A Code Generation Interface for ANSI C

Christopher W. Fraser
ATET Bell Laboralories, 600 Mountain Avenue,
Murray Hill, NJ 0797/

and

David R. Hanson
Department of Computer Science, Princeton University,
Princeton, NJ 08544

Research Report CS-TR-270-90

July 1990
Last Revised September 1991

Abstract

lccis aretargetable, production compiler for ANSI C; it has been
ported to the VAX, Motorola 68020, SPARC, and MIPS R3000, and
some versions have been in use for over two years. It is smaller
and faster than generally available alternatives, and its local code is
comparable. This report describes the interface between the target-
independent front end and the target-dependent back ends. The
interface consists of shared data structures, a few functions, and a
dag language. While this approach couples the front and back ends
tightly, it results in efficient, compact compilers. The interface is

illustrated by detailing a complete code generator that emits naive
VAX code.

1 Introduction

lcc is a retargetable compiler for ANSI C [1]. It has been ported to the VAX,
Motorola 68020, SPARC, and MIPS R3000. It emits code that is comparable
with that from other generally available C compilers, but it runs up to twice
as fast and is about half the size [5]. 1lcc is in production use at Princeton
University and AT&T Bell Laboratories.

This paper describes the interface between the target-independent front end
and the target-dependent back ends.! Good code-generation interfaces are hard
to design. An inadequate interface may force each back end to do work that
could otherwise be done once in the front end. Annotating frequently referenced
variables for assignment to registers is an example. If the interface is too small,
it may not encode enough information to exploit new machines thoroughly. If
the interface is too large, the back ends may be needlessly complicated. These
competing demands require careful engineering, and re-engineering as new tar-
gets expose flaws. This paper reports the results of such experience.

The interface is illustrated with a sample code generator for the VAX. This
code generator emits naive code; i.e., it uses only the ‘RISC subset’ of the
VAX instruction set. It is nevertheless complete: when used with a conforming
preprocessor and library, the compiler with this code generator passes the con-
formance section of Version 2.00 of the Plum-Hall Validation Suite for ANSI C,
except that it does not detect overflow in floating constants. The production
versions of lcc use the interface described here, but use back ends in which
instruction selection and optimization are generated automatically from a com-
pact specification [3].2

Unlike other interfaces, 1cc’s interface is not a monolithic intermediate lan-
guage [9]. Such interfaces promote decoupling between the front and back ends,
but sacrifice compiler performance [8]. With 1cc’s interface, the front and back
ends are tightly coupled; this approach yields efficient, compact compilers, but
can complicate maintenance because changes to the front end may affect the
back ends. This complication is less important for standardized languages like
ANSI C because there will be few changes to the language.

The interface consists of a few shared data structures, 19 functions, most
of which are very simple, and a 36-operator dag language, which encodes the
executable code from a source program. The dag language corresponds to the
‘intermediate language’ used in other compilers, but it is smaller than typical
intermediate languages. The functions, which can be implemented as true func-
tions or as macros, are listed in Appendix A and are described in the sections
below.

The front and back ends are clients of each other. The front end calls

!References [4] and [6] were drawn from earlier versions of this report. This report is
slightly more detailed and corresponds to the latest release of 1cc.

2The 1cc front end and a sample code generator are available for anonymous ftp from
princeton.edu. The file README in the directory pub/lcc gives details.

on the back end to generate and emit code. The back end calls on the front
end to perform output, allocate storage, interrogate types, and manage nodes,
symbols, and strings. These front-end services are performed by functions that
are summarized in Appendix B.

2 Configuration

Target-specific configuration parameters specify the widths and alignments of
the basic datatypes and optionally define conditional compilation flags. They
are defined in a ‘header’ file, config.h, which is included when a target-specific
lcc is compiled.

The sample type metrics and conditional compilation flags are defined as
follows. Target-specific components of the shared data structures are defined in
Sections 3 and 5.

#define VAX

/* type metrics: size,alignment,constants */
#define CHAR_METRICS 1,1,0

#define SHORT_METRICS 2,2,0

#define INT_METRICS 4
#define FLOAT_METRICS 4
#define DOUBLE_METRICS 8,
#define POINTER_METRICS 4
#define STRUCT_ALIGN 1

#define LEFT_TO_RIGHT /* evaluate args left—to-right */
#define LITTLE_ENDIAN /* right-to-left bit fields */
#define JUMP_ON_RETURN 0

Type metrics are triples that give the size and alignment of the type in bytes,
along with a flag indicating whether or not constants of that type can appear
in instructions. A 1 indicates that the constants cannot appear in instructions;
the front end generates variables to hold them. The size of a type must be a
multiple of its alignment.

Both the size and alignment for characters must be 1. Unsigned and long
integers are assumed to have metrics identical to integer, and long doubles are
assumed to have metrics identical to double. The front end correctly treats all of
these types as separate, however. POINTER_METRICS apply to all pointer types,
and pointers must fit in unsigned integers. The alignment of a structure is the
maximum of the alignments of its fields and STRUCT_ALIGN.

If JUMP_ON_RETURN is non-zero, the front end generates a jump to a generated
label for each return statement and defines this label at the end of each function.
Similar action is taken if the compiler is asked to generate data for a debugger,

because some debuggers assume a common exit point. Since the VAX does
returns with one instruction, JUMP_ON_RETURN is defined as 0.

By default, the front end generates code that evaluates function arguments
from right to left; defining LEFT_TO_RIGHT yields the opposite order. A se-
quence of bit fields is laid out from left to right in one or more unsigned values;
defining LITTLE_ENDIAN yields a right-to-left layout. Defining LITTLE_ENDIAN
for the sample makes the code compatible with existing VAX C compilers. The
standard permits either argument evaluation or bit-field layout order, however.

The front end contains a few target-specific operations. These are protected
by conditional compilation on VAX, MIPS, MC, SPARC, etc. Thus, VAX is defined
above.

2.1 progbeg and progend
During initialization, the front end calls
void progbeg(int argc, char *argv[])

argv[0..argc-1] point to those program arguments that are not recognized by
the front end, e.g., target-specific options. Typical implementations of progbeg
process such options and initialize themselves. At the end of compilation,
progend(void) is called to give the back end an opportunity to finalize its
output.

The sample progbeg initializes a register usage mask

void progbeg(int argc, char *argv[]) {
rmask = (("0)<<12)|1;
}

which is described in Section 5.1. Finalization is unnecessary in the sample,
so progend is an empty macro: #define progend(x). All back-end functions
except address and gen return nothing. Those that are implemented as macros
instead of as true functions are defined in the configuration file.

3 Symbols

The front and back ends share two major data structures: symbol table entries
and dag nodes. Dag nodes are described in Section 5. Symbol table entries are
used for variables, constants, and labels. They are represented by pointers to
the following structure.

typedef struct symbol *Symbol;

struct symbol { /* symbol table entries: */
Xsymbol x; /* type extension for code generator */
char *name; /* name */

unsigned char scope; /#
unsigned char class; /*
unsigned defined:1; /*
unsigned temporary:1; /#
unsigned generated:1; /*
unsigned addressed:1; /*
unsigned structarg:1; /#

Type type; /*
union {
int label; /*
struct { /*
Value v;
Symbel loc;
¥ €5
int seg; /*
}ou;

¥i

scope level */

storage class */

1 if defined */

1 if a temporary */

1 if a generated identifier */
1 if its address is taken */

1 if parameter is a struct */
data type */

labels: label value */
constants: */

/* value */

/* out-of-line location */

globals, statics: definition segment */

The scope, class, and type fields give the symbol’s scope level, its storage class,

and its type, respectively. Most of

the bit fields flag self-explanatory attributes

for each symbol; fields relevant only to the front end are elided above.

Scope values classify symbols as constants, labels, or variables. For labels,
constants, and some variables, a field of the union u supplies additional data.

Labels have a scope equal to the enumeration constant LABELS, and u.label
is the numeric value of the label. The name of a label is the string representation
of u.label. Labels have no type or class.

Constants have a scope equal to CONSTANTS, a class equal to STATIC, and
a name equal to the string representation of the constant. The actual value of
the constant is stored in the u.c.v field, which is defined by

typedef union value { /* constant values: */

char sc; /*
unsigned char uc; /*
short ss; /*
unsigned short us; /*
int i; /*
unsigned int u; /*
float f; /*
double d; /*
char *p; /*
} Value;

SIGNED/plain CHAR #*/
UNSIGNED CHAR */
SIGNED SHORT */
UNSIGNED SHORT */

INT */

UNSIGNED */

FLOAT */

DOUBLE */

POINTER to anything */

If a variable is generated to hold the constant, u.c.loc points to the symbol

table entry for that variable.

