EIN KLEINER FILTER COMPILER
Kenneth Steiglitz
CS-TR-279-90

August 1990



Ein Kleiner Filter Compiler

Kenneth Steiglitz
Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

A ““little’” compiler (actually, a C pre-processor) is described that translates an
Intermediate Filter Language (IFL) into filter code. The main motivation is to provide an
easy way to experiment with filters for digital sound synthesis. The compiler itself
comprises 60 lines of C and produces C. The new keyword tap is available, which
creates a buffer for storing the current value of the signal, which is then available earlier
or later in the computation as a feedback or feed-forward term, respectively. C code in
the filter description is passed largely unchanged, except for variables of the form Si,
which is the signal value from the i-th buffer. In this way, the usual FIR and IIR filters
can be represented easily, as well as much more general filters and signal generators.
The compiler is portable, requires small computer resources, uses text input that can be
generated by other programs, and is easy to modify.

1. Introduction

A central problem in computer music is the control of timbre. Extensive trial and
error is often necessary to tailor sound color. This paper describes a very simple way to
carry out that experimentation when sound is generated with digital filters. The basic
approach is to describe a digital filter with text in an intermediate language (IFL) and
then compile that into code which implements the filter itself.

The filter compiler is not meant to be competitive with the elaborate and general
implementation systems developed for simulating digital systems. (For a description of a
recent and impressive system, and a literature review, see [LH89].) Rather it is intended
to show that a very modest program, comprising about 60 lines of C, can be useful for
this particular application. The compiler uses very small resources, requires no graphics
support, and very little memory and cpu time. The filter is described by a text file using
the intermediate language IFL. Besides simplicity and portability, the approach has two
advantages over graphics input: — first, it means we can write other programs to gen-
erate IFL for classes of interesting filters; second, it means that IFL descriptions of filters
can be easily combined and edited.

2. Preliminaries

The compiler (ein) reads the filter description from standard input, and produces
code for the function nexty as standard output. This must then be compiled and run with
the fixed buffered output program main, which just repeatedly calls nexty. Thus, a com-
mand sequence in UNIX for producing sound looks like:



ein < $1 > nexty.c

cc —o filt main.o nexty.c
filt | scale > T

cat HEAD T > TT
sndplay TT

Here ein is the filter compiler, scale is a buffered scaling program that scales the
output magnitude to the range of the converter, and HEAD is the header required
for sound files on the NeXT machine. The sources ein.c, main.c, and scale.c are

listed at the end of this paper.

3. The filter language

The easiest way to explain the way a filter is specified to the compiler is by
an example: the simple plucked-string filter [JS83, KS83] shown in Fig. 1.
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Fig. 1 Signal-flow graph for a plucked-string filter. Two tap’s are required, one for each loop.

The Intermediate Filter Language code to describe this filter, with a unit impulse
as input, is:

#define R 0.99
if(t=0){y=1}else {y=0;}
y =y + R*81;

tap 2 1

y = 0.5%y + 0.5%82;

tap 1 155

First, there are always two pre-defined variables: y for the signal at any point
in the flow graph at which we happen to be computing (double); and ¢, the glo-
bal time in sample instants (int).

A line beginning with the command tap i k has two effects. First, it causes
the buffer Bi to be created, which stores the value of the signal at that point.
Second, the variable Si is recognized anywhere else in the code as the contents of
that buffer, which is the signal at that point delayed by k& sampling intervals.
Except for the translation of Si variables, lines not beginning with the keyword
tap are transparent to the compiler.

If a tap appears before the first use of its signal, the signal is called feed-
forward, otherwise, feedback.

We can now interpret the IFL above. We proceed from left to right in the
signal flow graph, writing a line for each signal operation. The first line defines
the gain constant R. The second line produces an input which is a unit impulse at
t = 0. Next, the line y = y + R*S1; corresponds to the closing of the
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feedback loop, using signal S1. The command tap 2 1 creates the feed-forward
loop for signal 2, which is combined with the signal y in the next line, to form
the simple FIR filter with transfer function 0.5 + 0.5z !. Finally, tap 1 155
creates the feedback loop for signal S1 with delay 155.

4. Some details of the compiler

Because of the simplicity of the specification language IFL, the compiler
itself is no more difficult than a Freshman programming assignment. In a single
left-to-right pass of the IFL input file, each non-tap line is simply passed to the
output, using the appropriate values from buffers for the Si. The only slightly
delicate issue is the way the circular buffers for storing delayed signals are han-
dled.

