SCALABLE SHARED MEMORY INTERCONNECTIONS
Dimitrios Nikolaou Serpanos
(Thesis)

CS-TR-277-90

October 1990

Scalable Shared Memory
Interconnections
Dimitrios Nikolaou Serpanos

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

— OCTOBER 1990 —

Copyright © 1990 Dimitrios Nikolaou Serpanos
All Rights Reserved

Abstract

This dissertation presents an architecture and describes an implementa-
tion for a high-performance, scalable shared memory interconnection. The
architecture is based on a scalable shared memory model called PRAM.

Conventional shared memory multiprocessors provide high performance
but they do not scale well to either a large number of processors or over
long distances. The PRAM network is scalable and allows heterogeneous
processors to be interconnected achieving high effective data transfer rates
and low latencies.

An implemented prototype interconnects IBM AT, SUN-3 and MAC-II
machines demonstrating performance improvements over conventional high-
performance scalable multiprocessors.

The successful prototype implementation proves that high-performance,
low-cost, scalable shared memory interconnections can be built and combine

high performance with scalability.

“Ev 0160 6TL 008EV 0180

ZOKPATNG

The one I know is that I know nothing.

Socrates

TO popunykt dvokdAvye £va Kovovpyo
KOKKO 0TOV GLpo Tig Zogdpoc
Kot youpoTow ...

Elye dvoxodvwel thv ZeAqvn Tov.
Avavouog

The ant discovered a new

grain of sand in the Sahara desert;

and it was very happy ...

It had just conquered its Moon.

Anonymous

to my parents Nikolaos and Georgia
and my sister Fotini

Acknowledgements

Many people affected my life in Princeton in one way or another.

My advisor, Richard J. Lipton, was definitely the one who inpired me
the most. His support and ideas made the work I present in this dissertation
possible, while his criticism shaped it. I feel honored that he supervised my
work.

I was very fortunate to be working with Jonathan S. Sandberg. Jon as a
colleague and a friend helped me overcome many problems with his advice
and support. His contributions to the project have been substantial.

Andrea LaPaugh’s help and support have been invaluable to me. Not only
did she give me enough background for my work, but she was also a good
critic of my research. Her comments definitely improved this dissertation.

I am happy that Wayne Wolf has been at Princeton University for the last
two years. Working with him was a great experience. Wayne’s comments
have clearly improved the dissertation.

I am indebted to Hector Garcia-Molina for his support and constructive
criticism of my work and to Kai Li for numerous enlightening discussions.

I wish to thank David Dobkin for being so friendly and supportive. I will
definitely miss his great sense of humour.

Thanks to Rafael Alonso for his support and especially for his guidance
during my first year here.

It has been a privilege to work with Ted Altman, Tom Meyer and Lou
Pokrocos. Their contributions to the project are invaluable. [am very happy

to acknowledge R. Altman, T. Kyi and C. Zimmerman for their contributions

too. Special thanks to my friend Daniel Barbara for his support and his
contribution to the verification of the network protocols.

I will always remember the Computer Science graduate students of my
year who were very friendly and in many ways helped me through my years
here. Especially, I wish to mention Jeffery Westbrook who has been a good,
supportive friend of mine.

I wish to thank the Greek students at Princeton University who made life
in Princeton more tolerable. Especially, I should mention my friend Linos
Frantzeskakis for his support through all these years. |

Special thanks to Cindy Lipton and Nancy Porter who always made me
feel welcome at their home.

Many, many thanks to Sharon Rodgers who really made my life easy at
the department.

Finally, I wish to express my gratitude to my parents, Nikolaos and Geor-
gia, and my sister Fotini for their guidance and support during all these years.

I am proud to be a member of the family. I dedicate this thesis to them.

Contents

Abstract
Acknowledgments

Introduction

1.1 Shared Memory Machified - 2 2 ¢ c o 2w 55 8 550 5 5 5 50 5

1.2 Message-Passing SysteImns . « o s s s mw ¢+ 5 598 6 5 5 5 %
1.3 Nelworks w « ¢ s mm 085 wmoe 58 smmds s @ i § 8 3mma
14 The Princeton PRAM Projeeti. « = « w5 2 s » wmos s 5 5 = o
L5 dhedigChitline « ww o o s mwan s v vmw s s wma 5§ 2w

Uniform-Cost Communication

2.1 Uniforor-cost NebWorks ; ¢ oo o 2 5 s 0% ¢ 5 8 w8 & § 5w

2.2 Uniform-Cost Networks in Parallel Computing
2.2 ReliableBroadeastitig . « v s ow s c s v me s s 5 mms
222 ClockSynchronizalion « . : s v w s 5 s s w5 8 3 v w%

2.3 Designing a Uniform-Cost Network

The PRAM Memory Model

31 Inlyoduction: s s sw e v s mwews s s o Rm 658 BME s 6 BRR
3.2 A Communication Model « <. ¢ v wuwvismmeassssan
33 The PRAM Model . : : s 25 0 s 5 555 ¢ 5 s SR LR BEE
3.4 A Classificationof the Model

vi

iv

co ot Gt B N e

©o

13
13
16
18

4 A PRAM Architecture

41 Introduction.
42 A Two-Processor PRAM System
4.3 The Network Prototype

4.3.1 Flow Control and Error Handling Protocols

4.3.2 Deadlocks e
4.3.3 Network Traffic Control

5 Testing the Prototype

5.1 Imtroduction.
5.2 The Shared Memory Model
B3 PLADO . : i ¢ v o wmw s a6 wms x5 wmms s s
54 Simulation.
5.4.1 Problem Description
5.4.2 Simulation Results

55 LCorreetiiess : s sw e v s simm 5 5 S 6 5 5 i s § 58

6 Performance and Applications

6.1 OSystem Pexformance . : « wv « 5 s nww ¢ 6 8 9% « 5 & &
6.2 FExperiments and Applications . - « v v v v s v v ¢« « 4
6.2.1 PRAM vs. Intel’siPSC/2
6.2.2 Reliable Broadcasting
623 RemoteClockReading. . . .« ..« o434
6.2.4 Real-Time Audio Data Transfers
6.2.5 Remote ProcedureCalls'.

vii

33
33
34
39
41
43
45

51
51
94
99
61
63
67
73

7 Conclusions
7.1 ResearchResults
7.2 Open Problems and Future Research

A Verification of the Hardware Protocols

Vii1

List of Figures

0
1.2

2.1
22
2.3

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

gl
5.2

A Typical Shared Memory Architecture -2
A Hypercube Message-Passing System 4
Uniform-Cost vs. Non-Uniform-Cost Networks 13
A Uniform-Cost Interconnection 19
The PRAM Memory Interconnection 20
A 2-Processor PRAM System 25
An N-Processor PRAM System 27
The Two-Processor PRAM System 33
Organization of the PRAM Memory Board 33
The Format of the Messages 35
The PLAN Switch 38
The PAGE-SHARE Table 44
Distributed Page Tables 45
A Teml o wwiw o5 mmd s s o mm o b6 UE G360 9KEFE S ES 57
Freculon ol 28etiplE v s s sp s s s wm s e a5 58 5245 595 60

ix

9.3

6.1
6.2
6.3
6.4

AISBeript Beartple : « v wom s o5 soms 4 55 96 0 § 5 5 B 62

A K-Switch Network Diameter 5
Experiment Configuration i
PRAM vs. iPSC/2 I T T 78
Latencies of Broadcast Messages 80

List of Tables

3.1 Characteristics of Multiprocessor Memory Organizations . . . 30

5.1 Syntax and Semantics of the PLADO Language Statements . 54

xi

Scalable Shared Memory
Interconnections
Dimitrios Nikolaou Serpanos

Computer Science Department

Princeton University

Chapter 1

Introduction

This dissertation presents an architecture for scalable multiprocessors that

allows high-bandwidth and low-latency communication between processors.

Multiprocessors are systems with multiple interconnected processors. The
interconnection of many processors raises an important problem: efficient
interprocessor communication. Communication among processors is neces-
sary not only to transfer computational data but to synchronize cooperating
processors, too. Although computational data transfers many times involve
large amounts of data, process synchronizatibn (and control) typically re-
quires short messages. Efficient interprocessor communication requires high
performance not only for transfers of large amounts of data but for short

messages as well.

The cost of interprocessor communication is the major bottleneck in con-
ventional multiprocessors and affects their most important parameter: scal-

ability, i.e. their ability to scale to more processors and over long distances

1

M 0 o MN— 1

INTERCONNECTION
NETWORK

PO 5 PN— 1

Figure 1.1: A Typical Shared Memory Architecture

with low performance degradation [LS88] [AI83].
In the following sections I present the main characteristics of the major

conventional multiprocessor architectures:
e shared memory machines;
® message-passing systems;

e local, wide area and long-haul networks.

1.1 Shared Memory Machines

In most conventional shared memory machines (e.g. [CGBG88], [Got83],
[Pfi85]) all processors share a common physical memory. A typical shared
memory organization is shown in Figure 1.1, where the interconnection net-
work is typically a bus, a multistage network or a crossbar switch. In some

systems the memory modules may be local to processors (e.g., memory mod-

2

ule My local to processor Py, M local to Py, etc.). All interconnected proces-
sors P;, 0 < ¢ < (N —1), access the shared memory (M, M, ..., My_q)
with regular read/write memory operations and communicate through the
shared memory.

One of the main factors that affects the performance of shared memory
machines is the access delay of the shared memory [LS88] [AI83]. Busses
allow a low delay in memory access but they are not scalable: bus-based
systems can accomodate an order of 20 processors. More processors need a
different interconnection. A crossbar switch is the desirable solution but its
cost and complexity is too high for interconnecting thousands of processors.
Interconnection networks provide a compromise between crossbar switches
and busses. Their cost and complexity is lower than crossbars but they
introduce memory access delays that typically grow logarithmically with the
number of interconnected processors. Physical limitations may cause the
memory access delays of machines with large multistage networks to be much
slower than local memory access delays of uniprocessor systems even when
state-of-the-art technology is used [FD86].

So, conventional shared memory systems do not scale well to arbitrarily
large numbers of processors and over long distances without serious perfor-

mance degradation.

Figure 1.2: A Hypercube Message-Passing System

1.2 Message-Passing Systems

Message-passing machines [AS88] [Sei85] are composed of nodes which are
processors equipped with local memory. The nodes are interconnected to
form a network such as a hypercube (e.g., [Sei85]) (see Figure 1.2), cube-
connected cycles [PV81], etc. The processors can access directly only their
local memory and communicate by explicit exchange of messages. The archi-
tecture of these systems supports scalability to a higher degree than conven-
tional shared memory systems and allows interconnection of heterogeneous

processors [AS88].

The limitations of message-passing machines are their programming

paradigm [LS88], and the cost of interprocessor communication which is

4

higher than the cost in conventional shared memory systems. The program-
ming difficulty of message-passing machines rises from the fact that pro-
grammers have to explicitly code the message exchange in their programs.
This requires a different, harder programming model than the familiar, easy
shared memory paradigm. The performance of interprocessor communica-
tion is lower than that of shared memory systems because of software over-

head and such delays as DMA setup and path setup.

1.3 Networks

Among conventional networks (local area, wide area and long-haul), the local
area networks (LANs) provide the highest performance. This performance is
lower than the one provided by message-passing multicomputers and is also
unsuitable for many demanding parallel and distributed applications (e.g.,
real-time audio/video applications, etc.). As Arnould et al. mention [Arn89),
the perfornia,nce of conventional networks is limited by such costs as context
switching, data copying, and protocol and interrupt processing.

So, although conventional networks support scalability and heterogeneity,
they provide performance unsatisfactory for high-performance parallel and

distributed computing,.

1.4 The Princeton PRAM Project

The need for high-performance communication as well as the current ad-

vances and decreasing cost of fiber optic technology have boosted research

5

in the area of communication. The progress in optical interfaces allows the
development of high-speed interconnections unavailable up to date providing
inexpensive, high data transfer rates.

Direct application of optical technology in existing communication mod-
els is not always effective, because of architectural limitations of the models;
for example, the Ethernet [MB76] requires a minimum latency for all trans-
mitted packets for collision detection [Sch90] ([Sch90] cites [TBF83]). Many
projects have started lately focusing on the effective use of the high band-
width/low latency optical interconnections provide. Many of these projects
investigate new processor interconnection architectures in an effort to achieve
high process-to-process data transfer rates. These efforts include: the Nectar
project at CMU [Arn89], the MERLIN project at SUNY Stony Brook and
the Sandia National Labs [WM89], DEC’s Autonet [Sch90], FDDI [Ros86]
and Princeton’s PRAM Project.

The Princeton PRAM Project focuses on the development of memory

level multiprocessor interconnections that provide:
e high bandwidth/low latency process-to-process communication;
e scalability to large number of processors;
e geographic separation;
e heterogeneity.

A result of the project’s efforts is the PRAM memory model [LS88] (devel-
oped by R. J. Lipton and J. S. Sandberg) which supports scalability and geo-

graphic separation, while it allows systems to achieve high process-to-process

6

data transfer rates, equivalent to main memory access rates for many applica-
tions. An important property of the model is that it allows uniform-cost com-
munication, i.e. messages are inserted in the network at rates (in bytes/sec)
independent of the messages’ size. Because of this property, PRAM-based
systems provide a different model for parallel and distributed computing
than conventional systems affecting fundamental problems in the area, e.g.

reliable broadcasting, clock synchronization, etc.

The PRAM model was used to build a prototype that connects heteroge-
neous autonomous systems (IBM ATs, SUN-3s and MAC-IIs) and achieves
data transfer rates up to 24 MBits/sec. The network is composed of switches,
each with 4 full-duplex ports. The 4 ports of each switch communicate
through a high-speed bus. Independent switches are connected with fiber
links that are terminated by the switch ports. The prototype is currently

used for evaluation and software development.

