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Abstract

A critical problem in building long systolic arrays lies in efficient and reliable synchronization.
We address this problem in the context of synchronous systems by introducing probabilistic models
for two alternative clock distribution schemes: tree and straight-line clocking. We present analytic
bounds for the Probability of Failure and the Mean Time to Failure, and examine the trade-offs be-
tween reliability and throughput in both schemes. Our basic conclusion is that as the one-dimensional

systolic array gets very long, tree clocking becomes more reliable than straight-line clocking.

1 Introduction

Several problems in scientific computation and signal processing can be solved efficiently by special-
purpose one-dimensional systolic architectures [Kun82,KS89,LL85]. Such solutions may have significant
practical importance if they perform and scale well for large problem sizes. This implies that ultimately
they should comprise many processing elements to achieve a high degree of parallelism. Furthermore,
some systolic pipelines have the property of linear speedup. TFor instance, the Lattice-Gas machine
reported in [Kug88,KS89] which simulates lattice models for fluid-flow, can achieve throughput propor-
tional to the number of processors in its pipeline. It appears therefore that some future special-purpose

machines will be built as very long systolic arrays of fine-grained components.

One of the limiting factors in building long pipelines is the difficulty in achieving proper and reliable
synchronization [FK84, KGE82,HC87]. In this paper we investigate clock synchronization failures in such

systems, in terms of their length and parameters that characterize clocking circuitry, such as delays in
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Figure 1: Tree clocking scheme.

buffers and wires, and variance in buffer response time. Since the one-dimensional pipeline is the simplest
topology for inter-processor communication, our results also provide some insight into the problem of

synchronizing large parallel systems in general.

First, we concentrate on the case where the clock distribution network is implemented as a regular f-
ary tree (iree clocking) [FP86], and analyze the effect of clock skew on system performance and reliability
using a probabilistic model for clock skew. As in [KS] the basic assumption is that the delays added to
the clock signal by the elements of the clock distribution tree (buffers, wires), are independent, identically
distributed normal random variables. Given this probability distribution and the topology of the clocking
network, we analyze parameters such as the Probability of Clock Synchronization Failure and the Mean

Time to Failure, and obtain asymptotic bounds on them.

In addition to tree clocking, straight-line clocking is addressed. In this scheme the clock is propagated
alongside the pipeline, in parallel with the data-flow. In [FK84] it is suggested that this scheme is effective
because skew between adjacent processing elements (PEs) is bounded, and building or extending such
a distribution network is fairly easy. In that case, we focus on clock synchronization failures due to the
lack of uniformity of clocking buffers in passing rising and falling edges. For instance, if the buffers of
the clock distribution network respond more quickly to falling edges than rising edges, the clock pulses
will tend to become shorter and some of them may eventually be lost. Clearly, lost pulses create clock
synchronization failures. Again, we use a probabilistic approach and derive asymptotic results for the

probability of Clock Synchronization Failure and the Mean Time to Failure.
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Figure 2: Pipeline Stages.

2 Tree Clocking

2.1 Basic Assumptions

We examine first the clocking of long systolic pipelines where the clock is distributed to pipeline stages
(PEs) via a symmetric regular f-ary CLOCK tree. Nodes and edges in the CLOCK tree correspond to
buffers and wires in the clock distribution network respectively, and the root of CLOCK corresponds
to the clock source. The clock source has the responsibility to drive the entire CLOCK tree and wait
for a clock pulse to arrive at all destinations before sending the next pulse (equipotential clocking). A

one-phase clocking scheme is adopted.

The pipeline stages are attached to the leaves of the CLOCK tree. Their interconnection is serial,
Le., each of them receives data from its predecessor and sends data to its successor, as shown in figure 1.
Each PE is formed by two sub-cells (Figure 2): CL which is a combinational circuit, and register R
which is an edge-triggered flip-flop. The following time parameters are associated with these [HC87):
cell computation delay #,;, namely the time needed for CL to complete a computation and settle its
output to some valid result; cell propagation delay t,; which corresponds to the minimum time for CL’s
output to change when its input changes; register settling time #,, (similar definition as for t,;) and
register propagation time f,,; and finally, propagation delay time t,; due to the interconnection between

communicating cells. T' denotes the clock period of the system.