When a tap i [ line is encountered, a new buffer Bi of length N is declared
to be an array, together with the int index into that array, IDi. Then code is gen-
erated that stores the signal at that point in the buffer. Thus, the last line in the
IFL code above generates the code

BI[ID1++] = y;
ID1 = ID1%155;

The index ID1 is incremented after it is used, and then taken modulo the length
of the buffer.

The only tricky point concerns the definition of the length N of the buffer.
Suppose L is the desired loop delay, the parameter in the IFL code. When the
loop is a feedback loop, N = L; when the loop is a feed-forward loop,
N = L + 1. It is then not hard to verify that the buffer contents Bi[IDi).
provides a signal with the desired delay. The extra buffer storage location in the
case of a feed-forward loop is necessary because in that case the tap command is
encountered during the same ‘‘clock’ cycle that the signal is used.

It also follows from this arrangement that the case L = 0 is allowed for
a feed-forward loop, corresponding to a buffer of length 1; the present signal
value is simply saved for use during the same clock cycle of the filter. This is
critical for the generality of the specification language, which we discuss next. A
signal may be used both before and after its corresponding tap, but the user must
remember that because the signal is used before its tap, the length of its buffer is
that of a feedback signal, and uses after its tap are delayed one fewer sampling
interval than the designated delay. As an example, if signal S1 is used both
before and after tap 1 1, uses before the tap are delayed 1 interval, but uses
after are delayed O intervals.

The complete source for the function nexty.c for the plucked-string example
is shown below; the file decl.h contains the declarations and is also generated by
the compiler.



#include <math.h>

double nexty(t)
nt t

{ double y;
#include "declh"

#define R 0.99
if(t=0){y=1}else {y=0;}
y = y + R*BI[ID1];

B2[ID2++] = y;

ID2 = ID2%2;

y = 0.5% + 0.5%B2[ID2];

B1[ID1++] = y;

ID1 = ID1%]155;

return y;

}

5. Generality

Any signal-flow graph G that represents a realizable, linear, constant-
coefficient digital filter can be represented by IFL. To see this, remove the posi-
tive delays from G to obtain G’, and topologically sort the nodes; that is, order
the nodes so that all arcs go from left to right. This is possible because G is
realizable, which implies that G’ is acyclic. The order of the nodes determines the
order of the primitives in IFL. The arcs in G’ can be implemented with feed-
forward (left-to-right) arcs with delay zero and the remaining arcs with feed-
forward arcs with delays L 2> 1 and feedback arcs with delays L 2> 1.

6. Root Locus for the Plucked-String Filter

The plucked-string algorithm of Karplus and Strong [KS83] is a remarkably
effective and efficient way to generate complex sound, using only a fixed number
of arithmetic operations per sample. In this section we look a little more closely
at the plucked-string algorithm as a digital filter, and show how root locus can be
used to understand such filters. We can view the plucked-string algorithm as a
digital filter consisting of a single zero on the negative real axis, around which
we place a feedback loop with a delay (see Fig. 1). The transfer function is
thus:

r + sz7!

Hiz) 1 — rz7P — sz7P-1 W
which corresponds to a loop delay of p samples and an FIR filter in the forward
path with transfer function r + sz~!. When this filter is excited with a burst of ran-
dom noise, the resulting sound is perceived as being very close to that of a
plucked string. To see get some insight into why, it is useful to examine the pole
locations. Approximate analyses are given in [JS83, KS83], but the root locus
method provides an effective way to visualize the pole distribution.

It is convenient to replace the parameters r and s with two others that are
each more closely related to one aspect of the filter’s behavior. We use

G = r + s,

the zero-frequency gain of the feedback loop; and
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Fig. 2 Root locus of poles of a plucked-string filter as the real zero moves from z = —2

toz = —0.1, for fixed zero-frequency gain G = 0.99.

u = -=sir,
the location of the real zero. The characteristic equation then becomes
2(zP - G) - w@P*' -G = 0

The fact that this is linear in u for fixed G allows us to interpret this as a usual
root-locus, with ‘‘poles’” at z = 0 and the p-th roots of G; and ‘‘zeros’’ at the
(p+1)-st roots of G. Thus, as u moves from z = 0 to z = —oo, the poles of
the filter transfer function move from the p-th roots of G (and z = 0) to the
(p+1)-st roots of G. This shows clearly why (when G > 0) the poles shift
down in frequency — and more so at high frequencies than low, so that the
resonant frequencies are inharmonic. As an example, Fig. 2 shows the locus of
pole positions in a filter with p = 30 and G = 0.99 as the position of the zero
is varied from z = O0toz = -2, The plot shows also that the higher fre-
quency poles are pulled inside the circle more than the lower frequency ones, and

explains simply why the higher harmonics decay faster than the lower (again,
when G 2> 0).