The development of the prototype led to research in testing, too. The
major difficulty identified was the absence of methodologies in testing parallel
systems which resulted in great difficulties in testing the prototype. This
research led to the development of a simple language, called PLADO, which
allows designers to write legible, portable parallel testing programs. Part
of the research was devoted to a verifier which identifies deadlocks, timing

dependencies and starvation in these programs.

7

1.5 Thesis Outline

This dissertation presents my contribution to the architecture, implemen-
tation and testing of the prototype built for the Princeton PRAM Project.
It also describes work of the other members of the PRAM team to provide
the necessary context. R. J. Lipton and J. S. Sandberg contributed to the
architecture, while T. Altman, T. Meyer and L. Pokrocos worked on the im-
plementation and testing of the prototype. J. S. Sandberg, R. Altman, C.
Zimmerman and Ted Kyi contributed to the applications. Daniel Barbara
worked on the verification of the hardware protocols of the network.

Chapter 2 introduces the notion of uniformity in communication cost and
shows how the existence of uniform-cost networks affects the solution of some
fundamental problems in parallel and distributed computing.

Chapter 3 describes the PRAM (Parallel Random Access Memory) mem-
ory model and identifies its advantages and weaknesses, while Chapter 4
presents an architecture for a PRAM system, the prototype built, the design
decisions made, its properties and extensions.

Chapter 5 describes PLADQO and the results of the research on the ver-
ification of PLADO programs. Chapter 6 presents the performance charac-
teristics of the prototype and discusses some applications.

Finally, Chapter 7 concludes the dissertation with a presentation of open
problems related to the PRAM Project.

A short version of material in Chapters 2, 3, 4 and 6 appears in [LS90].

Chapter 2

Uniform-Cost Communication

Uniform-cost communication networks allow processes to effectively insert
messages in the interconnection at rates independent of the size of the trans-
mitted message and provide better performance than conventional networks
for applications that involve exchange of many short messages. Memory-level
interconnections support uniform-cost communication, because processes can
effectively transmit messages at rates equivalent to memory access rates in-

dependent of the size of the messages.

2.1 Uniform-cost Networks

Conventional scalable multiprocessors use various types of interconnections
ranging from local area networks (Ethernet [MB76], Token Ring [IEE85],
etc.) to specialized interconnections (hypercubes [AS88], cube-connected

cycles [PV81], etc.). The end-to-end delay of a message transmission from a

9

processor F; to a processor P; over one of these networks typically consists

of the following delays:

e the packetization overhead;
o the path-setup delay;
o the network latency;

e the reception delay.

The packetization overhead of a message is due to such delays as dividing
the message into the appropriate number of frames (if necessary) and cal-
culating the CRC bytes and headers (in most systems, this delay includes
the overhead of a system call). The path-setup delay is the delay to setup
a path between the communicating processors P; and P;: on the Ethernet
one has to account for collisions; on Intel’s iPSC/2 with the Direct Connect
Modules (implementing a variation of wormhole routing) there is a delay to
establish a path between P; and P; before data starts flowing between the
processors [Nug88]; on a token ring a system has to wait until it can use the
physical media for transmission. The network latency is the delay for a mes-
sage to propagate through the physical interconnection between P; and P;,
while the reception delay is the delay on the receiving processor to process
the incoming message, i.e. perform error checking, remove headers, etc., and
extract the useful data from the received bit string. The terms end-to-end

delay and transmission delay used in this chapter are defined as follows:

Definition 2.1.1 The end-to-end delay of ¢ message transmission through

a network is the delay from the beginning of the message’s transmission until

10

the last byte of the transmaission 1s received by the receiver.

Definition 2.1.2 The transmission delay of a message is the time inter-
val between the initiation of a transmission and the time when the last byte

of the transmission is successfully inserted into the network’s physical media.

It is quite important to emphasize here that in most networks the pack-
etization overhead and the path-setup delay are paid every time a proces-
sor transmits a message. One can approximate the transmission delay of
a message with D data bytes in a conventional network with the formula:
Tp = ki + koD, where ky and k, are positive real numbers. k; accounts for
delays independent of the message’s size (e.g., the path-setup delay, context
switching delays), while k;D captures the size-dependent delays (e.g., data
copying, CRC calculations). In conventional networks k; is much larger than
ks. For example, on our local Ethernet under regular load we measured k;
in the order of 2 milliseconds, while &, is in the order of 2 microseconds per
byte. This difference of 3 orders of magnitude between k; and k, makes k;
the dominating factor in T, when D is relatively small.

The nature of communication in these networks leads to their classifica-

tion as non-uniform-cost communication networks:

Definition 2.1.3 A non-uniform-cost network is an interconnection, where
the mean transmission delay of D data bytes is: Tp = ki + koD with ky

and ky positive real numbers and with ky > ky.

The term non-uniform-cost communication comes from the observation that
the delay of transmitting D data bytes is clearly not equal to D transmissions

each of 1 data byte.

11

Non-uniformity has its merits and has been proven suitable for commu-
nicating large amounts of data among systems. There are many problems

though which would benefit from a uniform-cost communication network.

Definition 2.1.4 A uniform-cost communication network is an intercon-
nection, where the mean transmission delay of D data bytes is: Tp = kD

with k a positive, real number.

We study only wniform-cost networks that have k the same order of mag-
nitude as ky; if k& is the order of ki, then one can use a conventional non-
uniform-cost network to simulate the uniform-cost one, thus experiencing
poor performance.

Refering to the definition of non-uniform-cost networks, we see that k; is
quite small. It is expected that k in uniform-cost networks cannot become
as small as k, although it can be the same order of magnitude. As will
become clear with the description of the implementation of the uniform-cost
network prototype, if one uses the same technology and design methodologies
for building a uniform-cost and a non-uniform-cost network, then one can
make the constant ks smaller than k. This implies that non-uniform-cost
networks provide better performance whenever the quantity of transmitted
data is larger than a critical value D¢, while uniform-cost networks are more
efficient when the quantity of transmitted data is smaller than Dy. This
critical amount of data Do is: Do = k_flﬁ Figure 2.1 shows the mean
transmission delay in both types of networks (uniform-cost and non-uniform-

cost) as a function of the amount of transmitted data.

12

Communication
Cost

Uniform-Cost

Non-Uniform-Cost

K1

K1/(K-K2) Message Size
(in bytes)

Figure 2.1: Uniform-Cost vs. Non-Uniform-Cost Networks

2.2 Uniform-Cost Networks in Parallel Com-
puting

Uniformity in communication cost of scalable systems provides new “ground
rules” and thus affects the solution of some problems in parallel and dis-
tributed computing. Two problems affected are drawn from the area of

distributed computing: reliable broadcasting and clock synchronization.

2.2.1 Reliable Broadcasting

Reliable broadcasting is a known problem in distributed computing that
appears in the studies of various problems in distributed systems, such as
reaching asynchronous distributed agreement [MSM89]. The probleﬁ can be
stated as follows (similarly to the problem descriptions in [CM84], [MSM89]):
assume that there is a parallel system connecting N processors through an

interconnection. Processors broadcast messages to all other connected sys-

13

tems. Messages can be lost due to network failures, buffer overflows, etc.
Design an efficient protocol which makes certain that all operational proces-
sors receive the broadcast messages.

Since in many cases (e.g. [CM84] [WGS83]) the problem has been stud-
ied for systems interconnected with a broadcast network, such as the Ether-
net [MB76], we will use the common Ethernet in our analysis. Although often
the problem is studied together with the problem of ordering the broadcast
messages in exactly the same order at the receivers (e.g., [CM84] [MSM89)]),
we do not get into the ordering problem here.

A straightforward solution to the reliable broadcasting problem requires
every system which received a broadcast message to acknowledge it to the
broadcasting site [Moc83]. This solution requires (N — 1) acknowledgments
per broadcast message (no faults assumed).

In the following we use the acknowledgement time as a metric to compare
the networks we consider. Assuming that processor Pg broadcasts a message
and then receives the acknowledgements, we have the following definition for
the metric (the definition is analogous to the one Tokoro and Tamaru give

for the response time [TT77]):

Definition 2.2.1 The acknowledgement time is the delay between the
beginning of the acknowledgements’ transmission and the time when Pg’s

interface receives the last acknowledgement.

We also assume that the network latency of the considered networks is neg-
ligible.

For the Ethernet, the shortest acknowledgement time can be approxi-

14

mated by: Tnu(D) = ki + (N — 1)k2D, where D is the number of bytes
in an acknowledgment (quite small); the delay is such because most of the

operations whose costs are described by k; can occur in parallel.

The inefficiency of this straightforward solution led to the development of

alternative solutions which reduce the number of acknowledgements (e.g., the

protocol by Chang and Maxemchuck [CM84] and the Trans protocol [MSM89)).

messages pass through a token site, which timestamps each message and
acknowledges it with only one acknowledgment per message; the token is
rotated among all functioning processors. In case of a token site failure, the

token is passed to another processor.

Such complicated solutions have been developed, because of the ineffi-
ciency of the simple, straightforward solution when the network is a conven-
tional non-uniform-cost interconnection of the Ethernet type. That solution
is quite efficient with a uniform-cost network: the longest possible acknowl-
edgement time is Tyy(D) = (N —1)kD. From the above formulas we deduce
that Tyu(D) > Ty(D) for a network with N < D'k /(k — k2) + 1; us-
ing ky = 10°ky, k = 2k; and D = 4 bytes, we see that the uniform-cost
network is more efficient than the Ethernet for network sizes up to 250 pro-
cessors. This solution is not only efficient but also simpler than the protocols

described above.

15

2.2.2 Clock Synchronization

Clock synchronization is another important problem in distributed comput-
ing. The clock synchronization problem in a system with M processors is to
find a fault-tolerant algorithm which resynchronizes the processor clocks pe-

riodically in an effort to keep them synchronized (the source of the problem

is clock drift) [LMS85].

The problem is quite important and thus has been extensively studied

(e.g., see [LMS85], [CAS86], [Cri89)).

A basic step in many clock synchronization methods is the reading of a
remote processor’s clock. The following discussion is based on a paper by
F. Cristian [Cri89] and borrows its notation and method description. When
a process P on a processor Py wants to read the clock on another processor
P, then it sends a message (“¢eme =?") to P;. A process) on P receives
the message and sends back to P the message (“tsme = ”,T'), where T is
the time () reads on P;. Then P estimates the time on P; with the formula:
CH(T,Dpq) = T+Dpq(1+2p)—pxmin, where 2Dpq is the round trip delay
between the transmission of the message (“¢4me =?") and the reception of
(“teme =", T), min is the delay for an empty message to be prepared on P,
transmitted towards P; and received by P; in the absence of any transmission
errors and any system load; p is the clock drift rate. The maximum error
that P can make in its estimation is:
emaz = Dpo(l+ 2p) — min.

Assuming that both messages (“téme =77) and (“time = 7, T) are each N

bytes long, the maximum error with a conventional non-uniform-cost network

16

1s:

eNU — (k1 + ko N + 7NV 4+ RNUY(1 + 2p) — (minyy + 7NV + RNV

min min

where 7VV is the network latency, .

min

NU is the minimum network latency, RNV

is the message reception delay, RN is the minimum message reception delay
and minyy is the minimum transmission delay of a null message (under no

load and transmission errors).

With a uniform-cost network the error becomes:
emaz = (KN +7Y + RY)(1 + 2p) — (miny + 75, + RL.;,)

where 7Y is the network latency, Y. is the minimum network latency, RV is

the message reception delay, RY. is the minimum message reception delay
and miny is the minimum transmission delay of a 1-byte message instead of
an empty message (the delay of sending an empty message with a uniform-

cost network is zero, by definition).

To compare the above mentioned errors we need to make some assump-
tions for the specific architectures of the networks, since the formulas involve
the network latency and the reception delay of messages. Since in an exper-
iment such as clock synchronization the messages are short (we use N < 10

bytes), we assume that R"Y = RNV and RV = RU. . Also, for a non-

min min®

uniform-cost network such as the Ethernet or token rings: 7"V = 7NV

min"®
For the network latencies in a uniform-cost network, we use the values mea-
sured on the PRAM prototype for an interconnection of P < 12 processors:

Y = 155 microseconds and 7V, = 5 microseconds. With these values,

p = 6%107° (I assume that p has the value used by [Cri89]) and i

RY and 7"V less than 1 msec, the ratio of the errors in the two networks

17

is: E%‘Ef ~ 10; this implies that improved results can be achieved, when a
uniform-cost network is used. So, the use of a uniform-cost network leads to
higher precisions in the estimation of remote clocks (at least for small size
networks, as the above measurements show) and thus results to improved
synchronization.

Both examples demonstrate that existence of uniform-cost networks al-
lows efficiency and simplicity in problems which require exchange of small
sized messages for their solution. Clearly, the important question that de-

serves study is the feasibility of building such a network with the desired

performance characteristics.

2.3 Designing a Uniform-Cost Network

Conventional communication interfaces are expensive: the transmission delay
is high. Commonly, a system call is used to transmit a message. The message
transmission delay with the system call is quite long: one has to account
for context switching, the code executed by the system call and the delay to
transfer the data to a communication device. This delay quickly accumulates
to hundreds of microseconds in conventional interconnections and is thus
prohibitive for efficient uniform-cost communication.

The architecture described in this dissertation uses memory for uniform-
cost communication in scalable multiprocessors. The architecture is based on
the PRAM shared memory model developed by R. J. Lipton and J. S. Sand-
berg [LS88]. Memory provides a good means for communication in general,

because a one-byte message can be viewed as a byte access in memory: the

18

Output
Memory

Processor_|
0

Input
Memory

Interconnection

Network

Output
Memory

Processor_|
N-1

Input
Memory

Figure 2.2: A Uniform-Cost Interconnection

destination address of the byte message corresponds to the memory address
of the byte and the data of the message corresponds to the data in the mem-
ory address. Memory is especially suitable for uniform-cost communication,

because:

e a block memory access of N bytes is equivalent in delay to N accesses

of 1 byte each (cost uniformity);

e a memory access delay is less than a microsecond in conventional sys-
tems, which is the desired order for the parameter k in uniform-cost

networks (high performance).

