DATA SHARING IN A LARGE HETEROGENEOUS ENVIRONMENT
Rafael Alonso
Daniel Barbara
Steve Cohn

CS-TR-272-90

July 1990

DATA SHARING IN A LARGE HETEROGENEOUS

ENVIRONMENT'

Rafael Alonso
Daniel Barbard

Steve Cohn

Department of Computer Science
Princeron University

Princeton, N.J. 08544

ABSTRACT

The increased availability of networking technology, as well as the
economic pressure for inter-company cooperation have created a great
deal of interest in federated (or heterogeneous) database systems.
Although there has been much work recently in this area, most of it
addresses (implicitly or explicitly) an environment in which there are only
relatively few cooperating entities. In this paper we explore the issues
involved in sharing information among a large collection of independent
databases. First, we discuss some of the distinguishing features that
characterize such large scale environments (such as size, autonomy, and
heterogeneity). We then outline a multi-step information sharing process
for those systems, and present an architecture supporting that exchange.
We conclude by providing a detailed description of a working prototype
based on our architecture, and present some measurements of its perfor-
mance.

1. Introduction

The distributed information processing scenario has changed dramatically over the

T This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and by
the Office of Naval Research under Contracts Nos. N00014-85-C-0456 and N0O0014-85-K-0465, by the National Science
Foundation under Cooperative Agreement No. DCR-8420948, and New Jersey Governor's Commission Award No. 85-
990660-6, and grants from IBM and SRI's Sarnoff Laboratory. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or im-
plied, of the Defense Advanced Research Projects Agency or the U.S. Government.

-2.

last few years. While individuals are ever more eager to obtain information about a wide
range of topics, currently existing databases have proliferated across a variety of net-
works, each under the control of a different organization, and with very little standardiza-
tion among them. Furthermore, the increased availability of networking technology, as
well as the economic pressure for inter-company cooperation have created a great deal of
interest in data sharing among independent entities. This situation motivates major
changes to the way in which distributed database management architectures are conven-
tionally defined, and has led to increased research in the area of heterogeneous databases

(also denoted as federated or multidatabases).

Although there has been much work recently in this area (e.g., see the proceedings
from [NSF89]), most of it addresses, implicitly or explicitly, an environment in which
there are only relatively few cooperating entities. For example, consider the research
done on schema integration. Since the collaborating databases are managed by different
administrators, in all probability the database schemas will be very different across the
various sites. A number of papers have addressed the issue of integrating all the local
schemas into a single global one, thus creating the perception of a single homogeneous
system. While this is an excellent idea if the number of collaborators is small, the com-
plexity of the integration process is such that this approach does not scale well. There-
fore, although the few participants case is certainly an important one to consider, we feel
that some attention must be paid to the case in which the number of autonomous partici-

pants is very large (say, from hundreds to potentially many thousands of databases).

In the next section of this paper we present some of the salient features of such
environments. Next, we describe a number of technical problems that must be addressed
by database designers in order to build large scale systems. In Section 4, we present an

architecture which we have developed which we feel can help overcome some of the

8

technical problems described in Section 3. Finally, we provide a detailed description of a
working prototype based on the architecture of Section 4, and we measure its perfor-

mance.

2. Environment

The distributed information processing environment that we envision exhibits a

number of essential features that were not fully explored in previous work in more tradi-

tional distributed databases. Among these features there are three very important charac-

teristics:
Autonomy: Organizations are finding out that, in order to cooperate efficiently, they
will have to share information with their business partners. However, no matter
how large the benefits of this cooperation are, it seems clear that most of these
organizations are not willing to surrender control over their data as the price of
cooperation. The local system administrators want (and should) have autonomy in
deciding how their data is stored and manipulated, as well as over deciding which
software or hardware to use. Moreover, autonomy should also be major concem in
software operation. For instance, a local transaction trying to update data belonging
to the local organization should not be excessively delayed or stopped because of

the data sharing with other organizations.

Heterogeneity: As a direct consequence of autonomy, an information network is
bound to be a heterogeneous system. Since local administrators have freedom to
select the local architectures, a variety of software and hardware is likely to be

present in the network, making data sharing a more difficult task.