Variables have a scope equal to GLOBAL, PARAM, or LOCAL+k for nesting
level k. class is STATIC, AUTO, EXTERN, or REGISTER. The name of most vari-
ables is the name used in the source code. For temporaries and other generated
variables, name is a digit sequence. temporary and generated are set for tem-
poraries, and generated is set for labels and other generated variables, e.g.,
those that hold constants. structarg is described in Section 5.2. For global
and static variables, u.seg gives the logical segment in which the variable is
defined (see Section 3.3).

The type field for constants and variables points to a structure that describes
types. The size and align fields of this structure give, respectively, the size
and alignment constraints of the type in bytes.

The x field is an ‘extension’ in which the back end stores target-specific data
for the symbol. The sample has only two fields:

typedef struct {

char *name; /* name for back end */
int offset; /* frame offset */
} Xsymbol;

This definition appears in the configuration file. p->name identifies the symbol
to the front end, but the back end may need to emit a different ‘name’. For ex-
ample, the ‘name’ for locals is usually an offset from a frame pointer. p->x.name
is the back end’s name for the symbol. For parameters and locals, p->x.offset
is the offset from the frame pointer (see Sections 4.1 and 4.2).

3.1 defsymbol

Whenever the front end defines a new symbol with scope CONSTANTS, LABELS,
or GLOBAL or a static variable, it calls defsymbol(Symbol p) to give the back
end an opportunity to initialize its Xsymbol fields. The sample’s defsymbol is

void defsymbol(Symbol p) {
if (p->scope == CONSTANTS)
pP->X.name = p->name;
else if (p->generated)
p->x.name = stringf("L%s", p->name);
else
p->x.name = stringf("_%s", p->name);

}

The back end’s name for a constant is just the constant itself. For generated
symbols including labels, x.name is the front end’s name, which is a digit string,
prefixed with an L, and an underscore prefixes the names of other symbols.
stringf returns a pointer to a string formatted as specified by its printf-style
arguments.

For scope PARAM and LOCAL+-k, the Xsymbol fields are initialized by function
(see Section 4.1) and local (see Section 4.2), respectively, and symbols that rep-
resent address computations are initialized by address (see Section 4.3).

3.2 import and export

A symbol can be exported or imported. Non-static variables and functions
are exported in order to be available to other, separately compiled modules.
Likewise, variables and functions used in one module, but defined in another
one, are imported in the former module. The front end identifies an exported or
imported symbol by calling export (Symbol p) or import(Symbol p). export
is always called before the symbol is defined; import, however, may be called
any time, before or after the symbol is used.

The sample back end emits an assembler directive for export, but no output
is required for import:

#define export(p) print(".globl %s\n", (p)->x.name)
#define import(p)

print is a front-end function similar to the standard printf.

3.3 segment

The front end manages four logical segments: CODE, BSS, DATA, and LIT. Exe-
cutable code is emitted into the CODE segment, uninitialized variables are defined
in the BSS segment, initialized variables are defined and initialized in the DATA
segment, and constants appear in the LIT segment.

The front end announces a segment change by calling segment (int s) where
s is one of the segments listed above. segment maps the logical segments onto
the segments provided by the target machine. The CODE and LIT segments can
be mapped to read-only segments; the others must be mapped to read/write
segments. The sample mapping is

void segment(int s) {
switch (s) {
case CODE: print(".text\n"); break;
case LIT: print(".text i\n"); break;

case DATA:
case BSS: print(".data\n"); break;
}

}

3.4 global

global(Symbol p) emits code to define a global variable. The front end will
have already directed the definition to the appropriate logical segment by calling

segment and set p->u.seg to that segment, and it will follow the call to global
with any appropriate calls to the data initialization functions. global handles
the necessary alignment adjustments and the actual definition.

The sample definition for global y is simply y’s x.name field preceded by an
alignment directive, if necessary:

void global(Symbol p) {
switch (p—>type->align) {
case 2: print(".align 1; "); break;
case 4: print(".align 2; "); break;
case 8: print(".align 3; '"); break;
}

print("%4s:", p->x.name);

3.5 defconst

defconst(int ty, Value v) emits the scalar v. ty indicates which field of v
is to be emitted according the following table.

ty v field (type

.uc character

.us short

i int

u unsigned

.p any pointer type
5

d

My cHWMOAOQ

float
double

< 9 € € € § 49

o

The codes S, I, ... are identical to the type suffixes used for the dag operators,
which are described in Section 5. The signed fields v.sc and v.ss can be
used instead of v.uc and v.us, but defconst must initialize only the specified
number of bits.

The sample defconst is

void defconst(int ty, Value v) {
switch (ty) {
case C: print(".byte %d\n", v.uc); break;

case S: print(".word %d\n", v.us); break;

case I: print(".long %d\n", v.i); break;

case U: print(".long Ox¥%x\n", v.u); break;

case P: print(".long Ox%x\n", v.p); break;

case F:
print(".long Ox%x\n", ((unsigned *) &v.f)[0]);
break;

case D:
print(".long Ox%x,0x%x\n", ((unsigned *) &v.d)[0],
((unsigned *) &v.d)[1]);
break;
}
s

In the production compilers, defconst accommodates cross-compilation, so it
corrects for different representations and byte orders.

If tyis P, v.p holds a numeric constant of some pointer type. These originate
from declarations like char *p=(char *)0xF0. defaddress emits addresses
relative to a symbol.

Few ANSI C compilers can leave the encoding of floating-point constants to
the assembler, because few assemblers can cope with the effect of casts on these
constants. For example, the correct initialization for

double x = (float)0.3;

is .long 0x999a3f99,0x0. The directive .double 0.3 would erroneously ini-
tialize x to the equivalent of

.long 0x99993£99,0x0999a9999

because it cannot represent the effect of the cast.

3.6 defstring, defaddress, and space

defstring(int len, char #*s) emits code to initialize a string of length len
to the characters in s. The front end converts escape sequences, like \n, into
the corresponding ASCII characters.

defaddress(Symbol p) emits the address denoted by p. space(int n)
emits code to allocate n zero bytes.

The sample defstring, defaddress, and space are

void defstring(int len, char *s) {
while (len-- > 0)
print(".byte %d\n", *s++);
}

#define defaddress(p) print(".long %s\n", (p)->x.name)

#define space(x) print(".space Y%d\n", (x))

4 Functions

The front end completely consumes each function before passing any part of the
function to the back end. This organization permits certain optimizations. For
example, only by processing complete functions can the front end identify the
locals and parameters whose address is not taken; only these variables may be
assigned to registers.

4.1 function

The front end accumulates functions into private data structures. At the end
of each function, it calls function to generate and emit code. The typical form
of function is

void function(Symbol f, Symbol caller[], Symbol callee[], int ncalls) {
.. .initialize
gencode(caller, callee);
...emit prologue
emitcode();
...emit epilogue

}

gencode is a front-end routine that traverses the front end’s private structures
and passes each dag to the back end’s gen (see Section 5.1), which selects code,
annotates the dag to record its selection, and returns a dag pointer. emitcode
is a front-end routine that traverses the private structures again and passes each
of the pointers from gen to emit (see Section 5.2), which emits the code.

This organization offers the back end flexibility in generating function pro-
logue and epilogue code. Before calling gencode, function initializes the Xsymbol
fields of the function’s parameters, as described below, and does other per-
function initializations, if necessary. After calling gencode, the size of the ac-
tivation record, or frame, the number of registers used, etc. are known; this
information is usually needed to emit the prologue. After calling emitcode to
emit the code for the body of the function, function emits the epilogue.