We are interested only in clock skew between adjacent stages of the pipeline because the data transfer
occurs only between contiguous PEs. Let the node j in CLOCK be the closest common ancestor of leaves
iand i+1, and let ¢; be the departure time of a clock edge from j. If the arrival times of that clock edge
at PEs ¢ and i+ 1 are ¢; and ¢;4, respectively, the clock skew between PEs i and i + 1 equals tig1 — i,

and is attributed to two causes :

The temporal fluctuations in clock-buffer delays, called run-time skew and denoted by 8T

1



The variations in delay characteristics of different components (because of different chip

characteristics), called build-time skew and denoted by &}.
In other words, the cumulative clock skew can be expressed as follows :
8 +60 = tiy1 — (1)

where 67, 6! may be either nonnegative or negative. Built-time skew remains constant after selecting
the clock buffers off the shelf, and building the clock distribution network. In real designs, the clock
distribution network is tuned so as to minimize the effects of build-time skew. The tuning procedure
usually involves the adjustment of delay elements, buffers, and wires and can guarantee a “negligible”

build-time clock skew [Wag88,MMS87].

2.2 Model

For the calculation of run-time clock skew we assume that CLOCK follows the metric-free tree model
[Kug88]. In this model, all buffers (nodes) are identical and add to the clock signal a delay modeled by the
same probability distribution. Wires (edges) which propagate the clock have equal lengths. Therefore,
every wire has the same probability distribution for delay, which can be lumped with the delay of the
buffer that follows it. The metric-free tree presents a reasonable abstraction for distribution networks

which provide a clock signal to chips on a number of boards in a system.

Assumption 2.1 The delay inserted in the clock signal by buffer k, and the wire leading to it, is
considered to be a random deviate 7y, distributed normally with zero mean and finite variance, i.e.

ki

7 ~ N(0,0?%), and independent from clock edge to clock edge.

Actually, each buffer adds a positive delay to the clock signal, and therefore there is a non-zero mean
for the delay distribution. If we consider the distinct paths that route the clock to two adjacent PEs,
the difference of their cumulative means is equal to the build-time skew between them. Nevertheless,
because of CLOCK tree symmetricity, our run-time skew analysis is independent of the build-time skew
value, and may proceed as if the cumulative means along the two distinct paths cancel out (i.e. asif the

build-time skew were zero). Therefore the mean values of 7;,’s may be considered zero.

The following two conditions, must be satisfied at each pipeline stage in order to avoid clock syn-

chronization failures :

First, in the case where the clock signal arrives earlier at PE i + 1 than at PE i (negative clock

skew), and the clock period is not large enough, the data computed in PE ¢ may arrive at PE i+ 1 after
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Figure 3: Type-1 Failure: the output of PE i appears too late to be latched by PE i+1.

the arrival of the next pulse’s leading edge (see figure 3). In that case, proper synchronization is not

guaranteed and data may be lost [HC87]. Therefore, the following condition must be satisfied:
TH+dipa> t.— (6 +68)) < dipa+6> t.—8-T (2)

where t, = &, + tpi + tg (total computation delay). The random variable d; is the difference in rising
clock edge arrival times at PE I that compensates for the fact that two successive rising clock edges arrive
with different delays at the same PE I. Although the two successive pulses have been emitted by the
central clock source within time 7', they arrive at PE [ with a time difference of 7'+ 5", ek, Tk — Tk)
between each other. The random variable 73, corresponds to the delay inserted in one clock pulse by
some buffer in the path from the clock source to PE I, 7/ corresponds to the delay inserted in the next
clock pulse by the same buffer k, and Kj; denotes the set of CLOCK nodes (buffers) along the path
from node j to node i, not including j, and S corresponds to the clock source (root of CLOCK). Thus,
for every PE [, d; equals :

d= ) (th-m), (3)
k€Ks,

In the following sections, we will lump & with ., and pursue our analysis as if 87 were the only cause
of clock failures. As we mentioned previously, 67 remains constant after building the clock distribution
network. In fact, for every type of clocking circuitry components there is a known range of delay
characteristics [Tex76]. Using those data, we can estimate the worst case value of build-time skew. We
denote it as &, where & > [67| Vi (6 takes also negative values), and concentrate on the following
“worst case” restriction :

dig1+6 > t.+68-T < &>8-T (4)

where §; = d;jy1 + 67, and the factor t = t. 4 6 absorbs the worst-case effects of build-time skew. At

the end, we will estimate the effects of improper tuning, and build-time skew on system performance for
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Figure 4: Type-2 Failure: the input to PE i+1 changes before it latches its proper input.

the range of values of T' that guarantee very high reliability against “run-time” failures. Failures due to

violations of (4), will be referred as type-1 failures.