Size: The rapid growth of worldwide networks will certainly result in a large

number of nodes sharing information. This issue of scale has profound conse-

il s

quences in system design. In particular, it calls into question the practicality of sup-

porting network-wide sharing via a unified data schema for the entire network.

We claim that whatever information sharing solution is offered for the environment
in question must be compatible with the characteristics of autonomy, heterogeneity and
size described above. We believe the architecture that will be proposed in Section 4 is
well suited for these type of environments. However, before describing it, we will sketch

the typical steps involved in the information sharing process.

3. Information Sharing

We view the process of sharing information among a group of independent entities
as consisting of a multi-step process. This process consists of first finding a set of loca-
tions that might contain the desired information. Second, undertaking a negotiating pro-
cess with the databases at those sites to be allowed to query them (or to obtain the raw
data from them). Third, actually generating the query or a sequence of queries to the
remote sites (or querying locally if the raw data was shipped over). Finally, terminating
the interaction. Clearly, this four step process can be carried out in parallel with a group
of information sources or sequentially with each in turn. Furthermore, if the user queries
are not answered satisfactorily, the entire process may have to be repeated a number of
times.

In the sub-sections below, we discuss each of the steps mentioned above in more
detail. And in Section 4, we present an architecture that provides services for each of the

stages described in this section.

3.1. Finding the Information

The first step in the information sharing process entails learning what data sources

exist, where they are located and what kind of information they provide. It is clear that

-5-

the size of the problem precludes the obvious solutions of having a network-wide global
index or posing a roving query that traverses the entire network in an attempt to find
sources that have the information necdcd-. Simpson and Alonso [SiAl89] proposed an
alternative way of dealing with this problem, called external indexing. Essentially, the
solution is modeled after the way humans find information in society. Everyone knows
the location of a set of information resources, either ‘‘well-known’’ sources (such as a
library), or personal ones (such as an informed friend). When a person has a question
which cannot be answered by the known sources, he or she asks these sources to recom-
mend further sources. In this way, the source set of the individual grows and eventually
will (probably) contain a source capable of answering the question. Nodes in a network
can build such external indexes in the same manner. (The information source pointers
are called external indices because, similarly to standard indices, they speed up data

retrieval.)

3.2. Access Negotiation

Once the information source is found, the node interested in the data must negotiate
with the owner of the data for access to it. This must be so in order to comply with the
autonomy requirement. First, any individual component of the network has sufficient
local control to autonomously determine which data it will share with the rest of the
nodes and in what capacity. Moreover, even if the owner decides to share the informa-
tion, another decision needs to be made. Sometimes the querier will require the informa-
tion only once, but many times he or she will want to repeatedly ask for the data (for
example, consider the case of a user interested in the latest stock information). Thus, the
owner also needs to decide whether it will (a) allow the repeated requests, (b) provide a
copy of the data to the remote querier and keep that copy sufficiently up to date for the

purposes of the application or (c) deny access (note that access is denied at this point not

-6-

for reasons of protection, but because the repeated querying imposes an unacceptable
load on the owner machine). If the owner decides on either choice (a) or (c) he need only
notify the requester of that fact, (and possibly, record the decision if future requests are
being allowed). If option (b) is chosen, an agreement must be reached with respect to the
level of consistency of the copy. We call these ‘‘consistent enough’’ copies quasi-copies
(see [ABGASS] for a complete description of this topic). This level of consistency is
dependent on the application that the users want to run in the local site. For instance the
copy be kept perfectly consistent or, say, no more than ten minutes behind the original.
All these issues affect the amount of autonomy an owner has to a larger or lesser degree.
A protocol for data negotiation which addresses all these issues has been developed and
presented in in [AIBa89]. Note that, along with the data, the owner will have to provide
the client with the semantics of the information so that the client may interpret the data.
There are a number of ways in which may be done. Among others: (a) it may be obvious
(e.g., you requested a food recipe and received an English language description of the
recipe), (b) it may be in a standard format (e.g., perhaps all New York Stock Exchange
stock price data will always be quoted in dollars per share), (c) there may arise a set of
well-known standards for a given type of information, (d) a natural language description
of the data is sent along with it. Notice that this schema has the flexibility of letting the
individual sites involved decide how the semantics of the data involved is going to be
passed from the owner to the client system. We certainly do not think that schema
integration techniques will be appropriate (in practice) for this problem, since there will
be far too many systems in these environments, and many interactions will be too short-

lived, to warrant the expense of such a process.