The argument f to function is the pointer to the symbol table entry for the
current function, and ncalls is the number of calls to other functions made by
the current function. ncalls is useful on targets like the SPARC where ‘leaf’
functions get special treatment.

caller and callee are arrays of pointers to symbol table entries; each
is terminated with a zero pointer. The symbols in caller are the function
parameters as passed by a caller; those in callee are the parameters as seen
within the function. For most functions, the symbols in each array are the same,
but they can differ in both class and type. For example, in

foo(x) float x; { ... }

a call to foo passes the actual argument as a double. Within foo, x is a
float. Thus, caller[0]->type refers to ‘double’ and callee[0]->type refers
to ‘float.” And in

int strlen(register char *s) { ... }

caller[0]->class is AUTO and callee[0]->class is REGISTER. Even without
register declarations, the front end assigns frequently referenced parameters to
the REGISTER class, and callee’s class is set accordingly. This assignment is
made only when there are no explicit register locals to avoid interfering with the
programmer’s intentions (see Section 4.2).

caller and callee are passed to gencode. If caller[i]->typeis not equal
to callee[i]->typeorif caller[i]->classis not equal to callee[i]->class,
gencode generates an assignment of caller[i] to callee[i]. If the types are
not equal, this assignment may include a conversion; for example, the assign-
ment to x in foo includes a truncation of a double to a float. For parameters
that include register declarations, function must assign a register and initialize
the x field accordingly, or change the callee’s class to AUTO.

function could also change callee[i]->class from AUTO to REGISTER
if it wished to assign a register to that parameter. On the MIPS, for ex-
ample, some of the parameters are passed in registers, so function assigns
those registers to the corresponding callees in leaf functions. If, however,
callee[i]->addressed is set, the address of the parameter is taken in the
function body, and it must be stored in memory on most machines.

Initialization of the Xsymbol fields of the symbols in caller and callee
depends on the frame layout, which is target specific. Figure 1 shows the layout
of the VAX frame. The stack grows towards lower addresses and towards the
top of the page.

Arguments are referenced by displacement-mode addressing with positive
offsets from register ap, so the first argument is at address 4(ap). Locals are
referenced via negative offsets from fp, e.g., the first local is at -4(£fp). The
‘argument build area’ is used to store arguments to functions that are called by
the current function. The front end ‘un-nests’ calls so that the back end does
not need to deal with nested calls. The argument build area can thus be used
for all calls and must be large enough to hold the largest argument list. When a
function is called, the caller’s argument build area becomes the callee’s ‘actual
arguments’.

Typical VAX calling sequences can handle nested calls, so using an argument
build area is not strictly necessary. But other targets, such as the MIPS, require
this approach, so it’s used here to illustrate the technique. This approach also
has the advantage that stack overflow can occur only at function entry, which is
a useful on targets that require explicit prologue code to detect stack overflow.

The sample version of function is

10

- 5P

argument build area

locals

0 l—— fp

PSW
previous ap
previous fp
previous pc

saved registers

argument count l————— ap

actual arguments

Figure 1: VAX Frame Layout.

static int framesize; /* size of activation record */
static int offset; /* current frame offset */
static int argbuildsize; /# size of argument build area */

void function(Symbol f, Symbol caller[],
Symbol callee[], int ncalls) {
int 4

offset = 4;

for (i = 0; caller[i] && callee[il; i++) {
offset = roundup(offset, caller[i]->type->align);
callee[i]->x.offset = caller[i]l->x.offset = offset;
callee[i]->x.name = caller[i]->x.name = stringf("/id(ap)", offset);
offset += caller[i]->type->size;
callee[i]->class = AUTO;

}

usedmask = argbuildsize = framesize = offset = 0;

gencode(caller, callee);

print("%s:.word Ox%x\n", f->x.name, usedmask&~0x3f);

framesize += 4*nregs + argbuildsize;

print("subl2 $%d,sp\n", framesize);

if (isstruct(freturn(f->type)))

11

print("movl ri,-4(£fp)\n");
emitcode();
if (glevel > 1)
print("ret\n");
}

The VAX calls instruction saves the general registers specified by the entry
mask, ap, fp, and the return address, pc, as shown in the frame figure above.
function computes the size of the locals and argument build area, given by
framesize and argbuildsize, respectively.

The first part of function initializes the x.offset and x.name fields of
each caller and callee symbol to the appropriate offset and name, respec-
tively. The running offset is rounded up to the alignment for each argument.
roundup(n,m) is a front-end macro that returns n rounded up to the next mul-
tiple of m. Depending on the type metrics, the size of an argument may not be
a multiple of longwords (e.g., 3-byte structures), but the front end ensures that
the minimum alignment for each caller[i] is that for integers, which keeps the
VAX stack longword-aligned. stringd(n) is a front-end function that returns
the string representation of the integer n.

This version of function does not support register declarations, so each
callee’s storage class is set to AUTO.

During code generation, argbuildsize is increased when code for calls is
generated (see Section 5.1), offset is adjusted in response to the definition
of locals and block boundaries, and framesize records offset’s maximum
(see Sections 4.2 and 4.4). Before calling gencode, function clears usedmask,
which records the registers used in the function body, and clears argbuildsize,
framesize, and offset.

After gencode returns, usedmask and framesize hold the information needed
to generate the prologue. framesize is adjusted to include the argument build
area and space for saving all of the registers. This space, which is in addition
to that specified by the register save mask, is used to save registers across those
instructions that destroy fixed registers, e.g., movc3. The subl2 instruction
allocates the remainder of the frame.

The last instruction of the prologue is emitted only for functions that return
structures. For a function type ty, freturn(ty) gives the type of the value
returned by the function, and isstruct(ty) is true if ty is a structure or union
type. Section 5 gives details on returning structures.

If JUMP_ON_RETURN had been defined as 1 in the configuration, returns would
have been followed by a jump to the label that follows the code emitted by
emitcode. If the front end is passed the -gn option, it sets the global variable
glevel to n and behaves as if JUMP_ON_RETURN is 1, so the code above emits
the necessary ret instruction at the end of each function.

12

4.2 local

During the execution of gencode, the front end announces local variables by
calling 1ocal(Symbol p), where p points the relevant symbol table entry. It
announces temporaries likewise; these have p->temporary set. local must
initialize p’s Xsymbol fields. That is, it must set p->x.offset and p->x.name so
that they identify a stack offset or register number, depending on the availability
of registers and on the value of p->class, which is AUTO or REGISTER.

For each block, the front end first announces locals with explicit register

declarations, in order of declaration, to permit programmer control of register
assignment. Then it announces the rest, starting with those that appear to be
most frequently referenced. It assigns REGISTER class to even these locals if their
address is never taken and if their estimated frequency of use exceeds two. This
announcement order and class override collaborate to put the most promising
locals in registers even if no registers were declared. As with parameters, local
could assign a register to p and change p->class from AUTO to REGISTER, but
it should do so only if p->addressed is not set.

If p->class is REGISTER, local can decline to allocate a register by setting

p->class to AUTO and initializing p->x.offset and p->x.name to the appro-
priate frame offset and address string, respectively. This choice is illustrated by
the sample version:

void local(Symbol p) {

}

offset = roundup(offset + p->type->size, p->type->align);
offset = roundup(offset, 4);

p->x.offset = —-offset;

p—>x.name = stringf("%d(fp)", -offset);

p—>class = AUTO;

The second roundup keeps offset and hence the stack aligned on longwords,
as described above.

4.3 address

The front end calls address(Symbol q, Symbol p, int n) to initialize q->x
to a symbol that represents an address of the form z +n, where z is the address
represented by p and n is positive or negative. Like defsymbol, address initial-
izes q->x, but does so based on the values of p=>x and n. The sample address

18

void address(Symbol q, Symbol p, int n) {

if (p->scope == GLOBAL || p->class == STATIC || p->class == EXTERN)
q->x.name = stringf("%s¥%s%d", p->x.name, n >= 0 7 "+" : "" n);
else {

13

q->x.offset = p->x.offset + n;
g->x.name = stringf("%d(%s)", gq->x.offset,
p->scope == PARAM 7 "ap" : "fp");
}
}

which computes g->x.offset and q->x.name for locals and parameters, or sets
q->x.name to p->x.name concatenated with +n or -n for other variables.
For example, in

struct node { struct node *link; int count; } a;
£() { int b[10]; b[4] = a.count; ... }

suppose a and b point to the symbol table entries for a and b, respectively.
a->x.name is set to "_a" by defsymbol, and b->x.offset and b->x.name are
set to, respectively, -40 "-40(fp)" by local. address(qi,a,4) is called with
q1l representing the address of a. count, and q1->x.name is set to ""_a+4". Like-
wise, address(q2,b,16) sets q2->x.offset and q2->x.name to, respectively,
-24 and "-24(fp)", which together denote the address of b[4].

address accepts globals, parameters, and locals.