The second type of synchronization failure (type-2 failure) occurs whenever a rising clock edge arrives
later at PE 7 + 1 than at PE 7 and the propagation time between i and i + 1 is very small. In that case
the data released by PE i at clock cycle k may be stored into register R;y; at the same cycle, and not
at the next one, k + 1. The data to be latched into R;4; on cycle k, is lost (figure 4). The following

inequality prevents this type of failure:
6 +8 < tyr+tpittuy= 1, (5)

where #, is the total propagation delay. It is reasonable to assume that ¢,; >> ,; and thus t, >> tp.
Relation (5) does not involve the clock period T'. Consequently, if (5) is not satisfied, clock synchroniza-
tion failure cannot be prevented, even if the clock frequency is reduced substantially. In the following
sections we focus our discussion to type-1 failures, in order to examine the relation between reliability

and clock speed in very long pipelines.

2.3 Analysis

We consider the clock skew 6] between PEs i and ¢ + 1. Let j be their closest common ancestor in the
CLOCK tree, t; be the departure time of some clock edge from node j, and t; and t;;; be the arrival
times of the aforementioned clock edge at nodes i and i + 1 respectively. As stated in the previous
section, 6] equals #41 —t;, or (tiy1 —t;) — (t; —t;). The differences t; —t;, t;41 — t; can be expressed

in terms of the individual delays at tree nodes, 7;:
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where Kj; is defined as in the previous paragraph. Thus

§= > m- Y n (6)

kEK; it leK;;
From (3), (6) we can easily see that :
6 = §:+di+1 = Z T;’ = Z Ui (7)
1EKs,it1 leKs,;
By the symmetry of CLOCK (|Kji| = |Kji41|), assumption (2.1), and the independence of the

two terms on right-hand side of (7) we conclude that 6; is normally distributed with zero mean and

(|Ks,it+1] + |Ks,|) - * variance. But |Kg;| + |Ks,i41| = 2log; N, and therefore:
& ~ N(0,20%log; N) (8)

It is interesting to observe that regardless of where in the CLOCK tree the paths Kg; and Kg;4
are separated, the variance of §; remains 20> log; N; and furthermore that the occurrence of type-1
failures depends on the delays added to two successive rising clock edges by the paths Kg;, and Kg ;41
respectively. Note that in [KS] the estimated mean value of clock skew refers to the difference of the

delays added to the same clock edge by the two paths Kg;, and Kg 4.

The probability that no type-1 failure occurs when a clock pulse is sent to the PEs through CLOCK,
is equal to the probability that at each stage of the pipeline, relation 4 holds. Let

G(].,N—l) = P?"l:tg—T(51,...,t£—T<6N_1]

where N is the length of the pipeline. Introducing the notation R(m, n) to denote the set of restrictions

{2 =T < ém,...,t5 =T < 6,}, we can express G(1, N — 1) as follows :

N N
G(,N-1) = Pr[’R(l,T),’R(?+1,N—1)]
Clearly:
N N
G(L,N-1) = Pr[t’c’—T-(6¥,R(1,7~1),R(7+1,N—1)] =
G(l,N-1) = Pr[tg-T<5$L |’R(1,¥—1),’R(%+1,N—1)] -Pr[R(l,?—l),R(—J;—+1,N—1)]

The random variables §; involved in the set of restrictions ‘R(l, y_ 1) are independent of the ones

involved in ’R(% +1,N— 1). Therefore :

P [’R(LE

7 —1),R(-];-+1,N—1)] :Pr[’R(l,%—l)] -Pr[’R(%—{-l,N—l)]



and :

G(L,N-1) = Pr[tﬂ-—T(éQL |’R(1,¥-—1),N—1)] ~G(1,§—1)-G(§+1,N—1) (9)

The first term of the product in Equation (9) is difficult to specify analytically, so we will find a lower
bound for it. To do this, we need the following lemmas (rigorous proofs given in the appendix) :
Lemma 2.1 [Kug88] For any random variable y, any «, 3, and any random event C, it is true that:

Prla<y|C, B<y] > Prla<y|C] (10)

Lemma 2.2 [Kug88] Let y;, i = 1,2,..., N be independent identically distributed (iid) random vari-

ables, let 7, j =1,2,...,n be sets of y;’s (not necessarily disjoint), and let
tJ = ny 7j — 1,2,...,71
leT;

Then for each j € {1,2,...,n} it is true that:

Prie < 4y |o <ty jou e <l g, 00 < G414, o0 <] 2 Prlai< 1] (11)

From the definition (7), and assumption (2.1) it is clear that &; is distributed as the sum of the iid
random variables 7, 77 1 )7 . 7 + 2 ieks, - Therefore, lemma 2.2 can be applied to yield the

following bound:

Pr[tz ~T<by 17&(1,%— 1),7a(%

Denoting the probability Pr[tt — T < §;] as g; we get: !