7. Examples

We conclude with some examples implementing some common sound syn-
thesis algorithms.

Plucked String with Vibrato

Adding an allpass section in the loop of the plucked-string filter allows us to
tune the pitch because it introduces phase shift [JS83]. The IFL below determines
a plucked-string filter with a time-varying allpass section in the forward loop.



#define R 0.99
#define T (((double)t) /22050.0)
#define a(t) 1.0%( sin(8*M_PI¥T*T))

if(t=0){y=1}else {y=0;}
y =y + R*S1;

tap 2 1

y = 0.5%y + 0.5%82;

tap 3 1

y = a(t)*(S4-y) + S3;

tap 4 1

tap 1 255

The difference equation defining the allpass section is
ylel = a(@®( ylt-11 - x[t]) + x[z-1]
where
a(t) = sin(8n(t/sr)?)

and sr is the sampling rate, in this case 22050 samples/sec. This varies the pitch
at an increasing frequency as time progresses.

Brasslike FM [nstrument

To illustrate the transparency of C code, a simple FM instrument, approximat-
ing a brasslike timbre, is shown next. The parameters are taken from [M85].

#define f0 300.0
#define sr 22050.0
#define T ((double)t)

double fc, fm;

int tl, t2, t3;

double a, i;

double omegac, omegam,;

if(t=10)
{ fc = f0;
fm = f0;

omegac = (fc/sr)*2*M_PI; /* from Hz to rad per sample * |
omegam = (fm/sr)*2*M_PL;

tl = (int)(0.05%sr); I* from msec to sample number * |
t2 = (int)(0.3*sr);

t3 = (int)(0.4*sr); }

if (t <= t1) {a = (Tnl)}
else if (t <= 12)
{a =13}
else if (t <= t3)
{a = (B3-T)/(13+2);}
else { a = 0;}
if (t <=11) {i = 1.0 + 3.5%(T /t1);}
else {i = 4.5;}

y = a*sin(lomegac*T + i*sin(omegam*T));




Reverberation Filter

Finally, the IFL below shows the preceding FM instrument followed by the
reverberation filter described in [M90], consisting of 6 lowpass comb sections
feeding an allpass section.

#define f0 300.0
#define sr 22050.0
#define T ((double)t)

double fc, fm;

it tl, 2, 3;

double a, i;

double omegac, omegam;
double ysave;

double y1, y2, y3, y4, y5, y6;

f(t=0)
{ fc.= Ak
fm = f0;

omegac = (fc/sr)*2*¥M_PL, /* from Hz to rad per sample */
omegam = (fm/sr)*2*M_PIL

tl = (int)(0.05%sr); /* from msec to sample number * |
12 = (int)(0.3%sr);

3 = (int)(0.4%*sr); }

if (t <= t1) {a = (T/n1)}
else if (t <= 12)
{a =1}
else if (t <= t3)
{a = (3-T) /(3-12);}
else { a = 03}
if (t <= 11) {i = 1.0 + 3.5%(T/t1);}
else {i = 4.5;}

ysave = a*sin(omegac*T + i*sin(omegam*T));

y = ysave;
tap 1 1103

tap 2 1104

y = 81 — 0.24*%(S2 — S3) + 0.6308*84;
tap 3 1

tap 4 1103

yl =y,

y = ysave;

tap 5 1235

tap 6 1236

y = 85 — 0.26%(S6 — S7) + 0.6142*S8;
tap 7 1

tap 8 1235

y2=1y;

y = ysave;
tap 9 1345

tap 10 1346

y = 8§89 - 0.28%(S10 — S11) + 0.5976*S12;
tap 11 1

tap 12 1345

=y

y = ysave;
tap 13 1499



tap 14 1500
y = S13 — 0.29%(S14 — S15) + 0.5893*S16;
tap 15 1

tap 16 1499

A=y

y = ysave;
tap 17 1499

tap 18 1500

y = 817 — 0.30%(S18 — S19) + 0.5810%S20;
tap 19 1

tap 20 1499

y3=y;

y = ysave;
tap 21 1499

tap 22 1500

y = 821 — 0.32%(822 — §23) + 0.5644*824;
tap 23 1

tap 24 1499

¥6 =y;

y=yl+y2 +y3 +yd +y5 + y6;
tap 25 132

y = 0.7%(S26 — y) + S25;
tap 26 132

y = 0.9*ysave + 0.1%y;

