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Abstract

Graph Decompositions with Applications to
Circle and Permutation Graphs

Csaba Peter Gabor

Just as integers can be decomposed into prime factors, it is possible to define primeness on
graphs so that graphs may also be decomposed into their prime components. Under the
definitions presented in this work, several non-isomorphic graphs may yield identical factorings.
An efficient implementation of an algorithm which Cunningham introduced to decompose graphs
is shown. A second algorithm to decompose graphs is also shown. This second algorithm is
shown because it is also used in the inductive proof of a property of prime graphs - each vertex in
a prime graph must be contained in a certain induced subgraph of the prime graph. A close link
between prime graphs and certain classes of intersection graphs, namely circle graphs and permu-

tation graphs, is established, and a recognition algorithm is presented for each.
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1. Introduction and Definitions

1.1. Introduction

An area of graph theory that has received substantial interest in the past thirty years is the
area of intersection graphs. Intersection graphs are those graphs whose vertices are some objects,
and which vertices are adjacent iff the objects they are intersect. Common examples of objects

include intervals on a number line, chords on a circle, and rectangles in the plane.

Intersection graphs may often be associated in a natural way with problems arising in
engineering and the sciences. For example, interval graphs (graphs whose vertices correspond to
intervals on the number line) have been used in modelling a problem in genetics on gene struc-
ture called Benzer’s problem ([Be]), and a scheduling problem from [Ha]. There are many other
areas in which interval graphs arise; [Go], [Tr], and [Ro] provide extensive surveys in this area.
Permutation graphs (intersection graphs where the vertices are line segments having one endpoint
on each of two given parallel lines) arise in [L] in a VLSI problem involving routing of nets and

in [Kn] in the problem of optimal scheduling for reallocations of memory space in a computer.

Other areas of applications include solving certain NP-complete problems in polynomial
time on restricted sets of graphs. For example, the maximum weighted independent set problem
and the maximum weighted clique problem can be solved in polynomial time on circle graphs

(intersection graphs where the objects are chords on a circle) ([Gal, [Hs]).

Graph decomposition is an area of graph theory which has been extant for about twenty
years. Early references are listed in [Cu], which is one of the main works on the topic. Graph
factoring is analogous to the factoring of integers; in both cases they factor uniquely into their
prime components. However, while graphs may be decomposed uniquely, it is also the case that
non-isomorphic graphs may yield identical factorings. The motivation behind factoring a graph

is that it may be easier to solve a given problem on smaller, factored pieces and then assemble a
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solution to the original problem, as with the optimal stable set problem in [Ch] and sequencing
problems in [Si].

This thesis explores further the concept of factoring undirected graphs and applying factor-
ing to a specific problem: recognition of circle and permutation graphs. One important result is a
new algorithm by which to factor graphs. By factoring one may get to the heart of several prob-
lems: many special cases are removed (as with the recognition problems). It is hoped that by
solving this important problem, a suitable framework has been provided for application to further
problems (such as in [Ch] and [Si]).

The second important result is a characterization of unfactorable graphs. An initial charac-
terization of unfactorable graphs is that each one must contain an induced subgraph isomorphic to
some member of a certain set of graphs. This delineation is then strengthened considerably to say
that each vertex of an unfactorable graph is contained in an induced subgraph isomorphic to some
member of a certain set of graphs. Although subgraph theorems are not uncommon (e.g. [Tu],
[BM], [GiH]), statements about each vertex in a class of graphs are. An example of this type of

characterization is that each vertex in a graph with a Hamiltonian circuit has even degree.

The third result is the application of graph decomposition to the recognition of circle graphs
and permutation graphs. Circle graph recognition was posed as an open problem in [Go] and
[GJ]. [Bu] conjectured that the problem was NP-complete. Later, several distinct polynomial
time methods were discovered for recognition of circle graphs in [B1],[B2],[GH], and [GH2].
[B1] was primarily a proof that recognition was in P, while [B2] included an O(IV'| 4) algorithm.
The algorithms in [GH] and [GH2] are each O(/V | X |E |). The former is quite complicated
while the latter is an outline of the version in this document. The version offered here parallels

the graph decomposition algorithm while previous versions have not.

[SP3] has claimed an O(1V %) recognition algorithm for prime circle graphs. One of the

two major remaining questions is whether there is a faster decomposition algorithm for arbitrary
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graphs. The other major remaining problem is to develop a forbidden subgraph theorem for cir-

cle graphs and link it to the concept of local complementation developed in [B2].

1.2. Overview

In [GH] a polynomial-time algorithm is presented for the recognition of circle graphs, a
class of graphs where the vertices are represented by chords on a circle and vertices are adjacent
iff their corresponding chords intersect. The paper makes use of a type of factoring of graphs
which we call 4—factoring , and demonstrates that circle graphs can be represented in essentially
one way if they are not further 4—factorable ; that is, if they are 4—prime. This work develops
more fully the notion of 4-prime (and the related notions of 3—prime and 3—factoring which
have a correspondence with permutation graphs). It is shown that not only must 4-prime and 3-
prime graphs have a certain structure (Theorems 1 and 2), but that each vertex in such a graph
must be contained within a certain induced subgraph (Theorems 3 and 4). The 4-factoring of
graphs is also explored, leading to a polynomial-time algorithm (Lemma 1 inplemented via algo-
rithm Bl and C1) which is also used in proving the aforementioned structural theorems, and in
proving (Theorem 5 and) correctness of the recognition algorithm (Theorem 6) for circle graphs

([GH] present only an outline).

In this chapter, we define the two types of decomposition metioned above (and hence two
notions of primeness) on graphs. In each case, a graph is prime if there are no two subgraphs into
which it can be decomposed, and every graph is either prime or can be decomposed into a unique
set of prime graphs.

Although every graph decomposes uniquely, there are distinct graphs which yield identical
decompositions. Nevertheless, these compositions do have some interesting properties, impose a
certain structure on both 4-prime and 3-prime graphs, and facilitate the solution of certain graph

problems. Chapter 2 will examine these properties in depth. Central to Chapter 2 is a



polynomial-time algorithm (Central Lemma) that decomposes a graph into its 4-prime com-
ponents. This algorithm or a variant (Lemmas 2 and 3, Cor. 1) is used repeatedly throughout the
rest of this dissertation both in proving various properties (Theorems 3, 4, and 5) and in solving
other graph problems (Theorem 6). In chapter 2 it is used to establish the structural theorems (3

and 4) mentioned above.

Chapter 3 deals with the application of Chapter 2 to circle graphs, which are a particular
class of graphs -- a type of intersection graph. Since circle graphs form a proper subset of all
graphs, it is not surprising to find that there are some problems which are more easily solved on
the class of circle graphs than on graphs in general. Until recently, however, the problem of
recognizing whether a graph is a circle graph (and finding its appropriate representation in that
event) was open. The central topic of chapter 3 is a polynomial-time algorithm for recognizing
circle graphs (and finding the representation when it exists). The proof of the correctness of the
algorithm relies heavily on the fact (also proved) that a 4-prime circle graph can be represented in

essentially only one way (Theorem 5).

Chapter 4 concerns the application of Chapter 2 to permutation graphs. Permutation graphs
form a proper subset of circle graphs, and it is possible to solve still more problems (in
polynomial-time) on them than on circle graphs. A permutation graph is a circle graph whe-re the
circle on which the graph is represented may be partitioned into two arcs so that each chord has
an endpoint in both arcs. The central topic of Chapter 4 is a polynomial-time algorithm for
recognition of permutation graphs and for establishing their representations in that event. An
important result is that permutation graphs are uniquely representable iff they are 3-prime. The

results in chapter 4 are very closely tied to those of chapter 3.

1.3. Definitions

This subsection contains the conventions and definitions which will be used for the



remainder of this work. The definitions of circle graphs, permutation graphs, and related terms

will be found at the beginning of chapters 3 and 4, respectively.

All graphs G =(V, E) considered are connected, undirected, and contain no self loops. Let
U,W cV and v and w be distinct vertices in V. The notation G /W will be used to mean the
graph (W, E N (W x W)) which is also referred to as the subgraph of G induced by W. Ny (U)
is the set of all vertices in W which are adjacent to some element of U. For ease of notation we
wn'té Ny (w) in place of Ny ({w}). Vertices v and w are said to be W—similar whenever
Ny() — {w} = Ny(w) — {v} (i.e. their W-restricted neighborhoods excluding {v,w} are
equal). If v and w are V—similar, we simply say v and w are similar or that they are a similar

pair. We define dist (v, w) as the number of edges on the shortest path from v to w.

Two types of composition are defined: we say that a partition of V into four sets Vo, Vy,
V,, and V4 is a 4d—decomposing partition if no element of V, is adjacent to an element of
V, W V4, no element of V; is adjacent to an element of V 5, and each element of V', is adjacent to
each element of V, (see Fig. 1.1). If, in addition, IVou VIl 22 and IV, UVl 22,then G is
4—decomposable or 4—factorable . In this event, let v, € Vyand v, € V,. We say that the parti-
tion 4—factors G into G1=GI/(VouV, U {vy}) and G,=G/(V3u VU {v}). Altemately,

we say that G ; and G , are a 4—factoring for G. Aninduced subgraph of G, G/V, is a 4—factor

A 4-factoring partition for a graph
Fig 1.1
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of G if G is 4-factorable and there is a graph H such that G/V and H are a 4-factoring for G .
The 4—decomposition of a graph is defined recursively: if the graph is not 4-factorable, then its
4-decomposition is itself. If the graph is 4-factorable into G | and G ,, then its 4-decomposition is

the 4-decomposition of G | and the 4-decomposition of G ,. Figure 1.2 shows the 4-decomposi-

The graph, G, to be 4-decomposed

9
G factors into G factors into
G/{1,2,3,4,56,7,8910} G/{1,2,3,4,5,6,7,8910,14,1516}
and G/{4,5,11,12,13,14,15,16} and G/{4,5,11,12,13}
G/{1,2,3,4,5,6,7,8,9,10} factors into G/{1,2,3,4,5,6,7,8,9,10,14,15,16} factors into
G/{1,2,3,4,56,7} G/{1,28910}
and G/12,3,8,9,10} and G/{1,2,3,4,5,6,7,14,15,16}
G/{4,5,11,12,13,14,15,16} factors into G/{1,2,3,4,5,6,7,14,1516} factors into
Grid511.1213] G/{1,2,3,4,56,7}
and G/{4,5,14,15,16} and G/{5,6,14,15,16}

Thus, the 4-decomposition of G is into:
G/{1,2,3,4,5,6,7},
G/{1,2,8,9,10} (which is isomorphic to G/{2,3,89,10}),
G/{4,5,11,12,13},
and G/{5,6,14,15,16}

Fig. 1.2
4-decomposition of a graph
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tion of a particular graph. [Cu] shows that the 4-decomposition of a graph is unique, up to iso-
morphisms. G is 4—prime if G is not 4-decomposable and 1V | 24. Note that if G is 4-prime,

then G contains no articulation points and no similar pairs.

We say that a partition of V into three sets Vo, V , and V 5 is a 3—decomposing partition if
no element of V , is adjacent to an element of V 5, and each element of V', is adjacent to each ele-
ment of V, (see Fig. 1.3). If, in addition, |Vou VI 21 and 1V,1 22, then G is 3—decompos-
able or 3—factorable . In this event, let v, € V, and v, € V,. We say that the partition 3—fac-
tors G into G;=G/(VouV, U {vy))and G,=G/(V,uU {v}). Alternately, we say that G,
and G, are a 3—factoring for G. An induced subgraph of G, G/V, is a 3—factor of G if G 1is 3-
factorable and there is a graph H such that G/V and H are a 3-factoring for G. The 3—decompo-
sition of a graph is defined recursively: if the graph is not 3-factorable, then its 3-decomposition
is itself. If the graph is 3-factorable into G; and G,, then its 3-decomposition is the 3-
decomposition of G ; and the 3-decomposition of G,. G is 3—prime if G is not 3-decomposable
and |V | = 3. Itis easily verifiable that G is 3-prime iff the complement of G is 3-prime. If G is

3-prime, then G contains no similar pairs.

-—

A 3-factoring partition for a graph
Fig 1.3
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The definitions of several important graphs follow:

M) Py, pa -+, pa)isthe graph ((p, pa, . P, (@1 P P2 23y s Pacts

Pn)}) (see Fig. 1.4 for example).

(2)DW(a,b,c,d,v)isthegraph ({a,b,c,d,v}, {(a.b),(b,c). (c,d),(v,b),(v,c)})

(Fig. 1.4).
e
a b ¢ d a b c d
¢ @ ® ® @ &
P, (a b, c d) DW (a, b, c, d, e)
A P, is any graph isomorphic A DW is any graph isomorphic
toP, (1,2, ...,n) to DW (a,b,c,d,e)
Fig. 1.4

(3) MTP (a,b,c,d,e,f)is the graph ({a,b,c,d,e.f }, {(a,b),(b,c), (c,d),(e,a), (e,

b) (e,c) (e,d), (f,b),(f.c),(f,e)D). (Fig. 1.5).

(@) Ci"™ By, p,y, -+, p,) is the graph on which (py, pa *-*, pa_y) induces
Po@p2 s Pr-) a0d N(pp) = (P, Paci) Y APiys Piy 5 pi) (See Fig. 15 for some
v, e
%\ %
Vi Va Vg o Vo a b c d
Co DV el 1. 25 MTP (ab,c,de,f)

C?l (Vszj"z., ,vn), n 2 5
c (ViyVaVay vy V), > 5

3
Cﬁ (VioVaVay sV, ), > S

Members of the family F,; of graphs
Fig. 1.5



important examples).

In the illustrations of the graphs, a wavy line always indicates that an edge may or may not
be present. Because they occur frequently, there are some special cases of the graphs in Fig. 1.5

which are singled out:
(5) house (a,b,c,d,e)=C2(a,b,c,d,e)=C3(b,a,e,d,c) (Fig.1.6).
(6) tepee(a,b,c,d,e)=C2*(a,b,c.d.e) (Fig. 1.6).
(7) step—up (a,b,c,d,e . f)=Cl(a.b,c.d,e.f) (Fig 1.6).

In some instances it will be convenient to use a shorthand to refer to some of the above
graphs. If one of the above graph names appears without arguments, then it will simply refer to a
graph isomorphic to one of the same name wit/i arguments. For example, a Civin i s any
graph isomorphic to Cj“** ""*(1, 2, 3, ---, n). An MTP is any graph isomorphic to

MTP(1,2,3,4,5,6), etc.

d e
e f
e o
c d
a b a b
a b c d
A House A Tepee
A Step-up
/ d,eab, t ,¢,d,
wuse (d,e,a,b,c) epee (a,b,c,d,e) step-up (Fe,c,ab,d)
as a, ag as
a, a, a, e o o
a, as a as
Cs (ay,aya5,a4,05) Cs (apayaya,as,ag) Co k27
Fig. 1.6

Graphs in the set F.
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It will be useful to designate two particular families of graphs so they may be referred to by
name in the rest of this dissertation. The family of graphs, F, is the set of graphs made up of a
house , tepee , step—up , and C, for n 2 5. These graphs are depicted in Fig. 1.6 The family of
graphs, F |, is the set of graphs made up of an MTP and C,, C,2, C,2, and C,>* forn 2 5. These

graphs are depicted in Fig. 1.5.

The sequence (V 1, -,V =V) (k 2 1)is called a constructing sequence if G/V; is prime
for each i € (1,2,---,k}, and V; C v for each i<j <k. A constructing sequence is called
basic if the first set in the sequence contains no proper subset which induces a prime graph. A
constructing sequence (V , - -+, V, =V) is maximal if it is basic and foreachi e (1,2, ---,
k—1}, V; is a proper subset of V;,,, and if whenever W is a proper subset of V,,; and V; is a
proper subset of W then G/W is not prime (in the appropriate sense). "Constructing” will be pre-
ceded by a number to indicate the type of primeness being considered (i.e. a 3—constucting
sequence or 4—constructing sequence ).

Let W c V. Throughout the remainder of this paper we will have occasion to refer to the
following sets:

(1)Foreveryw € W, My(w)= {v e V-W : Ny(v)—{w}=Nyw)}

My = U MyWw)
weW

QA= (ve V-W: Ny@v)= D}
(3) For every w € W,Aﬂlz(w) ={veV-W: Ny()={wl}}

Ag = U Ayw)

weW
DAy = (veV-W: Np(v)=W}
(5) Apt = V=W -My—-Ag—-Ay

(6) At =V -W -My—Ap—Ag

In English, this means the following: My (w ) is simply the set of vertices in V-W that are
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W -similar to w. Ay is the set of vertices in V—W that are adjacent to every vertex in W. Apg is
the set of vertices in V—W adjacent to no vertex in W. Ay is the set of vertices in V—-W with
exactly one neighbor in W. A" is the set of vertices in V—W that are adjacent to at least one but
not all the vertices in W but are W —similar to no vertex in W. A" is the set of vertices in V—-W

that have at least two neighbors in W but are W —similar to no vertex in W.

If G =(V,E) is a graph, then include a new vertex (call it w) which is adjacent to each ver-
tex in G, and call this modified graph G" (formally G" =(V U {w}, E U {w } XV)). The two
notions of primeness mentioned above are related in the following way: G is 3-prime iff G” is 4-
prime. The simplest example of a graph which is 3-prime but not 4-prime is a P 4 (Fig. 1.4). An

example of a graph which is 4-prime but not 3-prime is a tepee (Fig. 1.6).

These notions have appeared in some previous papers under different names. The
4—decomposition was originally developed by Cunningham [Cu] and was called a split decom-
position ; another name for it is X —join [Hs]. 3—decomposition is also known as substitution

decomposition [Mo], [Mr]; another name for it is J—join [Sp].

1.4. New Results

Cunningham [Cu] had developed an algorithm for 4-decomposition , and this work (Sec.
2.3) improves the time analysis to O(1V| x | E1) and also offers a second (new) algorithm (Sec.
2.4 and 2.7) again achieving O(IV| x |E'l) time. This second algorithm is used in proving addi-

tional theorems (3, 4, and 5).