+1,N—1)] gpr[tg—T< 5;}] (12)

), (1) GLN - 1) 2 g5 -6, F 1) G(F +1,8 1) (13)
Similarly :
N N 2N 2N
G(=+1L,N=-1)> G(=+1,—-1)-G(—+1,N-1 14
S )2 03 -G(F +1,57 =1 G(% ) (14)
From the symmetry of CLOCK tree, we can easily see that :
N N 2N
G(l,}-—l) = G(7+1,7--—1) and 9% = gay
Therefore,
2 N 9 2N
(13), (14) = G(1,N-1)> 9y -G(1, T -1) G(T +1,N-1) (15)

1We assume that N is an integer power of f



Figure 5: Clock Skew in a Binary Tree.

By expanding the last term of the previous product, we get :
s=1 N _ v
G(1,N-1) > gy -G(1,—=~1) (16)
I
Furthermore:
N N N N
G(l,—-1) > -Pr’R,l,——l,R—-—i-l,——l]
( f ) = g-ﬁ- [ ( 12 ) (fz f )

The random variables §; that appear in restrictions ’R(l, % - 1), and ‘R(% +1, =’}'— - 1) have terms in

common. Nevertheless, it is true that:

L L. _ ¥ _ql. ¥ N_
Pr R(l,}—g—l),R(F+l,?—l)} = Pr[R(l,f2 1)] Pr[R(f2+1,f 1)]

We are going to show this fact, using a simple example with f =2, and N = 8 (see figure 5). Clearly :
b1 = (z+m+m)—(a+m+n) = (Hg—ma)+(h+m—1—7) = r+7r
and :
03 = (Ma+mo+m)—(Ma+7mo+7) = (Hg—713)+(Ho+ 74 —T0—13) = r+1"

The terms r/, r” are independent random variables; r is the random variable which represents the

common term of é; and é3. We can easily see that:
Pri —=T < r + v/ 8 -T < r + ] = Prit - T < r +¢] . P -T < r + "]
Using the previous remark, we get:
L7 -1 254 60,5 1)

(f-1
)

(-0 u=mon
G(l:fz—l)ﬁz b 95 g

)}% 'G(l’f_ l)-at 2
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Figure 6: Lower Bound for the Probability of Type-1 Success (N=2000,t = 20,0 = 1, f = 2.)

Thus : o1
2 S NN\'T
GULN-1 2 (o5 oy oy af o) a7)
where

g = Pritt —T<§] = 1-Pr[6; <t -T)]=>

b _ _ tb
g = 1-:1>(—~-—‘5c . ) - @(———T : )
\/20%log; N \/20%log; N
T
®(z) equals 7127 [ e=*"/2dz. The value of g; is not influenced by 4, so for the sake of simplicity we get
—o0

rid of the indices, and use instead:

g = cb((T-tg)/ 202 log; N) (18)
Relations (17), (18) give:
GULN—-1) > (g1+f+f=+...+$ﬂ)f_1 (19)
or equivalently :
G(1,N-1) > gV (20)

Therefore, we can state the following theorem:

Theorem 2.1 Consider a very long one-dimensional systolic array clocked by a central clock source
with fized frequency 1/T, wvia a clock distribution network compatible with the melric-free tree model.
The probability that clock skew does not cause synchronization failure by violating condition () within

a time period belween lwo successive pulses, salisfies :

G(,N-1) > [@(%)]N—l -

10
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Figure 7: Upper Bound for the Probability of Type-1 Failure (N=1000,f=2).

We define the normalized margin r :
_4b
r= It (22)
o
and use the following property to approximate the value of the right-hand side of relation (21), [Fel68,

AS64]:

1
Vu>0, 1—&(u) < \/_?2?_;,6_“:/2 5
The combination of (22), (21) and (23) gives:
N N-1
GU,N=1) > (1 _ % ACTAL _e_,e,mg,w) o

This relation provides some insight into the tradeoff between clock period and reliability. For known
values of t} and o which depend on the circuit implementation, we can plot the lower bound for the
probability of type-1 “success”, or the upper bound for the probability of type-1 “failure” when two
clock pulses are sent to the pipeline. Figure 6 shows the lower bound for the probability of success,
G(1,N — 1), as a function of the clock period in a 2000-stage pipeline with ¢ = 1, and 2 = 20. The
upper bound for the probability of failure when N = 1000, and f = 2 is plotted in figure 7 as a function
of 7. Figure 8 focuses on the more interesting area of figure’s 7 plot, namely on the range of values of 7
where the probability of failure gets very close to zero. It contains three curves in base-10 logarithmic
scale: one for N = 102 (lower curve), one for N = 10%, and one for N = 10°. From the shape of these
plots, it is obvious that there is a tight range of clock period values where the guaranteed reliability (i.e.,
the lower bound of probability of success) changes sharply from low to very high. The design challenge
is to satisfy two conflicting goals: first, the achievement of an acceptable reliability level which requires
the increase of 7. Second, the maximization of pipeline throughput and PE utilization, attained by

making T' as close as possible to 8.