In a simple configuration, every machine connected to a uniform-cost com-

munication network has some memory specifically used for communicating

19

Processor_| PRAM
= Memory
0 0
Interconnection
Network
Processor__| PRAM
L Memory
N-1 N-1

Figure 2.3: The PRAM Memory Interconnection

with the other processors of the network. The design for such a simple sys-
tem is shown in Figure 2.2. Each processor is equipped with some write-only
output memory and some read-only input memory. When processor P; trans-
mits a message, it writes it in its output memory and the network broadcasts
it to all the other systems. The message traverses the network, arrives at the
input memories of all the other systems and asynchronously updates them.
So, the message becomes available to all the other processors P;, j # i. In
such a system one can pipeline the links of the network so that one data
byte (or word) is inserted in the link during every memory access cycle.
So, transmission is oblivious to the transmitting system and provided that
the transmission/reception and network circuitry is fast enough, the data

transfer rates of the interconnection can reach memory access rates.

20

If one combines the output and the input memories into one physical
memory space (see Fig. 2.3), then one gets a shared memory model charac-
terized by: high degree of scalability and no hardware-enforced coherence.
The model, called PRAM [LS88], is suitable for fast transmissions with low
end-to-end delays. A detailed presentation of the PRAM shared memory
model follows in Chapter 3. An important feature of PRAM, aside from its
high transmission rates, is that it provides a good interface to the program-
mer, since it is an easy memory interface.

The advantages of the memory interface become clear when we view in-
terprocessor communication as a producer/consumer synchronization process
between the communicating processors. Simple double buffering allows sys-
tems to transfer arbitrarily large amounts of data through the interconnect
at high transfer rates. If one maps partitions of this memory in a process’s
address space then one can avoid the large context switching overhead of
conventional communication and thus achieve low end-to-end delays, while
the operating system can use other partitions of the memory and achieve
high data transfers for system applications such as remote procedure calls,

etc. Some performance measurements for such applications are presented in

Chapter 6.

21

Chapter 3

The PRAM Memory Model

A distributed shared memory model, called PRAM (Parallel RAM) [LS88],
allows the design of massively parallel systems with a large number of hetero-
geneous, geographically separated processors and achieves high data transfer

rates and low latencies.

3.1 Introduction

The cost of interprocessor communication is a function of two parameters:
the effective data bandwidth of the used network and the end-to-end de-
lay of a message. This cost limits all conventional multiprocessor organi-
zations in one way or another. Shared memory multiprocessors, which re-
quire high bandwidth and low latency communication, are conventionally
limited to a small number of homogeneous processors that have to be in very

short interprocessor distances (e.g., [CGBGS88] [Hil86]). Message-passing sys-

22

tems [AS88], which scale easier and support heterogeneity, have higher com-
munication cost than shared memory systems. Their message transmission
delay is non-uniform causing a substantial overhead in problems which re-
quire exchange of a large number of small sized messages. Message-passing
machines are also harder to program than shared memory systems because
they provide a different programming model [LS88]. Finally, networks are
slow for many desirable high-performance applications such as real-time CD

quality audio data transfers and video data transfers.

The communication cost in all the above systems is high because the
computing systems produce messages at higher rates than the effective band-
width of the used interconnections although the links used for building these
networks offer high bandwidth. A common characteristic of the previously
mentioned network architectures which increases the cost of communication
are the protocols. Protocols are used to meet certain requirements: shared
memory MIMD machines require that their local memories or caches remain
coherent at all time instances; some networks employ protocols to detect

collisions and to recover from message losses, etc.

PRAM is a distributed shared memory model which decreases the com-
munication cost because it dismisses hardware coherence protocols and allows
the memory to become incoherent achieving high data transfer rates through
the interconnect [LS88]. Since PRAM does not require any path-setup delays

or packetization overhead it achieves low end-to-end delays.

23

3.2 A Communication Model

It is easier to evaluate the effect of PRAM on interprocessor communication,
if we use the following simple communication model (this is the model used
by Lipton and Sandberg in [LS88] for data motion).

Communication can be viewed as a simple process where one system
sends data to another one in a producer/consumer fashion. The transmitting
system (producer) sends the data of the message first and then it sends a
special message (or signal) indicating that it is “DONE”; when the receiving
system (consumer) detects the “DONE” message, then it knows that the
whole message has been received and consumes it. If the consumer wants to
transmit, then he becomes the producer and sends the message data followed
by the “DONE” message and so on.

This model assumes that communication is reliable, but it is easy to
extend it to include non-reliable communication channels by allowing error
mechanisms, which support recovery in case of a failure; for example, the
PRAM architecture presented in Chapter 4 describes one way to include an
error mechanism in a PRAM interconnection.

This model provides a simple yet accurate description of communica-
tion in all kinds of interconnections: from tightly-coupled multiprocessors
to long-haul networks. The PRAM shared memory model is optimal un-

der this communication model and is thus suitable for any communication

system [LS88].

24

11
Processor | | _]':|PRAM [:/\/}RAM |:_b ™| Processor
1 =~ A 1 /_/ 2 ~t 2
12
BUS BUS
1 Processor Network 2
Port Port

Figure 3.1: A 2-Processor PRAM System

3.3 The PRAM Model

PRAM is a scalable shared memory model developed by Lipton and Sand-
berg [LS88]. In the following a 2-processor PRAM system is described first to
clarify some of PRAM’s characteristics. The presentation is expanded from
the description in [LS88] and is followed by the definition of the N-processor

system from the reference [LS88].

Suppose that two processors P; and P; use PRAM to share memory. Then
each keeps a local copy of the shared memory address space. Each local copy
is a dual-ported memory with one port, the processor port, connected to the
bus of the local processor and the other port, the network port, connected
to the remote system through a communication link as shown in Figure 3.1.
In order to read, each processor just reads its own local copy. In order to
write, each processor just writes its own local copy and simultaneously sends
a message through a link to the other shared memory copy; for example,

in Figure 3.1, if processor P; writes data d in location k of its local PRAM

25

memory, it updates its local copy and simultaneously sends a message (k, d)
through link /; to the network port of the local copy of processor P,. When
the message (k,d) arrives at the network port of P,’s PRAM memory, it
updates through this port the local copy of P, with data d in location &
asynchronously. There is no synchronization at any level betweén P, and
P,. So, P, can continue writing into the memory, being oblivious to the
message transfers. In this fashion link /; can be pipelined, thus achieving data
transfer rates equal to memory access rates and optimal latency. Note that
the high performance does not depend on large block sizes: the performance
is achieved even for single writes of one word; this is the effect of cost-
uniformity. As Lipton and Sandberg [LS88] mention, the disadvantage of
PRAM is that the shared memory can become incoherent but coherence can
be enforced in software by using locks; furthermore, they show that compiler
technology can be used to shield this incoherence from the programmer.
Lipton and Sandberg [LS88| also mention that performance is not affected
by incoherence, since in many parallel programs write conflicts represent a

small percentage of the memory accesses [EK88].

The PRAM model can be used to share memory among more than two
processors. The formal definition of the PRAM model for N processors
(from [LS88]) follows:

Definition 3.3.1 [LS88] Let Py, P,,..., Py be processors that share a mem-
ory address space with locations 0,1,...,m — 1. Assume that each processor
P; has a local memory M; with memory locations 0,1, ...,m—1; local memory

M; is the i™* processor’s copy of the shared memory address space. Each lo-

26

Processor_| PRAM
- Memory
0 0
Interconnection
Network
Processor_| PRAM
- Memory
N-1 N-1

Figure 3.2: An N-Processor PRAM System

cal memory M; is a dual-ported memory with a processor port and a network
port, as described in the 2-processor PRAM case above. The processor port
of the local copy is connected to the local processor’s bus, while the network
port 18 connected to an interconnection network, as shown in Figure §.2.
All the local memories are initially in the same state. Each processor

ezecutes read and write commands on the shared memory address space:

1. read(i): processor P; performs a normal read access on location i in

its own local memory M;. This is a local action;

2. write(z,v): processor P; performs a local action and initializes a global
action. Locally, 1t updates location @ of its local copy M; with data v
(this is the local action). Globally, it injects a message (i,v) in the

interconnection network towards all other processors. This occurs in

27

parallel with the local write operation. Processor P; does not wait for
an acknowledgement of successful receipt of the message by the other

processors and it never receives one.

As the (i,v) messages arrive at the network port of other processors, Py, they
automatically update the local copies My asynchronously by writing value
v in location i. In both reading and writing, a processor never waits for
the completion of a global action, i.e. for successful receipt of the network

messages by the rest of the processors.

The decoupling of local and global actions is the key feature of PRAM
which allows the memory system to be scalable and with high performance [LS88].
This decoupling is the source of inconsistency in PRAM [LS88], but as the
following theorem by Lipton and Sandberg [LS88] shows it is not possible

to build a high performance, scalable and consistent shared memory sys-

tem [LS88]:

Theorem 3.3.1 [LS588] Let r (respectively w) be the best case (fastest possi-
ble) time to read (respectively write) some consistent shared memory. Then,
r4+w > 7, where T is the latency of the shared memory system (the delay

between a request and its fulfillment).

For a complete discussion of PRAM and its performance the reader is

referred to the original report by Lipton and Sandberg [LS88].

28

3.4 A Classification of the Model

PRAM provides an alternative memory organization in multiprocessing sys-
tems, because it combines characteristics of both conventional shared mem-
ory and message-passing systems.

Conventional multiprocessor architectures —shared memory and message-
passing— present two extremes in memory organization. Both organizations
assume that there is a global memory that can be accessed by any processor
in the system in some way.

Shared memory systems require this global memory space to be unique
and all the processors to access it in the same fashion: with memory accesses
that behave functionally as main memory accesses. The performance of these
accesses 1s lower than regular local memory accesses in uniprocessor systems
and access conflicts are typically serialized.

Message-passing systems distribute the global memory to the processors.
Each memory cluster is assigned as local memory to one of the processors. A
processor can directly access only its own l.oca,l memory; whenever it needs
data residing in another processor’s local memory, it requests it from that

processor with use of messages.

PRAM provides an alternative memory organization, because it replicates
the global memory and assigns one copy to each of the system’s processors as
local memory. In this way, all the memory can be accessed as local memory
by any processor achieving the performance of local memory accesses; mem-
ory updates by processors are broadcast to all the other processors through

an interconnection. So, PRAM provides a third alternative to multiproces-

29

Table 1: Multiprocessor Memory Organization Characteristics

Characteristic Shared Memory | Message Passing | PRAM
Equal access times to

all global memory YES NO YES
Memory access delay equal

to local access delay NO YES YES
Decoupling of memory accesses

and network use NO YES YES
Immediate availability of the

whole shared address space YES NO YES
Software level coherence POSSIBLE N/A YES

Table 3.1: Characteristics of Multiprocessor Memory Organizations

sor memory organizations. Since PRAM combines characteristics of both

shared memory and message-passing architectures, it provides advantages

from both organizations. Table 3.1 presents the main characteristics of the

three memory models: shared memory, message-passing and PRAM.

As can be observed, PRAM offers advantages of both conventional mul-

tiprocessor memory models, because it allows each processor to have a local

copy of the whole shared memory space and to access it with local access

delays through the processor port, while remote write operations update the

non-local memory copies asynchronously through their network port without

the local processor’s intervention.

30

Chapter 4

A PRAM Architecture

This chapter presents the architecture of a uniform-cost network using the
PRAM shared memory model [LS88]. The interconnection is a dynamic,
asynchronous, packet-switching network with distributed control and al-
lows heterogeneous interconnected systems to communicate through a shared

mMemory space.

4.1 Introduction

An interconnection among N systems, as shown in Figure 3.2, requires an
architecture for the PRAM memories and the interconnection network. The
PRAM memory designs are simple dual-ported memory architectures which
are equipped with the necessary communication circuitry. Section 4.2 de-
scribes the organization of the PRAM memories implemented in a prototype

and presents their performance characteristics. The described PRAM mem-

31

ory architecture can be used to implement PRAM memories for any existing
computing system. The only difference would be the memory interface which
heavily depends on the specifics of the system for which the memory is de-

signed.

The interconnection is a dynamic, asynchronous, packet-switching net-
work composed of switches. Switches have full-duplex ports which commu-
nicate through a high-speed bus within the switch. A switch port can be
connected to either a PRAM memory or a port of another switch. By inter-

connecting many switches, one can build arbitrarily large networks.

The architecture of a PRAM system greatly depends on the purpose of
the interconnection and the performance requirements: the PRAM memory
model can be used for architectures of systems ranging from supercomputers
to long-haul networks. Our purpose was to connect autonomous systems
which have memory cycles in the order of a few hundred nanoseconds. This
goal as well as the technology available at the time, led to the development
of the architecture presented in this chapter. Since a prototype was imple-
mented, the presentation is driven by the implementation and includes the
characteristics of the prototype as well as its performance, wherever appro-

priate.

4.2 A Two-Processor PRAM System

The two-processor prototype connects two autonomous systems which can

be either IBM ATs, SUN-3s or Mac IIs and is a direct implementation of the

32

Processor

1 |PRAM [
1 1

i
!
!

RAM [_J' | Processor
2 <] 2

BUS BUS
1 Processor Network 2
Port Port

Figure 4.1: The Two-Processor PRAM System

Bus
Memory< Internal Bus >'Lnterface<::>

MUX | IDEMUX BUS
| i
TAXI TAXI
& &

Opticall | Optical
XMTR| | RCVR
!} f
Optical Optical
ink ink

Figure 4.2: Organization of the PRAM Memory Board

33

2-processor PRAM system as presented in Section 3.3 (see Fig. 4.1). Each
of these systems has a custom board on its bus, which contains the PRAM

memory. The organization of the board is shown in Figure 4.2.

