;| | (t1,...,t,...,t4) €
T?(e),e € E°}. Let m be equal to (|V°| x 2¢)?. We can always contract the nodes of G¢
into groups of at most m nodes to obtain a d-dimensional reduced graph G, = (V/,E'),
such that V) = Z? and E. = {(z,y) | z,y € V/, s #y,y — 2 = (es,...,€,...,€q) Where
e; = 0 or 1 }. Each node of V/, called a class here, represents at most m nodes of the

dynamic graph. Note that m is a constant by definition.

After t time steps, one source node can inform at most (2 - ¢)? classes in a d-
dimensional reduced graph, so at most (2-)?- m nodes have been reached. Since there
are at most ¢,k source nodes, where ¢, is the maximum degree in G,, the total number

of nodes that can be informed after ¢ time steps is at most (2-)? - mk. There are DR

1
nodes that need to be informed, so t should be at least Q((-'—Dkﬁ) d). O

15

4 Impossibility of an LR-reliable Embedding of Dy-

namic Graphs from Dimension d to d

In this section we restrict attention to dynamic graphs, and consider the relationship
between reconfigurability and reliability. In particular, we ask whether a given em-
bedding architecture can be finite and locally reconfigurable, and at the same time
maintain a given level of reliability. Without the constraint of being FR or LR, we
can simply construct a redundant graph to be many replications of the application
graph, achieving high reliability, but at the price of using large amounts of hardware
and being difficult to reconfigure. Our main result is Theorem 4.5: when mapping
from d-dimensions to d-dimensions, we cannot maintain both local reconfigurability

and reliability simultaneously.

As lemma 3.1 shows, there is no difference between local and finite reconfigurability
for dynamic graphs, and thus we consider only local reconfigurability, without the loss
of generality. We define LR-reliability in our framework as follows. Given an EA which
is LR, the probability, for each 7, that G contains an isomorphic image of G: is

, FT n
PG = T da-or(7),
k=0 k

where n = |V|. The following definition replaces definition 2.5 in the statistical case.

Definition 4.1 An Embedding Architecture is LR-reliable with reliability 3, if P(G%) >
B for all the G € G,.

The following lemma is useful in what follows.

Lemma 4.1 Given G,, G, and ES, for each i, let MFT(G}) be the maximum number
of failures that allows the corresponding EA to be LR. If this MFT is upper-bounded
by a constant as n — oo, there exists a constant 3 such that EA cannot be LR-reliable

with reliability /.

16

Proof: Let the upper bound on M FT be c. By the definition of M FT in the hypothesis
of the lemma, there exist ¢ + 1 nodes in the redundant graph G such that after they

) c+1
have failed, for any IE, EA cannot be LR. Therefore P(G,) < Y *(1 — ¢)** (Z)
k=
We know n can be chosen large enough to make ¢+ 1 < en, so the tgrm corresponding

to k = ¢ + 1 is the largest in the summation. Thus, the probability P(G%) < (¢ +
c+1
_ g)n—c=1 n] —)1 <« —e(n—c-1) d n < T
1)(1—¢) (c+ 1). Since (1 e). <e yend | 4] S S ik
obvious that when n goes to oo, P(G,) goes to 0. Thus, for some i, we always can pick
a B > P(G!). Therefore, such an Embedding Architecture cannot be LR-reliable with

reliability 4. O

it is

We want to study some properties of dynamic graphs if we insist on local recon-
figurability after some nodes have failed, since local reconfigurability is desirable in
practical implementations. The following lemma tells us that one-dimensional dynamic

graphs cannot be LR-reliable when the application graphs are linear arrays.

Lemma 4.2 When §, is a family of one-dimensional linear arrays and G, is a family
of one-dimensional dynamic graphs, there exists a constant 2 such that no Embedding

Architecture is LR-reliable with reliability £.