3.3. Query Generation

Once the agreement is reached, the query must be posed and the actual data given to
the user or application program that requested it. Notice that having a local copy of the
data after the negotiation eliminates the need for further data translation. The translation
is made once. The local DBMS can assimilate the data and future queries can be posed

in the local data retrieval language.

3.4. Termination

Both sites should agree on what conditions the ensuing contract will be invalid (i.e.,
when to terminate the data sharing). One of the key issues to be considered here are what
to do if there is a communication (or node) failure. In the particular case of an agreement
to share via quasi-copies, our approach is to accompany the sharing by periodic ‘‘I-am-

alive’’ messages; should those messages stop, the quasi-copy support ceases.

4. Architecture

A variety of solutions have been proposed for the problem of interconnecting
heterogeneous databases (for example federared databases [HeMc] and multi-databases
[LiAb86]). For lack of space, we will not discuss here the virtues or the defects of any of
them here, but simply pause to note that we present in this section an alternative architec-

ture which shares some features (but not others) with previous work.

Figure 4.1 depicts the software modules that compose our system. In the figure we
see the details of the interaction between two nodes, the client node that is trying to get a
query answered for a user and the owner of the data which satisfies (at least partially) this
query. (Notice that if the information required is only partially found at any one site , the

process described here will have to be repeated a number of times.)

r"""‘"‘""""“'o r """"""""" \
; RDM RDM 5
s i § §
: : i :
) : ; :
| ; s :
i : Pparameter list g :
: NM - ; NM :
" ¥) H
: ' y/n, cookie ' i
'] ' [l
: : ' '
: : : :
' : : :
: E 5 5
H y ; coockie i y :
' BK - : BK :
: H data,update H ;
. UrdaeT | data \:l-r*--r
________ s s T S
DEMSE [DEBEMS
T
R
&
DB DB E
s

Figure 4.1 - Architecture

As the figure shows, there are three major components in the architecture. We now

describe each one in tum.

4.1. Resource Discovery Manager

The first module, the Resource Discovery Manager (RDM), has the task of finding
where the information needed resides. A detailed description of this module’s work
appears in [SiAl89]. Roughly, the requester provides the RDM with a set of keywords
which describe what data is being sought (for example, ‘‘doctor heart phone’’ indicates a
request for the phone number of a cardiologist). The RDM looks in its external index for

any source matching these requirements (sources are also described in the external

= B

indices by a series of keywords). Any sources that match the query are potential candi-
dates for containing the information of interest. If no sources appear in the local index,
the RDM looks for sources that contain information about who might know the answer to
the query. Thus, any sources that know about ‘‘doctor’’ or ‘‘phone’’ might be good can-

didates to be asked whether they know any sites that can answer the query of interest.

Clearly, the process described above is recursive. Furthermore, it is easy to imagine
the role of well-known location servers in this process (e.g., the yellow pages can always
be consulted in parallel to the above process). The actual descriptions that our system
uses also involve weights as well as keywords (so that we might distinguish the most
important aspects of the data we desire). There is also a mechanism for ensuring that we
will not be inundated with data from any one site, another for dealing with hosts that lie,

a third for discarding obviously irrelevant data, etc.

4.2. Negotiation Manager

The second module invoked is the negotiation manager (NM). After the source of
the desired information is found, the RDM invokes this module to enter the process of
negotiation between the two sites. To uniquely identify the negotiation, the respective
RDMs pass an ID to the NMs. (This ID will be used by all the modules in the system to
identify a given information sharing process.) The operation of the NM module is fully

described in [AlBa89], and we will only summarize its operation in this paper.