4.4 blockbeg and blockend

Source-language blocks bracket the lifetime of locals. gencode announces the be-
ginning and end of a block by calling blockbeg(Env *e) and blockend (Env *e),
respectively. Env is target specific and typically includes the data necessary to
reuse that portion of the local frame space associated with the block and to
release any registers assigned to locals within the block. The sample Env is

typedef struct {
unsigned rmask;
int offset;

} Env;

The fields save the values of rmask and offset at the beginning of a block so
that they can be restored on the end of the block. The sample blockbeg and
blockend are thus

void blockbeg(Env *e) { void blockend(Env *e) {
e->rmask = rmask; if (offset > framesize)
e->offset = offset; framesize = offset;
} offset = e->offset;

rmask = e->rmask;

¥

blockend also updates framesize if the locals for the current block require
more space than previous blocks. The sample could do without the rmask field,

14

but if its local assigned registers to locals, it would need the field to release
those registers.

Temporaries — locals with temporary set — to which local assigned reg-
isters live only for the expressions in which they are used. They are announced
by local as usual, but are used only in the dags passed to next call on gen
(see 5.1). gen can thus release all registers assigned to temporaries.

5 Dags

Executable code is specified by dags. A function body is a sequence of forests
of dags, each of which is passed the back end via gen, as described below. Dag
nodes, or simply nodes, are defined by

typedef struct node *Node;

struct node { /* dag nodes: */

Opcode op; /* operator */

short count; /* reference count */

Symbol syms[MAXSYMS]; /* symbols */

Node kids[MAXKIDS]; /* operands */

Node link; /* next dag in the forest */

Xnode x; /* back-end’s type extension */
};

The kids point to the operand nodes. Some operators also take symbol
table pointers as operands; these appear in the syms array. The default and
minimum allowable value for both MAXKIDS and MAXSYMS is 2; larger values can
be defined for the back end’s convenience in the configuration file. count holds
the number of references to this node from kids in other nodes. 1ink points to
the root of the next dag in the forest.

The x field is the back end’s ‘extension’ to nodes. The configuration defines
the type Xnode to hold the per-node data that the back end needs to generate
code. The sample Xnode is

typedef struct {
unsigned visited:1; /* 1 if dag has been linearized */

int reg; /* register number */

unsigned rmask; /* unshifted register mask */

unsigned busy; /* busy regs */

int argoffset; /* ARG: argument offset */

Node next; /* next node on emit list */
} Xnode;

Section 5.1 describes the fields.

The op field holds an operator. The last character of each is a fype suffiz
from Table 1. For example, the generic operator ADD has the variants ADDI,
ADDU, ADDP, ADDF, and ADDD.

15

type suffiz type

char

short

int

unsigned

any pointer type
float

double

structure or block
void

<= woOT"MvYycCcHNnO

Table 1: Type Suffixes.

Table 2 lists each generic operator, its valid type suffixes, and the number
of kids and syms that it uses; multiple values for kids indicate type-specific
variations, which are detailed below. For most operators, the type suffix denotes
the type of operation to perform and the type of the result. Exceptions are ADDP,
in which the first integer operand is added to the second pointer operand, and
SUBP, which subtracts the second integer operand from the first pointer operand.
The operators for assignment, comparison, arguments, and some calls return no
results; their type suffixes denote the type of operation to perform.

The leaf operators yield the address of a variable or the value of a constant.
syms [0] identifies the variable or constant.

The unary operators accept and yield a number, except for INDIR, which
accepts an address and yields the value at that address. There is no BCOMI;
signed integers are complemented using BCOMU. The binary operators accept
two numbers and yield one.

The type suffix for a conversion operator denotes the type of the result. For
example, CVUI converts an unsigned (U) to an signed integer (I). Conversions
between unsigned and short and between unsigned and character are unsigned
conversions; those between integer and short and between integer and character
are signed conversions. For example, CVSU converts an unsigned short to an
unsigned while CVSI converts an signed short to a signed integer.

The front end composes conversions to form those not in the table. For
example, it converts a short to a float by first converting it to an int and then
a double. The 16 conversion operators are represented by arrows in Figure 2.
Composed conversions follow the path from the source type to the destination
type.

There is no CVUD; conversion of an unsigned u to a double is done by the
equivalent of the expression

(int)u >= 0 ? (double)(int)u : (double)(int)u + UINT_MAX + 1

16

syms kids operator type suffizes operation
1 0 ADDRF P address of a parameter
1 0 ADDRG P address of a global
1 0 ADDRL P address of a local
1 0 CNST CSIUPFD constant
1 BCOM U bitwise complement
1 cve IU convert from char
1 CVD I F convert from double
1 CVF D convert from float
1 cvVI CSU D convert from int
1 CVP U convert from pointer
1 cvs IU convert from short
1 Ccvu CSI P convert from unsigned
1 INDIR CSI PFDB fetch
1 NEG I FD negation
2 ADD IUPFD addition
2 BAND U bitwise AND
2 BOR U bitwise inclusive OR
2 BXOR U bitwise exclusive OR
2 DIV IU FD division
2 LSH IU left shift
2 MOD IU modulus
2 MUL IU FD multiplication
2 RSH IU right shift
2 SUB IUPFD subtraction
2 2 ASGN CSI PFDB assignment
1 2 EQ IU FD jump if equal
1 2 GE IU FD jump if greater than or equal
1 2 GT IU FD jump if greater than
1 2 LE IU FD jump if less than or equal
1 2 LT IU FD jump if less than
1 2 NE IU FD jump if not equal
2 1 ARG I PFDB argument
012 CALL I FDBV function call
01 RET I FD V return from function
1 JUMP V unconditional jump
1 0 LABEL V label definition

Table 2: Node Operators.

17

-—
n +— - —Q0
9
N +—rcQ-—rQ
4
Y
o

Figure 2: Conversions

where UINT_MAX is the ANSI-specified maximum value for an unsigned. Like-
wise, there is no CVDU; conversion of a double d to an unsigned is done by the
equivalent of the expression

d >= INT_MAX + 1 7 (unsiglled) (int) (d-(INT_MAX+1)) + INT_MAX + 1
(unsigned) (int)d

where INT_MAX is the ANSI-specified maximum value for a signed integer.

ASGN stores the value of kids[1] in the cell addressed by kids[0]. syms[0]
and syms[1] point to symbol table entries for integer constants that give the
size of the value and its alignment, respectively. These are most useful for
ASGNB, which implements structure assignment and other ‘block moves’ (e.g.,
initialization of automatic arrays).

For the comparisons, syms[0] points to a symbol table entry for the label
to jump to if the comparison is true. JUMPV is an unconditional jump to the
address computed by kids[0]. LABEL defines the label given by syms[0] and
is otherwise a no-op.

Function calls have a CALL node preceded by zero or more ARG nodes. The
front end ‘un-nests’ function calls, so ARG nodes are always associated with
the next CALL node in the forest. The order of the ARG nodes is right-to-left
unless the configuration parameter LEFT_TO_RIGHT is defined, which it is for the
sample.

ARG nodes establish the value computed by kids[0] as the next argument.
syms [0] and syms[1] point to symbol table entries for integer constants that
give the size of the argument and its alignment, respectively.

In CALL nodes, kids[0] computes the address of the callee. CALLB calls
functions that return structures; kids[1] computes the address of a temporary
local variable to hold the returned value. There is no RETB; the front end
uses a RETV preceded by an ASGNB to the structure addressed by the first local.
The CALLB code and the function prologue must collaborate to store the CALLB’s
kids[1] into the callee’s first local. function (Section 4.1), local (Section 4.2)
and the code emitted below for CALLB (Section 5.2) illustrate such collaboration.
CALLB nodes have a count of 0 because the front end references the temporary
wherever the returned value is referenced.

18

In RET nodes, kids [0] computes the value returned, except for RETV nodes,
which are childless.

Character and short integer arguments are always promoted to the corre-
sponding integer type even in the presence of a prototype. The promoted values
are converted back to the intended type upon entry to the function. The front
end accomplishes this conversion by specifying the intended types for the callee
as described in Section 4.1. For example, the body for

f(char ¢) { f(c); }

becomes two forests, which are linearized below; the syms columns list the
x.name fields.

op count kids syms
i. ADDRFP 1 4(ap)
2. ADDRFP 1 4(ap)
3. INDIRI 1 2

4. CVIC 1 3

5. ASGNC 0 1 4

1. ADDRFP 1 4(ap)
2. INDIRC 1 1

3. CVCI 1 2

4. ARGI 0 3 4 4
5. ADDRGP 1 =k
6. CALLI 0 5 4

The first forest holds one dag, which converts the actual argument to the in-
tended type. The second forest holds two dags. The first (nodes 1-4) promotes
c to pass it as an integer, and the second (nodes 5 & 6) calls £.