We notice that if we demand that the lower bound in (24) be equal to 1 — ¢, where ¢ is a very small

11
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Figure 8: Logarithm of the Upper Bound for the Probability of Type-1 Failure (f = 2).

positive real number, the probability of success would be very close to one. Consequently, by letting :
N-1
1oL VN o, 1
Nz T
we can estimate an asymptotic behavior for 7 as N — oo, guaranteeing the very high reliability of 1 — ¢

from the standpoint of synchronization failures. For large N, the previous equality becomes :
N ng N

VEr

. t='---‘rz,M log, N

Assuming that :

-log, N 25
o8, € Og ¢ (25)

we get: ¢ = 1/(2y/7 - \/log ¢+ N) which tends to zero as N — oo. Therefore, the asymptotic growth of
7(N) described in (25), is sufficient to guarantee high reliability against clock synchronization failures

in very long systolic pipelines. Combining the definition of r in (22), and equation (25) we get:

P =d 4 -log; N (26)

2
A /lng e
From this, we conclude that as the length of the one-dimensional systolic array increases, an increase in

the clock period proportional to log; N is sufficient to guarantee negligible failure probability.

In the case where CLOCK has not been tuned, we assume that for two random off-the-shelf buffers
of the same type, the difference in their delay times ranges between —A; and A,;. The maximum value

that 6° can take, equals 24; log; N. Substituting 2 by 6° + ¢, in (26), we get:

T = 2 -Aylog; N +1t.+ dogy N=>T = t.+(2- A + )-log; N (27)

2
ogs e /log 7€
Therefore, we conclude that build-time skew does not affect the pipeline throughput asymptotically. In
practice however, certain values of the constant A; in (27) might require substantially higher values of

T to guarantee highly reliable functioning of the systolic array.

12



2.4 Mean Time to Failure

The previous discussion about reliability does not address the temporal behavior of the pipeline. Instead,
it deals with the problem of potential synchronization failures when one clock pulse is sent through
CLOCK towards the PEs, and attempts to satisfy the inequalities (4) and (5). A temporal approach
would try to estimate how many cycles a pipeline would run without failures (Mean Time to Failure),
under the presence of clock skew. Let F' be the random variable corresponding to the time when type-1
failure occurs, and F'(¢) be the probability that clock synchronization failure does not occur before the

tth clock pulse, i.e. :
F(t) = Pr[F>t] = Pr|R:i(1,N-1),R2(1,N -1),...,Re(1,N - 1)]

where Ri(m, n) is the set of inequalities {tﬁ = T'% Spayamnte =T & 6, }, for the I-th clock pulse. Using

Bayes’ rule, and lemma (2.2) we can easily see that:
Pr [’R1(1,N— 1),Ra(1, N = 1),...,Re(1, N — 1)] > (")

Consequently :
F(t) > "=V (28)

Using the property ([Ros85]) that for any nonnegative random variable X,
00
EX] = ] Pr(X > 2] -dz
0
we can easily estimate a lower bound for F(t)’s mean value, namely for the mean time to failure (MTF) :

MTF = f F(t)-di =
0

o0
MTF > j gWN=1 gt =

0

MTF > (29)

-1
(N=1)-Ing
The lower bound in Equation (29) is positive because g is positive and less than 1. Substitution of

Equation (24) into (29), yields the following theorem :

Theorem 2.2 In a very long one-dimensional systolic array of length N, clocked by a central clock
source with frequency 1/T, via a clock distribution network compatible with the metric-free tree model,
the Mean Time to Failure satisfies :

-1

MTF > 30
(N—l)-ln(l-—\/iong‘e“T”'“"SfN/\/??-T) (30)

Figure 9 contains a plot of the base-10 logarithm of the MTF, as a function of 7 for three pipelines with

10%, 10%, 10° PEs (left, middle, and right curves respectively). For a pipeline with 10° PEs, the mean

time to failure is greater than 103° for > 80.