The two processors share a 32 K Byte memory space. Each board con-
tains a 32 KByte memory on it (PRAM memory), which contains the pro-
cessor’s local copy of the shared memory address space. The memory has
been implemented with conventional single-ported memory chips. An arbiter
time-multiplexes the memory accesses from the local processor and the net-
work (just a link in the two-processor prototype), allowing the memory to
operate as dual-ported: each bus cycle of the local processor is divided into
two subcycles, the first one of which accesses the memory upon the request
of the local processor, while the second one updates the memory upon the
network’s request. The decision to build a dual-ported memory ouf of single-
ported memory chips was made because of the cost: dual-ported memory
chips with large sizes are quite expensive. Since the memory is functionally
a dual-ported memory, we model it as a dual-ported memory with each of
the ports dedicated to satisfying the accesses of either the local processor or
the network. The port that satisfies the local processor accesses is called the
processor port, while the other one is called the network port. The memory

can be accessed in a byte (8 bits) or word (16 bits) fashion.

Whenever a processor reads the shared memory, it performs a read access
on its local memory which is satisfied through the processor port of its dual-
ported PRAM memory. When it updates the shared memory, it writes in the

memory through the processor port and simultaneously transmits a 32-bit

34

31 30 16 15 0

B/W ADDRESS DATA

Figure 4.3: The Format of the Messages

message through the transmitter to the other processor. The transmission
occurs in the same bus cycle with the update. Further, the processor updat-
ing the memory can return to its computations (or continue transmitting)
because there is no synchronization of any kind between the two processors.
The transmission circuitry serializes the 32-bit message (after encoding it)
and broadcasts it through a fiber link.

The format of the 32-bit message is shown in Figure 4.3. The low order
16 bits are data bits and the next 15 are address bits. The MSB (Most
Significant Bit) distinguishes byte and word operations.

When the message reaches the remote PRAM board, it updates the
board’s memory through the network port by writing the data contained
in the low 16 bits of the message in the address specified in the message (bits
30 through 16); the access is either a word or a byte access, depending on
the value of the Most Significant Bit (bit 31) of the message. This access
is identical to the access that occured in the transmitting system through
its processor port. If the write access is in one of the lowest 4 bytes, then
when the message reaches the network port of the remote PRAM memory,
not only does it update the memory but it also raises an interrupt requesting

the processor’s attention. The interrupts are necessary for efficient use of the

35

memory and for network management as will be described later.

The boards also have two CRC registers: one for the transmitted mes-
sages and one for the received messages; the purpose of the CRC registers is
to increase the error detection and correction abilities of the communication
system. The CRC registers can be read and reset by the local processors
through an I/0 port. |

This prototype implements PRAM shared memory between the two con-
nected systems, offering uniformity in the communication cost between the
two processors: the cost of transmitting one word of information is in the
order of 500 nanoseconds (the exact delay depends on the specific system:
IBM AT, SUN-3 or Mac II) and the cost of transmitting N words is approx-
imately N times the cost of transmitting one word. The delay of transmit-
ting NV words is not exactly NV * Tpyemory, Where Tinemory is the local memory
access delay, because the communication chips available at the time the pro-
totype was built are slower than the memory of the systems interconnected.
New, faster circuits are already available which will allow the new genera-
tion network to achieve transmission bandwidth exactly equal to the memory
bandwidth.

PRAM custom boards for the IBM ATs have been operating since the
Fall of 1988 and they have demonstrated highly reliable operation and com-
munication with transfer rates up to 24 M Bits/sec and bit error rates less
than 107'°. The SUN-3 boards have operated since the early Spring of 1989
achieving the same performance, while printed circuit boards for the Mac II

have been operational since late Fall of 1989.

36

4.3 The Network Prototype

It is clear that one should build a special network to connect more than two
systems using PRAM. The network architecture developed is for a dynamic,
asynchronous, packet-switching network with distributed control. The net-
work is composed of high-speed switches, called PLANSs, each with 4 ports;
each switch is organized as shown in Figure 4.4. The prototype interconnec-
tion implements the developed architecture, except the memory management
scheme which will be presented shortly.

Each processor connected to the network has a custom board on its bus
as the one described in Section 4.2 and is connected to a switch port with a
full-duplex connection as the one between the two PRAM memories in the
2-processor system: the connection consists of two links, each one dedicated
to one-way transmission. The packets traversing the interconnection are the
ones shown in Figure 4.3.

The switch architecture is bus-based. The 4 ports of the switch receive
incoming messages and they multicast them. When a port receives a message,
it demultiplexes it and stores it in a FIFO. The bus is dispatched to all the
ports in a dynamic daisy chain scheme (for fairness in bus arbitration) and is
eventually granted to the port which received this message. As soon as the
port gets control of the bus, it broadcasts over it the message to the other
3 ports. When these ports detect the message on the bus, they latch it and
use the message’s address bits as a key to access a locally stored table and
decide whether they should transmit it or not. Some of the ports will finally

transmit it, while the rest will discard it. This scheme is used to reduce the

37

Controller

PORT 0
Optikal
Tk Receiver FIFO
Optikal
Tl Transmitter: FIFO
PORT 3
Optiba]i
Link Receiver FIFO
Optical
T ik Transmitte FIFO

BUS

Figure 4.4: The PLAN Switch

38

network traffic and will be described in more detail in the next subsections.

The design issues of the network that are worthy of further analysis are:

e data flow control: because data are lost when buffers overflow;

e error handling: since link failures are possible and parts of the net-

work should be functional, when such failures occur;

e deadlocks: because network management messages (for flow control

and/or error handling) should not bring the network to an unrecover-

able deadlock;

e network traffic control: because data flood the network if all pro-

cessors transmit every message to all the other processors.

4.3.1 Flow Control and Error Handling Protocols

PRAM [LS88] is a shared memory model requiring all the local PRAM mem-
ories to receive the data inserted by any processor updating its local PRAM
memory. This requirement causes broadcasting of all incoming messages to a
switch. Since the message transmission rates at the outputs of the switch are
equal to the message reception rates at the inputs, the incoming messages to
a switch are serviced at a rate equal to approximately 1/4 of the incoming
message rate. This implies that if a switch port continuously receives mes-
sages, then its input FIFO will eventually overflow and lose data. A solution
to this problem is use of a flow control protocol. The data flow protocol im-
plemented in the prototype is a hardware version of a Stop&W ait protocol:

whenever the input FIFO of a switch becomes Half-Full, it sends a STOP

39

message through its output link to the system (switch port or processor) that
transmits to it. The system receiving the STOP message suspends transmis-
sion, until it receives a START message. The port that sent the STOP message
monitors the input FIFO and when it “sees” the FIFO under Half-Full,
it sends a START message to the previously STOPped system, which in turn
resumes transmission (specifically, in the prototype the START message is
transmitted as soon as the FIFO becomes Empty). This simple scheme does
not allow data to be lost due to buffer overflows; the only condition that
has to be satisfied for the scheme to be correctly operating is: the delay to
transmit, propagate and recognize a STOP message should be less than the
delay to transmit and propagate FIF'O/8 consequtive messages between 2
systems (switch ports or processors). The condition guarantees that when a
port sends a STOP message, the connected, transmitting system will receive
it and suspend transmission, before the Half-Full FIFO becomes Full.

It should be mentioned here that processors are able to consume messages
at the network rate and thus never send STOP messages to switch ports
connected to them.

This simple hardware Stop&W ait protocol is coupled with an error han-
dling mechanism that supports error recovery in case of link failures. The
error mechanism operates as follows: whenever a link fails, the switch port
.(or processor) receiving through it identifies the failure with special circuitry
(on the prototype, the TAXI chips used for reception have a special pin that
indicates errors). As soon as the failure is detected, the port “shuts” itself
down and resets all its storage cells but not before it sends out to all di-

rections a special ERROR message that includes the port address. Shuting

40

down the port means that the network will be partitioned in two networks,
which will be operating independently, until the port becomes operational
again. Special care must be taken so that the subnetwork that includes the
port transmitting to the failed link does not “wait” for a START message,
if it was STOPped, when the failure occured. In the meantime a timer in
the failed port monitors the receiving line and as soon as it identifies a time
interval T (1 msec in the prototype) during which the line does not identify
any errors, it makes the port operational again. So, the network is unified
as soon as the failure is fixed. A simple extension to the implemented mech-
anism can have the processors informed of the status change of the port by
a special ALIVE message the port would send to all directions as soon as it

becomes operational.

4.3.2 Deadlocks

One has to pay attention to the coupling of the two protocols and make sure
that no combination of START, STOP and ERROR messages brings two
communicating ports to a deadlock. The flow control and the error protocols
can be modelled with a finite automaton that describes the state of a port
at every time instant. The protocols were verified for deadlock and livelock
freedom with the protocol verifier SPANNER [ABMS88] (see Appendix A).
Although the protocols do not allow deadlocks between two communicat-
ing switch ports, there might be a case with STOP messages in the network
where a deadlock is unavoidable. Because of the operation of the switch one

can prove that

41

Theorem 4.3.1 A PRAM network built with the PLAN switch will not have
a deadlock iff there is no cycle in the network topology which contains only

switches.

Proof: Taking into account the operation of the switch, one can prove that
a switch stops its operation completely iff there are more than two ports
which have received a STOP message. If only one port is STOPped then the
switch transmits through the rest 3 ports all the messages incoming to the
STOPped port.

Clearly, a deadlock in the network would require a circle of switches where
all of the ports in the cycle have received a STOP message. In the cycle, all
the switches will have simultaneously at least two STOPped ports each and
thus a deadlock.

If there is no circle in the network, then the network can be modelled
with an unrooted tree, where the leaves are the system’s processors. Assume
that all the ports of the network have received a STOP message. Since the
processors never send STOP messages to the ports that transmit to them,
they eventually consume the data of the switches connected to them. Since
there are no cycles in the network, the switches on the first level of the
tree are connected to 3 processors each. As soon as the processors consume
an appropriate amount of the queue of such a switch’s STOPped port, the
port will send a START message to the switch on the second tree level.
Eventually all the second level switches will send START messages to their
neighboring switches and recursively, all the network switches will eventually

receive START messages and will become operational again. So, there can

42

be no deadlock, if there is no cycle in the network topology. QED. O
Cycles are allowed in the network only if they include a processor (with
2 PRAM boards). It should be mentioned here that cycles that involve only

switches are forbidden for two reasons:

e messages will be locked in a cycle, looping indefinitely and generating

new messages;

e cycles can cause deadlock.

4.3.3 Network Traffic Control

Network traffic is a problem in a PRAM network, because every message
inserted in the network has to be broadcast to all connected systems. If all
processors update their PRAM memories simultaneously, there are O(N?)
messages traversing the network (N is the number of processors in the sys-
tem) [LS88]. However, it is often not necessary for a processor to send data
to all other systems but just to a few of them. In the system described thus
far this is not possible: all data written in one PRAM memory are received
by all the connected processors. One can reduce network traffic by allowing
the switches to multicast incoming messages instead of just broadcast them.

One solution that allows efficient use of the PRAM memory and decreases
network traffic is to use a memory management scheme. The memory man-
agement scheme described here requires that each switch port stores a small
table, which serves the purpose of a routing table. The tables implement

distributed routing and are programmable by the system processors. The

43

TRANSMITTING PAGE 0

PROCESSOR PAGE 1
By Py A By.1
PAGE 63
P
RECEIVING .
PROCESSOR.
BN :

Figure 4.5: The PAGE-SHARE Table

philosophy of the scheme is the following: the PRAM memory space is di-
vided in pages (the current decision is for 512 bytes per page) and each
processor defines the pages it shares with a subset of the processors; for ex-
ample, processor P; could share the page with number 2 with processors P,
and P;, while processor P, wants to share page 5 with processor P;. When
this definition is made, the memories in the switches are programmed so that
the appropriate paths are traversed by each message. Referring to the page
sharing definition given above, the tables would be used by the ports, so that
an update, for example, from processor P; in page 2 would be directed only
towards processors P, and Ps, while processor Py would never know that Py

ever made the update.

PRAM memory is paged in 64 pages of 512 bytes each. Each processor

44

Processor

0
1
2
3

PLAN SWITCH

POR'll PORT PORT] PORT
0 1 2 3
PO Pl P2 P3
PORT O PORT 1 PORT 2
Page Page Page
0 2. i3 0 1 2 3 0 1 2 3
A AN 0o ofof1 0
VANV
0 0 11 | processor | AZA/A/A Processor 1 |0 |1 |1 10
2101 [1 o0 2 VXX
3 3

Figure 4.6: Distributed Page Tables

45

defines the set of pages it wants to share with other processors by updating a
PAGE-SHARE table (see Figure 4.5). The policy for this definition is: each
processor defines which updates 1t wants to receive. This policy makes the
switch design simpler and increases security in the system (no processor can
forcibly corrupt another processor’s memory). The described PAGE-SHARE
table is global to the system and is not stored in the network as shown in
Figure 4.5 but is distributed to the network switches. The routing table
stored in each switch is a 3-dimensional table with the semantics:

(1 if a message with an address in page

page_no arriving at port in_port

T[page-no,in_port, out_port] = 1 should be transmitted by port

out_port;

| 0 otherwise.
Each port stores a small table which indicates which messages will be trans-
mitted through its transmitter: switch port Port;, 0 < i < 3 stores the
routing table part with out_port = :. When a message is latched in a port
from the internal bus of the switch, the locally stored table (the routing ta-
ble) is accessed with key the incoming port number and the page address of
the access (the page address is part of the message). The table returns just
one bit, which instructs the port to either transmit the message or discard
it.