Unsigned variants of ASGN, INDIR, ARG, CALL, and RET were omitted as unnec-
essary. Signed and unsigned integers have the same size, so the corresponding
signed operator is used instead. Likewise, there is no CALLP or RETP. A pointer
is returned by using CVPU and RETI. A pointer-valued function is called by using
CALLI and CVUP.

In Table 2, the operators listed at and following ASGN are used for their
side-effects. They always appear as roots in the forest of dags, and they appear
in the order in which they must be executed. Except for CALLD, CALLF and
CALLI, their reference counts are always zero. Even these CALL nodes have zero
reference counts when their values are unused.

5.1 gen

The front end calls gen to select code. It passes gen a forest of dags. For
example,

19

int i, *p; £() { i = *p++; }

yields the forest linearized below.

op count kids syms
1. ADDRGP 2 -p
2. INDIRP 2 1

3. CNSTI 1 4

4. ADDP 1 2 3

5. ASGNP 0 1 4

6. ADDRGP 1 i |
7. INDIRI 1 2

8. ASGNI 0 6 7

This forest consists of three dags, rooted at nodes 2, 5, and 8 above. The INDIRP
node, which fetches the value of p, comes before node 5, which changes p, so
the original value of p is available for subsequent use by node 7, which fetches
the integer pointed to by that value.

gen traverses the forest and selects code, but it emits nothing because it may
be necessary to determine, for example, the registers needed before the function
prologue can be emitted (see Section 4.1). So gen merely annotates the nodes
to identify the code selected, and it returns a pointer that is ultimately passed
to the back end’s emit to actually output the code. Once the front end calls
gen, it does not inspect the contents of the nodes again, so gen may modify
them freely.

The sample code generator emits naive code, so gen concerns itself mainly
with register allocation. The sample gen

Node gen(Node p) {
Node head, *last;

for (last = &head; p; p = p->link)
last = linearize(p, last, 0);

for (p = head; p; p = p->x.next) {
ralloc(p);
if (p->count == 0 && sets(p))

putreg(p);
:
return head;

¥

linearizes each dag in the forest, in execution order, and then allocates registers
for each node. If the node sets a register, but no subsequent node references it,
which is indicated by a reference count of 0, gen releases the register. Finally,
it returns the linearized node list for traversal by emit.

gen linearizes the dags before allocating registers to simplify the insertion of
spills and reloads. The function

20

static Node *linearize(Node p, Node *last, Node next) {
if (p && !'p->x.visited) {
last = linearize(p->kids[0], last, 0);
last = linearize(p->kids[1], last, 0);
p—>x.visited = 1;
*last = p;
last = &p->x.next;
}
*last = next;
return last;

}

linearizes the dag at p and inserts it into the growing list of nodes between
*last and next.
ralloc handles register allocation for a single node.

static void ralloc(Node p) {
int i;

switch (generic(p->op)) {
case ARG:
argoffset = roundup(argoffset, p->syms[1]->u.c.v.i);
p~>x.argoffset = argoffset;
argoffset += p->syms[0]->u.c.v.i;
if (argoffset > argbuildsize)
argbuildsize = roundup(argoffset, 4);
break;
case CALL:
argoffset = 0;
break;
}
for (i = 0; i < MAXKIDS; i++)
putreg(p->kids[i]);
pP—>x.busy = rmask;
if (needsreg(p))
getreg(p);
}
generic strips the type suffix from an operator and thus simplifies the switch.
ralloc calls putreg to release the registers allocated for the node’s children and
then it calls getreg to allocate a register for the node itself if it needs one. It
sets the node’s x.busy to record the busy registers; emit needs this information
for a few operators. The register state is encoded in rmask; rmask&(1<<r) is 1
if register r is busy, for r from 0 to 11.
CALL and ARG nodes require extra steps. ARG nodes produce no result; in-
stead, they store the value computed by kids[0] into the next location in the

21

argument build area. syms[0] and syms [1] point to constant symbols that give
the size and alignment of the argument. argoffset is the running offset into the
argument build area. argoffset is rounded up to the appropriate alignment
boundary, saved in the node’s x.argoffset for use in emit, and incremented
by the size of the argument. argbuildsize tracks the maximum argoffset
needed by the current function. The case for CALL nodes clears argoffset for
the next set of ARG nodes.
getreg accepts a node and allocates a register for it:

static void getreg(Node p) {
int r, m = optype(p->op) == D 7 3 : 1;

for (r = 0; r < nregs; r++)
if ((rmask&(m<<r)) == 0) {
p—>%x.rmask = m;
pP~>x.reg = r;

rmask |= sets(p);
usedmask |= sets(p);
return;

}
r = spillee(p, m);
spill(r, m, p);
getreg(p);
}

optype(op) returns the type suffix of operator op. m is set to the mask 1
if the result of p->op needs an ordinary register and 3 if it needs a double
register. getreg loops over the registers. If it finds one that’s free, it sets the
node’s x.reg field to the register allocated and the x.rmask field to the mask.
It also updates usedmask, which is used to generate the prologue described
in Section 4.1; sets(p) returns p->x.rmask<<p->x.reg. If no registers are
free, getreg spills a register and calls itself recursively to try again. Section 6
describes spills.
putreg releases registers:

static void putreg(Node p) {
if (p && --p->count <= 0)
rmask &= “sets(p);
}

Dags can use result registers multiple times, so putreg decrements the reference
count and frees the register only when the last reference is removed by clearing
the appropriate bits in rmask.

22

5.2 emit

emit emits the linearized forest. The sample walks down the list, switches on
the opcode to identify the code to emit:

void emit(Node p) {
for (; p; p = p—>x.next) {

Node a = p->kids[0], b = p->kids[1];

int r = p->x.reg;

switch (p->op) {

case CNSTC: case CNSTI: case CNSTP:

case CNSTS: case CNSTU:
print("movl $%s,r’d\n", p->syms[0]->x.name, r);
break;

case ADDRGP: case ADDRFP: case ADDRLP:
print("moval ¥%s,r%d\n", p->syms[0]->x.name, r);
break;

}

The individual cases emit naive code for a single operator. The CNST cases
above emit a VAX instruction that loads a constant into a register. defsymbol
stored the constant string in p->syms [0]->x.name, and ralloc stored the result
register name p->x.reg. The ADDR cases above emit a VAX instruction that
moves the address of a variable into the result register.

Most of the unary operators share a common pattern, which the sample
abstracts into a macro:

#define suffix(p) ", £dbwllll." [optype((p)->op)]

#define unary(inst) print("%s%c rld,r’id\n", inst, suffix(p), a->x.reg, r)
case BCOMU: unary("mcon"); break;
case NEGD: case NEGF: case NEGI: unary("mneg"); break;
case CVCI: unary("cvtb"); break;
case CVCU: unary("movzb"); break;
case CVSI: unary("cvtw"); break;
case CVSU: unary("movzw"); break;
case CVDF: case CVDI: unary(“cvtd"); break;
case CVFD: unary("cvtf"); break;
case CVUC: case CVUS: unary("cvtl"); break;
case CVIC: case CVIS: case CVID: unary("cvtl"); break;
case CVIU: case CVUI: unary("mov"); break;
case CVPU: case CVUP: unary("mov"); break;

23

unary emits the VAX operator, the VAX type suffix — which is computed by
indexing a string of such suffixes — and the source and destination registers.
Most of the binary operators

#define binary(inst) print("%s%c3 r¥d,r¥d,r%d\n", inst, suffix(p), \
b->x.reg, a->x.reg, r)

case BANDU: binary("bic"); break;
case BORU: binary("bis"); break;
case BXORU: binary("xor"); break;
case ADDD: case ADDF: binary("add"); break;
case ADDI: case ADDP: case ADDU: binary("add"); break;
case SUBD: case SUBF: binary("sub"); break;
case SUBI: case SUBP: case SUBU: binary("sub"); break;
case MULD: case MULF: binary("mul"); break;
case MULI: case MULU: binary("mul"); break;
case DIVD: case DIVF: case DIVI: binary("div"); break;

and all of the comparisons

#define compare(cp) print("cmplc rlid,r¥%d; j%s %s\n", suffix(p), \
a->x.reg, b->x.reg, cp, p->syms[0]->x.name)

case EQD: case EQF: case EQI: compare("eql"); break;
case EQU: compare("eqlu"); break;
case GED: case GEF: case GEI: compare("geq"); break;
case GEU: compare("gequ"); break;
case GTD: case GTF: case GTI: compare("gtr"); break;
case GTU: compare("gtru"); break;
case LED: case LEF: case LEI: compare("leq"); break;
case LEU: compare("lequ"); break;
case LTD: case LTF: case LTI: compare("lss"); break;
case LTU: compare("lssu"); break;
case NED: case NEF: case NEI: compare("neq"); break;
case NEU: compare('"nequ"); break;

are handled similarly.
The cases

case INDIRC: case INDIRD: case INDIRF: case INDIRI:
case INDIRP: case INDIRS:
print("movic (xr¥%d),rkd\n", suffix(p), a->x.reg, r);
break;
case ASGNC: case ASGND: case ASGNF: case ASGNI: case ASGNP: case ASGNS:
print("mov¥%c xr¥%d, (r’d)\n", suffix(p), b->x.reg, a->x.reg);
break;
case JUMPV:
print("jmp (r¥%d)\n", a->x.reg);