Proof: As in the proof of lemma 3.2, we can always build a reduced graph G’ = (V!, E!)
by contracting sets of size at most m nodes in G? to produce a one-dimensional linear
array. Each node of G/ now represents a class of a finite number of nodes. Note that

m is a constant number, since G° is a finite graph by definition.
graph by

For any initial embedding, the n nodes of G} are distributed into at least n/m
contiguous classes in G.. If the adversary chooses all the nodes in the middle class of
the above n/m classes to be faulty, the initial working subgraph is separated into two
halves. We must shift at least half of the G7 and therefore change Q(n) nodes to get
a new working subgraph. Thus, if an embedding architecture is locally reconfigurable,
its FT must be bounded by a constant m. From lemma 4.1, we know there exists a

constant 3, such that EA cannot be LR-reliable with reliability 8. O

17

O—0O0—0

IXIXIX
C\>< ><f\><

Oxg O><

Figure 6: Example of a 2-dimensional 16-node web.

To generalize lemma 4.2, we define an n%-node d-dimensional web to be a d-dimensional
graph G, = (V}, E}) such that V; = {z = (21,23,...,74)| where z; =0,...,n — 1} and
E = {(z,y) | z,y€e Vi,z #y,y—z = (€1,...,€i,...,e3) where e;, =0 or 1 }. Thus, we
connect all adjacent points in the d-dimensional Euclidian space. For example, figure
6 shows a 2-dimensional 16-node web. The family of d-dimensional webs is indexed by

n.

Theorem 4.3 If G, is a family of d-dimensional webs and G, is a family of d-dimensional
dynamic graphs, there exists a constant # such that no Embedding Architecture is LR-

reliable with reliability £.

Proof: We can always find a d-dimensional reduced graph G. = (V!,E!) by con-
tracting the dynamic graph G? as we did in the proof of lemma 3.2. Without loss
of generality, we consider the most general case with all possible edges present, where
V!C Z%and E. = {(z,y) | 7,y €V, # y,y — = = (e1,...,€,...,eq) where e; = 0 or
1 }. Each node of V, represents a class of m nodes of G*, where m is the constant in

the proof of lemma 3.2.

First, we prove that there cannot be an embedding strategy that maps a d-dimensional
web to (d — 1)-dimensional dynamic graph. Suppose first an n x n two-dimensional lat-
tice is projected to a one-dimensional dynamic graph. Among the n? nodes in the web,
the vertices on the path from vertex (0,0) to (0,n — 1) must be projected to at most

n consecutive classes. Similarly, each of the n paths horizontally from (0,0) through

18

—— nodes

Figure 7: The n paths in the proof of theorem 4.3.

(2,0) and vertically to the diagonal vertices (,n — 1 — i) where 0 < i < n — 1 also
must be projected to at most n consecutive classes. We show these n paths in figure 7.
Thus, all the n?/2 nodes on the paths must be in at most 2n classes, and there must
exist one class to which at least n/4 nodes are mapped. This is impossible, since each
class only has finite number of nodes. The same argument can be generalized easily to
d-dimensional lattices. Thus, we can restrict attention to the possibility of mapping a

d-dimensional web mapping to a d-dimensional dynamic graph.

We say a class in G, is empty if there is no working node in it. In the application
graph the nodes which are adjacent must be mapped to one or adjacent classes. It is
not hard to see that in the initial embedding there cannot be an empty class surrounded
by non-empty classes. Consider a line of > n nodes in the n%-node d-dimensional web,
as in the proof of lemma 4.2. For any initial embedding these n nodes are distributed
into at least n/m classes that are linearly connected in G.. These images of lines may
zig-zag in G, but must map to at least n/m contiguous classes. Therefore, there is a
well-defined inner central class which is 2(n/m) classes away from the border in the
image of the web, as shown in figure 8. Note that a line between the inner central class
and the border may not be the image of a line along one dimension in the web, but the

line must contains £(n) nodes in the web, as figure 8 shows.

19

a line between an inner central node and the border;
there are > 3™~ lines passing through it

inner central class

S~ an image of a line along the dimension in a 2-d web

— — — — animage of a line along the y dimension in a 2-d web
Figure 8: The inner central class in the proof of theorem 4.3.