The client site will send the owner a list of parameters that allow that site to evalu-
ate whether to give the client repeated access to the data, send it a copy, or deny access.
It is understood that any copy sent would be a quasi-copy. As we explain in [ABGA88],
a quasi-copy is a cached value that is allowed to diverge from the original in a controlled
way, which is determined by the actual user of the data. For instance, a user may specify

that a copy should not diverge by more than 10% from the original, or that the

5 1y

information be no more than one hour old. Quasi-copies provide a very natural way of
dealing with distributed data in very large systems, and one with reasonable performance
overhead. The two principal characteristics of quasi-copies are its selection and
coherency conditions. The first refers to which objects are to be copied. The second

establishes the degree of inconsistency that the user is willing to tolerate.

The parameters provided by the client NM are the coherency condition and the
estimated querying rate for the data being negotiated. Using these figures, as well as a
set of internal parameters of the owner load and estimates of the update frequency of the
items in question, the owner site decides whether to grant the request or not. It computes
the load that repeated queries would generate, estimates the computational cost of main-
tain the quasi-copy, and considers whether the load imposed by the least expensive of the
two will, when added to the average owner site load, exceed the maximum load that the
owner site is willing to tolerate. Clearly, the higher the load that a node is willing to
incur on behalf of another site the lower its autonomy will be (in the sense of losing a

measure of control over its own cycles).

4.3. The Bookkeeper

The last module, the Bookkeeper (BK), is encharged of the actual transfer, interpre-
tation, and maintenance (in the case of a quasi-copy) of the shared data. The NMs will
pass the interaction ID to the BKs, so that they can initiate the actual data transfer. When
contacted by the client BK, the owner BK will send the data over to the client, along with

a the necessary information to understand the semantics of the data being sent.

The management of a quasi-copy’s coherency will be performed in general by the
owner BK, although in some instances, it is possible to unload this task to the client BK.
For instance, if the coherency condition specify maximum delay time, the client BK can

wake up when the condition is expiring, invalidate the current copy and request a fresh

1Y =

copy from the owner. Regardless of which site maintains the consistency, the actions
taken are the same. When the coherency condition are violated, the BK must intervene

and either send or request a fresh copy.

In principle, if the coherency condition is other than a delay condition, this means
intercepting each update to the relevant data and checking whether the condition is
violated, clearly not an acceptable task. However, this requirement can be circumvented
if the quasi-copy facilities can be built on top of databases supporting triggers. That is,
we install a trigger with the same start condition as the negation of the coherency condi-

tion of the quasi-copy, and have as the trigger’s action the refreshing of the quasi-copy.

Finally, the client BK is responsible for instructing the user’s DBMS to install the

copy of the data locally, so it can be accessed by his or her applications.

5. Implementation

In this section we describe the implementation of a prototype information sharing
system, based on the architecture just described (although the current prototype does not
have the complete functionality allowed by the architecture). Necessarily, our prototype
is very simple and small in scale, but we feel that it can help us shed some light on the
problem we are addressing. While we will make several assumptions and create a few
fictions, we hope the differences between this implementation and the theoretical world-

wide model are only in detail and scale.

5.1. Overall organization of the prototype

The physical network in our prototype is composed of a set of Sun workstations
connected by an Ethernet [MeBo076]. There are a number of UNIX processes in each
machine, each modeling an antonomous (logical) site. The various processes maintain an

individual Ingres [St76] database, and they communicate with each other via TCP/IP

= 12.s

[Postel80A B] sockets.

The activity at each site is handled by a multi-tasking controlling program (in
essence, a simplified operating system). There are a number of database processes under
its control, each of which may be in a variety of execution states. These database

processes share memory with each other, and use it to communicate.

We create a new database process every time we begin a search for information, or
receive a request for data from another site. These processes are placed on various
queues and handled one at a time. For instance, a process attempting resource discovery
may send out several requests, and then place itself on a wait queue until it receives a
response. Until that response comes, the site can handle requests from outside, or process
other local queries. If a response comes in, the waiting process is pulled off the queue
and allowed to handle the message. If no response comes in within a certain time, the
waiting process will reach the head of the wait queue, time out, and act accordingly.
There are four queues in each controller: a run queue (processes waiting to receive a time
slice), a wait queue (processes waiting for a response message or a time out), a resource
discovery queue (processes who are looking for information), and a dead queue
(processes which have either failed to succeed in resource discovery, or have timed out
waiting for a reply).