The lowpass comb filters are implemented directly from the transfer function
2D — g,z7D-1

H(z) = ——
-

1 - glz_ b

8. Conclusions

We have described a very simple, ‘‘little’” compiler that makes it easy to
implement a wide variety of filters for digital sound synthesis.
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EIN.C
#include <stdio.h>
#include <ctype.h>
#include <strings.h>

#define MAXLINE 250 /* max. line length */
#define MAXLIST 128 /* max. number of buffers */
#define TAP "tap"  /* keyword to create buffer for signal storage */

FILE *fopen(), *fdecl; /* file decl.h, declarations for nexty*/

char linefMAXLINE];
int useds[MAXLIST]; /* whether signal has been used */

main()
{ extern char line[];

printf("#include <math.h>\n\n");
printf("double nexty(t)\n"); I* beginning of function nexty */
printf("int t\n");
printf("{ double y;\n");
printf("#include \"decl.hlN\n\n"); /* definitions for nexty() */
fdecl = fopen("decLh", "w");
while ( fgets(line, MAXLINE, stdin) != NULL )
{ if( strncmp(TAP, line, 3) == 0 ) creatbuf();

else replace();}
printf("retun. y;\n}"); }
getint(s, q) /* get next integer in line buffer s after position *q */
char s[]; /* on exit, *q is position after last digit in integer */
int *g;
{int g

while (lisdigit(s[*ql)) (*q)++
for ( t=0; isdigit(s[*q]); t = 10%t + s[(*q)++] — 0);
return t; }

creatbuf()
{ extern char line[];
extern int useds[];
int p; /* pointer to beginning of line */
int id, delay; /* signal id, delay of buffer */

p=0;

id = getint(line, &p);

delay = getint(line, &p);

if ( luseds[id] ) delay++;
printf("B%d[ID%d++] = y:\n", id, id);
printf("ID%d = ID%d%%%d;\n", id, id, delay);

fprintf(fdecl, " static int ID%d\n", id); /* put declarations into declh */

fprintf(fdecl, " static double B%d[%d];\n", id, delay); }

replace()

{ extern char line[];
extern int useds[];
int i, id;

for ( i=0; line[i] != 0% )
if(line[i] == “§")
{ useds[id = getint(line, &i)] = 1;
printf("B%d[ID%d]", id, id);}
else { putchar(line[i]); i++; } }

main

getint

creatbuf

replace
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MAIN.C
#include <stdio.h>
#define BUFSIZE 512 /* words */
#define NSECS 2 I* no. of seconds of sound */
#define SR 22050 I* sampling rate */

main()

{ int tau, i, n;
double nexty();
float outbuf{BUFSIZE];
int lastbuf;

tau = 0;

for (n=0; n<(NSECS*SR) /BUFSIZE; n++)

{ for (i=0; i<BUFSIZE; outbuffi++] = nexty(tau), tau++);
write(1, outbuf, 4*BUFSIZE);}

lastbuf = (NSECS*SR)%BUFSIZE;

for (i=0; i<lastbuf; outbuf[i++] = nexty(tau), tau++);

write(1, outbuf, 4*lastbuf);

}

SCALE.C

I* float to scaled short int */

#include <stdio.h>

#define BUFSIZE 512

#define NSECS 2 /* no. of seconds of sound */
#define SR 22050

#define MAXOUT 32767

#define max(A, B) ((A) > (B) ? (A) : (B)

#define absolute(X) ((X) >= (0.0) ? X) : (-X))

float inbuf{BUFSIZE];
float store[NSECS*SR];
unsigned short outbuf[BUFSIZE];

main ()

float largest, ;
int 1, n, t, k;
int nbufs, lastbuf;

largest = 0;
t=0;
while ((n = read(0, inbuf, 4¥BUFSIZE)) > 0)
{ for (i=0; i < n/4; i++)
{ largest = max(largest, absolute(inbuf[i]));
store[t++] = inbufli];}
}
nbufs = t/BUFSIZE;
lastbuf = t%BUFSIZE;
1 = (float)MAXOUT /largest;
for (k=0; k<nbufs; k++)
{ for (i=0; i<BUFSIZE; i++)
outbuf[i] = r*store[k¥BUFSIZE+i];
write(1, outbuf, 2*BUFSIZE);

for (i=0; i<lastbuf; i++)
outbuffi] = r*store[k¥BUFSIZE+i];
write(1, outbuf, 2*lastbuf);

}
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