As an example, assume that the whole memory space has just 4 pages
and that we have the network configuration shown in Figure 4.6 with only
one switch. The tables stored in the ports allow processors Py and P; to

share page 3, while processors P; and P, share pages 1 and 2. Port P; does

46

not participate in the shared memory configuration. The switches are pro-
grammed with a message that corresponds to one of the interrupt locations
of the shared memory address space (memory mapped programming).

This memory management scheme allows distributed control and offers:

high performance, because of the absence of a central controller;

low network traffic, since messages are “filtered” in (multicast by) the

switches;

higher effective network bandwidth;

lower effective network latency;

e more efficient use of the shared memory address space.

47

Chapter 5

Testing the Prototype

Testing the prototype led to the development of PLADO, a simple language
for writing parallel testing programs and motivated research on a verifier,
which identifies deadlocks, starvation and timing dependencies in these pro-

grams.

5.1 Introduction

Testing and verification of computing systems is a hard process. Hardware
testing is a problem that has been extensively studied (e.g., see [Lal85], [BF76])
for system levels ranging from switch and gate level to microprocessor de-
signs. The higher the system level, the harder the problem is. Researchers
have proposed some methodologies for testing specific high level designs of
microprocessors [SH81] [NR82], and regular designs [VS86], but there is no
methodology applying to most systems. The problem seems to be especially

48

acute for multiprocessing systems and networks, where the issues involved are
many (topology, communication method, etc.). Special attention has been
drawn to communication protocol testing and verification (e.g., see [Sun81]),
while high level system testing is still unexplored; as a result most of the
conventional parallel systems and networks are tested using ad hoc methods
which seem appropriate only for the system at hand. |

The purpose of testing a system module is to apply certain binary pat-
terns to the inputs of the tested module and record the results in order to
detect (and locate) faults. Testing a parallel system is a complex process
that involves testing of many modules and functions: interconnection hard-
ware, memories, protocols, etc. The process can easily fail, because of the
many factors involved. For example, a test to exercise a switch of an inter-
connection using a parallel program can fail due to problems ranging from
hardware failures to program errors. Because of the inherent complexity of
parallel programs, it is often the case that a failure of a test is not due to the
hardware circuit being exercised but due to flaws in the test program itself.
This is the main problem we address in this chapter: how to identify prob-
lems in test programs of parallel systems and how to prove such programs
correct.

In the context of this chapter, a fest is a set of independent programs
which run simultaneously on different processors and communicate through
shared memory. A test is considered correct, if there is no possibility of dead-
lock or starvation and if there is no dependency on the processors’ relative
execution speed (no timing dependencies).

It should be clear that this question of correctness is well defined and is

49

closely related to the problem of program correctness. Program correctness
is a hard problem in computer science that has been extensively studied.
Various methodologies have been proposed to prove programs correct, e.g.
Hoare’s Logic [Hoa69] [Lam77] and temporal logic [Pnu77].

Test programs, as we defined them previously, are a special case of par-
allel (communicating) programs. Their main characteristic is that they need
a small repertoire of instructions. This characteristic led us to the devel-
opment of PLADO, a special, simple language for writing test programs.
PLADO is useful for testing the interconnection parts of shared memory
multiprocessors, because in most practical cases the processors used in these
systems have been fully tested in a stand-alone mode before they are inter-
connected. One can write PLADO programs that exercise various parts of a
multiprocessor interconnection. The advantages of using a special language
are mainly clarity and portability; portability is important, because it allows
test programs to run in the same way on heterogeneous machines.

Verification of the correctness of tests requires simulation of the behavior
of an appropriate hardware model when the test programs are executed on
it. The model’s behavior can be simulated with a finite automaton which
recognizes all the possible execution sequences of the test. Potential problems

can be identified through the structure of the automaton.

50

5.2 The Shared Memory Model

For every system we distinguish 2 different models:
o the hardware model, that includes the necessary details for testing;
e the programming model, which is used for programming the system.

A shared memory system, for example, can be implemented in various ways:
with a bus, an interconnection network, the PRAM model [LS88], etc., but
the programming (or functional) model is basically the same: a shared mem-
ory accessible by a number of processors providing atomicity of memory
operations at the byte level.

When testing a system, one needs the hardware model to find the nec-
essary binary test patterns and write meaningful and useful tests. The pro-
grams though which run on the processors of the system and bring the test
patterns to the exercised hardware modules of the system, are “correct”
under the programming model.

The shared memory programming model we use follows; there are K
processors: Py, Py, ..., Pk_;1. Each processor has access to a shared memory
with (M + N) locations: SM|0],...,SM[M + N — 1]. The first m locations
of the shared memory SM are flags: SF0],...,SF[M — 1] with SF[0] =
SMI[0],...,SF[M — 1] = SM[M — 1]. The flags are binary; each one can be
either 0 or 1. The last N locations of the shared memory constitute the shared
buffer SB, with SB[0] = SM[M],...,SB[N — 1] = SM[M + N — 1]. Each
location of the shared buffer SB can contain a character from an alphabet

Y. Every processor executes a program written in PLADO.

o1

When more than one processors access the same shared memory location
simultaneously, the result is a random serialization of the accesses.

We do not make any assumptions about the speed at which various pro-
cessors execute their programs. We just assert that every statement takes a
random but finite amount of time to execute on a processor; this accounts
for all types of uniprocessor systems that might be connected to the shared
memory: time-shared systems, special-purpose systems, etc., but it does not
account for complete processor failures.

In the following the terms machine and system refer to the multiprocess-
ing organization described above, consisting of the K processors P, ..., Px_1

and the shared memory SM.

5.3 PLADO

A test in PLADO is a set of independent programs, each running on a dif-
ferent processor. The programs communicate with each other through the
shared memory.

When one wants to test circuits (modules) of a shared memory system’s
interconnection, one writes a test that brings the necessary binary patterns
to the inputs of the module under test.

PLADO is a special, simple language for writing the programs of the test.

The language was developed for the following reasons:

e Programs should be portable and run in the same way on heterogeneous

processors, independent of issues such as byte ordering, memory access

52

atomicity, hardware synchronization locks, etc.;
e The programs’ function should be clear and consise;
e Testing is a process which does not require a large repertoire.

Since we are not interested in testing a system’s processors but its in-
terconnection, the test language should just be able to operate on memory
and/or I/O ports, depending on the exact system implementation. For ex-
ample, for the shared memory multiprocessor system we have built, we need
to have only a few functions: read memory, write memory and synchronize
(to implement interprocessor synchronization) with a busy-wait statement
or with interrupts.

The language offers 2 kinds of statements:

o non-memory statements which allow one to install the shared memory
address space in different locations of each processor’s virtual address
space, provide statistical or program execution information on the ter-

minal, allow continuous execution (looping) etc;

o memory statements which operate on the shared memory.

Our main interest is in the memory statements, which have the syntax and
semantics summarized in Table 5.1. The shared memory can be accessed
with either byte (8-bit) or word (16-bit) operations.

Statement write_byte z fills the shared buffer SB with the 8-bit quantity =
with byte accesses. Similarly, write_word z fills SB with the 16-bit quantity

z in every word boundary.

53

Table 2: PLADO Memory Statements

Syntax

Semantics

write_flag ¢ =

write value & (0 or 1) in flag SF[i]

write_byte “x”

write the 8-bit quantity “x” in all byte locations of SB

write.word “x”

write the 16-bit quantity “x” in all
word boundary locations of the shared buffer SB;

wait_flag 1 z

busy-wait on flag SF[i{] = SM[:], until it contains value z (0 or 1)

wait_byte “x”

busy-wait on the shared buffer SB, until every byte location contains

(L

X

walt_word “x”

busy-wait on the shared buffer SB, until every word location contains

[
X

select_flag(i)
{

case (: statement_0;

case 1: statement_1;

}

read flag SFi],

and select as next statement
statement_0, iff SF[i] ==
statement_1, iff SF[i] ==

select_byte(word)(SB)
{

case “x”: statement_x;

@ .,

case “z”: statement_z;

default: statement;

read buffer SB with byte (word) operations

select as next statement for execution the statement in case “i”,
where ¢ matches the values read in SB.

If there are more than one different values in 5B,

then execute the case statement case “w”

where w is a string that contains exactly

the different values read.

Table 5.1: Syntax and Semantics of the PLADO Language Statements

54

A wast statement is a busy-wait, until the shared buffer is filled with a
specific value. For example, wait_byte = busy-waits, until all bytes in SB
contain the 8-bit quantity z. All the accesses involved in the execution of the
statement are byte operations. A wait-word statement operates analogously
but it involves word operations and z is a 16-bit quantity.

Write and wast statements exist for the flags, too. Statement write_flag: z
sets or resets the flag SF[i], depending on the value of z (1 or 0 respectively)
and statement wait_flag ¢ x busy-waits, until flag SF[i] gets value z.

The last statement of interest is the select statement, which resembles the
switch statement in C. Select performs a read operation either on a flag SF[i]
or on the shared buffer SB, whichever is specified and chooses the statement

that should be executed next. There are 3 types of select:
o select_flag(r): reads flag SF[i];
o select_byte(SB): reads the shared buffer SB with byte operations;
o select_word(SB): reads the shared buffer SB with word operations.

If a flag SF'[i] is read, then the next statement to be executed is chosen de-
pending on the value of SF'[i] (0 or 1). If the buffer SB is read, then the value
returned by the read on the buffer SB is not the exact pattern SB exhibits,
but a string of bytes or words (depending on the type of select specified)
containing the different values read in SB. Then the next statement to be
executed is the one in case: case z, where string = contains the same values
(bytes or words) returned by the read operation.

The memory statements on SB are composite statements: they perform a

55

sequence of atomic operations. An atomic operation involves a single shared
memory location (byte or word). The PLADO composite statements consist
of N consecutive atomic byte operations (NN is the size of the buffer SB in
bytes) or N/2 consecutive atomic word operations proceeding from the low
order shared memory locations to the high order ones; e.g.

write_byte “z” is actually executed as:

for (1= 0;4< N;i++4) 8B[i]= “z"

This implies that whenever 2 or more different processors write into the
shared buffer simultaneously, their atomic accesses (write operations) can be
interleaved in an arbitrary way and different locations of the buffer could
end up with different values. For example, if one processor fills SB with

the character “z” and another one fills it with the character “y”, then each

location of the shared buffer SB will finally get either an “2” or a “y” in each
location. The resulting pattern in the shared buffer will be one out of the
2N possible patterns of interleaved “z” and “y”s. We assume that all these

patterns can occur with some positive probability, since we do not make any

assumptions about the execution speed of the processors.

An example of a test with two PLADO programs is shown in Figure 5.1.
Here there are 2 processors, Py and P, performing a test. The test is a pro-
ducer/consumer synchronization process. Both processors become producers
and consumers at different time instances. The test is useful in exercising
the arbitration circuitry in virtually all possible shared memory designs, al-
though the faults covered could differ, because of the specific differences of

the implementations.

56

. .

wait_flag 01 write_byte y

write_flag 00 write_flag 0 1

select_byte(SB) wait_byte x

{ write_byte z
case y: write_byte x write_flag 0 1
case z: write_byte w wait_byte w

} ' loop

loop

Figure 5.1: A Test

Py executes the program on the left of the figure, which waits until flag
SF[0] is set (becomes 1); then Py resets SF[0] to 0 and reads SB with byte
operations (due to the statement select_byte(SB)). If all the bytes in SB
contain a y, then Py proceeds and fills SB with z in every byte. If all bytes
contain a z instead of a y, then P, writes a w in every byte location of SB.

Loop causes the program to be continuously executed.

In the meantime, P; fills SB with y in every byte and then it sets flag
SF[0] and waits until SB contains an in every byte. When SB is filled with
z (by processor Py), P, fills SB with byte z and sets the flag SF[0] again
(Po has reset it, as explained above) and waits until all bytes in SB contain
a w. The loop statement at the end causes P; to continuously execute the

program; in PLADO there is only one kind of loop which causes the program

57

to loop back to the first script statement.

5.4 Simulation

The problem we discuss in the rest of this chapter is that of verifying that test
programs are free of timing dependencies, deadlocks and starvation through
simulation of their execution. The focus of this section is the simulation of
the execution of the programs, while the next one discusses verification.
For the analysis here we use a model simpler than the one presented for
PLADO above. This model captures all the essential characteristics of the
parallel execution of test programs that affect the complexity of simulation,
while it is free of the PLADO specific details that complicate the analysis.

The architectural model we use is the following:
e there are K processors: Py, ..., Px_1;

e there is a multiported (K-ported) shared buffer SB with N locations
accessible by all K processors of the system (we do not use the flags
mentioned in the previous section; the extension to include them is

simple);

e whenever more than one processors simultaneously access the same

location of SB, the accesses are serialized in an arbitrary way.
Each processor P;, 0 < i < (K — 1), executes script L;.

Definition 5.4.1 A script L; is a test program executed on processor P;; if

L; s a script, l; = | L; | 1s the length (size in statements) of L;.

58

The main simplification over PLADO is in the statements that are allowed
in a script; there are only two types of statements: read and write. The main

characteristics of these statements are:

e ecach statement of a script is a composite statement which either reads
or writes in B with atomic operations and has the buffer property, i.e.
the atomic operations of a composite statement access all locations of

SB consequtively proceeding from SB[0] to SB[N — 1].

e a write statement has the syntax: write z; the semantics of the state-

ment is that it fills SB with value z in every single location;

e a read statement on processor P; has the syntax of a case statement:

read{ A, 7: S1; "As”: So; ..., "Am”: Sm; default: Saria;};

where A; is a set of values and §; is a script composite statement; the
processor reads SB and accumulates the set of different values, SB;,
in the buffer (not its exact pattern). P, then finds the set A;, such
that A; = SB; and executes the corresponding statement S; next.
This model for the read resembles the select statements in PLADO. A
simple extention to include jumps would allow us to use this model for

wait statements too.