24

break;

case LABELV:
print("%s:", p->syms[0]->x.name);
break;

emit code to indirectly load and store memory cells, to jump indirectly, and to
emit a label definition.
The cases

case ARGD: case ARGF: case ARGI: case ARGP:
print("mov¥c r%d,%d(sp)\n", suffix(p),
a->x.reg, p->x.argoffset);
break;
case CALLD: case CALLF: case CALLI: case CALLV:
save(p->x.busy&0x3e);
print(“calls $0,(r%d)\n", a->x.reg);
if (p->op != CALLV)
print("movYc r0,r¥%d\n", suffix(p), r);
restore(p->x.busy&0x3e);
break;
case RETD: case RETF: case RETI:
print("mov¥c r¥%d,r0; ret\n", suffix(p), a->x.reg);
break;
case RETV:
print("ret\n");
break;

emit code to move an argument onto the stack, to call a procedure, and to
return a value. The ARG cases use x.argoffset, into which ralloc stored the
stack offset for the argument. Procedures may destroy registers 1-5, so the CALL
cases use

static void save(unsigned mask) {
int i;

for (i = 1; i < nregs; i++)
if (mask&(1<<i))
print("movl r%d,%d(fp)\n", i,
4*i - framesize + argbuildsize);

¥

to emit code to save any of those registers that are busy; restore is similar.
The RET cases merely copy any return value into register 0 and return.

Several binary operators require special handling. The shift instructions use
a syntax that differs slightly from the other binary instructions:

25

case RSHI: case LSHI: case LSHU:
print("ashl r¥%d,r%d,r’d\n", b->x.reg, a->x.reg, r);
break;

RSHI and LSHI generate the same code because the front end negates the shift
count for RSHI if the configuration parameter VAX is defined. No instructions
directly implement unsigned right shift, division, or modulus, so emit uses a
field-extraction instruction for the first and library calls for the others:

case RSHU:
print("subl3 r'd,$32,r0; extzv r'd,r0,r%d,r%d\n",
b->x.reg, b->x.reg, a->x.reg, r);
break;
case DIVU:
save(p->x.busy&0x3e);
print("pushl r'd; pushl r%d; calls $2,udiv; movl r0,r’d\n",
b->x.reg, a->x.reg, I);
restore(p->x.busy&0x3e);
break;
case MODU:
save(p->x.busy&0x3e) ;
print("pushl r%d; pushl r)d; calls $2,urem; movl rO,r%d\n",
b->x.reg, a->x.reg, Ir);
restore(p->x.busy&0x3e) ;
break;

Finally, ANSI C requires that a¥%b equal a-(a/b)#*b, so MODI computes it just
this way:

case MODI:
print("divl3 r%d,r%d,r0; mull2 r¥d,r0; subl3 r0,r%d,r%d\n",
b->x.reg, a->x.reg, b->x.reg, a->x.reg, r);
break;

Only the structure instructions remain:

case INDIRB:
print("moval (x%d),r%d\n", a->x.reg, r);
break;
case ASGNB:
save(p->x.busy&0x3f);
print ("movc3 $%s, (r¥%d), (r¥%d)\n", p->syms[0]->x.name,
b->x.reg, a->x.reg);
restore(p->x.busy&0x3f);
break;
case ARGB:

26

save(p—>x.busy&0x3f);

print("move3 $¥%s, (x%d),%d(sp)\n", p->syms[0]->x.name,
a->x.reg, p->x.argoffset);

restore(p->x.busy&0x3f);

break;

The scalar INDIRs and ASGNs load and store values directly, but structures won’t
fit in registers, so their instructions manipulate addresses instead. ASGNB uses a
block move instruction, which needs the size from p->syms [0]->x.name; it also
destroys registers 0-5, so emit arranges to save and restore their values. ARGB
operates similarly, but copies the structure into the stack instead. Finally,

case CALLB:
save(p->x.busy&0x3e);
if (a->x.reg == 1) {
print("movl r1,r0\n");
a->x.reg = 0;
}
if (b->x.reg != 1)
print("movl r%d,ri\n", b->x.reg);
print(“calls $0, (z%d)\n", a->x.reg);
restore(p->x.busy&0x3e);
break;

is like an ordinary call, but it also passes the address at which to store the return
value in register 1; if the address of the function is already in register 1, it is
first moved out of the way into register 0, which is not otherwise allocated.

If NOARGB is defined (e.g., in the configuration file), the front end uses Sun’s
convention for passing structures by value. It builds dags that copy structure
arguments to temporaries, passes pointers to these temporaries, adds an extra
indirection to references to these parameters in the callee, and changes the types
of the callee’s formals to reflect this convention. It also sets structarg for these
parameters.

5.3 asmcode
asm("...") directives in C source programs cause emitcode to call asmcode:

void asmcode(char *str, Symbol argv[]) {
for (; *str; str++)
if (*str == ’Y%’ && strl[1] >= 0 && str[1] <= 9)
print("%s", argv[*++str]->x.name);
else
print("%c", *str);
print("\n");
}

27

str points to the string given in the asm directive, and argv is an array of
symbol table pointers.

The front end replaces occurrences of %x that appear in the asm string with
%k, where k is a 1-byte integer from 0 to 9. argv[k] is the symbol table entry
for identifier x. asmcode emits str, replacing %k with appropriate back-end
names. For example, the asm in

int x; f(register i) { int j; asm("addl3 %i,%j,%x"); ... }

becomes add13 4(ap),-4(fp),_x.

6 Spills

When getreg finds that all registers are busy, one or more must be spilled
now and reloaded when the values are needed again. Handling spills correctly
is difficult and a common source of compiler bugs. Test cases that expose
bugs in the spill code are necessarily complex. As such, and for completeness,
the implementation described in this section is adapted from that used in the
production versions of 1cc. Reference [6] describes the important differences
and explains the rationale behind this spiller.

The dag constructed by the front end minimizes the reevaluation of common
subexpressions. Spills are, in a sense, a result of the front end’s eagerness to
avoid reevaluation, and handling spills amounts to ‘breaking the dags’ generated
by the front end. A node representing a common subexpression is changed so
that it stores the value in a temporary, and subsequent references to that node
are edited to load the value from the temporary.

Spilling involves three major steps: Identifying the registers to spill, gen-
erating the code for the spills at the correct location the output stream, and
generating the code for the reloads, again at the correct locations. These steps
are performed at the end of getreg:

static void getreg(Node p) {
int r, m = optype(p->op) == D 7 3 : 1;

r = spillee(p, m);
spill(r, m, p);
getreg(p);

spillee identifies the register (m==1) or register pair (m==3) to be spilled on
behalf of p, and spill generates the spill and reload code. Once r has been
spilled, it is available, and the call to getreg is guaranteed to succeed.

ralloc frees registers as soon as possible. If the available registers are ex-
hausted, it is because there are multiple references to the nodes holding the reg-
isters, which arise from common subexpressions and from multiple assignment,

28

augmented assignment, and the operators ++ and —-. Consider the following
program.

double a[10],b[10];
int i;
fO{ i = (alil+v[il)*(alil-b[il); }

The initial linearized forest is shown to the left of the vertical line in the display
below.

op kids syms count | count uses sets
1. ADDRGP A 2 1 ri
2. INDIRI 1 1 0 rl r2
3. CNSTI 3 1 0 r3
4. LSHI 23 2 0 r2 r3 12
5. ADDRGP _a 1 0 r3
6. ADDP 45 1 0 r2 r3 13
7. INDIRD 6 2 2 r3 r3 r4
8. ADDRGP) 1 0 rb
9. ADDP 48 1 0 r2 r5 12