If the adversary chooses all the nodes, at most m, in the inner central class to be
faulty, the original working subgraph has a central inner hole. We must change Q(n)
nodes in one direction to get a new isomorphic subgraph in G*. Therefore, to maintain
local reconfigurability, for any embedding architecture, FT must be upper-bounded by
m. From Lemma 4.1, we then know there exists a constant 3, such that £A cannot be

LR-reliable with reliability # O

We next modify the application graph so that each node z = (z1,3,...,24) is
connected only to nodes y = (z1,...,2; £ 1,...,24), ¢ = 1,...,d. We call such a
d-dimensional graph a d-dimensional orthogonal lattice. To develop intuition for the
general case of d-dimensional dynamic graphs, the following lemma extends theorem

4.3 to two-dimensional orthogonal lattices.

Lemma 4.4 If G, is a family of two-dimensional orthogonal lattices and G, is a family
of two-dimensional dynamic graphs, there exists a constant 3 such that no embedding

architecture is LR-reliable with reliability £.

Proof: As in the proof of theorem 4.3, we know that a two-dimensional orthogonal

lattice cannot be embedded in a one-dimensional dynamic graph (we made no use of

20

2 \
(@ @ @ \ @ non-empty class
: F = = = = : O empty class
| :_O O I_@z _Cl.]_) o]
| L= =-=
I
I

interior of the image
Figure 9: A pseudo hole.

diagonal edges in that proof). Without diagonal edges, however, the rest of the proof

is a bit more complicated.

An image of an application graph can be regarded as a polygon. We say an embed-
ding in G| has a hole of size k, if there exist k consecutive empty classes in a line along
one dimension which are inside the polygon and surrounded by non-empty classes.

Thus, the example in figure 9 is excluded from our definition of hole.

We claim that after any embedding of a two-dimensional orthogonal lattice in a two-
dimensional dynamic graph, it is impossible that there is a hole of size 2. Assume our
claim is false, and denote the empty classes in a hole of size 2 by A and B. Index the
nodes in the two-dimensional orthogonal lattice G, by z;;. For notational convenience,
choose the origin so that oo is a particular node which is mapped to the nonempty class
immediately above 4 in G;. We will refer to the vertical line in G, passing through z;;

as the vertical line Lz;.

We have the following observations about the images in G’, of vertical lines in the
orthogonal lattice G,. First, the images of the vertical lines Lz; and Lz;,, cannot be
more than one class apart along one dimension. Because the image of each pair of
nodes z;; and x4, ; is in the same class or adjacent classes, this follows by induction
on j. Second, the vertical line Lzo and Lz; (resp. Lz and Lz_;) must pass on the

same side of A and B, as in figure 10, since there is no edge passing between A and

21

O : class
....... vertical line Lzg

vertical line Lz,

Figure 10: The image of vertical lines Lzy and Lz;.

B. According to the above two observations, by induction on i, all the vertical lines
Lz; must be on the same side of A and B (either left or right), so A and B cannot be
in the interior of the image of G,. This contradiction proves that it is impossible to
have a hole of size two. As we did in theorem 4.3, the adversary can choose the two
inner central classes in one dimension to be faulty, and as before, there is no way to
reconfigure G, so that those two faulty classes are surrounded by non-empty classes.
Thus, we must change {}(n) nodes in one dimension to get a new working subgraph.

O

Finally, we can extend this result to d dimensions. The line containing classes A

and B will be replaced by a (d—1)-dimensional hyperplane in a d-dimensional dynamic
graph.

Theorem 4.5 If G, and G, are families of d-dimensional dynamic graphs, there exists

a constant 3 such that no embedding architecture can be LR-reliable with reliability 3.

Proof: Given an application graph G, which is a dynamic graph, a reduced graph can
be built as before. Since the application graph is connected and a class is connected
only to its neighboring classes, there exists at least one edge along each dimension

from one class to its neighboring class. Therefore, any d-dimensional reduced graph

22

contains a subgraph which is isomorphic to a d-dimensional orthogonal lattice. We
therefore need only prove the theorem for the case of the application graph being a
family of d-dimensional orthogonal lattices. Again, the proof of theorem 4.3 shows that

d-dimensional orthogonal lattices cannot be embedded in (d — 1)-dimensional dynamic

graphs.