Since we believe that communication should be connectionless in the systems we
are studying (mostly for autonomy reasons), we use one-way messages to send our
requests and responses. Thus, sites can handle requests from multiple remote sites at
once, and continue to operate asynchronously while waiting for other databases to
respond. All messages have a standard header which contains the address of the database

process (not just the site) for which it is intended.

13-
5.2. Resource discovery

5.2.1. Requesting information

As we mentioned in Section 3, we must have a mechanism for finding the location
of data. Thus, we have implemented the RDM module described in Section 4.1. As
pointed out there, we want to be able to search for information based on a set of simple

keywords, such as (shoes white golf) to indicate a desire for data about a particular item.

We implemented various keyword-based algorithms for different versions of our
RDM. The simplest method was to associate a list of keywords with each relation, and
then specify user requests with an unordered set of keywords. If any of the keywords
were in the list of words for the relation, we would report a match. Clearly, this method
could also have been expanded to include logical operations like AND and OR (ie.,
shoes and (white or golf)), but we did not implement this extension. The main problem
with this method is its simplicity, which leads to a lack of expressive power. We cannot
indicate which keywords are more important, nor can we easily build up a history of our

requests to make future similar requests faster.

A much more effective way of dealing with the keywords is to have each site main-
tain a tree of the keywords. In this tree we can put references to the information that the
local site knows, and the names of sites that we know of that might be good sources for

the information. For example, consider the tree in figure 4.1.

SHOES
f 3
WHITE GOLF

Figure 4.1 - An example of a keyword tree

-14 -

If our local site knew about white shoes, then the WHITE node would have a
reference to the local relation that contained the information we had on white shoes. The
GOLF node however, might have a list of sites that we have heard of that might be good
sources for golf shoes. The SHOES node would refer to our relations and our sources

for any kinds of shoes (perhaps including, redundantly, white shoes and golf shoes).

We attach weights to each keyword in the tree and in our request, and then take the
dot product to determine how close a match we may have. For instance, if site A had a
lot of information on shoes, but very little of it was specifically on white shoes, its entry
in its own tree might be shoes (0.8), white (0.1). Site B may not know all that much
about shoes, but most of what it knows is about white shoes, so it would have shoes
(0.3), white (0.7).

If we are requesting information on white shoes, we would want to consider how
particular we want to be. If we request shoes (0.7), white (0.3), indicating that we want
shoes, and we would like them to be white, then site A will give us a dot product of 0.59,
and site B will give us 0.42. If, however, we really emphasize that they be white shoes (
shoes (0.1), white (0.9)) then site B will be preferred with 0.67 over site A with 0.17.
Along with the weights on the keywords, we can specify a minimum threshold for the dot
product, thus limiting ourselves only to sites with a reasonable chance of having the

information we are looking for.

Maintaining a tree also has the advantage that once we find a source for a specific
request, we can store that information in our tree. Then when we want to handle a similar
request, we have a better set of starting points by looking at the nodes near the one we
are requesting. If our tree were three levels, and our third level beneath WHITE had
TAP and PUMPS, then we would consider any possible source for white tap shoes as a

possible source for white pumps.

- 15 =

The main problem we found in using full n-level trees to store the information is
that there is usually not a natural hierarchy in which to place the keywords. For instance,
if one were indexing white golf shoes, one could put SHOES in the first level, but it is
not clear what determines whether GOLF is a specific kind of white shoe, or WHITE

is a type of golf shoe.

Our experience seems to indicate that the trees for most natural requests are actually
only two levels high, usually with the subject in the first level and modifiers in the second
(ie. SHOES - <WHITE GOLF PUMPS>, STOCKS - <NYSE AMEX NASDAQ>).
Third level qualifiers would more likely become part of the query once the relation is
found (i.e. SHOES - WHITE : SIZE 11, STOCKS - NASDAQ : Micsft). For general-

ity, full n-level trees were implemented in our system.

5.2.2. Candidate sites

Given the request in some form, we create a list of sites we think might have the
information and send them a message asking them if they do. These initial sites are
called primary candidates. If an initial site does not have the information, we can ask
them to tell us the names of other sites who might know (i.e., which primary candidates
would they choose if the query had originated at their site). Sites that do not have the
desired information but may know about primary sites who do are called secondary can-

didates; we make each site on the list they give us primary candidates.