The first two structural results (Theorems 1 and 2) in Chapter 2 (Sec. 2.2) are not new, but
the corresponding algorithmic results are. These structural results are strengthened in a new way
in Chapter 2.6 (theorems 3 and 4). Most structural results take the form (as do the first two in
Chapter 2) that there is some subgraph contained within a given graph. The strengthened struc-

tural results are of the form that each vertex is contained within a particular subgraph of the



12

given graph. In fact, the results may be strengthened even more to say that each pair of vertices
(or each subset of vertices) must be contained within a particular subgraph of the given graph.
The recognition algorithm for circle graphs (Chapter 3, Theorem 6) is new and presents a natural

correspondence between circle graphs and 4—prime graphs.
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2. Graph Decompositions

2.1. Overview of Chapter 2

This chapter will establish certain properties of graphs which are tied to decompositions of
graphs. Most of the properties concern induced subgraphs of the graphs in question. Thus, we
first show that a graph with no similar pairs must contain an induced P 4 (Theorem 1). Then we
show (Theorem 2) that a graph with no similar pairs and no articulation points must contain one
of the graphs from Fig. 1.6 as an induced subgraph. Following this are two decomposition
theorems for graphs. The first is merely an improved analysis of Cunningham’s original algo-
rithm; the second (Central Lemma) is the basis for the following proofs in this dissertation
including recognition of circle graphs. Immediate use of this lemma (1) is made in refining the

results of the first two theorems.

2.2. Imitial Characterizations

THEOREM 1: Let G =(V ,E), |V| 22, be a graph having no similar pairs. Then some induced
subgraph of G is a P 4. Furthermore, such a subgraph can be found in O(IE|) time. (Note that

the absence of similar pairs implies |E| =Q(1V1).)

PROOF: For all k£ 20, let H; denote the graph with vertices {a; : 0 <i <2k+1}, and edges
{(aj,a;):i #j and j is even and (i is even or i > j)} (see Fig. 2.1). Our algorithm iteratively
finds an induced subgraph of G isomorphic to H, for £k =0,1, - - - until eventually finding an

induced P ,.

More precisely, we initially chose some edge (wo,w ) € E (E cannot be empty since oth-
erwise each vertex of G would be isolated and hence, since 1VI =22, G would have a similar

pair). Thus G/{w g, w} is isomorphic to H .
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Fig. 2.1
The graph H,

Now assume that we have found a set W = {w; :0=j =2k+1} CV that induces a sub-
graph of G isomorphic to Hy, for some k =0, where w; corresponds to a; under the isomor-
phism. Note that since w,; and w ;. are W -similar there must exist some zq € V — W adjacent
to exactly one of them (otherwise w,, and w .., would be V -similar). Assume that z , is adja-
cent to w,, but not to w . ; this is without loss of generality by the W -similarity of w ,, and
Wy Now if z is adjacent to wy;y for some j,0<j <k, then {wy;p, Zg, Wy Worqy)

induces a P4 (and so we halt and output it). Otherwise if z is not adjacent to w,; for some

J,0<j <k, then {zg, wor, wyj, wojy | induces a P 4. So assume that neither of these two cases

holds.

At this point we know that z and w o, are W U {zg}-similar. Therefore there must be
some z ;€ V — (W w [z,]) adjacent to exactly one of [z, wory}, for otherwise zg and w4
would be similar. Since zy and w o, are W U (z}-similar, it is without loss of generality to
assume that z | is adjacent to zo but not to wy.;. Now if z | is not adjacent to w,; for some
Jj,0sj sk, then {zy, zg, wy;, Wy} induces a P,. Otherwise if z | is adjacent to w ;4 for

some j,0<j <k, then {wyj,, 2, Wor, W) induces a P 4.

Thus if we have not yet found an induced P, in G then the set W U {zg, z,} induces a
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subgraph isomorphic to H ;.

By induction, the algorithm must find an induced P, in G, since otherwise it finds an

induced subgraph in G isomorphic to H, for each k = 0, contradicting the finiteness of G .

We now describe how to implement the algorithm in the specified time bound. At the kth
iteration we must find a vertex z ; adjacent to w 5, but not to w 5, or vice versa. To do this, we
can traverse the adjacency list for w o, placing a marker in the slots corresponding to its elements
in an array representing all the members of V. Then we traverse the adjacency list for w o, ; if
we ever find an unmarked vertex in it, we halt and return that as z (since it is adjacent to w ;4
but not to w ;). Similarly, we can search for a vertex adjacent to w4, but not to wy,). We
check whether z is adjacent to w,;,, for some j, 0<j <k, by scanning the adjacency list for
zo. We check whether z is not adjacent to w,; for some 0 <j <k by scanning the adjacency
list for zy and marking off the even-indexed elements of W as they are encountered --- thus the
work is O(deg(z o)), unless this is the last iteration, in which case it is O(/V|). Finding z ; and
checking its adjacencies is done analogously. Therefore the total time required is O(1E1).

QED Theorem 1

Actually, Theorem 1 is not new (although this proof is), because the existence of the
induced P 4 follows from [CL]; one can then apply the algorithm of [CP] that finds an induced P 4
(whenever it exists) in a graph (V,E) in O(IVI + | E|) time.

THEOREM 2: Let G =(V,E), V] 22, be a graph having neither similar pairs nor articulation
points. Then some induced subgraph of G is a member of F (the set of graphs in Fig. 1.6).
Furthermore, such a subgraph can be found in O(| E1) time.

PROOF: Our algorithm to find such an induced subgraph first finds a P 4 (Step 1). Then in each
of Steps 2 through 9, we test for some condition and if it is satisfied then we can find a member of

F and halt; otherwise we continue, and utilize the falsity of the condition in subsequent steps.

Finally (Step 10), if none of the conditions has been met, then we can find a set U < V such that
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(1) there is a particular vertex w that is adjacent to each member of U, (2) |U1 22, and (3) U
contains no U -similar pairs. Therefore we can simply apply Theorem 1 to the subgraph G/U to

obtain another P 4; this P 4 together with w induces a tepee .
More precisely, the algorithm is:

Step 1: Find vertices a ,b,c,d € V that induce a P 4(a,b,c,d) by means of the algorithm in the

proof of Theorem 1.

Step 2: If there exists v € V adjacent to both a and d then output the subgraph induced by
{a,b,c,d,v} (which must be a house, tepee or C s5) and halt. In the remainder, we therefore
assume that dist(a, d)=3, where dist denotes the length of the shortest path in the graph

between the two vertices.

Step 3:

B « {(b’eV :(@a,b e E and there  exists ¢’ eV such that

b',¢cN,(c’d)e E};

C « {c’eV :(d,cYe E and there  exists b’eV such that

(@,b’),(b",c)e EJ.

Thus, B is the set of vertices adjacent to a in the set of induced paths of length 3 from a to d.
Similarly, C is the set of vertices adjacent to d in the set of induced paths of length 3 from d to
a. If there exist vertices b€ B,cye€ C such that (b,c;)¢E then we can find an induced
member of F as follows. Since b, € B,c e C, there exist vertices b,, ¢, such that (a,b,),
(by,cy)e E, and (b, c,), (cyd)e E (Fig. 2.2.1). Note that Step 2 ensures that (a,c,),
(b,,d)€EE. There are eight cases depending on which subset of {(b,b7), (b2, ¢3), (c1,¢2)) is

contained in E. The reader may verify that there is an induced member of F in each case.
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b, 8]
Fig. 2.2.1

Thus

FACT 1: forallb,e B,c;e C,(b,,c,) € E (seeFig. 2.2.2).

Fig 2.2.2

Stepd: If 1Bl =1thenletP,  (a =pg,p,P2 ~ P, =c) be the shortest path from a to ¢ not
containing b (such a path must exist, otherwise b would be an articulation point). We know that
r 2 3, since otherwise B would have at least two elements, namely b and p ;. Consider the sub-
graph induced by (b,a,p, P2 . Pr-1 € }; it must be of the form shown in Fig. 2.2.3. Let k

be the smallest integer greater than 2 such that p, is adjacent to b.

J4 D Pra

Fig. 2.2.3
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We consider four cases:

Step 5:

CASE 1: (p 1,b), 0, b) €E.
ThenG/[a,pl,pz, $ £ !pkvb ]' isaCk+2wherek+225.
CASE2: (p ,b) € E,(ppb) ¢E.

If k =3 then {a,p,p2 p3 b} induces a house. Ifk 24 then G/{p ,p2 ", Pe>

b}isaCy, wherek+1 =5,
CASE3: (p,b)¢E,(py,b)e E.

If Kk =3 then {a,p ,p,,p3 b} induces a house. If k =4 then {(a,p ,p2,P3:P 4.0}
induces a step—up . If k 2 5 then {p4,p3, ', P, b } induces a C,,
CASE4: (p ,b)(p2,b)e E.

If k=3 then {a,p,,p,p3 b} induces a repee. If k =4 then {p,prp 3P4 b)

induces a house . If k 25 then {p,,p3, -, pi,b } induces a Cy.

Wi« {v e V-B :v is adjacent to at least one element of B and at least one ele-

mentof C U {a,d}};

W, {v e V-B:v is adjacent to at least one element of B but no elements of

Cu {a,d}}.

Thus {W {,W,} is a partition of the vertices outside of B but adjacent to elements of B .

After Step 6, each element of W ; will be adjacent to each element of B. After Step 7, each

element of W, will be adjacent to at least two elements of B. Steps 8 and 9 will use these two

facts to produce a set U < B having at least two elements and no U -similar pairs, which then

allows us to find a member of F in Step 10.
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Step 6: If there exists w € W such that Ny (w) # B then we find a member of F as follows.

First note that it cannot be that No(w)# & and (w,a) € E, otherwise we would have

w € B. Furthermore, it cannot be that No(w)= & and (w,a) ¢E, otherwise we would have
(w,d)e E and hence (since Nz(w)# &) we would have w € C. Also note that w # a, since
otherwise dist(a, b)<2. Since w is adjacent to at least one, but not all elements of B, there
exists b |,b, € B such that w is adjacent to b | but not to & ,.

CASE1: (w,a)éE,c ;e Nc(w) (Fig.2.24)

{b1,a,bq,c¢q,w} induces a repee if (b,b,) € E, and a house otherwise.
CASE2: No(w)= O, (w,a)e E (Fig. 2.2.5).

{h1,c,bqa,w) induces a tepee if (b(,b,) € E, and a house otherwise.

b, b,
a () a c
b, b,
w w
Fig. 2.2.4 Fig. 2.2.5

Step 7:
Q «— {we W,y INgw)l =1}.

If O is non-empty then we find a member of F as follows. For each g € Q define b, as the sole
element of Np(g), and define path(g) as a shortest path not containing bq from g to some
b'eB- {b, )} (such a path must exist since IBl 22 by Step 4 and bq is not an articulation
point. Find some go€ @ such that path(gy,) has minimum length; let

PrioqoP sP 2 * " »Pi,b") be path(g,). Since p; éB for 1 <i <k, p; is adjacent to at most one
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ofa orc.

We must have k =1, since INg(go)l =1. Alsonote thatp; ¢ {a,c}sincegge W,.

CASE1: k=1.

If (a,p ) € E, then (as shown above) p; is not adjacent to c¢. g is not adjacent to
¢ since gg€ Wo. Thus (Fig. 2.2.6) {b,,,q90,P 1,0, c } induces either a repee (if b,,is
adjacent to both p ; and b *), a house (if it is adjacent to exactly one of them), or a C s (if
it is adjacent to neither). On the other hand, if (a,p ) €E (Fig. 2.2.7), then we have that
{a,b’,b,,,qo.p ) induces either a tepee , house or C s in each of the four cases depend-

ing on which elements of { ’,p ) are adjacent to b, .

b’ b
P1 I3
e a
qo q0
by, by,
Fig. 2.2.6 Fig. 2.2.7

The following two facts are used in cases 2 and 3:

FACT 2: foralli,1 <i < k-2, p; is adjacent to neither @ nor ¢, since otherwise there would be a
path from g o to b ” shorter than path(g ) (b " is adjacent to ¢ by Fact 1).
FACT 3: for all i,1<i <k-1, p; is not adjacent to b, . To see this, assume that it is. If

pi € W then (p;,b) € E, contradicting the choice of path(go). If p; € W, — Q then the choice

of path(q ) is again violated. Otherwise the choice of g is violated.
CASE2: k =2.
CASE 2.1: (b,,,b ") € E (Fig.2.2.8).

Then {b,,, g0, P 1, P2 b "} induces a house if (bg,p2) € E and a C 5 otherwise.
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b’ D2

y 41

Fig. 2.2.8

CASE 2.2: (bqu, b’ eE.
CASE221:(p,,a)e E.

Then (p,c)¢E since p; ¢B (Fig. 2.2.9) so {b,, 90, Py, a, b’, ¢} induces a
step —up .
CASE 2.2.2: (p . a) ¢E (Fig. 2.2.10).

Then if (py.a) € E then {b,,, go, P 1, P2, a ) induces a house or a C 5 (depending
on whether (p,,b, ) € E). On the other hand, if (py,a) ¢E then (b, ,q0,P 1,7 2,0 fa)

induces a step —up or a C ¢ (depending on whether (p 5, b, ) € E).

bt
b’ J2)
a o
a P
P
9o
qo bqo b‘lo
Fig. 2.2.9 Fig. 2.2.10
CASE 3: kK =23.

CASE 3.1: (p_y, ¢) € E (Fig. 2.2.11).
Then [b(Iu’ dooP1-P2 " Prk-1-€ } isa Ck+2! where k+2 2 5.
CASE 3.2: (})k_l,C) ¢E.

CASE 3.2.1: (o, b, ) € E.
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Then G/{b, . qo.P1-P2 * "+ Pk} 18 2 Cyyp Where k+2 2 5.
CASE 3.2.2: (p;,b,,) ¢E (Fig.2.2.12).

If (pg,c)e E then G/{by,, qo. P 1sP2 **» Pi» € } is @ Cpy3 Where k43 2 6. Oth-
erwise either G/ {b;, qo, P1, P2 """» Px» b} is a Cpyy where k+326 (if
(b bg)e E)or G/ {bgp o P1s P2s s P b 5 €] iS @ Cyg where k+4 27 (if

(b’,b,,) ¢E).

9o 4% N Do, 9 DN

Fig. 2.2.11 Fig. 2.2.12

Thus, assume in the remainder INg(w)I =22 forallw € W,.

Step 8:

w « an element of W, having the fewest neighbors in B, i.e. INg(w)| < INg(w )|

forallw e W, (Weknow W, # I sincea € W5);

U « Ng(w).

If there exists v € B — U adjacent to some b; € U but not adjacent to some b, e U then

(Fig. 2.2.13) {b,w,b,,c,v } induces a tepee if (b,b,) € E and a house otherwise.
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v

Fig. 2.2.13

Thus, suppose each vertex in B outside of U is adjacent to either none or all of the vertices

inU.

Step 9: If there exists w "€ W, adjacent to some b ; € U but not adjacent to some b, € U, then
we can find a member of F as follows. Let b5 be an element of B — U that is adjacent to w ’
(such a vertex must exist, since otherwise |Ng(w)l = 1Ul > U - {b,} | 2 INg(w")| contrad-
icting the choice of w).

CASE 1: (w,w "y e E (Fig. 2.2.14).

Then {b ,a,b,,w ’,w } induces a tepee if (b (,b,) € E and a house otherwise.
CASE 2: (w,w ") ¢E (Fig. 2.2.15).
CASE 2.1: (b,,b3) € E.

Then (b, w,b,,bs,w ') induces a repee (if b | is adjacent to both b, and b3),a Cs

(if b | is adjacent to neither b, nor b 3), or a house otherwise.
CASE 2.2: (b, by) €E.

If b is adjacent to both b, and b 5 then {b ,w,b,a,b4} induces a tepee. If b is
adjacent to b, but not b5 then {b,w ",b3,a,b,} induces a house. If b is adjacent to
b5 but not b, then (b ,w,b,,a,b,} induces a house . Finally, if b is adjacent to nei-

ther b, nor b 5 then (b ;,w,b,,a,b3,w ) induces a step—up .
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3z NG

Fig. 2.2.14 Fig. 2.2.15

FACT 4: U has no U -similar pairs.

PROOF: We claim that each vertex v € V — U is adjacent to all or to none of the vertices in U .
Step 6 ensures this for each v € W (since U < B). Step 8 ensures this for each v € B-U.
Step 9 ensures this for each v € W,. Therefore, since there are no V -similar pairs, if u ,u,€ U,

they are not a U -similar pair. QED

Step 10: Find vertices u |, u,, u3, u4 € U that induce a P 4, by again using the algorithm of the

proof of Theorem 1 (Facts 4 and 5 allow us to do this). Thus {u |, u,,u3,uy,w ) induces a repee .

It is a simple matter to implement Steps 1-6 and 8-10 in O(|E'l) time. For Step 7 it is only
slightly more complicated: recall that there we must find a shortest path (go.p 1,P2, ** \Pr D)
subject to go€ Q,p; # b, forall1<i <k,and b ‘e B — {bg,}. To do this, we first find a shor-
test path P of this form but subject also to p, ¢Q. Secondly, we find a shortest path
(q.,p1sP2 " »pk) subject to q,pre @, b,#b,; and then let P, be the path
(g,p1sP2 * s Pksbp,). Both P and P, can be found in O(IEl) by means of breadth-first
search. We then choose the shorter of P and P , as our desired path.

QED Theorem 2

The existence result in Theorem 2 follows from the independently discovered results of
[BM]. In particular, a graph having neither similar pairs nor articulation points cannot be
‘‘distance-hereditary’’ in their sense, and hence must contain an induced member of F. Their

paper does not seem to provide the appropriate algorithmic result.
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2.3. 4-Factoring a Graph

We now present an O(1VI| X |El)-time algorithm to find a 4-decomposition of an
undirected graph G, thus improving on the O(I1V13)-time algorithm of [Cu]. As is shown in
[Cu], this problem can be solved by making O(1V1) calls to a subroutine that solves the follow-

ing problem:
INPUT: agraph G =(V,E)and anedge (x,y)e E.