The problem we want to solve is to simulate the execution of the K scripts
L;,0< i< (K —1)(L; is executing on processor P;). If we can simulate
the execution of the scripts in a test, then we can build an automaton that
recognizes the valid executions of the scripts. Given this automaton we can

identify flaws in the test programs, i.e. deadlocks, starvation and timing

59

Processors
B . b . WR
ki : S ! E
th,O,a t“7""&:,(),5! twF’s,l 1WR:,],a Time
W5, 1.0 We, 1,6

Figure 5.2: Execution of 2 Secripts

dependencies as we will discuss later.

To simulate the execution of the scripts of a test, we must be able to
identify at every time instance the sets of values that reside in SB. In
the following we focus on this problem, which is the main problem in the

simulation.

5.4.1 Problem Description

An execution of a set of scripts in time can be represented with a diagram
such as the one shown in Figure 5.2. We call such a diagram an ezecution
diagram. The figure shows an execution of 2 scripts on processors Py and P;:
on Fy: write a;
on Pi: write b; read{”a”: S1; default: Sy;};

In this ezecution diagram we use the following notation: tyw,,, is the

time when processor P; starts filing SB with z, while ¢y . _ is the time when

e,8,T

processor P; ends filing SB with . twg,; is the time when processor P;

60

starts reading SB due to a read statement, and YWRe 4y, 420) is the time
when processor P; finishes reading SB and A;, 1 < j < M, are the sets with
which the read value set is compared to determine the statement which will
be executed next.

The two processors in the example, Py and Py, execute their write state-

ments starting at times tw,,, and tw,,, and finishing at times tw,,, and

,1,b
tw.., respectively, while the read statement starts executing at time twr,,

and finishes at time twg, The figure shows the case when tw,, , = tw,,,

A{a}*
and tw,,, = tw,,,. To verify this execution of the scripts we have to iden-
tify the various sets SB; the read statement may read from the shared buffer
SB.

In this simple example it is easy to identify that the read statement will
return a subset of the set {a,b}. The nondeterminism of the exact contents
of SB; is due to the arbitrary interleaving of the atomic statements of the
simultaneously executing write statements. The following interleaving of
atomic statements, for example, shows how the read statement may return
5B = {a): |
P, writes SBI[0]; P, writes SB[0];

P, writes SB[N — 1]; P, writes SB[N — 1];

P, reads SB[0], ..., SB[N —1].

Clearly, this interleaving will result in P; reading SB; = {a}. If the order of
Py and P, is interchanged when accessing each cell of SB in the interleaving,
then the result would be: SB; = {b}, while in case we interchange the

access order of the processors in a few (not all) cells the result would be:

61

Processors

B d f
B : | ; r
| e

t1 2 t3 4 5 6 t7 t8 9 ¢t10 Time

Figure 5.3: A 3 Script Example

SBl = {a, b}

Although in this simple example it is easy to identify that the read state-
ment will return a subset of {a, b}, it is not easy to identify the possible sets
read when many write statements are executed on many processors. Fig-
ure 5.3 shows a more complicated example with only three processors. The
processors Fy, P;, P, execute the following statements:

Py: write a; read{”d”: Si; default: Ss;}
Py: write b; write ¢;
Py: write d; write f;
The problem here is to identify the possible sets SBy returned by the

read statement; for example, can the read statement return {d}?

Actually, the read statement here can return {d}, and the following inter-
leaving of atomic operations of the scripts proves it (note that the interleaving
satisfies the time order given in the figure):

at t;: Py writes SB[0];

62

at t3: Po writes SB[0];
at t3: P, writes SB[0];
between ¢3 and t4: Py writes SB[1]; P, writes SB[1]; P; writes SB[1];

Py writes SB[N — 2]; P, writes SB[N — 2|; P, writes SB[N — 2];

at t4: Py writes SB[N — 1];

at t5: P, writes SB[N — 1]; P, writes SB[N — 1];

At this time, SB is filled with the value d in every location. Then the inter-
leaving continues as follows:

at t¢: Py reads SB[0]; P, writes SB[0];

at t7: P, writes SB[0];

between t7 and ts: P, reads SB[1]; P» writes SB[1]; P, writes SBJ[1];

at tg: Py reads SB[N — 1];

at tg: P, writes SB[N — 1];

at t10: Py writes SB[N —1];

With this interleaving SBy = {d}, but there are other possibilities for 5By
too: {f}, {¢, f}, etc. It is impossible though for the read statement to read
only {a}, or {c¢}. For example, Py cannot read only {c}, because P, reads
SB[0] at time tg, for which we know that ¢ < t and #; is the time when P,
writes ¢ in SB[0]; so, F, reads a value different than ¢ (actually, it has to be
either a d or an f) in SB[0] and thus SBy will definitely be different than
just {c}. So, it is not clear what sets of values a statement can read.

Actually, the following general problem is still open:

Problem: Given a set of K scripts with M read statements, W Ry, WR,, ...

63

b

W Ry, an execution diagram for the scripts, and M sets RBy, RB,, ..., RBy,
can we decide if there is an interleaving of atomic statements that satisfies
the timing of the execution diagram and has WR; return to the reading
processor the set RB;, 1 < 1 < M, in time polynomial in K and N? O
This problem is the main one in the simulation of test scripts, because the
simulator has to accept valid executions of the scripts, represented by such
execution diagrams. Although the above general problem is still open, joint
research with R. J. Lipton and A. LaPaugh has given some results which are

presented in the following subsection.

5.4.2 Simulation Results

Given a set of K scripts and an execution diagram for them, we can com-
pute the sets of values returned by the read statements by expanding each
composite statement to its atomic operations, creating all the possible in-
terleavings of these operations and storing the pattern of the whole buffer
SB at every time instance. This proves that the problem mentioned above
is decidable, but the solution is inefficient because its complexity is clearly
exponential in N, the size of the shared buffer SB.

Given an execution diagram of the scripts (which shows the start time
and the finish time of each composite statement), we can compute at every

time instant the values that may exist in SB as the following lemmas show.

Definition 5.4.2 At time t, a composite statement with starting time tg,

and finishing time tg, is dominated, if there is another composite statement

64

which has starting time tg, and finishing time tg, and tg, < tg, < tg, < t.

Lemma 5.4.1 At any time instant t, the values written by dominated write

operations do not exist in SB.

Proof: If a write statement ST} is dominated by a statement ST, then
every cell written by ST has been overwritten by ST; (by definition ST is
finished at time ¢, so it has definitely written in all IV cells of SB).

So, the values in SB at time ¢ are not due to dominated write statements.

O

Definition 5.4.3 At time t, a composite statement with starting time ts and

finishing time tg s undominated, iff it is not dominated and ts < tg < t.

Lemma 5.4.2 At any time instant t there are at most K undominated write

operations.

Proof: Assume that there are more than K undominated write statements.
Then there is at least one processor that has more than one undominated
write statements. This i1s a contradiction because the later write statement

definitely dominates the earlier one. O

Definition 5.4.4 At timet, a composite statement with starting time ts and

finishing time ty is progressing, iff ts < t < tg.

Given an execution diagram for K scripts and a time tg in it, we denote
with A; the progressing write statement at ¢t on P;, if any, and with B; the
undominated write at time tp on P;, if any. We denote with C; the write

statement that starts j-th in order after tg.

65

Lemma 5.4.3 Given an ezecution diagram for K scripts with only one read
statement starting at tg and any subset S of the values written by A;’s, B;’s
and C;’s (as long as its cardinality is less or equal to N), we can construct
an interleaving that makes the read return ezactly the values in S. The only

requirement for this subset is that:

o it includes the value written by the A; or B; that started last before tg
(this value definitely resides in SB[0] at time tg);

o it includes the value of the A;, B;, or C; that finished last before the
read finished (this will definitely reside in SB[N — 1], when the read
finishes, i.e. reads SB[N —1]).

Proof: Assume that S = S5;US;USs, where S; = {z | z is writ-
ten by some A;} = {ao, a1, ..., a5-1}, S2 = {z | z is written by
some B;} = {by, by, ..., b1}, Sz = {& | z is written by some
Cit = ey €y « vy Cigaji}:

We define as t; the earliest time at which a B; finishes execution. We
know that all B; start execution before t¢, because if a statement B; starts
execution after ¢y, then the statement that finishes execution at ¢ is domi-
nated by B;.

So, we construct the interleaving as follows:

before t;:

e All B;’s write SB[0] in time order;
e All B;’s write SB[1] — SB[| S1 | —1] in any order;
e All A;’s starting before t; write only SB[0];

66

e All B;’s write SB[| S1 |] in any order such that the processor writing

bo goes last;

o All By’s write SB[| S1 | + | S2 | —1] in any order such that the processor
writing bjs,|-1 goes last.
At t f-
o the earliest finishing B; finishes.

After t4, before tp:

e All remaining B;’s finish; new A;’s start at appropriate relative times

to the finishing B;’s and write only in SB[0];

After all A;’s are started, we sort all A;’s which write values that are members
of 51 by increasing starting time; assume that the final orderis A,, ,..., Amlslr

We know at this time that A, g | has written last in SB[0], so its value is in
SB0] (Amg,, is a member of S by the definition of §).

o A, writes SB[1]— SB[S |-1];

o A, writes SB[1] — SB[| 51 | =2];

o A writes SBI[1].

(151 1-1)
At time tg:
We know that all cells SB[0] — SB[| S1 | —1] contain the values in S;, while
SB[| S1|] —SBJ[| S1 |+ | S2 | —1] contains the values in Sj;

67

e Statement R reads SB[0] — SB[| Sy |+ | Sz | —1].

Assume that the C;’s which write values in S5 are in increasing starting time:

s Biong e g Cm|53|. From then on:
e loop while a new write statement C; starts or finishes {

—if Cp,, 1 < 1 < | Ss |, starts, then C,,, writes up to SB[| 51| + |
Sy | +1 — 1] and statement R reads SB[| Sy |+ | So | +1 — 1];

—if C;, 5 # mywith 1 < [< | S|, starts, then C; writes SB0];

— if a C; or A; finishes, then C; or A; writes up to SB[N —.1];

e Finish reading up to SB[N — 1] (statement R will read the symbol
wrtitten by the last finished write statement in SB[| Sy | + | Sz | + |
Ss |]— SB[N —1].

So, the read statement can read any values due to A;’s, any values due to

B;’s and any values written by C;’s (as long as there are at most N values).

O

Theorem 5.4.1 Given an ezecution diagram for K scripts with only one
read statement that starts operating at time tg, the read can read the values of
all undominated write statements at time tg, all the values of the progressing
write statements at time tr and the values of all the write statements that

start execution after tg, provided that the number of such values is at most

N.

68

Although a reading statement can read any subset of the values men-
tioned in the above lemma, there is a coordination among multiple reading
statements in many cases. Refering to Figure 5.2, for example, if another

read is executed after time tw,,,, then it is will read from SB the exact

1,69
same values read by the statement starting at time twg,,. We have not yet
identified how reading statements coordinate. This is still an open problem,
whose solution will lead to the solution of the general problem stated at the
end of the previous subsection.

A solution to that problem will show us how to efficiently build a small
sized automaton that simulates the execution of the scripts in a test.

Clearly, we can simulate the execution of K scripts by constructing an

automaton where every state is:
Qm = ((So, L), (S1, L), ..., (Sk-1,Ik-1), RBg, ..., RBg_1, SBp),
where S;, 0 < ¢ < (K — 1), is the statement of script L; currently un-
der execution on processor P;, I; indicates that S; operated last on SB[I}]
(SB[I; + 1] should be next), RB; is the set of values read by statement S;
up to now (if the statement is a read; RB; = () otherwise), and SB,, is the
pattern SB exhibits.

A transition in this automaton occurs whenever an atomic operation is
executed.

The automaton simulates the execution of the K scripts by keeping track
of the changes each atomic operation causes in SB and the sets each reading
processor accumulates and returns. The size of this automaton though is
exponential in N, the size of SB. So, with such an automaton it is expensive

to simulate the execution of the scripts and verify the test’s freedom of

69

e the statement under execution in each script;

o the values returned by any finishing wait (or select) statement of each

script,

we see that the necessary conditions for deadlock, starvation and timing

dependencies are:

1. Deadlock: in a state) in the simulating automaton all the statements
in execution by the scripts are wait statements and the values they

read from SB do not satisfy them;
2. Starvation: either

(a) there is a cycle in the automaton, where all the states @, 11 <
1 < 13 have at least one script executing a wait statement that is

never satisfied, or

(b) a state @; with no outgoing edges of the simulating automaton
has some (not all) the scripts execute wait statements that are

never satisfied by the contents of SB;

3. Twmang Dependency: there is at least one state @); in the automaton

with more than one statements simultaneously writing in SB different

values.
Assume that the automaton SIM(L,, ..., Lg) simulates the execution
of the scripts Ly, Lo, ..., Lg.

If the scripts deadlock, then there is an execution sequence which will

bring all the scripts to an indefinite blocking. A script blocks only if it

Fa

deadlocks, starvation and timing dependencies.

The problem of reducing the size of the automaton to obtain one with
a number of states not exponential in NV is still open. A solution to the
problem stated at the end of the previous subsection will allow us to build

such a small automaton.

5.5 Correctness

In the following discussion we use the PLADO model again, where we have
the wast and select statements. The use of PLADO allows a better under-
standing of the verification process.

The following characteristics of test programs are undesirable due to the

deterministic nature of the testing process:

1. Deadlock: the case where all processors that execute a script block

indefinitely;

2. Starvation: the case where at least one processor executing a script

blocks indefinitely, while at least one terminates or continues execution;

3. Timaing Dependency: where execution of the scripts is affected by the
relative speeds of the processors, or the contents of the buffer SB de-

pend on the relative speeds of the processors.