We claim that it is impossible that there exist a hole of size 29! in one hyperplane
H along (d— 1) dimensions (one coordinate is fixed) in the reduced graph. Assume our
claim is false. Call the above 24! classes an obstacle 0. The obstacle is composed of
two empty classes along each of the (d — 1) dimensions in H. Call the fixed dimension
of H “vertical.” By the same reasoning as in lemma 4.4, no vertical lines can pass
through the obstacle 0, and the images of any two adjacent vertical lines must lie on
the same side of the obstacle O in the reduced graph. Therefore, the obstacle cannot be
in the interior of the reduced graph, so our claim is correct. The adversary then chooses
the inner central 2%~ classes in H to be faulty. There is no way to reconfigure the
redundant graph such that those faulty classes are surrounded by non-empty classes.

Thus, we must change {2(n) nodes in one dimension to get a new isomorphic subgraph.

O

5 Possibility of an LR-reliable Embedding of Dy-

namic Graphs from Dimension d to d+1

Finally, we want to show that we really can embed d-dimensional dynamic graphs in
(d+ 1)-dimensional dynamic graphs, while maintaining any desired high reliability and

local reconfigurability. We begin with the one-dimensional case.

Lemma 5.1 When G, is a family of linear arrays, there exists an Embedding Architec-
ture where G, is a family of two-dimensional dynamic graphs, which can be LR-reliable

with any given f3.

23

ceccmcsmm—-

(R I e S o O o O I NI— o S J—

(RN C . © aany © ey O Bhbhhh e © . O 2

NS S o

(0,0) (1,0) (2,0) (n,0)
Figure 11: An LR-reliable 2-dimensional dynamic graph.

Proof: We prove this by constructing a redundant graph G? for an n-node linear
array G as shown in figure 11. G} has n columns and each column has s nodes. Let

FT(G?) < s.

The initial embedding allocates each node of G? to a distinct column of G7, i.e.
let the initial isomorphic subgraph be the sequence (0,0), (1,0), ..., (n,0). If one node
(2,0) has failed , we choose (7,1) as the replacing node, and if nodes (i,0) and (i,1)
have failed, we use (¢ — 1,1), (¢,2) and (¢ + 1,1) to replace nodes (i — 1,0), (i,0) and
(¢ + 1,0). By using the above reconfiguration procedure, we change at most 2k — 1
nodes after any k& < s nodes have failed. Since DR(k,n) = O(k), G™ with respect to
such an FA and IE is locally reconfigurable.

We now want to show that given f§, we can find an s and G? with the desired
properties. Let (;",‘ be a square piece of G}, an n x n dynamic graph. Let p(n) be the
probability that G? contains G?. We form a vertical pile of 8/n such blocks to obtain
s x n such dynamic graphs as in figure 12. After we connect each two adjacent squares,

the resulting graph is the same as G}.

24

n 2
n 1
n

Figure 12: A pile of éf for the proof of lemma 5.1.

Since connections between two squares can only increase the reliability, the proba-
bility that there does not exist a working linear array in this big graph is < (1—p(n))*/".
cn - logn

—log(1 - p(n))’
any reliability 3, we can find a sufficient large s to achieve reliability §. O

For any ¢, if s > the above probability will be < 1/n°. Therefore, for

We can now prove the main result in this section.

Theorem 5.2 When g, is a family of d-dimensional dynamic graphs, there exists an
embedding architecture where G, is a family of (d + 1)-dimensional dynamic graphs,

which can be LR-reliable with any given .

Proof: As before, we construct a reduced graph from the given dynamic application
graph G,. The most general form of a reduced graph is a web. Thus, without loss of
generality, we need only prove the theorem for the case of the application graph being
a family of d-dimensional webs. We can use the same construction and reconfiguration

method as we did in the previous lemma. O

From the above reconfiguration method, after ¥ < FT(G7) nodes have failed, we
need to change at most 2 - k nodes. The following corollary shows that when d = 1, we

can reduce this to exactly k¥ nodes.

Corollary 5.3 When (G, is a family of linear arrays, there exists an embedding ar-

chitecture where G, is a family of two-dimensional dynamic graphs with edge degree

25

(0: 0) (1’ 0) (2; 0) (1’?., 0)

Figure 13: Dynamic graph construction for corollary 5.3.