OUTPUT: a partition {V, V|, V,, V3} of V yielding a 4-factoring, such that x € V; and

y € V,, if such a partition exists; otherwise output ‘‘no’’.
An O(1VI 2)-time algorithm to solve this problem is given in [Cu]; our algorithm, which runs in
O(IE) time, is shown in Fig. 2.3. We maintain a partition {§,7T} of V, such that x € § and
y € T. We try to construct these sets so that there is a partition {V, V |, V5, V 3} of V yielding a
4-factoring, where S =VoUV,and T =V, U Vy; if such a 4-factoring exists then we refer to
the set {S,T } as a split. Initially S contains only x and one other (arbitrarily chosen) vertex w,
and T contains all other vertices. Define a violation as a pair {s,t} such thats € S,andr e T

and one of the following four cases is true (see Fig. 2.4)

1. (s,t)e E, (s,y)¢E, (t,x)e€ E.
2, (s,t)e E, (s,y)e E, (t,x)¢E.
3. (s,t)e E, (s,y)¢E, (t,x)¢E.

4, (s,t)EE, (s,y)e E, (t,x)e E.

It is easily verified that if there is a violation then {S,T } is not a split. The algorithm iteratively
looks for violations, and whenever it finds one, eliminates it by moving the member of T
involved in the violation into §. We use a set U to hold all vertices s that have been moved into
S, but that we have not yet examined to see whether there is a t € T with which s forms a viola-

tion.
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(1) w « some element of V - {x,y};
(2) S «(x,w);

BT «V-5;

@ U{w},;

(5) WHILE U # @ DO

(6) BEGIN

7N 5 < somememberof U ; U« U-{(s5};

(8) [[ Look for violations of the form (s,7 ) wheret € T ]]
©) IF(s,y)€ E

(10) THEN FOR each t € Ny(s) W Np(x) DO
(11) IF {s,t} is a violation THEN

(12) BEGIN

(13) T«T-—{t};

(14) S«Suft};

(15) U«Uwu |t}

(16) END

(17 ELSE FOR each t € Ny(s) DO

(18) BEGIN

(19) [[ {s,t} must be a violation ]]
(20) T«T-{t};

21) SeSufr};

(22) U«Uwult)

23) END;

(24) END;

(25) [[ Now there are no violations ]]

(26) IF ITI >1

27) THEN BEGIN

(28) Vie—(se§S:(s,y)eE};

29 Voe=S -V,

(30) Voe— {teT:(t,x)e E);

(31D VaieT -V

(32) output {Vo,V},Vz,V:;]

(33) END

(34) ELSE

(35) Interchange x and y and repeat the WHILE loop with § = {y,w }andT =V - §.
(36) Again, if |T|>1 then output a partition as in steps (28)-(32); otherwise output ‘‘no’’.

Fig. 2.3
The algorithm (A) to check for a 4-factoring splitting a particular edge.
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1 2
.3 T S T
s t s t
x y X y
J¢ 4
S T 5 T
S t
X y

The four types of violations.

A straight line indicates an edge, absence of a line indicates no edge,
and a wavy line indicates that an edge may or may not be present.
Fig. 2.4
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PROOF OF CORRECTNESS:

If there is a split {S, T ) withx € §,y € T then either w € § or w € T. Hence it suffices
to check that the algorithm correctly determines whether there is a split {S, T } with {x,w} < S,
y € T. We show first that after the termination of the WHILE loop there is no violation.
Assume for a contradiction that there were such a violation {s,¢). Since every element of S
other than x was removed from U at some point, we can consider the point at which s was
removed from U. If (s,y)e E then (since {s,r} is a violation) we must have that
t € Np(s) U Np(x). But this implies that the violation {s,} would have been detected in step
(10), and therefore r would have been included in S, a contradiction. On the other hand, if
(s,y) €E then the violation (s, } would have been detected in step (17) and therefore ¢ would

have been included in ', again a contradiction.

Now if IT1 > 1 then it is easy to verify that the partition {V, V, V,, V3} yields a 4-
factoring. On the other hand, if there is a split {§’, T’} withx € § ',y € T " then no element of

S’ could constitute a violation with an element of T .
ANALYSIS OF TIME COMPLEXITY::

For each vertex v € V, we maintain a doubly-linked list of its neighbors in T' (i.e. the set
Np(v)). When an element ¢ is removed from T, it must be deleted from each of the deg(z) such
lists. To facilitate this, we also maintain, for each ¢t € T, a list of the nodes corresponding to it in

these lists; thus there is one such node (in the list for Ny (v)) for each v adjacent to .

Note that no vertex is removed from U/ more than once. Furthermore, we claim that when-
ever an element s is removed from U, the amount of time spent in checking for violations
involving s (which is proportional to the number of executions of the FOR loops in steps (10)
and (17)) is

O( deg(s) + # of violations found involving s )

To see this, note that step (10) examines some ¢ € T either when ¢ € Ny(s) (which happens for
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at most deg(s ) values of ), or when ¢ € Ny(x)— Ny(s) (which implies that {s,¢} is a violation,
of type 4). To enumerate the elements in the set Np(x ) — Nyp(s) efficiently, we first traverse the
list Ny (s ), marking each element; we then traverse the list Ny (x) reporting each unmarked ele-
ment. These two traversals take O( deg(s) + # of violations found involving s ) time. Finally,

step (17) executes |INp(s)| (< deg(s)) times.

Thus, the running time of the algorithm is at most

b O(deg(s ) + # of violations found involving s )
seV-|(x,y}

=0(IVI+ 1El) = O(IEI),

since the number of violations found is at most |V — 2 (since each such violation causes an ele-

ment to be removed from T').

In summary, the running time of algorithm of [Cu] to find a 4-decomposition is dominated

by O(IV ) calls to this algorithm; thus its total time is O(1V| x |EI).
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2.4. Central Lemma

Although the previous algorithm (A, page 26) allowed us to 4-decompose a graph into its
4-prime components, we have found the following Lemma and its derivatives much more helpful
in proving additional properties about prime graphs, and in solving the recognition problem on
circle and permutation graphs. There are several different forms to this lemma, and we shall
present the most general one (Lemma 1) first, and then show how to get some more specific ver-
sions. What each variation of Lemma 1 states is that starting from a prime, induced subgraph
G W , there is a procedure whereby W may be augmented by a few vertices in such a manner as
to produce a larger induced prime subgraph of G (which also contains G/W as an induced sub-
graph), unless G itself is not prime. In this case, the procedure will naturally fail at some point.

Each lemma (1,2, and 3 along with Cor. 1 and 2) can be thought of as a set of rules
whereby, starting from an initial vertex set Vo such that G/V o € F, a basic constructing sequence
(recall the def. in Sec 1), (Vo,Vy, - -, Vy), is formed where each graph G/V; is forméd from
G/V;_; by application of one of the rules given in the lemma. In this case, we say that

Vo, Vy, - -+, Vi) is a constructing sequence subject to the lemma.

All of the lemmas rely heavily on the use of the definitions given in the Introduction. To
facilitate understanding the lemmas, it is important to establish a few facts.
FACT 5: If G =(V, E) is 4-prime then (1) G has no articulation points, and (2) G has no similar
pairs.
PROOF: (1) If G has an articulation point v, then let {A, B } be a partition of V — {v} sets such
that 1B1 = 1Al =1 (hence |B| = 2) and the removal of v from G leaves G/A disconnected from
G /B . Then the partition of V into

VOZA
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V3=B MNB(V)

yields a 4-factoring of G (Fig. 2.5).

4-Factoring a graph with articulation point, v
Fig 2.5

(2)Ifa,b e V are a similar pair then the partition of V into
Vo=V —=(Ny(@)v {a,b})
Vi=Nya)- (b}
Vo= {a,b)
Vi=
yields a 4-factoring of G (Fig. 2.6). QED
FACT 6: If G =(V,E) is a 3-prime graph having at least three vertices then G has no similar
pairs.
PROOF: If a,b € V are a similar pair then the partition of V' into
Vo=V —(Ny@)u {a,b})
Vi=Ny(a)-{b)
Vo= {a,b)

yields a 3-factoring of G (Fig. 2.6). QED

It is easy to verify that there are no 3-prime graphs of size 3, and there are are no 4-prime

graphs of size 4. All 3-prime graphs contain an induced P, (by Theorem 1), and all 4-prime
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Factoring a graph with a similar pair, @ and b
Fig 2.6

graphs contain a member of F as an induced subgraph (by Theorem 2). From the fact that there

are no similar pairs in either 3-prime or 4-prime graphs we have the following two facts:

Fact 7: If G /W is 3-prime, and w |, w, € W such that w | # w, then My, (w ) " My (w,) = & .

Fact 8: If G/W is 4-prime, and w; and w, are distinct vertices in W, then
My (w ) U A (w ) N My (w5) U Agp(w ) = D ..

Since 4-prime graphs contain no articulation points, My M Ay is empty. Hence

Fact 9: if G/W is 4-prime, then Ay, A", My(w), Ay(w) for all w € W form a partition of

V-W (Fig. 2.7).

Similarly,

Fact 10: if G/W is 3-prime, then Ay, Ay, Ayt, My (w) for all w € W form a partition of

V-Ww.
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The partition of V- W into Ay, Ay, A ,and My,
Fig. 2.7
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We are now ready to introduce the central lemma:

LEMMA 1. If G =(V,E)and if G/W is a 4-prime induced subgraph of G, then:
(1) If there exists @ € Ay* then with W ;=W U (a}, G/W is 4-prime.

(2) If there exists w € W such that MW(W)UA“';(W) # & then:

(i) If there exists m € My(w) and x € (My—My(w))UAF" such that
(m,x)e E iff (w,x) ¢E (Condition i), then with W =W U {m,x }, G/Wis4-prime.

(ii) If there exists m € My (w) UA‘;%‘(W Yyandx € V=W — A — My (w)— A (w)
such that {m,x}NAyp#@ and (m,x)e E (Condition ii), then with
Wi=W v {m,x}, G/W,is4-prime.

(iii) If there exists me My(w)uUAg(w) and
xeV —W—A‘S—MW(W)—A“';(W) such that G/{m =pg,p, " .Pry1 =X} is either a
Ciaz OF Pyyy where k 21, p; € Ay for j e (1,2, k), and p; is adjacent (o p;,, for
j € {0,1, -k} (Condition iii), then with W =W U {v,p, - ,pr.x}, G/W is4-
prime.

(iv) If there is no m and x such that Condition (i), (ii), or (iii) is satisfied, then G is
not 4-prime.

In English this means that if G /W is 4-prime, then we may attempt to augment W, creating
W |, by means of any one of four rules. This new W, if we can actually apply one of the rules,
will induce a 4-prime subgraph of G. This lemma also gives a condition for when G is not 4-
prime. It will be convenient to work with a more restricted version of this lemma (Lemma 2)
which is introduced next. In Lemma 2 G is taken to be prime, hence the need for condition (2iv)

in Lemma 1 is eliminated.

LEMMA 2. If G is 4-prime, W c V,4 < IWI| < |VI, and G/W is 4-prime then at least one of
the following five holds true:
(1) There exists a € A" In this caselet W ;=W U {a }.

(2) Thereexistw ,woe W, m e My(w,),mye My(w,)suchthat w,=w,and (m,,m,) e E
iff (w,wy)éE. . Inthiscaselet W =W U {m,m,}.

(3) There exist distinct vertices w,wyo€ W,po=a,€ Ag(w )P =a,€ Agp(w,), and
D; € Apg forie (1,2,---k)suchthat G/la,p, P2 “ s PrrG2) = Prop(@n,pipa

E}
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Pr»a3). Inthiscaselet W, =W U {a,a.p, P}

(4) There exist w,wyoe W,m e My(w,),a,e Ag(w,) such that w, # w, and there exists a
simple path, my, py, -, pi, @, with k 20and p; € Ay fori € {1,2,--- k). In this case let
Wi=Wvu (myazp, - o).

(5) There exist w,wo€ W,m € My(w,),my€ My(w,) such that w # w,, m, is adjacent to
m, iff w is adjacent to w,, and there exists a simple path or cycle, m ,p,, - - - ,pg, m, with

k2landp; € Ay fori € {1,2,-- k). Inthiscaselet W =W U (my,myupy "\ pe).

Furthermore, G /W | is 4-prime.

This lemma says that if G is 4-prime then we will be able to apply at least one of 1 through
5 to augment W in such a fashion as to produce a larger graph G /W | that is still 4-prime. The
way that Lemma 2 is derived from Lemma 1 is that Condition (1) of Lemma 1 becomes condition
(1) of Lemma 2. Condition (2i) of Lemma 1 becomes condition (2) of Lemma 2. Condition (2ii)
of Lemma 1 becomes conditions (3) and (4) of Lemma 2, with k =0 in each of (3) and (4). Con-
dition (2iii) of Lemma 1 becomes condition (3), (4), and (5) of Lemma 2, with k£ = 1 in each of
(3), (4), and (5). While Lemma 2 is not as compact, the types of augmenations which may be
made to W to still yield a 4-prime graph are clearer. By utilizing the correspondence between 3-

prime and 4-prime, we may immediately arrive at a corresponding lemma for 3-prime graphs:

LEMMA 3. If G is 3-prime, W is a proper subset of V, and G /W is 3-prime, then at least one of
the following four holds true:
(1) There exists a € Ay". In this case let W, =W U {a ).

(2) There exists w,woe W,m;e My(w),mye My(w,) such that w;#w, and
(mypmy)e Eiff (w,w,)éE . Inthiscaselet W, =W U {m,m,}.

(3) There exists wye€ W,m ;€ My(w),my€ Ay such that (m,m,)¢E. In this case let
W1=W U Iml,mzl.

(4) There exists w,e W,m, € My(w,),a € Ay such that (m,;,a)e E. In this case let
Wi=Wu (ma}.

In addition, G /W | is 3-prime.

This lemma says that assuming G is 3-prime, we will be able to apply at least one of (1)
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through (4) to augment W so as to produce a larger set W, whose induced subgraph, G/W ,, is
still 3-prime. To see how Lemma 3 follows from Lemma 2, we let G =(V,E) be a 3-prime
graph and z a vertex not in V such that z is adjacent to each vertex in V. Then
G '=G/(V U {z]) is 4-prime so that Lemma 2 applies to it. Now, for each W c V which
induces a 3-prime subgraph of G we form a corresponding set: W =W U (z}. Note that
A“(;r = (. This means that (3) and (5) in Lemma 2 are inapplicable. Thus, the form of Lemma
2 may be simplified to yield Lemma 3 in the following fashion. A#' in Lemma 2 becomes A,
in Lemma 3, so that (1) in Lemma 2 becomes (1) in Lemma 3. (2) in Lemma 2 becomes (2) and
(3) (the second case arises since those vertices W —similar to z must be accounted for) in

Lemma 3. Finally, (4) in Lemma 2 becomes (4) in Lemma 3.
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Proof of Lemma 1.

We first note that since G is connected if W =V then AZ* U My, UAj 2 @ .

To show that (1) holds: Assume for a contradiction that a € A" but G/W | is not 4-prime.
Then there is some 4-factoring partition (H o, H ,H ,,H ) of W,. Without loss of generality
a € HyU H,; which means that there is exactly one element w € W N (HyW H,) since
(Ho—{a},H —{a },H,,H ;) is not a 4-factoring partition of W. Now w € H | since G/W is con-
nected. But a ¢H  (since a eéA“',), and a ¢H | (since a é My (w)) so that we have a contradic-
tion.

To show (2), assume w € W such that My (w) U Ag(w)# @ .

Case 1: Condition i or ii is satisfied:

Assume that G/W | is not 4-prime so there is some 4-factoring partition (H o, H {, H 5, H 3) of
W
Case 1.1: Bothm and x are elements of Hy U H .

Then there is at most one element of W in HyawWH,; otherwise
Ho={m,x},H = {m,x},H, H;) would be a 4-factoring partition of W. Thus, no element of
W is in H o since W is connected. If no element of W is in H ; then neither m nor x could lie in
H , since neither is in A, but neither can they both lie in H since then they would be W -
similar. Thus, suppose y € W is an element of H ; which means that y =w. Hence, both m and
x would be elements of My, (w) v A“fr(w) a contradiction.

Case1.2: me HyUH andx € H,UH,.

Since (Ho—{m},H—{m},H,—{x},H3—{x}) does mnot 4-factor W, either

HoUH = {m}orH,UH ;- {x} contains exactly one vertex,y € W.

Case1.2.1: ye HyUHandW - {y ) cH,UH .
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Then y € H | since W is connected, and m € H | since m €A '(W u (x)) Which means that
y=w and m € Mwy(w). But then x ¢H, U H ; since x is adjacent to exactly one of m and w

which is a contradiction.
Case 1.2.2: W—-{y}cHyVH,;andy e Hy,UH.

Then y € H, since W is connected, and x € H , since x ¢A l(w u {m}) Which means that x

is W -similar to y, a contradiction.
Case 2: Condition iii is satisfied:

Assume that G/W, is not 4-prime so that there is some 4-factoring partition
(H o, H ,H »,H3) of W,. Since G/W has no articulation points and {n,x } € My (w) U Ay (w),
for each v € W there is a path in G/W from m to v which is vertex disjoint from a path from v
to x. Thus, there are two vertex disjoint (in G/W ) paths to each vertex in W — W for each
v € W. By the same token, there are also two vertex disjoint paths between each pair of vertices
in W,—W. Hence G/W | contains no articulation points so that neither H | nor H , may contain

exactly one element.
Case 2.1: p; e H forsome j € {1,2,--- k}.
Then no member of W is in H, since only p;’s neighbors may be in H,; hence
H =Ny (/).
Case 2.1.1: W is contained solely in H U H ;.

If Kk =1, then H, = {m,x }, but this is a contradiction since m and x are not W -similar. If
k>1 then ak least one of p;’s neighbors is an element of {p ,p, ***,p;} which precludes an
element of W from being a member of H; (Fig. 2.8). This, in turn, precludes m and x from
being members of H, U H;. Hence H,UH;3C {p,p2 - ,P: ). Butsince no two vertices in
W —W — {m,x } have a common neighborhood of more than one vertex, |/ | =1, a contradic-

tion.



-39

Illustration for Case 2.1.1 of Lemma 1
Fig 2.8

Case 2.1.2: W is contained solely in H 5.