Using the simulating automaton described above (or a smaller one if it is
proven to exist and can be efficiently constructed), which provides us with

the following information at every state:

70

executes a wait statement that is not satisfied. So, for a deadlock all scripts
have to execute a wait statement that is not satisfied. This occurs if there are
more than one values in SB (each wait statement waits on only one value)
or if the value in SB is not the one that will eventually unblock any of the
watting processors. Thus, there exists a state in the simulating automaton
that has all scripts executing these wast statements and either SB has more
than one values or it has a value that does not satisfy any wait statement.

So, for a deadlock to appear it is necessary that the mentioned condition
is satisfied. The condition is not sufficient, because there exist cases where
timing dependencies allow the programs to proceed to a state different than
the one which presents the deadlock. For example, a deadlock will appear in
the two processor case: |
Py executes: write_byte x; wait-byte y;

P, executes: write_byte y; wait_byte z;

if both processors execute their write statements simultaneously in such a
fashion that SB results in an arbitrary interleaving of z’s and y’s. It is
possible though, due to timing dependencies, for SB to result in having only
z’s in it, thus avoiding the deadlock.

In a similar fashion, we see that starvation occurs if one (or more) scripts
block indefinitely, while others finish execution (or continue execution indef-
initely due to a loop statement). As mentioned above, a script blocks only
due to a wait statement and this implies that if starvation occurs then the
starving scripts are waiting for some value in SB that either never fills SB
or never appears in SB. So, the simulating automaton will have states that

satisfy one of the mentioned conditions.

72

By definition, a timing dependency is the case where the scripts execute
the same sequence of PLADO statements and result in different contents in
SB. This is due to different possible interleavings of the atomic operations
of write statements.

Detecting possible deadlocks, starvation and timing dependencies in-
volves identifying states in the simulating automaton that satisfy the above
mentioned conditions. Simple extensions of depth first search algorithms
allow the detection of such states. If we succeed in obtaining a simulating
automaton with small size (i.e. not exponential in N), then we can efficiently
identify the above mentioned flaws in the scripts of a test.

If we include the flags in the above analysis, we have to multiply all the
complexities by 2M, where M is the number of flags, because we need to

know at every state the exact pattern of the binary flags.

73

Chapter 6

Performance and Applications

The prototype offers high performance when compared to conventional scal-
able interconnections. It can be easily programmed and improves the running

time of parallel and distributed applications.

6.1 System Performance

The performance characteristics of the prototype switch are:
1. Aggregate Bandwidth: 192 MBits/sec;
2. Effective Bandwidth: 64 MBits/sec;

3. Effective Data Bandwidth: 32 MBits/sec.

The aggregate bandwidth shows the available bandwidth of the communica-
tion circuitry on a single switch but it is not possible to achieve effective use

of the whole available bandwidth, because of the service rates the incoming

4

B, PLAN|co|PLAN|.. ... < /PLAN|..IPLAN P

Figure 6.1: A K-Switch Network Diameter

messages experience within the switch due to broadcasting. The total num-
ber of different messages serviced by the switch in a time interval decreases
the bandwidth to 64 MBits/sec. These bits serviced in a second are message
bits, i.e. address and data bits of the PRAM memory updates. Since half
of the message contains useful data, the effective data bandwidth is even
less: 32 MBits/sec. With the memory management scheme described in Sec-
tion 4.3, the switch can have an increased performance up to 66.6 MBits/sec
of effective data bandwidth (or 133.2 MBits/sec effective bandwidth); this

performance is obtained by saturating the internal bus of the switch.

In a network such as the one presented in Section 4.3 the important
parameter in the system’s delays is the size of the network’s diameter. If a
PRAM network has k switches in its diameter, the delay of transmitting a
byte over the network is between: (k+1)T3, -i—Z:-‘:Ol d; over an idle network (d;
is the delay of the link between switches (i — 1) and ¢ in the diameter shown
in Figure 6.1) and 3*T}, + Y5} d; over a network where all systems transmit
simultaneously. T}, above is the rate at which switch ports transmit (receive)
whole messages (4 bytes). When all systems transmit simultaneously and we
measure the delay of a message M, the i-th switch in the diameter has

to transmit 3' messages in the worst case, to include the message M. It

75

should be made clear to the reader that although the delay in a heavily
loaded network is exponential to the size of the network’s diameter, it is not
exponential to the number of processors in a system, since a configuration
with diameter k accommodates 4 * 3(*=1)/2 processors, if k is odd, or 2% 35/2

processors if k is even.

Another important parameter of a network is its bit error rate. The
error rate provided by the optical circuitry used on the prototype is 1071°
per link. All efforts to measure the bit error rate in the prototype network
have been unsuccessful. The reason is that the fiber interface drivers operate
under their potential: e.g., they support link lengths up to 1 Km, but the
prototype links are much shorter. Experiments transferring Terabytes of
data have been successful without a single error. So, there is no reason to
doubt the claimed BER (Bit Error Rate), which is 1071 per link. The error

rate of a larger network is a function of the number of used links.

6.2 Experiments and Applications

The following subsections present the performance measures of a few exper-
iments with the prototype switch. All the experiments performed are with
a network of 1 switch and 4 IBM ATs, as shown in Figure 6.2. For such a
network there are only 4 possible loads on the switch, since only 4, 3, 2 or 1
processors can be simultaneously broadcasting. So, the performance of the
network in the experiments can have only four different values. Plots are

provided wherever reasonable, while the lowest performance measures are

76

PLAN SWITCH

PORT PORT PORT PORT

0 1 2 3
{ ; { :
IBM IBM IBM IBM

ATO AT 1 AT2 AT 3

Figure 6.2: Experiment Configuration

presented when the performance measures are comparable under all 4 pos-
sible loads. The experiments include applications such as the ones analyzed

in Chapter 2.

6.2.1 PRAM vs. Intel’s iPSC/2

The PRAM prototype provides better performance than conventional local
area networks, since its delays are comparable with memory access laten-
cies: the delays of the prototype are in the order of microseconds, while
for conventional LANs they are in the order of milliseconds. The prototype
also provides higher performance than some available multiprocessors; in this

subsection I compare the prototype with Intel’s iPSC/2 hypercube [Arl88].

Figure 6.3 shows the end-to-end delay of variable size messages on the
PRAM system configuration shown in Figure 6.2 and a 4-node Intel iPSC/2
hypercube. The delays measured on the PRAM interconnection are for lo-

cal memory to local memory transfers, i.e. the data are copied from local

7

Delay (microsecs)

2500.1
2000.1
ipsc/2
1500 =
—
- PEAM
—
1000.1 — s sl
f— -
1 -—
500. e
—
-
i 1 + } } Data Size (Bytes)
500. 1000. 1500. 2000.

Figure 6.3: PRAM vs. iPSC/2

memory to PRAM at the transmitter and from PRAM to local memory
at the receiver. As the figure shows, the PRAM prototype provides better
performance for all message sizes up to 2 KBytes. All experiments up to
2 Megabyte messages have proven PRAM faster than the iPSC/2. Experi-
ments with longer messages were not possible due to memory limitations of
the used systems.

The iPSC/2 is slower than PRAM mainly because of its setup delay; such
a delay does not exist on the PRAM system. Figure 6.3 agrees with the anal-
ysis of uniform-cost and non-uniform-cost networks presented in Chapter 2.
As Figure 6.3 indicates, there must exist a message size where the iPSC/2

will provide better performance than the PRAM network.

The PRAM performance is measured when only one of the 4 intercon-

78

nected systems broadcasts. When more systems broadcast the performance
of the network degrades but the network with the memory management
scheme will provide performance comparable to the one shown in Figure 6.3
for all processor-to-processor message exchanges independent of the number
of simultaneously communicating processors (i.e. the load on the network

switch) as long as there is no multicasting to more than 1 processors.

6.2.2 Reliable Broadcasting

The system configuration in this experiment is the one shown in Figure 6.2.
The processors connected are IBM AT's.

The application is reliable broadcasting augmented with ordering: every
system that receives the broadcast messages should order them in exactly
the same order as the rest of the systems [CM84] [MSM89]. The solution to
the ordering problem is in the spirit of the solution by Chang and Maxem-
chuck [CM84], but instead of having a token site, where all the broadcast
messages are transmitted to, I use the shared memory interface to request a
unique timestamp from a controller (similar to the token cite). The times-
tamp is appended to the message which is then broadcast. Every processor
receiving a broadcast message acknowledges it.

So, the solution to the problem can be divided in 3 stages:
e Get unique timestamp from the controller;
e Broadcast message;

e Wait for acknowledgments from message receivers.

79

Delay (microsecs)

N= 4
2500.4
/\I= 3
/
2000.4 N= 2
7~ ~
7~ ~
1500.+ S ~
/ sl N= 1
~ —
1 —
1000. o _
- ~ -
—
500.4 s 7~
; P i
-
z ’/’
' 500. 1000. 1500. T Mkl

Figure 6.4: Latencies of Broadcast Messages

In the system configuration shown in Figure 6.2 getting a unique timestamp

costs less than 200 psecs, under all possible loads assuming no failures.

Figure 6.4 shows a plot of the delays to transmit K data bytes, 1 < K <
2 K Bytes, when N processors, 1 < N < 4, broadcast simultaneously. Since
the acknowledgements are very short messages, usually they do not coincide
on the switch because of marginal differences in the relative speeds of the
interconnected processors and the exact transmission timing. All the mea-
sured acknowledgments are less than 50 usecs (since all acknowledgements
progress in parallel, the transmitter receives all acknowledgements within
50 psecs). This agrees with the calculations which show that the.longest
acknowledgment costs less than (20+3%~1 —8)*(2/3) +40 usecs in a network

with k switches in its diameter.

80

6.2.3 Remote Clock Reading

In the same system configuration as above, when a processor reads the clock
of a remote processor (as described in [Cri89]), the round trip delay exhib-
ited is less than 90 psecs under all possible loads. So, using the formula:
emaz = D(1 4+ 2p) — min with p = 6% 107° (I assume that p has the value
Cristian mentions in [Cri89]) and min = 25 usecs, we see that the maxi-
mum error of the worst case (assuming no network failures) is approximately
20 psecs; this compares well to the maximum error achieved with other sys-
tems (using the data provided by Cristian in [Cri89] my calculations show
that the median round trip delay in the 2-processor configuration described

there has maximum error more than 100 usecs).

6.2.4 Real-Time Audio Data Transfers

The configuration shown in Figure 6.2 was used for an experiment for real-
time CD quality audio data transfers. The experiment was mainly performed
by Ted Kyi, Ted Altman and Lou Pokrocos.

CD quality audio data were stored on the hard disk of an IBM AT and
transfered through the interconnection to a remote AT, which in turn moved
the data into a Digital-to-Analog converter that played it in real-time on a
speaker. The effective data rate to play CD quality audio data in real-time
is approximately 1.41 M Bits/sec.

The PRAM network can sustain this rate between the two communicating
systems even when the other two connected IBM ATs produce heavy load for

the interconnection. This compares favorably to many conventional networks

81

of IBM ATs, where the effective data bandwidth is less than 2.5 M Bits/sec
(e.g., see [Nov86]). This implies that such conventional interconnections are
able to play CD quality audio data in real-time if there is no other load
on the network; as soon as another server heavily uses the network though,
the audio data cannot be played in real-time anymore, because there is not

enough bandwidth available for the transfers.

6.2.5 Remote Procedure Calls

Remote Procedure Calls (RPCs) provide the basis for many distributed ap-
plications. Elaborate PRAMBIOS, developed by researcher J. S. Sandberg,
provide the basis for many network applications, including RPCs, using the
PRAM prototype presented in this dissertation.

The idea behind the RPCs for the PRAM network is to setup a mecha-

nism where:

e procedure parameters are passed to a remote server through PRAM

memory;

e an “opcode” is passed, which specifies the procedure to be executed.

The “opcode” can be efficiently passed by writing into one of the lowest 4
PRAM memory bytes which are memory mapped interrupts as described
before. The server receiving the request for the RPC looks-up a table con-
taining all the “services” it provides, it finds which procedure has to be

executed and executes it, returning the data through the PRAM memory.

82

For the configuration shown iﬁ Figure 6.2, a null RPC requires approxi-
mately 50 psecs from initiation to the return of null results. With Jon Sand-
berg’s PRAMBIOS, the configuration achieves almost 5000 null RPCs/sec.
This compares favorably with the 500 — 600 null RPCs most available sys-
tems achieve. One should take into account here that the measurements
were made on systems without multiprogramming (our IBM ATs) and that
the RPCs are intended for an autonomous PRAM network (so, issues such

as Internet routing, etc., do not rise).

83

Chapter 7

Conclusions

This dissertation presented an architecture for building scalable, heteroge-
neous, high-speed interconnections at the memory level. The architecture
is based on the PRAM shared memory model [LS88]|. The prototype built
proves the feasibility of PRAM-based systems which enjoy high-performance
interprocessor communication. Applications developed for the prototype
show that the architecture not only provides efficient communication but

a simple, easy programming model.

7.1 Research Results

The PRAM shared memory model [LS88] provides a new organization for
multiprocessor architectures. It supports high-bandwidth/low latency com-
munication among heterogeneous, geographically separated processors and

can be used as the basis to build any kind of interconnection, from tightly-

34

coupled MIMDs to long-haul networks [LS88]. The implemented architecture
interconnects heterogeneous, autonomous machines such as IBM ATs, SUN-
3s and MAC-IIs. The prototype achieves higher communication performance
than many conventional interconnections proving that the PRAM model is a
good candidate for scalable, high-performance multiprocessor architectures.

A major advantage of the architecture is its programming paradigm,
which makes software development easy. The easy programming model as
well as the high-performance communication allows one to quickly and eas-
ily develop demanding applications such as real-time CD quality audio/video
data transfers, high-speed remote procedure calls, etc.