10. INDIRD 9 2 2 r2
11. ADDD 7 10 1 1 r3 r4
12, SUBD 7 10 1 1 r3 r4
13. MULD 11 12 1 1

14. CVDI 13 1 1

15. ASGNI 1 14 0 0 b ¢

Nodes with count fields greater than 1 represent four common subexpressions:
the lvalue of i (node 1), the addressing expression 1<<3 (node 4), and the rvalues
of a[i] (node 7) and b[i] (node 10). If only registers 1-5 are available, ralloc
runs out of registers at node 10. The linearized forest at that point is shown to
the right of the vertical line in the display above. As indicated by the non-zero
counts and the sets column, node 1 is using r1 and node 7 is using r3 and r4.
Node 10 needs a register pair, but only registers r2 and x5 are available. Note
that the count of node 4, which is i<<3, has dropped to 0 because ralloc has
processed both uses (nodes 6 and 9).

getreg calls spillee to identify a register pair to be spilled so that it can be
used for node 10. spillee chooses the register whose next use is the most distant
in the linearized forest. This choice is analogous to the optimal demand paging
strategy that replaces pages whose next use is most distant in the execution
stream [7].

For each register, spillee simply searches down the linearized forest for
register uses and records the most distant.

static int spillee(Node dot, unsigned m) {
int bestdist = -1, bestreg = 0, dist, r;

29

Node q;

for (r = 1; r < nregs - (m>>1); r++) {
dist = 0;
for (q = dot->x.next; q && !(uses(q)&(m<<r)); q = gq->x.next)
dist++;
if (dist > bestdist) {
bestdist = dist;
bestreg = r;
}
}
return bestreg;

1

spillee is called with dot equal to the node at which the spill is required,
which is node 10 in the example above. uses(p) returns a bit mask giving the
registers used by node p, i.e., the registers set by p’s kids:

static unsigned uses(Node p) {
int i;
unsigned m = 0;

for (i = 0; i < MAXKIDS; i++)
if (p->kids[il)
m |= sets(p->kids[il);
return m;

3

In this example, spillee finds r1 used in node 15, which is at ‘distance’ 4,
and r3 and r4 used in node 11 at distance (. Consequently, spillee returns
r1, which denotes both r1 and r2 because m is 3.

The implementations of spillee above and spill below assume that the
instruction emitted for each node reads the registers it uses before setting the
register allocated to it. This assumption permits ralloc to reassign registers
used by a node to that node. It also permits spillee to start its scan afier the
current instruction. This assumption is invalid on machines with two-address
instructions.

Actually spilling the register chosen by spillee and inserting the reloads is
done by spill and its associates, genspill and genreloads. In the example,
these functions collaborate to ‘break the dag’ at node 1, which sets register r1
(r2 is already free). genspill generates a temporary and the nodes necessary
to store the value computed by node 1 into the temporary. These new nodes
are stitched into the linearized forest immediately after node 1. genreloads
changes future uses of the value computed by node 1 to reload the value from
the temporary instead of referencing node 1 directly. The effect is to remove
the common subexpression by assigning it to a temporary.

30

spill identifies the locations at which to insert the spills by searching the
linearized forest beyond dot for nodes that use the registers that are to be
spilled, e.g., r1 in the example.

static void spill(int r, unsigned m, Node dot) {
int i;
Node p = dot;

while (p = p->x.next)
for (i = 0; i < MAXKIDS; i++)

if (p->kids[i] && sets(p->kids[i])&(m<<r)) {
Symbol temp = genspill(p->kids[il);
rmask &= “sets(p->kids[i]);
genreloads(dot, p->kids[i], temp);

}

}

genspill allocates the temporary, generates the spill code, and inserts it into
the linearized forest right after the node that set the spillee. It returns the
symbol table entry for the temporary so that it can be used by genreloads to
generate the reloads.

static Symbol genspill(Node p) {
Symbol temp = newtemp(AUTO, typecode(p));
Node q = p->x.next;

linearize(newnode(ASGN + typecode(p),
newnode (ADDRLP, 0, 0, temp), p, 0),
&p->x.next, p—>x.next);

rmask &= “1;

for (p = p—>x.next; p != q; p = p->x.next)
ralloc(p);

rmask [= 1;

return temp;

}

typecode is like optype, but maps U to I because the front-end uses ASGNI and
INDIRI to store and load unsigned values. It also maps B to P because registers
always point structures. The front-end’s newtemp(class, type) allocates a
new temporary or reuses an existing one if its storage class and type code
match those requested, and it announces a new temporary by calling local as
usual.

The spill code is an ADDRLP node to compute the address of the temporary
and an ASGN node to store the value into that address. The right operand of
the ASGN is simply p, the node that set the registers to spill, e.g., node 1 above. A

31

node is allocated and initialized by the front-end function newnode(op,1,r,sym),
where op is the operator, 1 and r are kids[0] and kids[1], and sym is the sym-
bol table pointer for leaf nodes. newnode also increments the reference counts
of 1 and r.

Finally, genspill linearizes the spill code and inserts it right after p, which
sets the spilled register. The manipulation of rmask ensures that ralloc assigns
register r0 — which is not otherwise allocated — to the ADDRLP node to compute
the address. The linearized forest after genspill returns is

op kids syms count uses sets
i. ADDRGP . | 1 ri
16. ADDRLP -4(fp) O r0
17. ASGNP 16 1 0 r0 r1

2. INDIRI 1 0 ri r2

Nodes 16 and 17 are the spill code. This code references node 1, so its count goes
to 2 momentarily until ralloc processes the reference from the spill code. The
remaining reference is from node 15. Node 16’s symbol =4 (£p) is the temporary
location.

After genspill returns the temporary, spill frees the registers set by the
node and calls genreloads. genreloads searches the linearized forest after dot
for uses of p.

static void genreloads(Node dot, Node p, Symbol temp) {
int 1:
Node last;

for (last = dot; dot = dot->x.next; last = dot)
for (i = 0; i < MAXKIDS; i++)
if (dot->kids[i] == p) {
dot->kids[i] = newnode(INDIR + typecode(p),
newnode (ADDRL+P, 0, 0, temp), 0, 0);

dot->kids[i]->count = 1;
p->count—-;
linearize(dot->kids[i], &last->x.next, last->x.next);
last = dot->kids[i];

}

Each use of p is changed to a reload of the temporary temp. The reload code is
an ADDRLP node to compute the address of the temporary and an INDIR node
to load the value from that address. There is only one reference to each reload,
so the INDIR’s count is set accordingly, and p->count is decremented to reflect
the change. The reload code is linearized and inserted into the linearized node

32

list immediately before its use. For the example above, a reload is placed before
node 15. Since the reload is beyond the point that gen has reached, registers
are allocated for these nodes by subsequent calls to ralloc.

The linearized forest after spill returns is

kids sets
ri

r0

op count uses
1. ADDRGP
16. ADDRLP
17. ASGNP 16 1

2. INDIRI 1

syms
i
-4(£fp)
r0 ri
rl

(==l el

r2
14.
18.

19.
15.

CVDI
ADDRLP
INDIRP
ASGNI

13
-4(£fp)

[l

18
19 14 0

Nodes 18 and 19 are the reload. Note that node 1’s count has become 0; after
inserting the reload, there are no unprocessed references.

Another spill occurs at node 11, which computes ali]+b[i]. Registers r1
and r2, which are set by node 10, are spilled, and node 12 is edited to refer
to the second temporary, which is reloaded by nodes 22 and 23 inserted before
node 12. The last spill occurs at node 23, which is the reload created for the
second spill. r1 and r2, which are set by node 11, are spilled again, and node
13 is edited to refer to the third temporary. The final linearized forest and
corresponding VAX code follows; count fields are omitted because they’re all 0,

and each instruction shows which registers are used and set by each node.