Then neither m nor x is contained in H U H | since both are adjacent to some element of
W. But no two elements of W — W — {m,x } share two common neighbors so that |41 =1, a

contradiction.
Case 2.2: nop; isin H | (norinHjy)forj e (1,2, -,k }.

Then without loss of generality p; € H for each j € {1,2, - k) so that H, U H 3 con-
tains at least two elements of W. Now, H, \U H ; may not contain all the vertices in W since then
both m and x would be in A ;| where they would be W -similar. But if H,\ H | contain exactly
one vertex y from W, then we would have both m and x elements of My (y) U Ay (y), a con-

tradiction.

Thus, we have shown that i, ii, and iii are true so that we only have to show iv. To this end,
suppose that none of Conditions i, ii, or iii are met. Then we proceed to show that

(Ho,H |,H ,,H 3) 4-factors G where the H; are defined as follows:

Ho=Agw)U (v e A there is a path from Ay (w) U Mw(w ) to v contained solely in Al

Hy=Myw) U (w)



-40 -

H2=Nw(W)UNAWz+(W)U U Mw(.l)
x € Nw(w)

H;=V-H—H,—H;4

Since My (w) U Ag(w)# @, we have that |HyU H | =2, and since INy(w)l =2 we
have that |H, U H ;|1 22. Itis clear that every element of H | is adjacent to every element of H ,
since Condition 2i does not hold. It is clear that every element of A,y in H , is adjacent to no ver-
tex of H , since Condition 2iii does not hold. It is clear that every element of Ay (w) in H is

adjacent to no vertex of H , since Condition 2ii does not hold. Thus, (HoxH ) NE = & .

By the definition of H ¢, no vertex in H , is adjacent to a vertex in A;» N H 5. Since condi-
tion 2ii does not hold, there is no vertex of H ; adjacent to a vertex in Ay — Ay (w) € H 5. Since
condition 2i does not hold, if a vertex in A" U My, — My (w) is not adjacent to w, then it is

adjacent to no member of My (w ) so no vertex in H | is adjacent to a vertex in (AHZ,*— Ny (w))

VU (MW — My(w)— U )< H,. Finally, we have that no element in H | is adjacent to an
x € Nw(w)

element in H 5 since
H 3= (Ap—Ho) U (Ay— A (W) U (AN g W) U Myy— My (W)= U My (x)) U (W-Ny(w)—{w )).
x € Ny(w)

Now, no vertex in A,y N H 5 is adjacent to any vertex in H by the definition of H. In fact
since Condition 2iii does not hold, no vertex in Ay N H, is adjacent to a vertex in
V—My(w) —A“‘;(w)—Apg. Thus we must only account for the adjacencies of Ap,}(w ). But,
since Condition 2ii does not hold, no vertex in Awl,(w) is adjacent to a vertex in
V—My(w)—Aww). Thus, HyxH3)NE = &.

QED Lemma 1



_41 -

2.5. Applications of the Central Lemma

Cor. 1 (to Lemma 2). If G =(V,E) is 4-prime then there exists a maximal 4-constructing
sequence (W, W, - - -, W,) such that if 1<j <k then G/W; is obtained from G /W;_; by apply-

ing one of rules 1,2, or 3 in Lemma 2.

Proof of Cor. 1: Suppose (V,,V{, - --,V;) is a maximal constructing sequence subject to
Lemma 2. What will be shown is that for each application of rule 5 there is a another maximal
constructing sequence subject to Lemma 2 with one less application of rule 5 (and one more
application of rule 4) --- thus, there is a maximal constructing sequence subject to Lemma 2 with
no application of rule 5. It will also be shown that for each application of rule 4 there is a another
maximal constructing sequence subject to Lemma 2 with one less application of rule 4 (and no
more applications of rule 5) --- thus, there is a maximal constructing sequence subject to Lemma

2 with no applications of rule 4 nor of rule 5.

Suppose that G/V;,, is formed from G/V; by application of Rule 5 (Fig. 2.9). For
0<j<i,ifw;¢V;letV " be the set V;, and otherwise (w € V) let V" = V; U (m ]}-{w ]
(we swap vertex w; with m,;). Since G/V; is isomorphic to G/V 7,
Vo Vi Vig, -, V) is a constructing sequence (though not maximal). Since m is
adjacent to m, iff w is adjacent to wo, (V' %, .,V 5, Vigr—{w ), Vig, -+ -, V;) is a maximal

constructing sequence where G /(V; ., —(w ]) is formed from G/V ; by application of rule 4 and

ny i, m, m,

>SS

The two possible applications of rule 5 (Lemma 2)
Fig 2.9



-42 -

G /V;,, is formed from G/(V;,—{w }) by application of rule 1. Thus, we have a new maximal
constructing sequence subject to Lemma 4 where the number of applications of rule 5 has
decreased by 1 (although the number of applications of rule 4 has increased by 1). Hence, there

exists a maximal constructing sequence subject to Lemma 4 which has no applications of rule 5.

Suppose that G/V;,, is formed from G/V; by application of Rule 4 (Fig. 2.10). For

OS] Si,lfwléV} IetV’] be theSCth, and otherwise (WIG VJ)IC‘LVIJ = V}U {ﬂ‘ll’—{wll.

Since G/V; is isomorphic to G/V 7, (Vg » -,V 5, Viy, -+ -, V)) is a constructing sequence
(though  not  necessarily  maximal). f IV,,-V;123 (e k=21) then
Vo Vi Vig—w,Viy, -,V is a maximal constructing sequence where

G/V;—{w,} is formed from G/V 7 by application of rule 3 and G/V;,, is formed from
G /V;—{w,) by application of rule 1. Thus, suppose V;,;—V ;= {(w, ap} (Fig. 2.11). If
ae My, then Vg, -,V 3, Viyy, -+, V) is a maximal constructing sequence where G /V;
is formed from G /V *; by application of rule 2. If, on the other hand, a, €My -, thena, e A " .
so (V7o, -, ViViula,),Viy, ---,V)) is a maximal constructing sequence where
G/I(V ;U la,)) is formed from G/V *; by application of rule 1 and G/V;,, is likewise formed
from G/(V ; U {a,}) by application of rule 1. In each case, the new maximal constructing
sequence is subject to Lemma 2, but there is one fewer occurence of rule 4 being used (and the

same number of applications of rule 5). QED Cor. 1

my @ Wi \ 4 @
< J
NI
Application of Rule 4 (Lemma 2) Application of Rule 4 (Lemma 2)

Fig 2.10 Fig 2.11
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Cor. 2 (to Lemma 3). If G =(V,E) is 3-prime then there exists a maximal 3-constructing
sequence (W, W, - -, W) such that if 1<j <k then G/W; is obtained from G /W;_; by apply-

ing one of rules 1 or 2 in Lemma 2.

Proof of Cor. 2: IForm G (V ,E ) where V' -V ={z}and E "= U {{z}xV} sothat G "is
4-prime. Let (W, W,, - W,) be a maximal 4—constructing sequence according to Cor. 1

where z € W (thus, G/W ; = C §*). Clearly, rule 3 of Lemmma 2 is not used since Ny -(x) =V .

We now show that we can form a maximal 4—constructing sequence
W Wy, - , W =V") for G where G TW,;=C 23 but W, N My (x)= &) for 0<i<k (Le.
no vertices from My, (x ) = Ay, - are ever added). As in the proof of Cor. 1, suppose (Vg, - -,V))
is a maximal 4—constructing sequence for G “and G 7V;,, is formed from G 7V; by application
of rule 2 (of Lemma 2) and My (x)NV;y={m). Then V, —V;= {(m, m,} where
my€ My(w,). For 0<j<i, if w ¢V; let V’; be the set V;, and otherwise (w € V;) let
1% ’j =V; U {m}—{w]} (we swap vertex w, with vertex m,). Since G 1V is isomorphic to
GV, (Vo V73 Vigy, -+, V) is a maximal 4—constructing sequence in nm € My, -, and
otherwise (V %, -+ -, V.,V ;U {m},V;,, ---,V;) is a maximal 4—constructing sequence (this
is the case where m € Ay »). Thus, we may easily find a maximal 4—constructing sequence
Wy, - ,W,=V") (and where z € W) subject only to rules 1 and 2 of Lemma 2 such that
Wi "My (x)= @ for 0<i <k. Hence W, N My, (x) N Ay)= . Hence (W —{z},
Wo—{z}, -, We—={z}=V)is a maximal 3-constructing sequence for G using only rules 1

and 2 of Lemma 3. QED Cor. 2

As an application of the previous Lemmas, Theorem 1 and Theorem 2 have a remarkable
refinement. Since 3-prime graphs contain no similar pairs, Theorem 1 tells us that such graphs
contain an imbedded P ,. Theorem 3 states that not only do 3-prime graphs contain an imbedded

P 4, but that all but at most one vertex is not contained in an embedded P 4! Similarly, if G is 4-
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prime, then not only is there some induced subgraph of G which is isomorphic to one of the
graphs in Fig. 1.6, but each vertex of G is contained in an induced subgraph of G which is iso-

morphic to one of the graphs in | (Fig. 1.5). More precisely,

Theorem 3: If G = (V ,E) is 3-prime with |V = 3, then (i) every vertex in V is contained in an
induced P 4 or DW (see Fig. 1.4) and (ii) at most one vertex in V is not contained in an induced
Py,

Theorem 4: If G =(V,E) is 4-prime with |V| 24, then every vertex in V is contained in an

induced graph of G which is isomorphic to one of those from Fig. 1.5.

Note that a DW is 3-prime and hence the theorem also applies to it. Furthermore, each of
the graphs in Fig. 1.5 contains as an induced subgraph one of the graphs in Fig. 1.6, and each of

the graphs in Fig. 1.6 and Fig. 1.5 are 4-prime.

Proofs of Theorems 3 and 4 The idea behind each of the proofs is induction on the size of
the graph (part (ii) of Theorem 3 is proved differently: by assuming the contrary and showing a
contradiction). Specifically, the statement of the theorem is taken to be the induction hypothesis
for a prime graph of size i. The basis step, i =4 for 3-prime graphs and i =5 for 4-prime graphs
is easy to see since the only 3-prime graph of size 4 is a P 4 and the only 4-prime graph of size 5
is a Csg, tepee, or house. Next, the induction hypothesis is assumed to be true for all prime
graphs of size k£ or less, and the truth of the induction hypothesis is demonstrated for an arbitrary
prime graph, G =(V,E), of size k+1 (where k 25 for G 3-prime and k > 6 for G 4-prime. If G
is 3-prime, then Theorem 1 guarantees that G contains a 3-prime, proper, induced subgraph. If
G is 4-prime and contains no 4-prime, proper, induced subgraph, then Theorem 2 guarantees that
G is one of the graphs in Fig. 1.6 so that G satisfies the induction hypothesis. Thus, we need
only consider 4-prime graphs which contain a proper induced 4-prime subgraph. Let W be a
largest, proper subset of V' such that G/W is (3 or 4)-prime. The induction hypothesis applies to

G /W since W is a proper subset of V. By Cor. 1 to Lemma 2 (or Lemma 3) there are only a few
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ways to obtain G from G /W, and it is demonstrated that the induction hypothesis is maintained

for each of them.

Before diving into the meat of the proofs, it is convenient to introduce several ancillary

facts:

Fact 1. G =(V,E),x e W cV,andy € V —W such that y is W -similar to x, then for every
W, W such thatx € W, G/W is isomorphic to G/(W U {y }—{x})
Fact 12. G (V ,E) is 3-prime iff the complement of G is 3-prime. The complement of a P4 is a

P 4, and the complement of a DW is a DW.

Fact 13a. If G (V,E) is a graph where four of the vertices induce a P 4 and the fifth vertex is adja-

cent o some but not all of the other four vertices, then the fifth vertex, together with some of the

other four induces eithera P 4, or DW in G.

Proof of Fact 13a. Let G be isomorphic to G =V ,E,) where V= [{a,b,c,d,v]},
G/(V,={v]) =P,4(a,b,c,d)andv is adjacent to some but not all of V', — {v} (Fig. 2.12). If
N@) = {b,c}then G isaDW. fN(W) = {a}, {a,d}, (c},or {c,d] then {v,a,b,c}
inducesa Py,on G . N(v) = (d}, la,b},or {b} then {v,b,c,d} inducesa P, on G . If
Nw)= (b,d)}, |b,c,d}, or {a,c,d} then {v,a,b,d) inducesa Pyon G,. fN(v) = {a,

¢y, {a,b,c},or{a,b,d}then {v,a,c,d)inducesaP ,onG,.

a b é d a b c d

Figure for the proof of Fact 13
Fig. 2.12
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Fact 13b. If G (V,E) is a graph such that five of the vertices induce a DW , and the sixth vertex is
adjacent to some but not all of the other five, then the sixth vertex together with some of the other

five vertices induces either a DW oraP 4on G.

Proof of Fact 13b. Let G be isomorphic to G =V ,E) where V= ({(a,b,c,d,e,v},
G /(V—{v})=DW(a,b,c,d,e)and v is adjacent to some but not all of V |—{v} (Fig. 2.12). If
N@)= la,b,c,d), then {a,v,c,e ) inducesa P, on G,. If v is adjacent to some but not all of
the vertices in {a,b,c,d } then we apply Fact 13a. If v is adjacent to none of {a,b,c,d} then
{v,e,b,a}inducesa P, onG,.

Proof of Theorem 3:

To prove Theorem 3 the following Induction Hypothesis is used: Every vertex in a 3-prime
graph G =(V ,E) of size 4 < |V <i is contained in an induced P 4 or in an induced DW. The
basis step was shown in the first paragraph of this section. The induction step follows: suppose
that the induction hypothesis is true for i <k. We show this implies the truth of the induction
hypothesis for i =k+1 25. Thus, suppose |VI =k+1 and (Wo, W, -+ ,W; =V) is a maximal
constructing sequence subject to Lemma 3. By our induction hypothesis, each vertex of each W,
(/ € {0, ---,j—1})is contained in a P 4 or a DW (which is embedded in W;). All we have to do
is show that every vertex in the application of the last rule is also contained in a P , or DW. We

have already taken care of j = 0 in our basis step.

Suppose the last rule applied is rule 2. Then both the added vertices are W;_;-similar to
some vertices in W;_, so we apply Fact 11. If the last rule applied is rule 4 then since w | must be
the endpoint of a P 3 (since each vertex in a P 4 is the endpoint of a P ;) embedded in G/W;_, m
will also be the endpoint of a P ; embedded in G/(W;_; v {m}). Butsince a is adjacent only to

m y, it is the endpoint of a P 4 containing both a and m ,.

If we use rule 3 last, then we examine the complement of G = G!Wj and G/Wj_] which are

both 3-prime by Fact 12. In fact, in the complemented graph, a and m ; were added by using rule
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2 50 they are thus in a P 4 in the complement of G/W;. Thus, since the complement of a P4 is a

P4, they are also in a P 4 in G/W;

Suppose we use rule 1, adding a. If a is adjacent to some but not all the elements of W
then we apply Fact 13. Thus, suppose that a is adjacent no vertex in W, (just take complements
to treat the case of a adjacent to each vertex of W). Then let [ be the smallest integer such that
a is adjacent to some vertex in W, but adjacent to no vertex in W;_; (such a vertex exists since G
is connected). By our inductive hypothesis each vertex of W, is contained in some P, or DW
embedded within W;. Thus, if y € Ny,(a) then y is embedded in an induced subgraph of G /W,
which is a DW or P, but at least two of whose vertices are not adjacent to a (since

1 <INy (a)l £2). Hence, Fact 13 applies.

To prove the second half of Theorem 3 we need to show that we cannot have two vertices in
a 3-prime graph, G = (V, E), not contained in an embedded P 4. Thus, assume for a contradiction
that neither v,w € V are contained in induced P4 s of G. Thus, they are both contained in

embedded DW s and without loss of generality assume that (v ,w) €E (else just complement the

Decomposing G in showing (2) of Theorem 3
Fig. 2.13
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graph). Then form (see Fig. 2.13):

F,={xeV:(x,v)e E and (x,w) &E },

F,={lxeV:(xyv)¢E and(x,w)e E},

F,.={xeVixyv)e Eand(x,w)e E},
with F=F , UF,UF,,

Suppose a € F,,b € F,,, andc € F,,. Then (a,b)¢E (else {v,a,b,w} induces a P,),
(@ac)e E (else {a,v,c,w}induces a P ,),and (b,c) € E (else {b,w,c,v} induces a P 4). Itis
clear that F,,, # & else the shortest path from v to w would yield a P,. It is also clear that
F,UF, # & since v and w are not similar. Further, every vertex in V—F—{v,w } must be
adjacent to some vertex in F' since otherwise the shortest path from it to v will yield a P 4 that v
isin.

Every vertex d € V—F which is adjacent to some a € F, U F,, is adjacent to every vertex
b e F,, orelse either {d,a,b,w} or {d,a,b,v} would induce a P4. Novertexe € V —F is
adjacent to a € F, and ¢ € F,, or else {v,a,e,c} would induce a P4. Suppose g € V —F is
adjacent to no element of F, UF,, and h € V-F is adjacent to some z € F, UF,,. Then g is
not adjacent to i or else either {(g,h,z,v} or {g,h,z,w} would induce a P 4 (in the case where

{g,h} n{v,w]}= . The other case is taken care of by the definition of F .).

Finally, it is easily verified that with the above relations, we will obtain a 3-decomposing

partition (H o, H {, H ;) as follows:

Hy= {x e V-F —{v,w}:x is adjacent to no element of F, U F,, }

H,=F,,

Hy=V-H|=H;=F, OF,U{v,w}UNF, VF,)-F,,

It is easy to see that |HoUH | 21,|H,l 22, H,;xH | CE, HyxH,;NE = J which is a
contradiction since G /V is assumed 3-prime.

QED Theorem 3
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Proof of Theorem 4 (from page 44)
Before commencing with the main proof, it is useful to introduce a few ancillary facts.

Fact 14. Suppose G =(V,E),G/{p ,p2 ** " :Pn} =P,(0,P2 - - .p,) wheren 24, v is adja-
cent to p; and to p,, and k is the smallest integer greater than 3 such that v is adjacent to py.