13
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Figure 9: Logarithm of the Lower Bound for the Mean Time to Failure Type-1 (f = 2).

3 Straight-Line Clocking

3.1 Basic Assumptions

Straight-line (pipelined) clocking represents an alternative to equipotential clocking for synchronous
systems. Under the straight-line scheme, the clock distribution network is composed of a series of buffers
(repeaters) which carry successive pulses from the global clock source, so that several clock pulses are
simultaneously active in the system (figure 10). Straight-line clocking represents a simple, and easily
expandable architectural design where clock and data are transferred along the pipeline in parallel. As
Fisher and Kung point out [FK84], straight-line clocking is most applicable in cases where PE speeds
are very high, and interconnect is long and has high impedance. In that case, equipotential clocking
would impose a slow clock, and result in PE under-utilization. In contrast, a pipelined clocking scheme
with short interconnection paths would run at speeds independent of the pipeline’s length and close to
the PE switching speed. Tuning of interconnection delays in the straight-line clock distribution network
is crucial so as to guarantee the arrival of data in one processor before the arrival of the corresponding

clock pulse.

A potential cause of clock synchronization failure is the lack of uniformity in repeaters when passing
falling and rising clock edges. Worst case analysis has shown that differences in the delay between leading
and falling edges may cause the disappearance of clock pulses and thus synchronization failure [GS88,GS].

Thus, the failure mode of straight-line clocking is different from that of tree clocking.

Our principal assumption is that whenever a pulse of width w goes through a buffer, its width is
changed and becomes w+ ¢, where ¢ is a normal random variable with zero mean and finite variance. We
model the pulse width as a random process, where the state of the process corresponds to pulse width,

and the discrete time corresponds to the buffer stage where the pulse is currently in. If w ever reaches

14
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Figure 10: Straight-Line clocking scheme.

zero, the pulse disappears and the process is absorbed. The assumption about the random changes
(increments) € of the pulse width and the process absorption at zero leads us to a thoroughly analyzed

form of random process, Brownian Motion with Absorbing Barrier at zero [KTT5).

Our main assumptions and definitions concerning pipelined clocking, are :

(1) Synchronization failure happens when the width of a pulse becomes equal to zero.

(2) w is the width of the pulse emitted by the clock source and n is the number of buffers in

the clock distribution network (which can be considered equal to the pipeline length N ).

(3) Wi,i=1,...,nis the clock pulse width at the output of the ith buffer, and X;,i=1,...,n

is the mndom process which models W; (definition of X; follows).
(4) Y;,i=0,...,n is a Brownian Motion random process, such that:

Yo = Zo = w (constant)

Vi,0 <i<n:Yip—Yi = Zi;1, where Z;’s are deviates following the Normal Distribution
N(0,0?%)

For each pair (¢, j) of buffers with i # j, the increments Z; = Y; —Y;_; and Zi=Y;-Y;,
are independent random variables
(5) Xi, i=0,...,n is a Brownian Motion random process corresponding to Y;, restricted by
an absorbing barrier at zero. Thus :

Zo+Z1+..+Z;=Y;, ffY;>0,V5,0<5<1¢
: Z{o, if 3j, with j < i such that Y; = 0

(6) D is a deviate corresponding to the number of the first repeater after which a clock pulse

disappears.

15



Note that we have chosen the mean value of the pulse’s random increments to be zero, which means
that we implicitly assume that repeaters are designed to respond uniformly to rising and falling edges.

Failures occur because of the variance in the response time.

3.2 Analysis

We will first estimate Pr[D > j], i.e., the probability that a clock pulse sent to the pipeline disappears

for the first time after the jth stage. By definition of X;, i=0,...,n:

Pr[D > jl = Pr[ n&in Xi > 0| Xg=u] = PrlD>j] = Pr[.nﬂlin Y, > 0|Yo=w] (31)
=0, $=0,....J

Equation (31) is true because the Brownian Motion Y; is identical to the Absorbing Brownian Motion
X; up to the point where the latter “hits the barrier”. After that point, X; becomes identically zero,
whereas ¥; may continue the random walk to positive or negative values. The following lemma presents

known basic properties of Brownian Motion, and will be used subsequently.
Lemma 3.1 [KT75] IfY; is a Brownian Motion random process, the following equations are true:

P[ngm Y;>0|Yo=w] = Pr[.ytllaxtY}<2-w|Y0=w] (32)

1=0,...,t

Pr[‘_lxaaxtY,-<2-w | Yo=w] = Pr[_y&axﬁ’.—(w | Yo = 0] (33)