VAX instruction
moval _i,ri
moval -4(fp),r0
movl ri, (x0)
movl (ri1),r2
movl $3,r3

ashl r3,r2,r2
moval _a,r3
addl3 r3,r2,r3
movd (r3),r3
moval _b,r5
addl3 r5,r2,r2
movd (r2),r1
moval -12(fp),xr0
movd ri, (x0)
addd3 r1,r3,r1
moval -20(fp),xr0
movd ri, (x0)

op kids
1. ADDRGP

16. ADDRLP

17. ASGNP 16 1
2. INDIRI 1

3. CNSTI

4. LSHI 2 3
5. ADDRGP

6. ADDP 4 5
7. INDIRD 6

8. ADDRGP

9. ADDP 4 8
10. INDIRD 9
20. ADDRLP

21. ASGND 20 10
11. ADDD 7 10
24. ADDRLP

25. ASGND 24 11

33

syms
i
-4(fp)

-12(fp)

-20(£fp)

moval -12(£p),r5 22. ADDRLP -12(£p)

movd (r5),r1 23. INDIRD 22

subd3 ri,r3,ri 12. SUBD 7 23

moval -20(fp),r3 26. ADDRLP -20(fp)
movd (r3),r3 27. INDIRD 26

nuld3 ri1,r3,ri1 13. MULD 27 12

cvtdl ri,ri 14. CVDI 13

moval -4(£fp),r2 18. ADDRLP -4(£p)
movl (r2),r2 19. INDIRP 18

movl ri, (x2) 15. ASGNI 19 14

Spills have added nodes 16-27.

7 Discussion

lcc’s code generation interface is smaller than most because it omits the inessen-
tial and makes simplifying assumptions. These omissions and assumptions do,
however, limit the interface’s applicability to other languages and machines.

The datatype assumptions detailed in Section 2, e.g., that unsigneds, inte-
gers, and long integers all have the same size, make it possible to have only 9
type suffixes and 111 type-specific operators. Relaxing these assumptions would
increase this vocabulary; e.g., adding a suffix for long doubles would also add
at least 19 more operators.

The interface assumes that all pointer types have the same representation,
which precludes its use for word-addressed machines. Differentiating between
character and word pointers would add another suffix and at least 13 more
operators.

The operator repertoire omits some operators whose effect can be synthe-
sized from simpler ones. For example, bit fields are accessed with shifting and
masking instead of specific bit-field operators, so code quality may suffer on
machines with bit-field instructions. The front end special-cases one-bit fields
and generates efficient masking dags, which often yields better code than code
that uses bit-field instructions.

The front end implements switch statements completely. It generates a bi-
nary search of dense branch tables; inline comparisons replace small tables [2].
It fabricates the tables and indirect jumps using the functions global and
defaddress and the JUMPV operator. This decision prevents back ends from
using larger ‘case’ instructions, which usually combine a bounds check and an
indirect branch through a table, but these instructions are increasingly rare,
and some don’t suit C anyway. For example, the branch table for the VAX’s
casel instruction is limited to 16-bit offsets.

The interface has no direct support for building a flow graph and other struc-
tures that facilitate global optimization. More elaborate versions of function

34

and gen could collaborate to build the relevant structures, perform optimiza-
tions, and invoke the simpler gen. The front end’s gencode and emitcode
traverse an approximation of a flow graph; future work may focus on a machine-
independent optimizer that edits this graph while preserving the current inter-
face.

To date, the interface has been used only for ANSI C. But it has little
that is specific to C, and it could be used for similar languages and perhaps for
languages with features like nested procedures, objects, and exception handling.
Existing compilers for some object-oriented languages with these features, such
as C++, Modula-3, and Eiffel, generate C, so, in principle, the interface could
be used for these languages.

References

[1] American National Standard Institute, Inc., New York. American Na-
tional Standards for Information Systems, Programming Language C ANSI
X3.159-1989, 1990.

[2] R. L. Bernstein. Producing good code for the case statement. Software—
Practice & Ezperience, 15(10):1021-1024, Oct. 1985.

[3] C. W. Fraser. A language for writing code generators. Proceedings of the
SIGPLAN ’89 Conference on Programming Language Design and Implemen-
tation, SIGPLAN Notices, 24(7):238-245, July 1989.

[4] C. W. Fraser and D. R. Hanson. A code generation interface for ANSI C.
Software—Practice & Ezperience, 21(9):963-988, Sept. 1991.

[5] C. W. Fraser and D. R. Hanson. A retargetable compiler for ANSI C.
SIGPLAN Notices, 26(10), Oct. 1991.

[6] C. W. Fraser and D. R. Hanson. Simple register spilling in a retargetable
compiler. Software—Practice & Ezperience, to appear, 1992.

[7] R. A. Freiburghouse. Register allocation via usage counts. Communications
of the ACM, 17(11):638-642, Nov. 1974.

[8] A.S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and C. J. H. Jacobs.
The design of very fast portable compilers. SIGPLAN Notices, 24(11):125—
131, Nov. 1989.

[9] A. S. Tanenbaum, H. van Staveren, and J. W. Stevenson. Using peephole
optimization on intermediate code. ACM Transactions on Programming
Languages and Systems, 4(1):21-36, Jan. 1982.

35

A Interface Functions

In the table below, 1 flags those interface functions that are implemented by
macros in the sample.

Section Interface Function
4.3 void address(Symbol, Symbol, int)
5.3 void asmcode(char *, Symbol [])
4.4 void blockbeg(Env *e)
44 void blockend(Env *e)
t3.6 void defaddress(Symbol)
3.5 void defconst(int, Value)
3.6 void defstring(int, char *)
3.1 void defsymbol(Symbol)
5.2 void emit(Node)
13.2 void export(Symbol)
4.1 void function(Symbol, Symbol [], Symbol [], int)
5.1 Node gen(Node)
3.4 void global(Symbol)
t32 void import(Symbol)
4.2 void local(Symbol)
2.1 void progbeg(int, char *[])
121 void progend(void)
3.3 void segment(int)
3.6 void space(int)

B Front-End Functions

void *alloc(int n) permanently allocates n bytes and returns a pointer to
the first byte.

void fatal(char *name, char *fmt, ...) announces a compiler error in mod-
ule name on standard error, prints up to 4 arguments, and terminates
execution. See print for formatting details.

void fprint(int fd, char *fmt, ...) prints up to 5 arguments on the file
descriptor £d. See print for formatting details. If £d is not 1 (standard
output), fprint flushes the output buffer for £d via outflush.

Type freturn(Type t) is the type of the return value for function type t.
int generic(int op) is the generic version of the type-specific operator op.

int genlabel(int n) increments the generated identifier counter by n and
returns its previous value.

36

int istype(Type t) are a set of type predicates that return non-zero if type t
is the type in the following table.

predicate type predicate type

isarith arithmetic isint integral

isarray array isptr pointer

ischar character isscalar scalar

isdouble double isstruct structure or union
isenum enumeration isunion union

isfloat floating isunsigned unsigned

isfunc function

Node newnode(int op, Node 1, Node r, Symbol sym) allocates a node and
initializes the op field to op, kids[0] and kids[1] to 1 and r, and syms [0]
to sym and returns a pointer to the new node. If 1 and r are non-null,
their count fields are incremented.

Symbol newconst(Value v, int t) installs an constant with value v and type
suffix t into the symbol table, if necessary, and returns a pointer to the
symbol table entry.

Symbol newtemp(int class, int t) creates a temporary with storage class
class and a type synonymous with type suffix t and returns a pointer
the symbol table entry. If an existing temporary with the appropriate
class and type is available, it is used; otherwise, the new temporary is
announced by calling local.

void outflush(void) writes the current output buffer to the standard output,
if it’s not empty.

void outs(char *s) appends string s to the output buffer for standard output
and calls outflush if the resulting buffer pointer is within 80 characters
of the end of the buffer.

int optype(op) is the type suffix of the type-specific operator op.

void print(char *fmt, ...) prints up to 5 arguments on standard output
similar to printf. The supported formats are %c, %d, %o, %x, and ¥%s, and
precision and field width specifications are not supported. print calls
outflush if it prints a newline character from fmt within 80 characters of
the end of the output buffer, and each format except %c does the actual
output with outs, which may also flush the buffer.

int roundup(int n, int m) is n rounded up to the next multiple of m where
m is a power of 2.

37

void sprint(char *s, char *fmt, ...) formatsup to 5 arguments into string
s. See print for formatting details.

char *string(char *s) installs s in the string space, if necessary, and returns
a pointer to the installed copy.

char *stringd(int n) returns the string representation of n; the returned
string is installed in the string space by string.

char *stringf(char #fmt, ...) formats up to 5 arguments into a string in
the string space and returns a pointer to that string. See print for for-
matting details.

void *talloc(int n) temporarily allocates n bytes and returns a pointer to
the first byte. The storage is released at the end of the current function.

int ttob(Type t) is the type suffix synonymous with type t.

int variadic(Type t) is true if type t denotes a variadic function.

38