Then R = {v,p,p2 " ,p:} induces one of the graphs of Fig. 1.5 (see Fig. 2.14).

D P Ps Ph

Used in proving Fact 14
Fig. 2.14

Proof of Fact 14. If v is adjacent to neither p, nor p 3, then R induces Cp (P 1, L2, * " Pk V)
If v is adjacent to p, but not to p 4, then R induces CZ, (p P2 Perv). If v is adjacent to
pibutnottop,then R induces C;(p (,p 2 * ** +Pp.v). Finally, If v is adjacent to both p, and

P4 then R induces Cszl(p yilbes YW,

Fact 15. If G = (V,E) is a graph with no articulation points, and v € V is a vertex with exactly
two neighbors which are not V' -similar, then v is embedded in a graph isomorphic to one of those

of Fig. 1.5.

Proof of Fact 15. There exists a vertex p, which dissimilates v’s neighbors, p ; and x from each
other. Assume without loss of generality that p, is adjacent to p, and not to x. Now, let
P2P3 ", P, X be the shortest path from p, to x not passing through p so that k = 3. Then
VX, Pe.Pr_1» " »P 2 18 a simple path of length k+1 so we appeal to Fact 14 with v one endpoint

of our simple path and p , the apex.
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Fact 16. Given G(V,E)and W c V with G/W isomorphic to one of the graphs of Fig. 1.5. If
v € V=W such that |INy(v)| 22 then v, together with some subset of W induces a subgraph in

G isomorphic to one of those in Fig. 1.5.

Proof of Fact 16. We show this by proving each of the following subfacts. Suppose W < V such
that V-W = {v} and INw(v)| 22. Then there exists a subset of V', X, such that v € X and

G /X is isomorphic to one of the graphs in Fig. 1.5 whenever G/W is:

Fact 16a. C,(p(,p9, - - ,p,) Withn 2 5.

Fact 16b. C2(p ,po, - ,pn) With n = 5.

Fact 16c. C.2(p 1,po, -+ »p,) Withn 2 5.

Fact 16d. C.2*@ 1, - »p,) Withn 2 5.
Fact 16e. MTP (a,b,c,d,e,f)

If v € M(w) for some w € W, then it is easy to see that G /(W W {v }—={w }) is isomorphic
to G/W (Fact 11). Further, if Ny (v ) has exactly two elements, then Fact 15 assures us that v is
in an induced subgraph isomorphic to one of those in Fig. 1.5. So, for the remainder of this
proof, suppose v is not W -similar to any vertex of W and is adjacent to at least three elements of

W. We now show each of the 5 subfacts in turn.
Remainder of proof of Fact 16a:
Any two non-adjacent vertices in a C,, with n 2 5 are contained in a simple path (of at least

four vertices) embedded in the C,,. Since v is adjacent to 3 or more vertices of W then at least

two of these vertices are not adjacent. Hence, we may apply Fact 14.

Remainder of proof of Fact 16b:

If n 26 then {p,, p3, -, p,} induces a C,_; at least two of whose vertices v is adjacent
to so that Fact 16a applies. Thus, suppose thatn =5. EN(V)= {p.psPsh, (PP P4 Ps)s
{P2P3PaPs)Or (P, g ps)then {py, py,py, ps,v ) induces a tepee. EN(v)= {p, pa,

Pib{iPvP2 P Pal,ot {pa,pa,ps) then {py,pyps, ps, v} induces a tepee. N (v)= {p,,
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D3, pa) then {p |, po, pa, ps, v) induces house (ps, p . v, pa, po)- Finally, if N(v)= {p, pa,

P3Paps)then {p,po,pa,py v} induces tepee (p 1, p2, P3P s V)

Remainder of proof of Fact 16¢:

Casec.1 n 27 (see Fig. 2.15)

Case c.1. v is adjacent neither to p; nor to p,.

Fig. 2.15

Since {p3, p4, -, P, induces a C,_,, if v is adjacent to two or more of these vertices,
we are done by Fact 16a. Thus, suppose that v is adjacent to p |, p ,, and exactly one other ver-
tex. This third vertex is neither p y nor p, (since v is not in My) so {v,p , P2, P 3, Pn ) induces

house (V,p 2, P 3, Pus P 1)-

Case c.2 n =6 (see Fig. 2.16)

P Ps
Ps

) )2
P

v is adjacent to at least three vertices, but is similar to no p,.
Fig. 2.16

If v is adjacent to at least five vertices then four of v’s neighbors induce a P 4 so that v,

together with them, induces a tepee . Thus, we have two cases left:

Case c.2.1: v is adjacent to exactly four vertices.
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If v is adjacent to neither p; nor to pg, then {v,p(, P2, P3,P ¢} induces house (v, p,, pa,
P P 1)- Thus, without loss of generality, suppose v is not adjacent to p,. If v is also not adja-
cent to p, then {p, pa, P3, Ps, v} induces a house. If v is adjacent to neither p | nor p 3, then
{P2,P3, P4 Ps, v) induces a house. If v is adjacent to neither p  nor p 5 then {p, p2,P4, P s,
Pe v} induces a serp—up . Finally, if v is not adjacent to p ; nor to one of either p 4 or p ¢ then

{v ]} UN(v)induces a repee .

Case ¢.2.2: v is adjacent to exactly three vertices.

If v is adjacent to neither p 3 nor to p, then two of v’s neighbors are adjacent, say v; and
Vjy1- Inthis event, {v,p3,p6, v}, vjy) induces a house. If v is adjacent to both p 3 and p 6, then
designate by v; and v;,; the adjacent vertices v is not adjacent to. In this event
{v.p3,P6Vj,vj41} induces a house. Thus without loss of generality suppose v is adjacent to p 3
and not to ps. Then v is not adjacent to both p; and p 5, both p, and p |, or both p 4 and p 5 since
it is not similar to p ¢, p ,, and p 4, respectively. Hence, we must have v adjacent to p, (in which
case {v,p(,Po2,P1.P¢) induces a house) or v adjacent to p 4 (in which case {v,p3,p 4P 5 P56l

induces a house ).

Casec3:n =5

This is the same as # = 5 in Fact 16b.

Remainder of proof of Fact 16d:

If n 26 then {p,,ps - p,} induces C,2 (@ 2P - .p,) S0 that Fact 16b applies.
Thus, suppose that n =5 (see Fig. 2.17). If v is adjacent to both p | and p 4 then Fact 14 applies.
If v is adjacent to neither p | nor p4 then {p ,p2,p3.P4.P s,V } induces an MTP . If v is adjacent
to exactly one of p | and p 4, then (since v € My,) v is adjacent to p, and p ; but not to p 5. Hence

(viuUW -=WQO)—{p2p3])) induces a repee .
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Ds

P P D3 Dy

v is adjacent to at least three vertices, but is similar to none of them.
Fig. 2.17

Remainder of proof of Fact 16e:

Since {a,b,c,d,e} induces repee(a,b,c,d,e) and v is adjacent to at least two of it’s

vertices, Fact 16d applies.

QED Fact 16

To prove Theorem 4 the following Induction Hypothesis is used: Every vertex in a 4-prime
graph G = (V,E) of size |1V | </ is contained in an induced subgraph of G which is isomorphic
to one of the graphs in Fig. 1.5. The basis step was shown in the first paragraph of this section.
The induction step follows: suppose that the induction hypothesis is true for i <k. We show this
implies the truth of the induction hypothesis for i =k+1 =5. Thus, suppose VI =k+1 and
Wo, Wy, -~ ,W;=V) is a constructing sequence subject to Lemma 2. By our inductive
hypothesis, each vertex of each W, (Il € (0, ---,j—1}) is embedded in a graph isomorphic to
one of those in Fig. 1.5. All we have to do is show that every vertex in the final application of a
rule from Lemma 2 is also embedded in one of the graphs of Fig. 1.5. If j =0 (we never apply a
rule), then G is isomorphic to one of the graphs in Fig. 1.6, each of which is also one of the

graphs in Fig. 1.5 so each vertex in G trivially satisfies the hypothesis. For the remainder, we

take j > 1.

Suppose the final rule applied is rule 2. Then both the added vertices are W;_;-similar to

some vertices in W;_; so we apply Fact 11. If, on the final step, we add some elements of A O

7
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then each of those vertices has degree 2 so that they and all the vertices they are adjacent to are
contained in some graph isomorphic to one of those in Fig. 1.5. by Fact 15. If on the last step we
add some elements of A IW,-V.a then the degree of each of these vertices is 2 and we apply Fact 15.

Thus, we have accounted for applying each of steps 2, 3, 4, or 5.

Now, suppose that in the final step we apply rule 1 on v. That is, v € AHWH, and
W;=W;_;={v]. Then, if j =1 we are done by Fact 14 and if deg(v) =2 we are done by Fact 15.
So suppose deg(v)23 and j 22 and now consider W;_,. If v € My _, then we are done by
Lemma 2. If v € A 2+WJ-4 then we could have added v at that point to get a graph which had size
less than k+1, was 4-prime and contained v; namely G/(W; ;v (v}) so that the inductive

hypothesis would have applied to v. Thus, we need only consider the case where [Ny, (v)| <1.

If v was in A(’%_2 then neither rule 1 nor 2 was applied (to W;_, to obtain W;_,) since
deg(v) = 3. However, since all of the vertices added to W;_; to obtain W;_; according to either
rule 3,4,0r 5 are in one common induced subgraph of G/W;_, isomorphic to one of those in Fig.

1.5, we may apply Fact 16 here since deg(v) 2 3.

Thus, we may suppose that v was in A ]W,-_z- If one of steps 3, 4, or 5 was applied to W, _,
to obtain W;_, then there is some ¥ < W;_; such that W;_;— W, , <Y and G/Y is isomorphic to
one of the graphs in Fig. 5 (Le. there is an induced subgraph of G /W | containing all the vertices
in W;_,—W;_; which is isomorphic to one of those in Fig. 1.6). Since v is adjacent to at least two
vertices in W;_;— W;_, we can apply Fact 16. We could not have applied rule 1 by our assump-
tion that deg(v)=3. Thus, suppose rule 2 was applied to some n ;e My, (W),
Moy € MWj_z(w 2), w#w, Then, since deg(v) =3 we have that (v,m,), (v,m,)e E. Finally,
since the one neighbor of v in W;_, can not be both w{ and w,, we could have applied rule 4

with v and one of m | or m ,.

QED Theorem 4
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2.6. Implementations

Two interesting questions which may be asked about prime graphs are the following: Given
that G =(V,E) is 4-prime and that W — V induces a 4-prime graph on G, is there an efficient
algorithm to calculate the various associated sets (Myw,Aw,Ayw, and Aj"), and is there an
efficient algorithm to calculate which rule of Lemma 2 (hence Lemma 1) may then be applied?
The answer to both questions is yes, and an algorithm is presented for the solution to each,
together taking O(1VI x IEI) time. In fact, the algorithms may be applied incrementally, and
the time over all the invocations is still O(IVI x [EI). In other words, even though the algo-
rithm takes O(IV1 x |El) time for a single application, it will also take O(IVI x [El) time
when iterated over all the vertices in the graph (where each time between passes W is agumented

according to the rule that the algorithm determined on the previous pass).

In describing the algorithm(s) to solve the problem, it will be convenient to use the follow-
ing notation (they may be thought of as either abstract objects or data structures (in which case all
operations dealing with them take O (1) time). Suppose G =(V,E),W CV,andv € V. Define
C (ommon)N (eighborhood)Setw (v)= {x € V—-W INyp(x)=Ny(v)}. CNSety(v) is the subset
of V composed of those elements of V whose neighborhoods in W are identical to that of v.
Note that CNSet 5 (v)=V. Define CNSety(v)= [(xe€ V-WINyp(x)=Ny®)uU {v}}.
CNSety;(v) is the subset of V composed of those elements of V — W adjacent to v whose neigh-
borhoods in W — {v } are identical to that of v. Note that CNSetw (v) N CNSety(v) = & , and if
v € W then CNSety(v) U CNSety(v) =My(v). The reason for this definition is to split up
My (v) into two sets, one in which each of the vertices is adjacent to v and the other in which

none of the vertices is adjacent to v.

The algorithm is presented in two parts. The first part (algorithm B1) takes as input
G=(V,E),WcV,andw € V —W. The algorithm also assumes that CNSery (x), CNSeer‘(x),

and Ay (x) for each x € V have been determined and that A> and A" are also known.
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(1) AOQ.Child < CreateNewEmptyCNSet
(2) AO0.Child.CurrentVertex < w

(3) w.singles «— A0.Child

(4 A* « A*—w.CNSet

(5) FOR each neighbor x of w DO

(6) BEGIN

(7 IF x.CNSet.Child.CurrentVertex #w THEN
(8 BEGIN

(9 x.CNSet.Child <« CreateNewEmptyCNSet
(10) x.CNSet.Child CurrentVertex <« w
(11) END

(12) IF x.CNSet+# & THEN

(13) BEGIN

(14) x.CNSet+.Child < CreateNewEmptyCNSet
(15) x.CNSet+.Child.CurrentVertex <« w
(16) AT « AP UX.CNSet+

17 x.CNSet+ « x.CNSet+.Child

(18) ~ END

(19) IF x.CNSet = A, THEN

(20) Ag « Ao—(x}

(21) IF x € W THEN

(22) AT « AU x.CNSet

(23) x.CNSet.Child <« x.CNSet.Child U {x}
(24) x.CNSet ¢ x.CNSet — {x}

25) X.CNSet « x.CNSet.Child

(26) END

Fig. 2.18
The algorithm (B1) to determine My, Ay, Ag', Ay

Algorithm B1 computes CNSety , (y j(x), CNSet+y o, () (x), and Ap L (w) @) foreachx e V
in addition to A", {w) and Ad (wi- This is done by maintaining for each vertex x the fields
X.CNSet, x.CNSet+ and x.singles in Algorithm B1 computes CNSety  ()(X),
CNSet+y | () (x), and Ay  (,p) (x) for each x € V in addition to Ag*,,, and Ayp -
This is done by maintaining for each vertex x the fields x.CNSer, x.CNSet+ and x.singles in
addition to maintaining the variables A, (a CNSet) and A% (a set of CNSets). Finally, each
CNSet has a CurrentVertrex field (to indicate the most recent vertex adjacent to any vertex in the

CNSet) and a child field (pointing to another CNSet ) for splitting CNSet s.

After execution of algorithm B1, for each vertex xeV-(Wu({w})

x.singles =Ay  (w) (x) and x.CNSet U x.CNSet += My , () (x). Also, after execution A =
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Aug «— I
IF A" # @ THEN Aug < {a ]} C A
ELSE BEGIN
w <« some element of W such that My(w) U A(w) # @
FOR eachv € Av%r(w )DO
FOR each x € Ny_y(v) DO
IFx € (My—My(w)) U Ay — Ay (w)) THEN
BEGIN
Aug « {v,x)
break to line 37
END
FOR eachv € My (w) DO
FOR each x € Ny_y/(v) DO
IF x € (My—My(w)) U (A — Ay (w)) AND (x,w) ¢ E THEN
BEGIN
Aug « {v,x)
break to line 37
END
FOR eachy € Ny (w) DO
FOR each x € My (y) DO
FOR eachv € My (w) DO
IF (x,v) ¢ E THEN
BEGIN
Aug « {v,x}
break to line 37
END
DO a BFS from My, (w) U Ay (w ) through A, until an element
a, of (My—Mp(w)) U (Ap—Ay-(w)) is found
IF such an a; is found THEN
BEGIN
Aug « aprimitive path from a; to My (w) v A (w)
break to line 37
END
END
IF Aug = & THEN
Declare G is not a 4-prime graph and HALT
IF |Aug | =1 THEN Output (Rule 1, Lemma 2)
ELSE IF Aug N My = & THEN Output (Rule 3, Lemma 2)
ELSE IF |Aug N Ay | =1 THEN Output (Rule 4, Lemma 2)
ELSE IF 1Aug | =2 THEN Output (Rule 2, Lemma 2)
ELSE Output (Rule 5, Lemma 2)
W« WuUAug

Fig. 2.19
The algorithm (C1) to determine how to augment W
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AW ) and the union of all the vertices in all the subsets of A** forms e {w)- Further-

more, each field (CNSer , CNSet +, and singles ) will have been updated for each vertex in V. The
only line which is not O(1) is line 5 which introduces a multiplicative factor of deg(w). Thus,
algorithm B1 is O(deg(w )) over one pass of the algorithm and hence O(|E) if taken once over

all the vertices in the graph.

The second part of the process, algorithm C1, takes as input a graph G =(V,E)and W c V
where G /W is 4-prime and My, (w ) and Ay (w) are known for each w € W along with A;3* and
AWO. It produces as output one of the rules in Lemma 2 along with the set, Aug , by which W is to

be augmented.

If G/W is 4-prime and known, algorithm C1 will agument W by Aug according to one of
the rules in Lemma 2 so that the new induced graph will also be 4—prime . Although Algorithm
C1 produces a rule of Lemma 2 its organization reflects Lemma 1. Line 2 takes care of rule 1,
Lemma 1 (rule 1, Lemma 2). Lines 5-11 account for part of rule 2ii, Lemma 1 (k =0 of rule 4,
Lemma 2) while x € A“', in lines 12-18 accounts for the other half of rule 2ii, Lemma 1 (k =0 of
rule 4, Lemma 2). x éAy in lines 12-18 accounts for part of rule 2i, Lemma 1 (rule 2, Lemma 2)
while lines 19-26 account for the remaining part of rule 2i, Lemma 1 (rule 2, Lemma 2). Finally,
lines 27-33 account for rule 2iii, Lemma 1 (k =1 of rules 3,4, and 5, Lemma 2). Each section,
save for line 19-26, is a straightforward application of BFS so that the running time for those sec-
tions is clearly O(E). Lines 19-26 are analogous to lines 10-16 in algorithm A (the first 4-
decomposition algorithm). No edge is examined more than once, and the algorithm terminates
immediately upon detection of a non-edge. Hence there are no more than |E|+1 checks. Thus,

one pass over algorithm C1 takes O(|1 El) time.