Pr[.l%axtY.-zwlYozw] 2.-PrlYi> w| Yo =0] (34)

Using (32,33,34, 31), and the definition of Y;’s we get :
Pr[D>j] = Pr[_rréa.x_Y,- <2 wYo=w] =
$=0,....5
1 - Pr[ max Y, >uwlYp=0] =
0,

1 - 2P7’[Y} 2’w|Yg:0]:}

P‘J"[D > J] =

2 ®  u3/(25?
_ . —u?/(250%) g 35
T € U
0'\/'271'] w ( )

Alternatively, Pr[D > j] may be written as :

PrD>j] =1 - 2-@(%):>PT[D>3'] 2. &( f) w ¥ (36)
The following inequality then gives an analytic bound for probability Pr[D > j] [Gal60]:
o3
Yu \/—_ > ®(u) — 0(0) > -ﬁ =g T (37)
and : \
(29),60) = s75= 2 PriD> 1] 2~ - i (38)

16



3.3 Reliability and Mean Time to Failure

In order to insert the notion of clock speed in (38), we note that the pulse width w is related to the clock
period T'. Assuming that the central clock source generates a waveform with a duty cycle « = w/T,

(38) becomes:

T T8
2PT[D>j] > ay-—= — Qg-

] b
Sl Y

(39)

where :
2.« as

W=V T 3

When there is one clock buffer corresponding to every PE, i.e. n = N, the probability that no synchro-

nization failure occurs along the pipeline equals Pr[D > N], and is bounded as:

T T i s
o - >Pr[D>N] > a1 - —= — ay —— 40
e = 0
Using property (23), we can also get the following lower bound for Pr[D > N] :
oV N a?.T?
P?‘[D > N] > 1- maT . E.’L‘p[—m] (41)

which is useful for smaller values of N, when the right-hand side of (40) becomes negative. By combining

(40), and (41) we can state the following theorem:

Theorem 3.1 Consider a very long one-dimensional systolic array of length N, clocked by a central
clock source with frequency 1/T, via a straight-line clock distribution network. The probability that a
clock pulse emitted at one end of the array will eventually reach the other end salisfies the following
relation:

T T3 oV N a? . T?
a1 Iy 2T
ovV'N o3/ N3 2raT 202N

T
ay - i > Pr[D> N] > maz{al-
When N is very large (long pipelines), the lower bound of Pr[D > N] in relation (40) is dominated by
its first term, and therefore the probability of success has the following asymptotic behavior:

al-T

PriD> Nl » “ (42)

If Pr[D > N] = p, where 3 is a given desired level of reliability, we can use the left-hand side of
relation (40) to obtain:

Since 8~ 1:

(43)



In addition to the previous inequality, the clock period T should always be greater than the computation
time t,. Therefore :

T > maz{t., (44)

ﬂ}
431
Whenever straight-line clocking is adopted, this presents a necessary but not sufficient condition for
the systolic array to function with a very high reliability. We therefore conclude that as N gets larger,
the clock period should grow faster than the square root of the pipeline length. Otherwise, a frequent

occurrence of clock failures is expected. It is interesting to note that this conclusion agrees with the

heuristic argument presented in [FK84].

In order to estimate the Mean Time to Failure, we use the terms F and F(t), both defined in the
discussion of tree clocking. The Mean Time to Failure is defined here as the mean number of clock pulses
emitted by the central clock source, before the occurrence of some failure, i.e., the disappearence of some
clock pulse. We make the assumption that the passage of different clock pulses from the pipelined clock

distribution network constitute independent random events. Consequently:
F{t)= Pr[F >{]= (Pr{D> N))*

and
-1

In Pr[D > N] (45)

(e [s¢]
MTF = f F()dt = / (Pr[D> N))dt = MTF =
0 0
An asymptotic bound for MT'F can be readily derived using (42):
. R
In (a1T/ov/N)

which completes the proof of the following theorem:

MTF =~

Theorem 3.2 Consider a very long one-dimensional systolic array of length N, clocked by a central
clock source with frequency 1/T, via a straight-line clock distribution network. The Mean Time to

Failure of that pipeline, has the following asymptotic expression:

1
i1 mN-InT+lno—Iney

MTF =

4 Conclusions

Our first conclusion refers to the tree clocking scheme: we proved that for very long one-dimensional
systolic arrays of length N, a growth in the clock period proportional to log ¢ N is sufficient to guarantee

very high reliability with regard to synchronization failure.