The process of finding candidates is iterative, and continues until the user is satisfied
with the answer to the query. For instance, if we are looking for white golf shoes we
would build up a list of primary sites by looking in our tree under shoes golf and shoes
white. If this does not yield a sufficient number of primary candidates, then we might

generalize and take anybody who simply knows about shoes.

-16 -

We enter these primary sites in a table associated with the database process that lists
the sites we have tried or will try for this particular request, and their current status (pri-
mary, secondary, waiting, finished, etc). Then each time the process reaches the top of
the queue, we send out a request to one or more of the sites and then wait for replies. If a
primary request (‘Do you know about white golf shoes?’”) comes back ‘‘no,” we
change that site’s status in the table to secondary so we will eventually send it a secon-
dary request. When we get a response from a secondary request, we add any new sites as

primary and mark the secondary site as finished.

5.2.3. Results of Resource Discovery

Eventually (unless there is no data pertinent to the query in the entire network) we
will get a site that believes it has the information we want. When it replies ‘‘yes’’ to the
primary request, it will also tell us the name of the relation in its database it thinks we

want, and a datatype skeleton.

The datatype skeleton is a list of the relation’s field names and their types, and from
this it is expected that the requester can tell whether or not the relation is what they are
looking for. (We made this assumption not because we expect that it will be true in real-
ity, but because we wanted to keep the prototype as simple as possible; in practice, unless
the keywords are standardized, some form of semantic information must be sent along
with the skeletons so that the data may be interpreted.) If, for example, you want to get
the current price for IBM’s latest bond offering, you might specify you request as bonds
and receive company name=string, price=dollars from some brokerage house. Then
you can form vyou query using these fields (retrieve (r.price) where
(r.company name=‘‘IBM’’)). On the other hand, if the site tells you it has a relation
like valence=shell number, electrons=integer, then you are probably on the wrong

track and should continue to look elsewhere.

= BT =

For simplicity sake, our model was based on a list of global datatype skeletons,
indexed by a number. This saved us the trouble of sending the entire list of relation field
names, and allowed us to automatically continue if the data we find is not of the exact

skeleton type.

5.2.4. Learning

We already stated that maintaining a tree makes it easier for us to remember what
we have found out so we can improve our searching the next time around. Unfortunately,
it is next to impossible to save all the information we amass during the search. The list of
sites, for instance, that did not have information on our subject will be quite large. We
also must be careful not to write them off for good, as they may have been temporarily

down, or they may acquire new information.

It seems best, then, to remember which sites had the information we wanted, and to
later use them as starting points for identical or similar requests. This alone is a great
advantage, as we can bypass the multiple levels of referrals (A told us to try B; B said try
C; C had what we wanted) and go directly to the source (try C first). And if any of our
collaborating databases ever ask for that same information, we can recommend C to them

and save them the multiple-level requests altogether.

In our experiments, we observed that, after a while, the network starts to get
‘‘smaller’’ as each site builds up a list of who actually has what. Thus, if all the sites in
the network were to continually request information on all known subjects, then eventu-
ally each site would build up a complete RDM tree which, for each subject, would refer

directly to a site containing the information.

There is an important underlying assumption here that has not been mentioned. If a

site we expect to have information does not have it, we ask them to recommend others.

I8

This method works best if the sites who know about a subject also know other sites who
deal with that subject. For instance, if the shoe store we ask for white golf shoes did not
have it, we would consider them a particularly good source to tell us who might have the
shoes. A real network will also be expected to contain yellow page servers: sites who
know about a lot of other sites. We will want to keep track of as many of these sites as
possible, using them as default secondary candidates for many requests. Even if we did
not keep track of where we find information, an appropriately chosen list of these yellow
page servers can reduce our searches down to only two messages (one to the server, one

to the site it recommends).