Combining algorithms B1 and C1 yields another O(IV| x |E1) algorithm to determine if a
graph is 4-prime. Furthermore, the combination (along with O(IE|) preprocessing) yields a

basic 4—constructing sequence Wo, W, -+, W, =V subject to the rules of Lemma 2. By
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modifying this sequence (O(1V 1) time) according to the Cor. 1, we produce a maximal 4—con-
structing sequence. This maximal 4—constructing sequence will be used in the following chapter

to prove the existence of an O(1V x | E1) algorithm to recognize circle graphs.

By modifying algorithms B1 and C1 appropriately (to algorithms B2 and C2 respectively),
it is possible to obtain an O(1V1?) algorithm for determining whether a graph G = (V,E) is
3—prime and for producing a maximal 3—constructing sequence if it is. Let z be a vertex not in
VandformG "= (V,E " )whereV'=V U ({z}and E '=E U (V x{z}). G is 4—prime iff G
is 3—prime. If G contains an embedded P 4, then z together with the vertices of an embedded P 4

from an embedded C % in G ~.

Each vertex v € V “in algorithm B2 (that is, the modified algorithm B1) will have an addi-
tional field associated with it: v.unresred , which is the set of all vertices in V — v.CNSet which
have not yet been tested in the fashion to be described below. Thus, after the untested field of
each vertex is initialized, the only changes occur when the CNSer of a given vertex, v, is split. In
this case, each vertex appearing in the old CNSet of v but not v’s CNSet after splitting is added
to v.untested . Thus, the total amount of work in adding vertices to the untested field over all
passes of algorithm C1 is O(IV| x | V). If algorithm C1 were run on G ’, lines 27-33 need not
be executed since A,y = @ in G “whenz e W. By modifying the remaining parts of algorithm

C1 to yield algorithm C2 we obtain an O(IV'| x |V ) algorithm for recognizing 3—prime graphs.
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(1) Aug « O
(2) IFA#*# @ THEN Aug « {a) C A
(3) ELSEIF My # & THEN

(4) BEGIN

(4) w < some element of W such that My (w) # &
(5) FOR each v € My (w) DO

(6) FOR each y € v.untested DO

(7 IFy € Ay —Ay(w)AND (v,y) € E THEN
(8) BEGIN

(9 Aug « (v,x)

(10) break to line 22

(11) END

(12) ELSE IF y € My — My (w) AND

(13) exactly one of m,w is adjacent to y THEN
(14) BEGIN

(15) Aug « (v,x}

(16) break to line 22

an END

(18) ELSE remove y from v.untested

19) END

(20) IFAug = & THEN

21 Declare G is not a 4-prime graph and HALT

(22) IF lAug | =1 THEN Output (Rule 1, Lemma 3)

(23) ELSE IF Aug N My, = & THEN Output (Rule 4, Lemma 3)

24) ELSE IF Aug n My (z) = & THEN Output (Rule 2, Lemma 3)
(25) ELSE Output (Rule 3, Lemma 3)

(26) W, W U Aug

Fig. 2.20
The algorithm (C2) to determine how to augment W

Since each of the test takes O (1) time and no pair of vertices is tested more than once (since
no removed vertex is re-added to the untested field of the vertex it was removed from), over all
passes algorithm C2 takes O(1V| x [V1) time. The modification of the basic 3—constructing
sequence to a maximal 3—constructing sequence takes O (1V'|) time using the method outlined in
the proof of Cor. 2. Hence, using algorithms B2 and C2 (along with the O(1 V1 x V1) initializa-
tions of the untested fields and the O(IEl) initialization in finding a P4) we have an
O(IV1 x 1V1) algorithm for recognizing 3—prime graphs and producing a maximal 3—construct-

ing sequence for them.
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3. Circle Graphs

3.1. Basic Ideas

Let V be a set of size n. Define a V-2seq to be any sequence of length 2n with each ele-
ment of V appearing exactly twice. Suppose S is a V-2seq and W < V. The notation §-W is
used to designate the (V — W)~ 2seq which is a subsequence of S. We define two sets of opera-
tors on V-2seqs as follows: let S=(sqg, §1, $3, * ", S24-1) be a V-2seq. Then R, (S) = (s,
St Stk 7 Stkran—n)) a0d Fi(S) = (S Sp-1pp Sk=2p *°*» S k~@n—1y) Where [i] =

imod2n- Thus, there are 4n distinct operators. These operators are related as follows:

Ry (Ri(S =Ry 1 (S)

E(Fi(S))=R, ()

Fr(Ri(S)=F 4 (S)

R (Fi(S)=F;_.(S)

One may note that {R,:0<k<2n} U (F,:0<k<2n) forms a group of order 4n isomorphic to

D ,,, the dihedral group of size 4n.

Suppose S is a V-2seq. Define [S]= (T:T =R, (§) or T =F(S) for some k €
{0,1, -+, 21VI-1}}. By utilizing the relationships above, it is easy to see that an equivalence
class has been defined. [S] may be thought of as a circular sequence. It is convenient to depict
[S]as shown in Fig. 3.1 where (t¢, 7,79, ***,f9,_;)~S. Thus, § may be found on the circle if
read off in the appropriate direction (clockwise, counterclockwise) from the appropriate starting
element. Any depiction of [§] as in Fig. 3.1 is called a circular model for [S]. To distinguish
between adjacency in graphs and V —2segs , the word adjacent is reserved for graphs and next-to

is reserved for V—2seqs and the corresponding equivalence classes. Similar to the concept of a
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local neighborhood, Ny, (U) (where U, W < V), is the A (ssociation)I (nterval )([S]1,U).

b

A way of depicting [(t;, t,, t3, ..., ;)]
Fig. 3.1

[S]

AL([S], Af}) = {{a e}, {4, g}}

AL([S], {f 8}) = {{a e}, {d, e}, {b, d}}
AL([S], {f ¢}) = {{a €}, {d, g}, {d, e}, {q, b}}
AL([S], {e 1 8}) = {{a, b}, {c, d}, {b, d}}

Examples of Association Intervals

Fig. 3.2
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AI([S1,U)= {{vy, vy} :v{,voe V =U and there exists w € U such that v | and v, are next-to
the same occurrence of w in [S— (U— (w })]} (see Fig. 3.2 for examples). In English, this means
the set of all pairs of elements next-to each other in [S—U] that had at least one element of U
between them. Thus, if x € V and the two occurrences of x in [S] are not next-to each other,

then 1AI([S], {x DI =2.

For each V -2seq, S, define a graph G (S) as follows: the vertex set of G(S) is V and two
vertices v and w in V are adjacent iff vwvw or wywv is a subsequence of §. If § ~T, then
G(S)=G(T). Thus, we define G([§])=G (S). The type of function that G is (i.e. is its argu-
ment a V-2seq or an equivalence class?) will be apparent from context. G =(V,E) is a circle
graph iff G =G (§) for some V -2seq, §. In this event we say that [S] is a model for G (see Fig.
3.3 for an example). We say that G is uniquely representable if T ~ S whenever G (T)=G(S).
What it means for a circle graph to be uniquely representable is that there is essentially only one

model for it.

(a)

A circle graph along with a model for it

Fig. 3.3

The reason for the name circle graph becomes clear upon examination of Fig. 3.3(b). For

each pair of identical elements in the circular sequence, draw a chord between them. The condi-
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tion of an alternating v and w subsequence is the same as the condition that the corresponding
chords intersect. Given a circle with chords, a circle graph is formed by taking the chords as the
vertex set the set of the graph, with edges being adjacent iff the corresponding chords intersect.
A graph is a circle graph iff it is isomorphic to any graph formed in this fashion. Thus, there is a
completely geometric interpretation of circle graphs as intersection graphs. The operator R,
corresponds to a physical rotation of the circle while F;, corresponds to flipping the circle (an
easy way to picture this is to consider cutting the circle out of the paper, picking it up, turning it
over, and placing it back down (with the appropriate rotation)). Again, it is clear that rotations
and flips of the circle do not affect the circle graph generated from the circle. Furthermore, the
spacing between the endpoints of the chords does not affect the circle graph generated since the

spacing does not affect the property of intersection of the chords (see Fig. 3.4 for an example).

a
b e
c d
e b ¢
ama e/
d
’e d a \\
b
b e \
e
a
d c ¢ J

A circle graph along with two equivalent models for it
Fig. 3.4
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A question which immediately arises is, are all graphs circle graphs? The answer is no, and
a smallest example, shown below (Fig. 3.5), has six vertices. The fact that a non-circle graph
must have at least 6 vertices follows from Fact 17 (next page): the smallest non-circle graph
graph must be 4-prime by Fact 17, and there are only three 4-prime graphs of size less than 6
(They are shown in Fig. 1.6), all of which are circle graphs. The Central Lemma (1) allows one
to quickly generate all the 4-prime graphs of size 6. However, by simple counting arguments one
may see that there is exactly one way to add a vertex to each 4-prime graph (of size 5) to obtain a
4-prime non-circle graph of size 6. The example shown in Fig. 3.5 was obtained from a C 5 (or
tepee ). The only only other non-circle graph of size 6 may be determined from a house (it is the

complement of a Cg).

Another central question, which is not answered so easily, is when does a circle graph have
only one model? For example, P 4(a, b, ¢,d) is uniquely representable while P s(a, b ,c.d,e)
is not, but C, is uniquely representable for all n (Fig. 3.6). In fact, each graph in Fig. 1.5 and in
Fig. 1.6 is uniquely representable. The answer to this question is intertwined with graph decom-
position, and it forms one of the two central issues of this chapter. The other is a polynomial-
time algorithm to recognize and construct a/the model of a circle graph. There are several easy to
see, but nevertheless important, facts which will be utilized in the proof of the central theorem (35)

on circle graphs. These follow below.

(a) (b)

(a) A non-circle graph of size 6
(b) A non-circle graph of size 7
Fig. 3.5
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Fact 17. If G/V 4—factors into G/V | and G/V , then G is a circle graph iff G/V | and G /V , are

each circle graphs.

Proof: The only if follows immediately since G/V | and G /V , are each induced subgraphs

of G/V. To prove the other direction, suppose that the model for G/V | is [(vo, w{, w4, - -,

wl

TR

. %
Vo, Wi, wa, e, w,—i)] and the model for G/V 5 is [(v, wi, w7, e » . e 0, w?,

(a) The model for P, (a, b, ¢, d) (c) The model for
C,012..,n1), n>2

(b) The two non-equivalent models for Ps(a, b, ¢, d, e)

Fig. 3.6
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Proof of Fact 17
Fig. 3.7

w, w,-?, )] where vy € V,and v, € V. Then we may combine the two models in the follow-

ing fashion to produce a model for G/V: [(wl',wzl, ---,wiil, wlz, wzz, ---,w,-zz, wf‘,w%,

5’ w,-(; )] (Fig. 3.7). Viewed another way, this Fact shows us a way (o

? 1

decompose circle graphs in a pictoral fashion. It also demonstrates that 4-decomposeable graphs
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(of size 5 or larger) are not uniquely representable. Thus, we may restrict our attention to 4-prime

graphs.

Fact 18. If G/W is a 4-prime circle graph and m € My (w) then G/(W U {m }) is a circle graph
and in each equivalence class [S "] of (W U {m})—2seqs such that G([S ") =G/(W U {m}),
each of the two occurences of m is next-to a distinct occurrence of w .

Proof of Fact 18. Let [S] be a model for G where § =(w, w ,' ; w;.f, P wl w, w,z,
w%, wjzl). Then S =(w,m, w{, wy, ---, wjll, X, ¥, wi"', wzz, wﬁ) (where
{(x,y}={m,w}and x =w iff (w, m) € E)is amodel for G/(W U {m}) (Fig. 3.8). To prove

that each occurrence of m is next-to a dintinct occurrence of w assume that S~ = (w, w{, w4,

il=sz12 3 3 3 0 0
1

2 2 e w0y
pWas FEELWOLY, W Wig, SRR oW, Wy Wy, » w;, ) (Fig. 3.9),

W 2
(x,y}={m,w),GE )=G/W U {m)),and S "—{m) = S. Form W*= {whkje (1, -,
ir)). Since m and w are W -similar, W' n WUt = @& fori e {0, 1, 2, 3} (where [i+1] =
i+l,044). Also, each vertex in W' W3 is adjacent to each vertex in W2 W so
W'ow-wlaw?, w'aw?, w2aw®huiw), W2UW-WiAWw?) is a 4-
decomposing pattition.

If W'uW?3= @, then (since G is connected) each occurrence of w is next-to a distinct
occurrence of m in S *. HW!'UW?3={(z) then W' nW3={z) since G is connected, but then
we would have z either an articulation point in G/W or W -similar to w, a contradiction. Finally,
it IW!'OUW?3I>1, then W' UW3=W — {w) and W2UW°= @ since G/W is 4-prime, and
hence we see that each occurrence of m is next-to an occurrence of w .

Fact 19. Suppose G/W is a 4-prime circle graph, and V-W = {a} =Ay(w) for some
we W cV. If [§]is an equivalence class such that G ([S]) =G /W, then there are at most two
distinct equivalence classes [S ] and [S 7] such that [S]=[S—{a}1=[S 2—{a}] and

G(IS 1 D=G(SD=G.
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®)
The two possible models for G / (W U{m}) in the proof of Fact 17,

depending on whether or not (w, m) € E.

Fig. 3.8

{x, y} = {m, w} x=wiff(wym) € E

Fig. 3.9
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Proof. There can be no more that two distinct equivalence classes [S "] and [S 7] since

G /W contains no articulation points. If[S]=[(w,w],w?{, "',Wiil,W,WzJ,W%, "',W.'%)]
oy 1.2 1 1,2 2 A -
then [§ ]1=[(a,w,a,w,wi, =, w;,w,wy,wy, -, w)and [S ] =[(w,w,wyi,
1 1,2 2 .
LWL a,w,a,wy,wy, o, w;))] (Fig. 3.10).

The two ways of adding @ € Ay, (w)
Fig. 3.10

Fact 20. If G =(V,E) is a 4-prime circle graph and § is a V-2seq such that G(S)=G and
v,w € V such that v is next-to w in [§], then there is a unique T € [S] such that T = (v, w, 1,

ty, " Ly

Proof: Both occurrences of w in [S] are not next-to the same occurrence of v since w is
adjacent to at least two vertices. Similarly, both occurrences of v in [§] are not next-to the same
occurrence of w since v is adjacent to at least two vertices. Finally, since v is not similar to w,
each occurrence of v is not next-to a distinct occurrence of w. Thus, there is only one location

within [S ] where v is next-to w; hence, it uniquely specifies the remainder of the sequence.
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The theorem which is central to circle graphs (and lends itself to an O (V| x | E1) recogni-

tion algorithm) is the following:

Theorem 5: Circle graphs with five or more vertices are uniquely representable iff they are 4-
prime.

We have shown the only if part in proving Fact 17. We shall prove the if part of this
theorem by induction on the size of all circle graphs. It may be easily verified that each graph in
Fig. 1.6 is uniquely representable. The induction hypothesis will be: all 4-prime circle graphs
with i vertices are uniquely representable. For the basis step, i =5, there are exactly three 4-
prime graphs and all are circle graphs (they are shown in Fig. 1.6). We use the same approach as
for the previous theorems (3 and 4). We assume the truth of the induction hypothesis forall i < j
and show this implies the truth of the induction hypothesis for i = j+1. Thus, suppose
G =(V,E) is a prime circle graph where |V | = j+1 and (Vo, V', - -, Vi), k 20, is a maximal
constructing sequence subject to Cor 1. If £ =0 then G /V,, is isomorphic to one of the graphs in

Fig. 1.6, which we have verified above as uniquely representable.

Thus, suppose £ = 1. By the induction hypothesis, G/V._; is uniquely representable. We
need only verify that application of rules 1, 2, or 3 in Lemma 2 (by Cor. 1) still yield a uniquely
representable circle graph. Recall that V =V, and for the remainder of this proof we denote

Vk—l by W.

Case : V-W ={a}

Suppose that there are two distinct ways to place a € A#*. Form the W U {a,a,)-2seq

. I 2 T L w? ... 3 .03 ... .3 0
S '—(alywleZs ;wflyblyw],w2a anfla 5b27wlaw23 :wi_,aaZ;wl’
ws, e, w,-oo) where (b, b,} = [{aa,} with the following characteristics:

G(S—{a,a2}))=G/W, G(S - {a,}) is isomorphic to G/V with a in one of the two distinct

positions a could occupy in a model for G (where the only difference is that a is now a ), and
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G (S—{a}) is isomorphic to G/V with a, in the other distinct position a could occupy in the
model for G (with the only difference that @ is now a,). Form wk= {wf:j e (1, --,i}}

(see Fig. 3.11).

Clearly, each vertex in W !~ W3 is adjacent to each vertex in W2 " W°. Since a and a,

{by, by} = {a;, ay}

Fig. 3.11  Case 1 in the proof of Theorem 5

are W—similar (in G(S ), W n Wl = @ fori e (0,1, 2, 3) (where [i+1] = i+1,,,04)-
Thus, W!'uW? —Ww!lnw?, wlnw? w2naw’ wW2uw-Ww2nw?%) is a 4-
decomposing partition of W. Since (by assumption) there are two distinct ways to place a ; and
a, W'uw?z @ and W2UW%# @ . Since G is connected it must also be the case that
W!Iinw3z @ andW2A W%« @ . Hence, W # @ fori € {0,1,2,3}. Since a is an element

of neither My nor of Ay, IW! U W31 22 which means that the partition 4-factors G/W , a con-
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tradiction.

Case 2: Rule 2 is applied: V-W = {m ,m,},m; € Myp(w ), andm, e My w,).

Suppose S ” isa (W U {m,m,})-2seq such that G(S ")=G. Then, by Fact 18,5 ""—{m,} is a
(V u [m})—2seq where each occurrence of m; is next-to a distinct occurrence of w . Simi-
larly, S = {m,} is a (V U {m,]})— 2seq where each occurrence of m, is next-to a distinct

occurrence of w 5.

Case 2.1: (w,,w,) ¢E (Fig. 3.12a).