A by-product of the memory interface and PRAM’s operation is the very
low latency short messages experience in the system. This characteristic
i1s new to distributed systems which are commonly characterized by long
delays for small messages. So, PRAM allows simple approaches to the so-
lution of problems that require exchange of short messages and/or provides
higher performance. Such problems include the presented problems of reli-
able broadcasting and reading remote clocks for clock synchronization.

PRAM’s disadvantage is incoherence, but consistency can be easily en-
forced in software [LS88].

Although the development of the architecture and the applications pre-
sented in this dissertation have answered many questions about the feasibility
and the performance of PRAM-based systems, there are still many open and
challenging questions regarding PRAM, because it is a model which has not
received attention until recently. Some of the open questions which will def-

initely trigger much research in the near future are presented in the next,

85

final section of this dissertation.

7.2 Open Problems and Future Research

Open problems for PRAM systems range from theoretical questions, such
as development of suitable error detection/correction codes, to architectural
problems, such as the design of large scale, supercomputer class machines.

It has become clear that within the next few years fiber communication
technology will provide chips that achieve transfer rates in the order of giga-
bits per second at a relatively low cost. Suitable network architectures are
necessary to effectively use all the available bandwidth. In a PRAM based
network one has to pay special attention to the design of the switches of
the interconnection as well as to the protocols used for the network man-
agement. The bus-based architecture of the prototyped switches coupled
with the hardware Stop&W ait protocol and the error handling mechanism
solve efficiently the interconnection problems of the autonomous systems of
the prototype, but it is necessary to use higher performance designs to take
advantage of the new high-speed links.

Since PRAM supports scalability, it is a good candidate for the mem-
ory organization of supercomputer class machines. An architecture for such
a machine has been developed by Wittie and Maples [WM89]. There are
many issues which have to be studied in such an architecture. One of the
most important questions is the solution to the problem of coherence. Since
consistency is enforced in software, it is necessary to compare various lock-

ing schemes as well as to evaluate the size of the memory to lock (locking

86

small pieces of memory arbitrarily is probably inefficient), so that maximal
efficiency is achieved for important applications (these issues have been ad-
dressed by Wittie and Maples [WM89]). Also, one needs to develop and eval-
uate protocols which enhance the error detection/correction abilities of the
interconnection; the CRC registers of the prototype do not provide enough
support for efficient error protocols, when multiple processors are connected.

Developing PRAM-based MIMDs presents yet another challenge: design
of suitable caches, because PRAM organizations require special caches, con-
sistent with PRAM’s operation [LS88].

Fault-tolerance is another open question in PRAM. As shown in Chap-
ter 4, cycles are not allowed in the prototype broadcasting network. When
multicasting is employed, cycles can exist in this network’s topology provid-
ing a degree of fault-tolerance. It is clear that for highly reliable systems
one needs to develop special architectures. Such architectures may differ
depending on the fault-tolerance requirements of the target system.

The list of problems just presented is by no means complete. PRAM is a
memory model which has not been used in the architectures of conventional
systems. Development of such systems will definitely bring up many more
problems which deserve research. Clearly, PRAM brings a new, exciting
alternative to conventional memory organizations and networking approaches

and thus merits further study.

87

88

Appendix A

Verification of the Hardware

Protocols

94 e sk e sk sk s sk e sk ke e s e sk e e sk e sk ke sk o sk sk ke sk ke ok s sk sk sk sk e sk stk e stk sese sk ke s stk s sk sk ke se ok sk sesfe sk sk o skesk s sk ok ok o
constants

N= 5, /% number of clicks to timeout */

M= 10, /#* capacity of the input queue */

K= 4 /# number of messages that have to be consumed once

overflow is reached to go back to normal state */
typedef process SR (SR partner; QUEUE q; TIMER tx)

states 0..3 valom [ready: O, run: 1, stop: 2, error: 3]

selections 0..3 valnm [sstart: O, reg: 1, sstop: 2, no: 3]
init run

trans

89

ready

run

stop

error

end

>run

>error

>stop
>error

>run

>run
>error

>stop

>ready

>error

{sstart}
:"(q:errtrigger);

:otherwise;

{regt
:(partner:sstop)& (q:errtrigger)&~(q:full);
:(q:errtrigger) | (q:full);

:otherwise;

{no}
: (partner:sstart)&” (q:errtrigger)&” (q:full);
:(q:errtrigger) | (q:full);

:otherwise;

{sstop}
:(tx:up) [(q:nfull);

:otherwise;

typedef process TIMER (QUEUE q)

states 0..N valnm [idle: 0]

selections 0..1 valmnm [go: 0, up: 1]

init idle

trans

idle

>1

>idle

{go}
:(q:errtrigger);

:otherwise;

90

N {up}

>idle : (TIMER:up);
$ {go?}
>$+1 : (TIMER:go) ;

end

typedef process QUEUE (SR partner; SR own)

/* states 0 to M indicate the number of messages in the input queue */
/* state M+1 is used to indicate overflow */
/* states M+2 to M+K+1 represent M-1 to M-K messages in the queue */
/* when the queue gets to M+K+1, the reception is reasummed */

/* state M+K+2 means the queue is closed, an error has been found */

/* and the messages there are to be discarded */
states 0..M+K+2 valnm [normal: M+K+1, stopped: M+K+2]
selections 0..4 valnm [consume: 1, errtrigger: 2, full: 3, nfull: 4]
init 0
trans
0 {0}
>1 : (partner:reg);
>0 :otherwise;
M {full}
>M+1 : (QUEUE: full);

91

normal {nfull}

>M-K : (QUEUE:nfull);
stopped {0}
>0 :(own:sstart);
>stopped :otherwise;
$ {0..2}
>$+1 : ((partner:reg)&(QUEUE: 0)&($ < M+1))|
(($ > M)&(QUEUE: consume)) ;
>$-1 :“(partner:reg)&(QUEUE: consume)&($ < M+1);
>stopped : (QUEUE: errtrigger);
>$:otherwise;

end

process (i= 0..1; port[il: SR (port[(i+1)%2], queuel[il, timer[il))

process (i= 0..1; queue[il: QUEUE (port[(i+1)%2], port[il))

process (i= 0..1; timer[i]: TIMER (queue[il))

'/.** e sk e sk ke sk ok sk ek ok ok sheske sk sk ok sk ok ok ok sk skok sk sk skok ok

92

Bibliography

[ABMSS]

[AIS3]

[Arl8S]

[Arn89]

S. Aggarwal, D. Barbara, and K. Z. Meth. A Software Envi-
ronment for the Specification and Analysis of Problems of Co-

ordination and Concurrency. IEEE Transactions on Software

Engineering, TSE-14(3):280-290, March 1988.

Arvind and R. A. Tanucci. A Critique of Multiprocessing von
Neumann Style. In 10th Annual International Symposium on
Computer Architecture Conference Proceedings, pages 426-436,
1983.

Ramune Arlauskas. iPSC/2 System: A Second Generation Hy-
percube. In Concurrent Supercomputing, the Second Generation,

pages 9-13. Intel Corporation, 1988.

Arnould E. A., et al. The Design of Nectar: A Network Back-
plane for Heterogeneous Multicomputers. In 9rd International
Conference on Architectural Support for Programming Languages

and Operating Systems, pages 205-216, 1989.

93

[AS88]

[BF76]

[CASS6]

[CGBGSS]

[CM84]

[Cri89]

W. C. Athas and C. L. Seitz. Multicomputers: Message-Passing
Concurrent Computers. IEEE Computer, 21(9):9-24, August
1988.

M. A. Breuer and A. D. Friedman. Diagnosis and Reliable Design
of Digital Systems. Computer Science Press (Potomac, Md.),
1976.

F. Cristian, H. Aghili, and R. Strong. Clock Synchronization in
the Presence of Omission and Performance Faults, and Processor
Joins. In Digest of Papers, 16th Annual International Symposium
on Fault Tolerant Computing, pages 218-223, 1986.

D. R. Cheriton, A. Gupta, P. Boyle, and H. A. Goosen. The
VMP Multiprocessor: Initial Experience, Refinements and Per-
formance Evaluation. In 15th Annual International Symposium

on Computer Architecture Conference Proceedings, pages 410—

421, 1988.

J. Chang and N. F. Maxemchuck. Reliable Broadcast Protocols.
ACM Transactions on Computer Systems, 2(3):251-273, August
1984.

F. Cristian. A Probabilistic Approach to Distributed Clock Syn-
chronization. In Proceedings of the 9th International Conference

on Distributed Computing Systems, pages 288-296, 1989.

94

[EK8S]

[FDS6]

[Got83]

[Hil86]

[Hoa69]

[IEES5]

[Lal85]

[Lam77]

S. J. Eggers and R. H. Katz. A Characterization of Sharing
in Parallel Programs and its Application to Coherency Protocol
Evaluations. In 15th Annual International Symposium on Com-

puter Architecture Conference Proceedings, pages 373-383, 1988.

M. A. Franklin and S. Dhar. Interconnection Networks: Phys-
ical Design and Performance Analysis. Journal of Parallel and

Distributed Computing, 3(3):352-372, September 1986.

Gottlieb A., et al. The NYU Ultracomputer-Designing an MIMD
Shared Memory Parallel Computer. IEEE Transactions on Com-
puters, C-32(2):175-189, February 1983.

Hill M. D., et al. Design Decisions in SPUR. IEEE Computer,
19(11):8-22, November 1986.

C. A.R. Hoare. An Axiomatic Basis for Computer Programming,

Communications ACM, 12(10):576-583, October 1969.

IEEE, editor. 802.5: Token Ring Access Method. IEEE, New
York, 1985.

P. K. Lala. Fault Tolerant and Fault Testable Hardware Design.
Prentice Hall, 1985.

L. Lamport. Proving the Correctness of Multiprocessor Pro-
grams. IEEE Transactions on Software Engineering, SE-
3(2):125-143, 1977.

95

[LMS85]

[LS88)

[LS90]

[MBT6]

[Moc83]

[MSMS89]

[Nov86]

[NR82]

L. Lamport and P. M. Melliar-Smith. Synchronizing Clocks in
the Presence of Faults. Journal of the ACM, 32(1):52-78, Jan-
uary 1985.

R. J. Lipton and J. S. Sandberg. PRAM: A Scalable Shared
Memory. Technical Report CS-TR-180-88, Princeton University,
September 1988.

R. J. Lipton and D. N. Serpanos. Uniform-Cost Communication
in Scalable Multiprocessors. In Proceedings of the 1990 Interna-

tional Conference on Parallel Processing, 1990.

R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed packet
switching for local computer networks. Communications of the

Association for Computing Machinery, 20(7):395-404, July 1976.

P. V. Mockapetris. Analysis of Reliable Multicast Algorithms for
Local Networks. In Proceedings of the Eighth Data Communica-
tions Symposium, pages 150-157, 1983.

P. M. Melliar-Smith and L. E. Moser. Fault-Tolerant Distributed
Systems Based on Broadcast Communication. In 9th Int. Con-

ference on Distributed Computing Systems, pages 129-134, 1989.
Novell Inc. LAN Evaluation Report. IEEE, New York, 1986.

S. Nanda and S. M. Reddy. Design of Easily Testable Micropro-
cessors — A Case Study. In Proceedings of the 1982 IEEE Test
Conference, pages 480-483, 1982.

96

[Nug88]

[P£i85]

[PnuT77]

[PV81]

[Ros86]

[Sch90]

[Sei85]

Steven F. Nugent. The iPSC/2 Direct-Connect Communications
Technology. In Concurrent Supercomputing, the Second Genera-

tion, pages 59-68. Intel Corporation, 1988.

Pfister G. F., et al. The IBM Research Parallel Processor Pro-
totype (RP3): Introduction and Architecture. In Proceedings of
the 1985 International Conference on Parallel Processing, pages

764771, 1985.

A. Pnueli. The Temporal Logic of Programs. In Proceedings of
the 18th Annual Symposium on Foundations of Computer Sci-
ence, pages 46-57, 1977.

F. P. Preparata and J. Vuillemin. The Cube Connected Cycles:
A Versatile Network for Parallel Computation. Communications

of the ACM, 24(5):300-309, May 1981.

F. E. Ross. FDDI-A Tutorial. IEEE Communications Magazine,
24(5):10-15, May 1986.

Schroeder et al. Autonet: A High-Speed, Self-Configuring Lo-
cal Area Network Using Point-to-Point Links. Technical Report
Report-59, DEC-SRC, April 1990.

C. L. Seitz. The Cosmic Cube. Communications of the ACM,
28(1):22-33, January 1985.

97

[SHS1]

[Sun81]

[TBFS3]

[TT77]

[VSS6]

[WG83]

[WM89)

T. Sridhar and J. P. Hayes. A Functional Approach to Testing
Bit-Sliced Microprocessors. IEEE Transactions on Computers,

C-30(8):563-571, August 1981.

Carl A. Sunshine, editor. Communication Protocol Modeling.

Artech House, Inc., 1981.

F. A. Tobagi, F. Borgonovo, and L. Fratta. Expressnet: A High-
Performance Integrated-Services Local Area Network. IEEE
Journal on Selected Areas in Communications, SAC-1(5):898-
913, November 1983.

M. Tokoro and K. Tamaru. Acknowledging Ethernet. In Digest
of Papers, COMPCON 77 Fall, pages 320-325, 1977.

A. Vergis and K. Steiglitz. Testability Conditions for Bilateral
Arrays of Combinational Cells. IEEE Transactions on Comput-
ers, C-35(1):13-22, January 1986.

J. W. Wong and G. Gopal. Analysis of Reliable Broadcast in
Local-Area Networks. In Proceedings of the Eighth Data Com-
munications Symposium, pages 158-163, 1983.

L. Wittie and C. Ma,ples. MERLIN: Massively Parallel Hetero-
geneous Computing. In Proceedings of the 1989 International
Conference on Parallel Processing, pages 1.142-1.150, 1989.

98