The second conclusion relates to straight-line clocking: in that case we showed that a necessary

condition for a systolic pipeline to function with very high reliability, is that its clock period grow
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Figure 11: Straight-Line vs Tree Clocking Schemes: N = 100 to 1000.

proportionally to v/ N. In both cases, the acceptable reliability levels are determined by corresponding

estimates of the Mean Time to Failure.

Given these conclusions, we can see that as the systolic array gets very long, tree clocking is preferable

to straight-line clocking.

As a concrete example, figures 11 and 12 show plots of the clock period T for values of pipeline
length N = 100 to N = 1000, and N = 1000 to N = 50000 respectively, when t, = 60, o = 1, and
a = 0.5. The probability of failure in both schemes is at most 10~3C. In figure 11, where the pipeline
length is less than 1000, we cannot draw any conclusions about which clocking scheme is better. We
do know that the tree clocking scheme will “work” with the required reliability if 7" is around or above
100, but we don’t know the failure-rate of straight-line clocking for that range of T”s. In contrast, for
longer pipelines (N >> 1000), tree clocking is clearly better because it guarantees at least the required
reliability for values of 7' and N ranging in the area between the solid and the dotted curves in figure 12,

where straight-line clocking does not work, i.e., presents an unacceptable high rate of synchronization

failures.

Although tree-shaped clock distribution networks are substantially more reliable for synchronizing
very long one-dimensional systolic arrays than straight-lines, the straight-lines still have some desirable
architectural features: they are simple and expandable in their design and implementation. The failure
mode of the straight-line clocking scheme is in the disappearence of clock pulses. One way to alleviate this
problem might be to replace the buffers by one-shots [GS88,GS], which have the property of emitting a
high pulse of standard width. However, one-shots require more hardware, and furthermore, a worst case

argument presented in [GS88] has shown that even in this scheme clock pulses may disappear, resulting
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Figure 12: Straight-Line vs Tree Clocking Schemes: N = 1000 to 50000.

in synchronization failure. The analysis of straight-line clocking with one-shots will be investigated in

future work.
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A Appendix

Lemma A.1 For any random variable y, any «, 8, and any random event C, il is true that:

Prla<y|C, f<y] > Prla<y|C] (46)
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Proof: By the definition of conditional probability, we can readily see that:

Prla <y, B < y|C]
Pr[3 < y|C]

Prla<y|C, f<y] =

under the assumption that Pr[8 < y|C] # 0.
When 8 > a, Prla <y, < y|C] becomes Pr[3 < y|C] and thus

Prla<y|C, B<yl=1

which means that the inequality (46) holds.
When a > 3, Prla<y,f <y |C]= Prla<y|C]. Since (1/Pr[8 < y|C]) > 1, again we can easily
see that (46) is true. O '

Lemma A.2 Let y;, i = 1,2,...,N be independent identically distribuled (iid) random variables, let

T, J=1,2,...,n be sets of y;’s (not necessarily disjoint), and let

tJ = Zyl J=12,...,n
ler;

Then for each j € {1,2,...,n} il is true that:

Prla < t; o <ty gy O Biady O.’<tj+1,...,0t<tﬂ]2PT‘[0.’<tj] (47)

Proof: Let L be the intersection of events [a < t;] participating in the conditioning of the probability
at the left side of (47) :

L= [a<tl,...,a<tj_1,a<tj+1,...,a<t,,].

For any ki we denote by L, the portion of L which includes only events [a < t;] such that the set

7; contains the random variable y;,. These events can be expressed also as [ — tgkl) < Yk,], where

tgkl) =t; — Y, Let L} be the remaining portion of L, i.e., L = Ly, N L.

Clearly, the probability in (47) can be written as follows:
Prla < t; | L]= Prla—t") <y, | Ly, N I}]

This reminds us of relation (46), since all events of Ly, can take the form [ —tfk‘) < Yr,]. Consequently,

using Lemma 2.1, we get :

Prla < ;| L] > Prla—t{" < g, |1} ]
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Repeating this procedure for appropriate ks such that yp, is included in some of the events defining Ly,

we write L} = Lg, N L}, and get:
k
Prla— 1" <y, |Le, N L4,) 2 Prio— 6 <y, L4,

Following the same technique we can go on, decreasing at each step the number |L} | of events that
participate in the conditioning of Pr[a < t;|L},]. Finally, we get for some g either L;,_, = Ly, or

Ly,_, = Li,. In the first case, obviously
Prla < tj|L;cq] = Prla<t,],

whereas in the second case :

Prla <tj|Ly,] > Prla<t;]

by Lemma A.1. This concludes the proof of (47). O

23