” 1 1 - 2,2 2 3 .3

Then § ™ =@, Yy, Wi, Wa, " s Wi, X0, Y WL, Wi, "0, Wi X3, Y3, Wi, Wi, "0,
w3 Y 0 , 0 , 0 h ; _ _l l
i30 0 YU! wl’ MZ-: ] H"iﬂ) where I-l]ayl}_{mluw]}a {xo,J’o}— ntZsWZy
wyi€ {x2,¥,}, and wy e {x3,y3}). Form wk = lw;‘:je {1, -+, ir}}. The reason for this

phrasing is that without loss of generality we may assume |W'I, IW?I, and IWOI are all greater
than 0. There is nothing to preclude one occurrence of w; from being next-to an occurrence of

w,in§ = {m,m,}. There are two cases:

Case 2.1.1: W2z @

In this case {x,,y2) ={m,w,) and {x3,y3} = {m,, w,}. But this means that vertices m ; and

m , are not adjacent in G (§ “7). Thatis, G(S ") # G, which is a contradiction.

Case2.12: W2= @

Since m , is W -similar to w; and adjacent to m,, m € {x3,y,}. Similarly, since m, is W-
similar to w, and adjacent to m |, m,€ {x3,y,}. The only solution of these consistent with
wi€e (xp,y ) and woe {x3,¥3} isw =x,, my=y, m;=x3, and w,=y,. With these substi-

tutions, G (§ “")=G.

Case 2.2: (w, w,) € E (this case is almost identical to the previous one) (Fig. 3.12b).
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wy € {Xxy, ¥, } w, € {x; y3}

{X5 X3 Y2, y3} =
{my, my, wy, wy}

a) (wy, w,) ¢E

{my, wi} = {x, y,} {my, wy} = {x, Yo}

wy€ {x5, ¥, } w1 € {x3 y3}

{xXp X3, y5, 3} =
{my, my wy, w,}

b) (w;, w,) €E

{my, wi} = {x;, ¥} {my wp} = {x5 Yo}

Case 2.1 and 2.2 of Theorem 5

Fig. 3.12
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g 1 1 1 2 2 .. 2 T TR

Then § 7 =@,y Wi, W, Wi X0, Y Wi W3, ", WL X3, Y Wi, Wi, o,
3 g 0 0 0 _ ; _

Wi, Xoo Yoo Wi, W, ---, w;) where {x,,y{}={mp.w}, (x0.Yel=(myw,}),

wi€ {x3,y3), and wy€ {x5,y,). Form W¥= (wfje (1, it}). The reason for this
phrasing is that without loss of generality we may assume |W'I, IW?3I,and IW°| are all greater
than 0. There is nothing to preclude one occurrence of w from being next-to an occurrence of

woin§ ““— {m,,m,}. There are two cases:

Case22.1: W2z &

In this case {x3,y3)} ={m,w,} and {x,,¥,) ={m,,w,}. But this means that vertices m ¢ and

m 4 are adjacent in G (§ “7). Thatis, G(S ") # G, which is a contradiction.

Case2.22: W2= @

Since m; is W -similar to w | and not adjacent to m,, m; € {x3,y,}. Similarly, since m, is W -
similar to w , and not adjacent to m |, m, € {x3,y,}. The only solution of these consistent with
wi€ {x3,ysland woe (xo,y,) isSwo=x,, m =y, my=x3,and w; =y, With these substi-
tutions, G (S 7 )=G.

Thus, not only have we shown case 2, but we have also given a necessary and sufficient

condition for when a prime circle graph may be successfully augmented using rule 2 of Lemma 2.

Case 3: Rule 3 is applied.

Inthis case let A = {p,p,, ", p},A'=A U{a,a,},S beaV-2seqsuchthat G(S ")=G
and G(S'—A")=G/W. Then the two occurrences of p; are next-to each other in
[S—A"—(p;})] for each ie {12 ---k}) since G/W is connected. Let
(T:1=[S "= (A ~{p: DI G € (1.2, k})sothat T; = [(¢}, py, pis t5, 85, +++, t121)] (where
W = {tj:je {1, ---,21WI}}). Then either [(t"],p,-,p,-+1,p,-,p,-+,,t5, "-t"2|w,)} or [(t"l,

Pists Pis Pists Pis thy * tiqw )] is equal to [S "= (A = {p;, p; D] for i € {1,2,- - k-1}.
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Thus, =t/ fori,je (1,2,--  k}andl e (1, ---2IWI }. By using Fact 19 along with the
fact that p | is adjacent to @ | and the fact that p, is adjacent to a , we have that a , is adjacent to
either | orr, and a, is adjacent to the element of {r{, ]} that a is not adjacent to. Thus,

[entpdydyty oty tyw)] =[S " —A] where ¢, ¢y} = (dy,d;} ={a,a;)and
cy=aiff (a,w,)e E andd,=aiff ((a;,w,;) € E and (W, w,) ¢E) or (a,, w,) € E and
(W, wo) € E). If k =0 we are done. Thus, suppose k¥ = 1. In this event, let D equal the vertices
of the shortest path from w | to w, (in G /W) together with A ~. Then G/D is an n—cycle (n = 5)
which, by the induction hypothesis, is uniquely representable.  Thus, since
GID =G (S "= (V-D)) is prime, this fixes the order of the elements between w | and w, (by
Fact 20). Hence, the order of elements in S~ is also fixed so that [S ] is unique. Le. G is

uniquely representable (Fig. 3.13).

QED Theorem 5

How the chain is added

Fig. 3.13
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3.2. Recognition Algorithm

Cor. 1 and Theorem 5 (together with Algorithms B1 and C1) allow us to construct an
O(IVI1E1) algorithm for finding the model of a 4-prime circle graph (or determining that it isn’t
a circle graph). To find the model for a 4-prime circle graph, we first find a constructing sec-
quence (V o, Vy, -+, V,) subject to Cor. 1 (in O(IV | |E 1) time) and incrementally augment the
model starting with the model for G/V . If rule 2 (of Cor. 1) is used, then case 2 in the proof of
Theorem 5 gave an O(1) method for refining the model. If rule 3 is used, then case 3 in the proof
of Theorem 5 gave an O(k ) method for refining the model. Both of these two cases involve locat-

ing the endpoints of w; and w , next-to each other.

Thus, if there were an easy way to determine how to augment the model when rule 1 (of
Cor. 1) was used, then an algorithm for the recognition of circle graphs would be demonstrated.
Unfortunately, it is not as easy as it was for rules 2 and 3. The remainder of this chapter is
devoted to demonstrating that when a vertex x is added according to rule 1, then it is possible to
quickly determine how to augment the model for it. The idea behind it is that for each vertex in
A“Vi. we associate its location in the current model if ir were to be added. In most cases, the
addition of other vertices will cause no change in this information. One of the things that will be
demonstrated is that if change is caused, however, the change can be updated quickly (2 - in the
following paragraph). Therefore, the other thing that must be shown is that when a vertex first
becomes a member of an A 2+V.— it is easy to determine its location in the model (1 - in the follow-
ing paragraph).

Thus, let’s examine the adding of a vertex, x € A2+V‘, to a 4-prime circle graph G /V;
according to rule 1 (of Cor. 1). First, find the largest [ <i such that the vertex to be added
x ¢A%,. If no such / exists, we note that @ € Ay, , and it takes O(1) time to produce a

refinement of the model for G/(V , U (x }). What we will show is that:
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(1) if / =0, then it is possible to compute the refinement for the model for G /(V; U {x }) from the

model for G /V; in O(1) time and

(2)if I <h <i and the model for G/(V, U {x}) and G /V},,, are known, then it takes O(1) time
to compute a refinement for the model for G/(V,, U {x}). To this end, we introduce three help-
ing facts:
Fact 21: Given G/W is a 4-prime circle graph with a known model, x € A",
Ny (x)={w,w,}, and w, and w, have occurrences next-to each other in the model for G /W .
Then it takes O(1) time to compute the refinement of the model for G/(W U {x }).

Proof of Fact 21: Since [(w |, wo, V1, ", V21w —2)] is the model for G /W, [(x, w, w,, x,
Vi, T, Voiwi—2)] is the model for G/(W U {x }).
Fact 22: Given G/W is a 4-prime circle graph with a known model, w ; and w , have occurrences
next-to each other in the model for G/W, and x € My _y,, ,(w ;) N A#*. Then it takes O(1) time

to compute the refinement of the model for G /(W w {x }).

Proof of Fact 22: Suppose that the model for G/W is [(w, wo, w{, w2, ==, wl w,
wi,wid, o wh i wa,wi,wi, o, w3)] where i +iy+i3=21WI—4 and i i i 3> 0 (Fig.
3.14a). If ( E 1 | 1 ; 2 2 2
.14a). w,x)e E then [(w,, wo, x, Wy, w3, Wi W x, wi,wi, ,WE, W,
wi, w3, - -, w7)]is the model for G/(W U {x}). If (w,x)¢E then [(w, wo,x,w |, wj,

""‘"ilw/"""lawxz’wzz, "',W.-Z,,Wg,w13,w23, <+, w;))] is the model for G/(W U (x }).
Suppose that the model for G/W is [(wl,wz,wl',wzl, ---,w,-'l,wz,wlz,wzz, ~~,u.',~f,w,,
wi,wi, -, w)] wherei+i+is = 2I1WI|—4 (Fig. 3.14b). If (w,x) € E then [(w,, w,,
x’wll’wzl’ -‘-’witlvwz,lesM”ZZ’ '.',WiE,WI,x, WI31 wga .‘-,Wll:i)] is the model for
GI(W 3 1 I sa 4 1 2 .2 .. g .

( U{l }) ]'f(wl’x)éE ﬂlen[(wl,wz,x,w[,wz, swhiwz»wl!"vl: ,W,i;v-\;

wi,wi,w3, -, w)] is the model for G/(W U {x }).



Used in proof of Fact 22:
w; is adjacent to an
occurrence of w, and

we would like to add

X € My (o, (W) N AL

Fact 23: Suppose G/W is a 4-prime circle graph with known model [S], A = {pg, py, =,

Pen1} W such that G/A =Prpopo, p1, * "5 Prsr) With k 22 and NyW-A) = {po, prsi)s
and x € A;$+ but x is adjacent to no vertex in W —A. Then it takes O(1) time to determine if

G /(W w {x])is acircle graph and to find the refinement for it, if it is.

Proof of Fact 23: Since G is connected and contains no articulation points, its model [§] is

1 | S 1 2 2. 2
of the form [(po,w,w,, s WisP1sPosP2:2P15P 3 P2 s P+l Py W1, W2, s Wiy

Prsts Wi, w3, -, w)] (Fig. 3.15). Since there is a set B containing A such that G /B is an
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C, with n>k+2, INs(x)| <4 or else G/(W ;v {x}) is not a circle graph. To specify the
refinement of x uniquely, it is sufficient to specify AI([S "], {x}) where [S "] is the model for

G/(W U {x}))since [§ "= (x}]=[S].

Figure for the proof of Fact 23

Fig. 3.15

Case 1: Ny(x)= (ps, p;} (where 0 <s<t <k+1 and s+1 #¢—1 since x €My (p, ). If
O<s,t <k then AI([S '), {xDN= {{psets Pse1)sy (Pizts Peqt)). If O0=s,6 <k then
AI([S "], {x D= {{w[-",pll, {Picts Prsal ). HO<s, e =k+41 then AI([S "], {x )= {{ps_1s Pss1)s

(Pe,wi)). XO=5,¢ =k+1 then AI([S "1, {x )= {{w;',p 1), (P, wi)).

Case 2: Ny(x)= {p,, ps, p,} (where r<s<t). Then since there is a set B containing A
such that G/B is an n—cycle with n>k+1, G/(W U (x })is a circle graph iff s =r+1 or s =1-1
(the case r+l=s =¢-1 cannot happen since x éMy(p,). If s =r+1 and r<k+1 then

AI(S "L, (xD= Ups, Pr)s (Pi—ys Per1}). M s =r+landr =k+1 then AI([S "], {x})= ({p,.
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P}y Ak wid). I r>0ands =¢-1 then AI((S 1 {xD= {{Preyy Praa)s (Prr DI} X
r=0ands =r-1then AI([S "], {x D= ({w;},p1}, (P Ps))-

Case 3: Ny(x)= {py, Ps, Pss P } (Where 0 < r<s<t<u <k+1). Then, since there is a set B
containing A such that G/B is an n—cycle with n>k+1, G/(W U {x}) is a circle graph iff
r+l=s and ¢t =u—1. Ifitis thecase thatr+l=s and ¢t =u — 1 then AI([S "]. {x })= {(ps. P},
{Dys D} )-

Proof of (1) (from page 78): We will show the following: Suppose (a) G/W is a 4-prime
circle graph with a known model, (b) G/W  is a circle graph obtained from G /W by one of the
rules from Cor. 1, (c) the model for G/W | is known, and (d) x € A**y but x ¢A;". Then a
refinement for the model of G/(W ;V {x }) or a determination that it doesn’t exist can be com-
puted in O(1) time. We have three cases since x € A# ) A“], U My.

Case 1: x € Ay. Then |W -W | 22.

Case 1.1: Rule 2 of Cor 1 was applied. In this case Ny (x)= {m, m,} and m | has an
occurrence next-to an occurrenc of m, in the model for G/W | so Fact 21 applies.

Case 1.2: Rule 3 of Cor 1 was applied. In this case Ny (x) = W —W so that Fact 23

applies.
Case2: x € A“I;(w) (for some w € W).

Case 2.1: Rule 1 of Cor 1 was applied so Ny (x)= {w,a }. If an occurence of w is next-to
an occurence of a in the model for G/W, then Fact 21 may be applied. Otherwise,
G/(W U {x])is not a circle graph since if it was, w would be an articulation point of G/W, a

contradiction.

Case 2.2: Rule 2 of Cor 1 was applied. Then the occurrences of m, are next-to an
occurrence, each, of m,, w,, w, and w 3, and the occurrences of m , are next-to an occurrence,

each, m,, w,, w,, and w, in the model for G/W | (where w,; and w, are elements of
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W—{w,w,}). If x is adjacent to exactly one of m | or m, then G/(W ; U {x }) is a circle graph if
the two elements of Ny (x ) have occurrences next-to each other in the model for G/W ; (in which
case we use Fact 21). Otherwise, G/(W [ U {x }) is not a circle graph since then we would have
w an articulation point of G /W, a contradiction. Thus, suppose x is adjacent to both m ; and m ,.
If Nw (x)= (wy, my, my} then [(x, wy, ma, my,x,wy, v,V **, Vow)l is the refinement
for G/(W v (x}). If Ny (x)= (wq, my, my} then [(wy, x, my, my, wo, X, Vy, Vg, “°,
Va1wi)] is the refinement for G/(W U {x }). If either w3 or w is an element of Ny (x), then
G/(W v (x})is acircle graph iff w3 =w, and in this case [(w |, x, m |, w3, Mo, X, Wo, Uy, ~* ",
Uz wi-p] is the refinement for G/(W U (x}). Finally, if Ny (x) N (w, wo, wa, wy) = &
then G/(W U {x}) is not a circle graph since that would imply that the neighbor of x in W is an
articulation point in G/W.

Case 2.3: Rule 3 of Cor 1 was applied. In this case the model for G/W | is [(W3, o, W1, P 1
Po P2 P1s P3 P2s """ s Pis Pr-ts W2s Dis Wao V1o Vo, "0, Voywia)] (Fig. 3.13) and
G/(W U [x}) is a circle graph only if Ny(x)< {w, wo, wa, wye}. If (x,w3)e E, then
G/(W, U (x)) is a circle graph iff (x,po)€ E and we use Fact 21. If (x,w,) € E, then
G/(W v {x}) is acircle graph iff (x,p;) € E and we use Fact 21. If (x,w ;) € E then by set-
ting A= {wy, po, P1» "* . Pry1) and noting that G/A =P 5w, po, P1s """, Prsl)s
Ny(W-A)= (w,pry1}), and Ny (x) €A we may apply Fact 23. If (x,w,) € E then by setting
A= (W Prar» Dkv " Py Po} and noting that G/A =P (W, Pisty” Pes "5 P Po)s
Ny(W-A)= {wy,pol,and Ny (x) A we may apply Fact 23.

Case 3: x € My(w).

Case 3.1: Rule 1 of Cor 1 was applied. Then if an occurrence of @ is next-to an occurrence

of w, it is unique and Fact 22 may be applied. Otherwise, G/(W ;U {x }) is not a circle graph.

Case 3.2: Rule 2 of Cor 1 was applied. Then the occurrences of m ; are next-to occurrences
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of m,, w,, w, and w 5, and the occurrences of m , are next-to occurrences of m , w, wo, and w 4
in the model for G/W | (where w ; and w 4 are elements of W—{w ,w,}). Thus, G/(W U {x})
is a circle graph only if x is W -similar to exactly one of w |, w,, w 3, Or w4 (since x is adjacent to
at least one of {m ,m,}). If x is W -similar to either w 3 or w4 then Fact 22 applies. If x is W -
similar to w , then either x is (W —{m })-similar to w ; orx is (W —{w })-similar to m ;. Either
way, Fact 22 applies. Similarly, if x is W -similar to w ,, then either x is (W —{m ,})-similar to
wqorx is (W —{w,})-similar to m,. Either way, Fact 22 applies.