5.3. Negotiating

Once the data has been found, and once we have decided that the information there
is indeed what was being sought, we must then negotiate with the foreign site to get
access to it. Real world parameters to such a protocol would include: security, price, size
of the query, how often the data is needed, how current it needs to be, and how busy the
providing site is at the time. For simplicity, in our prototype we ignore price (everything
is free) and security (everything is public) and concentrate on cost of execution. The out-
come of the negotiation is either allowed access, granting of a quasi-copy, or denial of

service.

The basic premise behind our protocol is to allocate a certain portion of the
machine’s cycles to handling other site’s requests, and then let remote sites have access
on a first-come first-served basis. We approximate the cost of querying the database, and
compare that with the cost of sending all the information across the network and making
the requesting site do the work. If the request is not a single query, but a request for
periodic updates (say, stock quotations), then we must take the consistency constraints

into consideration. If a site wants to query our data every minute, but they only need it to

-19 -

be an hour up to date, then we may agree to maintain a quasi-copy.

We will not describe here any further the details of our protocol, since they appear

in [AIBa89]; we have implemented the protocol described there.

5.4. Query Management

Once we have found a site who agrees to supply us data, the fields in the database
skeleton are used to construct a RETRIEVE statement and a WHERE statement, which
are then sent to the data source. The serving site executes the query on its local database,

and sends the resulting tuples back to the requester.

If the query was only meant to be executed once, then when it completes both sites
can dispose of the respective database processes. If the query is periodic, then both sites
will put their database process on a wait queue. One of the two is responsible for waking
up after & seconds and restarting the query. The other will wait for a longer period (say
29), and timeout if the request has not been executed by then. The question of who
should be responsible for waking up is an implementation detail; we have chosen to place

the burden on the requester.

Since the query may take a relatively long time, and there might be many resulting
tuples, it can be expected that the requesting process cannot wait for all the tuples to
come in. It must therefore be able to handle them in any order (messages are not

guaranteed to be sequential), and recognize when all of them have arrived.

It would also be the responsibility of the query manager to insure that the requester
is not violating the terms of the negotiations. That is, if the sender agreed to update the
requester every O seconds, it should not notice if too many requests have come in a give

time period. We have not implemented this feature.

Finally, since the interaction may be taking place via quasi-copies, the query

=20 -

manager for the requester must be prepared to send the updating tuples it receives to a
temporary relation, and then query that relation locally whenever a local user queries that

information.

5.5. Performance

We made some performance measurements of our prototype to gauge the usefulness
of our architecture. Obviously, any results must be judged in context of the simplicity ot
the prototype, and are to be taken as qualitative, not quantitative indications of success.
The strongest statement we can make is that in running the system we did not see any

obvious bottlenecks that would impede scaling it up another order of magnitude.

The tests were run on a single machine (a Vax 8650) to minimize the effects on net-
work speed on the results. As we already mentioned, the databases used UNIX sockets
to communicate, and (university) Ingres databases to store the (synthetically derived)
information.

We were only able to run tests with about 10 sites, since multiple instantiations of
Ingres caused our Vax to crash. However, Ingres itself ran ‘‘relatively’’ fast, although no
comparable database was tested. Tests were made for files of different sizes (number of
tuples (V) ranging from 10 to 100,000), and different proportions of the query succeed-
ing (the fraction 7, ranging from 1/N to 1.0). Let us call the number of tuples retrieved k,
which would be yN. Surprisingly, Ingres was almost as fast for small values of k as for
large. The largest test, N = 100,000 and y= 1.0, resulted in a retrieval time of 1.32
milliseconds/tuple.

The main bottleneck tumed out to be message sending, which we feel we can attri-

bute to the limitations of the UNIX environment. When tested with queries involving a

very wide range of Ny, and k, the total time was constant at 0.76 seconds/tuple. More-

-21-

over, it was apparent that the system was pausing between groups of eight messages. We
attributed this to the tight limitations of UNIX sockets, which allow a queue length of no
more that five (the eight packet statistic probably arose from being able to process three
messages in the time it took for five others to back up on the queue. At that point, we
believe the sending process was blocked on the send instead of dropping the packet. No
message was ever lost). We could have improved the sending statistics by bundling mul-
tiple messages together when we could, which was usually only when we were sending
the results of a query. This would have improved our time by a factor of M, had we put

M messages in a single packet.