4m + 2, where m is any constant > 2, such that after any k¥ < FT(G?) nodes have

failed, we only need to change k nodes.

Proof: First construct the dynamic graph as shown in figure 13, where there are s nodes
in each column: each node (7,) connects to (i + 1,5 + m),(¢ + 1,7 + m —1),...,(i +
lsj)a-'-a(i-i- 13.7 —m+ 1)’("“"' 13.7 _m)'

The reconfiguration method is the same as in lemma 5.1. Let FT(G") < s for each
G7 in the family, and allocate nodes of G7 to different columns as before. The number
of nodes which need to be changed after k nodes in one column have failed is at most
[—T{;—'] x 2 — 1. This is the worst case, so DR(k,n) = ma.x([%] x2 — 1, k) =k, if
m>2 0

Similar constructions work for d dimensions.

References

[ChLeRo] Fan R.K. Chung, F.T. Leighton, and A.L. Rosenberg, “Diogenes: A method-
ology for designing fault-tolerant VLSI processing arrays,” Proc. IEEE
FTCS, Milano, 1983, pp. 26-32.

26

[CaSt]

[GrGa)

[Ha]

[IwSt1]

[IwSt2]

[IwSt3]

[HIKu]

[KuLa]

[SKu]

[KAGB]

[KuJeCh]

P. R. Cappello and K. Steiglitz, “Digital signal processing applications of
systolic algorithms,” CMU Conf. on VLSI Systems and Computations, H.T.
Kung, B. Sproull, and G. Steele (eds.), Computer Science Press, Rockville,
MD, Oct. 1981, pp. 19-21.

J.W.Greene and A.E. Gamal, “Configuration of VLSI arrays in the presence
of defects,” J. Asso. Comp. Mach., vol. 31, Oct. 1984, pp. 694-717.

J.P. Hayes, “ A graph model for fault-tolerant computing systems, ” IEEE
Transactions on Computers, vol. C-25, no. 9, September 1976, pp. 875-884.

K. Iwano and K. Steiglitz, “Testing for cycles in infinite graphs with periodic
structure,” Proc. 19th Annual ACM Symposium on Theory of Computing,
New York, NY, May 1987, pp. 46-55.

K. Iwano and K. Steiglitz, “Planarity testing of doubly periodic infinite
graphs,” Networks, vol. 18, no. 3, Fall 1988, pp. 205-222.

K. Iwano and K.Steiglitz, “A semiring on convex polygons and zero-sum

cycle problems,” SIAM J. Computing, to appear.

H.T. Kung, “ Why systolic architectures ?,” Computer Magizine, vol. 15 ,
no. 1, January 1982, pp. 37-46.

H.T. Kung and M.S.Lam, “Fault tolerant VLSI systolic arrays and two-level
pipelines,” J. Parall. and Distr. Proc., vol. 8, 1984, pp. 32-63.

S.Y. Kung, VLSI Array Processors, Prentice Hall, Englewood Cliffs, NJ,
1988.

S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. Bhaskar Rao, “Wavefront
array processor: Languages, architecture, and applications,” IEEE Transac-

tions on Computers, vol. C-31, Nov. 1982, pp. 1054-1066.

S.Y. Kung, S.N. Jean and C.W. Chang, “Fault-tolerant array processors
using single track switches,” IEEE Transactions on Computers, vol. C-38,

no. 4, April 1989, pp. 501-514.

27

[KuSt] S.D. Kugelmass and K. Steiglitz, “A scalable architecture for lattice-gas sim-
ulation, ” J. Computational Physics, vol. 84, Oct. 1989, pp. 311-325.

[LeLe] T. Leighton and C. E. Leiserson, “Wafer-scale integratrion of systolic arrays,”
IEEFE Transactions on Computers, vol. C-34, no. 5, 1989, pp. 448-461.

[Or] Orlin, J., “Some problems on dynamic/periodic graphs,” Progress in Com-
binatorial Optimization, W. R. Pulleyblank (ed.), Academic Press, Orlando,
Florida, 1984, pp. 273-293.

[SaSt] M. Sami and R. Stefenelli, “Reconfiguration architecture for VLSI processing
arrays,” Proc. IEEE FTCS, 1986, pp. 712-722.

28