Case 3.3: Rule 3 of Cor 1 was applied. In this case the model for G/W | is [(W3, po. W, P 1,
Po: P2 P1s P3 P2y """ Prats Pis W2o Pty Wao Vs V2o "7 Voywi)] (Fig. 3.13). Thus,
G/(W, U {x}) is a circle graph only if x is W-similar to one of w, wy, wj, or wy. If
x € My(ws), then G/(W U {x}) is a circle graph iff (pg, x)e E and (p;, x)¢E for
ie (1,2, ,k+1}. Hence, Fact 22 applies. Similarly, if x € My (wy), then G/(W U {x])isa
circle graph iff (py,, x)e€ E and (p;, x) ¢E fori € {0,1,-- -k} so Fact 22 applies. Suppose
x € My(w ). If Ny _w(x)= O then Fact 22 applies. If Ny _w(x)={p;} (1 <s <k+1) then
(W3, D0 WP 1o "3 Pects X s Pssts " s Wy Prals Was * 775X, " * ", Vo 1 —4)] is the model for
G /(W v {x}) where the occurrence of w ; not next-to an occurrence of a ; nor a, is next-to an
occurrence of x (Use pyp =wy). If Ny _w®@) = (P, Pyst) (0 s <Kk) then [(W3, poW 1, P 1,

Ty Psals X Py T W Prsts Was 0, X, 0, Vo)l s the model for G/(W U {x })

where the occurrence of w | not next-to an occurrence of @ ; nor a , is next-to an occurrence of x.
If Ny _w(x) is different from the above, then G is not a circle graph. Finally, suppose x €
My (w,). This is entirely analagous to situation where x € My (w (). Thus, if Ny _yw(x) = &
then Fact 22 applies. If Ny _w(x) = (p;} (0<s k) then [(W3, po, ~ s Psetr X Psgrs * " "
Pists Pie» W2y Pests War ~° 75 X, ", Vorwi—a)] is the model for G/(W ;U {x}) where the
occurrence of w not next-to an occurrence of g, and a, is next-to an occurrence of x (use

po=wy). UNy _wx) = (ps_,p;1 (1 S s < k+1) then [( w3, Pos Wiy *** s Pss X5 Py
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W, Prats Was X, 0, Vo wi—a)] 1S the model for G /(W ;U {x }) where the occurrence
of w | not next-to an occurrence of a; and a; is next-to an occurrence of x. If Ny _y (x) is dif-

ferent from the above, then G is not a circle graph. QED (1)

Proof of (2) (from page 78): We show the following: Given G =(V,E) is a circle graph
and W c V induces a 4-prime graph, G/W , is obtained from G /W by application of one of the
rules of Cor. 1, x € A" M A**y | the model for G/W , [S ], is known, and the refinement for the
model of G/(W U {x}), [T] is known. Then, it takes O(1) time to calculate the refinement of the

model for G/(W v {x}). To prove this assertion, we first show:

Fact 24: Suppose G /V is a circle graph, G /W is 4-prime, G /W , is obtained from G /W by apply-
ing a rule from Cor. 1, and x € A" N Ay . Suppose, also, that the model for G/W |, [S], and

the model for G/(W w {x}), [T], are known. Then:

aA)IfAI([S], W =W)NAI([T],(x)})= O, the refinement for G/W ; U {x }) can be computed in
O(1) time and is known as a ftrivial refinement (since the vertices next-to the occurrences of x

have remained the same.

b) If there exists w,e W =W such that AI([S], {w ) NAI(T],{xH= {(w, ws)
=AI([S1,W ) nAI([T],{x}) (Fig. 3.16a) then the refinement for G /(W u {x]) can be com-

puted in O(1) time and is known as a semi-trivial refinement.
Proof of a): fAI([T],{x})= {{w, wa},{w3, wy}] then the refinement for G/(W ;U {x })
is the (W,u {x))2seq, U, such that [U—{x}] is the model for G/W, and
AI([U], (x ) =AI(T], {x }).
Proof of b): If [(w , wa, * -, wyw )] is the model for G/W |, and AI([T], {x })= {{w,
wial w1, weg}) (d<s<2IW 1-1), and AI([S],{w2])= (W, wal Wi, weq)) (8 # 1,
4<t <2IWl-1), then if (w,, x)€ E and s<r or (wW,, x)¢E and s>t then [(w, x, w,, - -

Ws 1 X, Weyt, * ", Wapw,1)] is the refinement for G/(W U {x }) (Fig. 3.16b). Otherwise ((w ,,
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s5-1 (b)

Proof of Fact 24 (b)
Fig. 3.16
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x)¢E and s<t or (Wy, x)€ E and s>t), [(W, wo, X, "~ , W[, X, Weyy, “**, Wo, )] is the

refinement for G /(W ; U {x }) (Fig. 3.16c).

In proving (2) (from page 78) we are looking for an easy way to specify the model for
G/(W v {x}). Since we know the model for G/W y, it is sufficient to specify A/ ([U], {x }). We

are now ready to examine the three cases in the proof of (2):
Case 1: Rule 1 of Cor. 1 is used.
In this case, the refinement is either trivial or semitrivial, so we are done.
Case 2: Rule 2 of Cor. 1 is used.
In this event, there are two cases where the refinement is neither trivial nor semitrivial.

Case 2.1: AI([T],{x})NAI(S], {m{,my})={w,wy}. Suppose that AI([T],{x})=

{{w, wal, {v(,v,])} (Fig. 3.17a). We then have three subcases:

Case 2.1.1: x is adjacent to both or neither of w | and w,. In this event x is adjacent to at
least one of m | and m , if it is not adjacent to w ; and w ,, and it is not adjacent to both of m ; and
m, if it is adjacent to w, and w, if G is a circle graph. Thus, AI([U],{x})= {{v, va}, {wy,
m,}} if x is adjacent to exactly one of w; and m | and x is adjacent to both or neither of w , and
mo. AI([U], {x))= {{v(,v,]}, {m,m,}} if x is adjacent to exactly one of w and m ; and x is
adjacent to exactly one of w, and m,. AI([U],{x})= ({v, vy}, (m, w,)) if x is adjacent to
both or neither of w | and m  and x is adjacent to exactly one of w, and m ,.

Case 2.1.2: x is adjacent w | but not to w,. In this event, if x is adjacent to m2, then it is
adjacent to m, since G is a circle graph. Thus, AI([U], {(x )= {{vy, va}, {w, mq}} if (x,
m)éE and (x,my)éE. AI([U)L{x})= {{v vy}, {my,m}}if (x,m,)€E and (x,my) e E.
AI([UL{x )= {{v,va), m,wy}}if(x,m)e E and (x, m,) € E.

Case 2.1.3: x is adjacent w , but not to w . In this event,” if x is adjacent to m,, then it is
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{x, 1} {0 123} =

{{my, w}, {my, w,}

[S]

Case 2.1.1 occurs ifx isin I,
Figure in the proof of (2): Case 2.1 Case 2.1.2 occurs ifx is in [}

Case 2.1.3 occurs if x is in I3

Fig. 3.17a

Figure in proof of (2): Case 2.2
Fig. 3.17b
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adjacent to m, since G is a circle graph. Thus, AI([U],{x})= [{vy, va), (w, m,)} if (x,
mpeE and (x, mpy)e E. AI([UL{x})= {{vy, va}, {my my}} if (x, m)e E and (x,
mpy)eE. AI(UL{xD= {{vi,ve), Imy,wy))if (x,m ) ¢E and (x,m,) ¢E.

Case 2.2: AI([S],{mmy}))nAI(T],{x})= {({w, v LIwy v,}} where v,
voe W—{w,wy}. In this case, if x is adjacent to exactly one of m; and w, then
{m,w} e AI([U],{x}). Otherwise, {v, m;} € AI({U],{x)). Similarly, if x is adjacent to
exactly one of m, and w, then {m,,w,} € AI([U], {x}). Otherwise, {v,, m,} € AI([U],{x})
(see Fig. 3.17b for examples).

Case 3: Rule 3 of Cor 2 is used. In this event, there are also two cases where the refinement
is neither trivial nor semitrivial.

Case 3.1: AI([T],{x})= {{w,, wal, {w,, wy}} (Fig. 3.182) (In this case we have
Ny(x)={wpw,y)). If (x, a))e E then {a,, w;} € AI([U],{x}). Otherwise {a,, w;}
e AI([U],{x}). If (x, a)e E then {a, w,} € AI([U],{x}). Otherwise {a,, w,)
€ AI([U], {x }).

Case 3.2: AI(T],{x)= {{w, wa)vy, v,}) (Fig. 3.18b). In this case, if
Ny, w@x)={ps} (15 <k) then AI([U], {x )= {{ps—1» Psui}h{v1, v2}}. I G is a circle
graph, the only other possibility is that Ny _w(x)= {ps;, psy) (1<s<k), and then
AI(IUL, {x = {{ps, Ps+1},{v1,v2)}. QED (2). Hence:

Theorem 6: There is an O(IVI |El) algorithm to recognize circle graphs.

Note that construction of the model is an O(1V| x | V1) operation while the selection of the

appropriate vertices in each step is an O(1V1 | E1) process.



-89 -

i
o}
~d

!

.
il T

[T] Figure for case 3.1 of (2)

[S]
Fig. 3.18a

Figure for case 3.2 of (2) [5]
Fig. 3.18b
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4. Permutation Graphs

Permutation graphs form a subset of circle graphs. They can be characterized as those cir-
cle graphs which remain circle graphs upon the addition of a single new vertex adjacent to all the
other vertices. We follow a somewhat more formal development, however, but will quickly util-
ize the close connection to circle graphs and the results that have been proved in the previous
chapters.

Define a V -seq to be any sequence of length |V | such that each element of V is in the
sequence. Suppose §|= (sll, szl, R | |'V, )isaV-seq,and §,= (sf, szz, R E L ,ZV, )isa
V-seq. Define pos(Sy, s¢)=k. Define G (S, S;) = G =(V,E) where (v, v,) € E iff
Pos(S1,v)—pos(S,vy) X Pos(S,, vi)—pos(S, vy)<0forv,,v,e V. fG =(V,E) =
G (S, S,) for two V-seqs S| and S 5, then G is a permuration graph. The reason for the name
permutation graph is that if G =(V,E)=G (S, §,) is a permutation graph then there is a graph
G (V, E ) with vertex set V= {1, 2, ---, IVI} which is isomorphic to G such that with
S17=(1.2, -+, IV and §5"=(pos (S 1, s {), pos (S 1, 83), -+, pos(S1, 8%y G1=G(S 1,
§ 7). Thus, if an appropriate labelling of G is known, then it is sufficient to specify a permuta-
tion, § %, to specify G (Fig. 4.1a and b).

There is also a geometric interpretation to a permutation graph. Suppose [ and [, are two
parallel lines with |V | points on each line such that the points on /| (read from left to right) are
labelled the same as in § ;, and the points on /, are labelled the same as in § , with the first ele-
ment of each sequence being the leftmost point on the corresponding line. Connect each pair of
identically labelled points (one is always on [ |, the other on /,). The graph obtained from these
line segments is the one whose vertex set consists of the line segments, and where two elements

of the vertex set have an edge connecting them iff they intersect (as line segments).

A relationship between permutation graphs and circle graphs can be seen from the

geometric representation of permutation graphs. By "deforming" or "bending" the lines / ; and /,
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of the geometric representation of a permutation graph "into" one another (and bringing the ends

in from infinity at the same time) we note that our graph is a circle graph. In fact, if § ;= (s I‘ ,

1 1 .
§3, ""r,8,)and §o = (slz,szz, -",s,,z)then8=[(s,',s21, ---,s,,‘,s,lz,sf_,, ---,slz)]ls

a model for the circle graph which represents G. In particular, if x ¢V then § "=[(x,s{, s,

3, B R s,,z_l , =+, st)] is a model for the circle graph such that x is adjacent to each
c
S, =(a c b e d)
b d ., e e . e
N, "l-..“.a" N, o
\,‘ ',,m- 'n...,.\. ',.il','l\
b, " i""
‘\' - ~ -...,I..”M ‘,.a N
f""" ki N 4"““- ““"'"5 * ~
a e S, =(b a d c e)

() (b)

A permutation graph along with a model for it

If x is a new vertex adjacent to all the previousvertices,

then this is the circle graph model for the new graph

Fig. 4.1
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element of V, and G (§ )/V =G . Now suppose that x € V “such that G/V “is a circle graph and
N@x)=V={x}). S =[x, v],vs, -, vxvi,vi -, vD] G+k+2=21V 1) is the
model for G/V*, V= {v'lie (1,2, ---, j}}, and Vo= {(v2lie (12, - ,k)), then
V=V, since each vertex in V "— {x} is adjacent to x. Thus, G(§ "— {x}) is a permutation
graph with § | =(v],v,, «-+,v',y_) and Sa= 0 e Yovicas "V %) (see Fig. 4.1c).
The close relationship between circle and permutation graphs is thus:
Cor. 3: Given G =(V,E)andx ¢V. G is a permutation graph iff G ‘(V U {x }, E U (V x {x}))
is a circle graph. (G “is G with an extra vertex adjacent to each vertex of G).

This corollary immediately yields the applicable corollaries to the theorems (5 and 6) in

chapter 3 for permutation graphs:
Cor. 4: A permutation graph is uniquely representable iff it is 3—prime .

Unique representability for permutation graphs means that the only other representations for
the given permutation graph are those obtained by reversing both §; and S ,, exchanging S ; and
89, or both. By combining Cor. 2, Algorithms B2 and C2, and the refinement procedures given
for circle graphs, we have an O(1V1 x | V1) recognition algorithm for permutation graphs. [Sp]

has previously shown an O( V1 x [ V1) solution to this problem.



5. Conclusions and Further Problems

5.1. Summary

This thesis has shown that under a certain definition of decomposition of graphs, there is a
very strong structure within the class of prime graphs - a certain embedded subgraph must exist in
each prime graph and an O(1V'| 1E1) algorithm was given to find it. An even stronger result was
shown in which it was proved that each vertex of a prime graph is contained in a certain embed-

ded subgraph. This result only demonstrated existence and did not provide an algorithm.

The main result was an algorithm (Central Lemma) which will recognize prime graphs in
such a way as to find a minimal embedded prime graph (Fig. 1.6) and then incrementally build up
to the given graph, at each step maintaining a prime graph and augmenting the graph by one of 4
or 5 rules. This algorithm takes O (1VI |E1)-time for 4-prime graphs and O (1V| 2)-time for 3-
prime graphs.

This result is used both in showing the stronger structural theorems (3 and 4) mentioned
above and in demonstrating recognition algorithms for two subclasses of graphs, circle and per-
mutation graphs. There is a natural correspondence between 4-prime graphs and circle graphs -
circle graphs have a unique representation iff they are 4-prime (Theorem 5). Similarly, the
natural correspondence between 3-prime graphs and permutation graphs is that permutation
graphs have a unique representation iff they are 3-prime (Cor. 4). Using these relationships,
O (VI x |El)and O (1V1?)-time algorithms were found for the recognition of circle and permu-

tation graphs.

5.2. Further Research

One problem not considered in the body of this dissertation is the structure of non-
permutation and non-circle graphs. Suppose a graph is not a permutation graph and there is a

vertex whose removal leaves the graph a non-permutation graph. If the vertex is then removed
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and the process continued until there is no vertex whose removal leaves the graph a non-
permutation graph, then the graph arrived at is a minimal non-permutation graph. This graph is
clearly 3-prime (by Fact 17 applied to permutation graphs). What may be said about the class of
minimal non-permutation graphs (each non-permutation graph contains an embedded minimal
non-permutation graph)? In an unpublished work, this author has shown that the set of all
minimal non-permutation graphs is that depicted in Fig. 5.1. For each k > 8 there are exactly 10
graphs in the class if k£ is odd and 6 if k is even. The proof used, though straightforward, is quite
long and tedious. It involves recognizing a non-permutation graph by the method described in

the last paragraph in chapter 4 and noting how the method may fail.

The corresponding problem for circle graphs has not been solved. That is, the smallest class
of graphs such that an element of this class is embedded in each non-circle graph is not known.
Some progress has, however, been made. Given G =(V,E) and v € V, designate by
Lo (cal )Com (plement ) (v) the graph whose vertex set is V and whose edge set is the same
except for the following modifications. Neighbors of v in LoComg(v) are adjacent iff they are
not adjacent in G. Formally, (let W =Ny (v) in G) LoComg(v) = (V, (EUW xW) -
(E "W xW)). Bouchet points out [B1] that G is 4-prime iff LoComg(v) is 4-prime for each
vertex v € V. This is easy to see: suppose that (V, V|, V,, V 3) is a 4-decomposing partition of
G. Ifv e Vg, then (V, V(, V,, V,) is again a 4-decomposing partition for LoComg(v ) while if
v € Vy,then (VU Ny (v) — Ny (v),VUNy (v) = Ny (v),V,, V3)is a 4-decomposing parti-

tion for LoComg(v) (where the neighborhoods are in the original graph G ).

Local complementation has a natural correspondence to circle graphs: G =(V,E) is a circle
graph iff LoComg (v ) is a circle graph for each v € V. It is easy to see this by looking at the cir-
clular model for circle graphs. Local complementation is achieved by reversing the subsequence
on one side of the chord corresponding to v. Furthermore, from the previous paragraph we have

that G = (V, E) is a uniquely representable circle graph iff LoComg(v ) is too foreachv € V.
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For a graph G =(V,E) we form Lo(cal)Classg = (H |H is a graph formed by a
sequence of local complementations on G }. for a given size of graphs larger 6, it is easy to see
that there are at least 4 distinct LoClass ’es since there are 4-prime and non 4-prime circle graphs
and there are 4-prime and non 4-prime non-circle graphs. In fact there are exactly two distinct
classes of 4-prime circle graphs of size 7. Despite the invariants mentioned above, the local com-
plementation of a minimal non-circle graph need not yield a minimal non-circle graph. The other
possibility is that there is an embedded non-circle graph whose size is exactly one less. Each
minimal non-circle graph known may be reduced in this fashion to the one non-circle graph of
size 6. Unfortunately, it is not known whether there exists a class of minimal non-circle graphs

each of whose members is not reducible.

It is straightforward to show that if a graph is 4-prime then by locally complementing it
enough times on the appropriate vertices, it is possible to arrive at a graph which may be recog-
nized as 4-prime using only rule 1 of Lemma 1. Another method to determine the set of minimal
non-circle graphs would be to analyze how a 4-prime graph may fail to be a circle graph given
that only rule 1 is used on some member of a class of minimal non-circle graphs. This seems to
be quite a complicated procedure. Perhaps some combination of these methods will yield the

desired results.
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These graphs together with their complements form the set of minimal

non-permutation graphs of size less than 8.

Fig. 5.1(a)
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aC,withn >7

n is odd and greater than 7 n is odd and greater than 7
n is odd and greater than 7 n is even and greater than 6

n is odd and greater than 7 n is even and greater than 6

n refers to the total number of vertices in the graph.
These graphs together with their complements form the set of minimal
non-permutation graphs of size 8 and larger.

Fig. 5.1(b)
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