A real world system would use better methods. The networking needs are actually
very simple (unordered, one-way packets), so there is no reason why performance should
be lost in the software layers of the network. And since the transport time is far greater
than the retrieval time (a factor of about 600 for our prototype), this is one area where

implementation effort should be spent.

We also tested our resource discovery software. We created the synthetic databases
such that each site had some information, knew sites that had a different type of informa-
tion, and knew sites that had information similar to its own. We experimented with a
number of factors, such as the number of sites (S), how many types of information there
were (N), how many categories there were of each of the N types of information (M),
and how many sites knew about each of the NM kinds of information (K'). N and M
were set to values around 10 each, and experiments with K showed values of 2 or 3 to be
interesting. With §=100, a small number of sites were set to make random resource
discovery attempts, building up their RDM trees in the process for their own future
queries and secondary queries from other sites. As one would expect, in our simple net-

work it did not take long before the searching sites found the correct sources for each of

& 22 @

their queries. The number of ‘‘hops’’ became smaller rapidly, and the RDM tree quickly

grew towards complete.

It is difficult to predict the performance of our RDM architecture in a real network,
since it depends heavily on the nature and placement of the information. This much we
can say about our system: if a site is continually searching for similar information, we are
confident it will quickly become an ‘‘expert’’ if there is indeed any data to be shared; if,
on the other hand, a site requests information on vastly different topics, it will always be
starting from scratch; finally, the availability of yellow page servers will clearly have a

major impact on the usefulness of our approach.

6. Conclusions

In this paper, we have listed some of the key characteristics of very large informa-
tion networks. We have sketched the details of a multi-step information sharing process,
and provided the salient features of an architecture supporting data sharing in large
heterogeneous information networks. We have also discussed in depth our existing pro-
totype, which enables users to query a collection of heterogeneous databases. Although
the prototype is small in scale and simple in design, we feel that it has shed much light on
the problem addressed by this article. We are currently expanding the functionality of

our software, and expect to start running tests on real data in the immediate future.

7. References.

[ABGAS8SE]
Alonso, Rafael, Daniel Barbar4, Hector Garcia-Molina, and Soraya Abad, ‘‘Quasi-
Copies: Efficient Data Sharing for Information Retrieval Systems,’” Proceedings of

the International Conference on Extending Database Technology, Italy, 1988.

-23.

[AlBag9]
‘‘Negotiating Data Access in Federated Database Systems’’ Proc. of the Fifth

Conference on Data Engineering. Los Angeles, CA, Feb. 1989.

[HeMc85]
Heimbigner, Dennis, and Dennis McLeod, ‘‘A Federated Architecture for Informa-
tion Management,”’ ACM Transactions on Office Information Systems, vol. 3, no. 3,
pp- 253-278, July 1985.

[LiAb86]
Liwin, W, Abdellatif, A., ** Multidatabase Interoperability,”” JEEE Computer Dec.

86.
[MeBo76]
Metcalfe, R. M. and D. R. Boggs, ‘‘Ethemet: Distributed Packet Switching for
Local Computer Networks,”” CACM, July 1976, pp. 395-404.
[NSF89]
Proceedings of the 1989 NSF Workshop on Heterogeneous Databases, Evanston,
Illinois, December 11-13, 1989.
[SiA189]
Simpson, Patricia, and Rafael Alonso, ‘‘A Model for Information Exchange Among
Autonomous Databases’’ Technical Report, Princeton University, May 1989.
[Postel80A]
J. Postel, ‘‘DOD Standard Transmission Protocol,”” RFC 761, Information Sciences
Institute, January 1980.
[Postel80B]

J. Postel, ““DOD Standard Internet Protocol,”” RFC 760, Information Sciences Insti-

-24 -

tute, January 1980.

[Ritchie78]
D. Ritchie and K. Thompson, ‘‘UNIX Time-Sharing System,’’ Bell System Techni-
cal Journal, Vol. 57, Number 6, 1978.

[St76]Stonebraker, M.R., E. Wong, P. Kreps, and G.D. Held, ‘‘Design and Implementa-
tion of INGRES,”” ACM Transactions on Database Systems, vol. 1, no. 3, Sep-

tember 1976.

