PROBABILISTIC ANALYSIS OF GEOMETRIC ALGORITHMS

Mordecai J. Golin
(Thesis)

CS-TR-266-90

June 1990

PROBABILISTIC ANALYSIS OF GEOMETRIC ALGORITHMS

MORDECAI J. GOLIN

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

June 1990

© Copyright by Mordecai J. Golin 1990
All Rights Reserved

Dedicated with love and thanks to my parents
Fred Paul and Joyce Lee Golin

Probabilistic Analysis of Geometric Algorithms — Abstract

Mordecai J. Golin
Thesis Advisor — Professor Robert Sedgewick

This thesis is divided into four chapters. In the first chapter we describe the
subtleties involved in probabilistically analyzing simple algorithms in computational
geometry. We also work through a few easy examples of such analyses. The first
example analyzes Quicksort, the second analyzes Quickhull, and the third analyzes
interpoint distances between uniformly distributed points in hypercubes or hyper-
tori.

In the second chapter we present a simple but effective preprocessing algorithm
for calculating convex hulls. The algorithm is short and intuitive. It does a fast lin-
ear scan through the points, identifying many which are not on the convex hull and
can therefore be eliminated. We perform an exact analysis of this algbrithm show-
ing that, given n points distributed uniformly in the unit square, only about 8,/n of
them remain after the preprocessing step: in higher dimensions only cgn~1/¢ will
remain. We present the results of simulations comparing our mathematical analysis
to reality. Finally, we end with a discussion of what distinguishes this algorithm
from certain obvious variants.

In the third chapter we analyze closest pair algorithms. First, we analyze a
sweep-line closest-pair algorithm, one similar in spirit to Hoey and Shamos’ divide
and conquer algorithm for solving the same problem. Our result is that, given n
points uniformly distributed in the unit square and then sorted, there is a six line
algorithm that finds the closest pair in O(n) expected time. Moreover, this algo-
rithm uses no complicated data structures. We then analyze a second algorithm,
one that finds the closest pair using a modified version of Bentley and Papadim-
itriou’s nearest neighbor projection algorithm. Our result, again, is that after the
sorting stage, the linear scan stage of this new algorithm also finds the closest pair
in O(n) expected time.

The fourth chapter discusses the calculation of maxima. More specifically it an-
alyzes a new heuristic, the Move-To-Front Algorithm, recently developed by Bentley,
Clarkson and Levine. We prove mathematically that the Move-To-Front Algorithm
is extremely efficient; on average it performs only one comparison per input point
except on those in an asymptotically negligible subset.

Acknowledgments

It would be impossible to properly acknowledge everyone who helped me survive
my time at Princeton. They made it a most rewarding period, both academically
and otherwise. I would especially like to thank the faculty, graduate students, and
staff of the Department of Computer Science.

Faculty members were always available and willing to answer questions. This
“open door” policy greatly eased my transition from student to researcher and is
something for which I continue to be grateful. I would like to signal out my readers
for special praise. Bernard Chazelle introduced me to Computational Geometry
and influenced my perceptions of the field. Jon Bentley came late, but more than
almost anyone else, was an endless source of problems, critiques, and solutions: this
thesis would have been much less without his input. Robert Sedgewick, my advisor,
convinced me to become a Computer Scientist. His advice and example were the
guiding forces behind this work.

Thanks to the graduate students for always being there. Without their friend-
ship life would have been awfully boring. A special thanks goes to the officemates I
have had through the years: Robert Abbott, Larry Aupperle, S.V. Krishnan, Sally
Mckee, Richard Squier, and Jenny Zhao.

The staff (both clerical and technical) always made a point of avoiding the
suffocating obfuscation that usually accompanies bureaucracy. I would like to thank
them for their help and support. Special thanks and acknowledgment must go to
Rebbeca Davies and Sharon Rodgers.

Finally, I would like to thank the friends who proofread the first version of
this manuscript: Claire Kenyon, Burton Rosenberg, Norbert Schlenker, and Neal
Young. Their corrections and comments were greatly appreciated.

Mordecai J. Golin
Princeton, New Jersey
May, 1990

il

Table of Contents

ADMPREE » o o b Fod R DN BB N E R W E W E ¥ oW i
Acknowledamients .. . o+ scers was @ 5 8 s e w o w w w % e s & 5w s ii
Teble of Contenits: . « Gev’d B8R0 .4 e v v & BE W 6 4 wie'd 2a iii
Chapter 1. Probabilistic Analysis of Geometric Algorithms 1
L1 Thewms OOthne « o o 5 s k5.8 58 ¥ s B8 5% 8% % 4 & 5% 1

1.2 Introduchion . o s .5 os © % a5 howm s W M 4 W H A S 8 N @ 2

1.3 Two Algorithms and their Analyses 6
1.31Quicksorto ¢ . 4 - e a e b a e if s s s e 6

Y3 I CMEREEIL. v o v 5 i 5 5wl e e om w8 m AL A 11

14 Interpoint INBLADOEE - s v s s mim v 8 s 0 o s & ox w ow o 19
1.4.1 Definitions and Mathematical Preliminaries 19

1.4.2 Nearest NeighbortoaPoint 24

143 LISt POITi nik mom o @ # .4 § % A58 § & 58 & 9 30

144 Beallng . « o s % iadh G e om o ek n b om om w E 34

1.4.5 Extensions to Other Metries 37
Chapter 2. A Simple Convex Hull Algorithm 43
0.1 - Intro@aetion o v ox e oo S on e W e e st Sanadon) e e R 43

225 FHE ANOEILNEE i 5 oiv i s im g v v R LBt R E 43

2.3 ROBBIE: i N o R O REAB A Ly gk 8w e w s 46

2.4 Tsea s Sinnlation BeSuME: wald. oo v e o spw o s pte s e 58

2.5 BNAEIRDE ksl U Sy e kB Sur iy b e e e e R ik Ry 60

2.6 Extensionsto Higher DInienBions . . v « 0 ¢ o0 0 s 0 "0 o+ & 66
264 The SIEOEHRI ¢ 0 008 SBAT Y o Agridl oo 8 vin, wow 0w v 66

262 The Analysts o -d anaiGone e hs curvig o o5 sin, 8w s e 68

D7 OBRElusionN . . . & S e B e i e W oW B W W 75
Chapter 3. Closest Pair Algorithms % & W i
3] INEOORESER - ¢ Lo o B e i G Bes e R 77

3.2 Description of the Sweep Line Algorithm 78

3.2 Analysis of the Sweep Line Algorithm 82
3.3.1 Probabilistic Assumptions and Notation 82

I Pder Btatistion i v v s s Th v v el am m Fm & v o & 84

3.3.3 Asymptotics of E(N;) = E(L(X(i41),6)) - - - - .« « . .. 85

il

S83dTwolosso Ends Retied . .. s 5 % o % ¢ ¢ 58 % o 2 w & = » 94

335 Sihmulatibn Resals - - . « % 4% a 2 v o Vs v'w v W 97

34 TheProjection Algorithm . . . « . « &« & « ¢ & « ¢ o o ¢ & « & 97
341 TheAlgorithm ¢ 99

342 Analysis 0t b e e e e s e e e 101

35 Conclusions v v v e v e e e e e e e e e e e e e e 112
Chapter 4. The Move To Front Maxima Algorithm 115
4.1 - IRroduetion - v« cin geiimie o onlw SR e b b BV R R 3 116

4.2 Introduction To MasSmon o oo wosrmoy s o 20w a om0 wte = 116
421 DeBuiblons i & 5, 60l momik mis Epte wow o ow w e 115

4.2.2 Distributionsof Maxima e on v VAT

4.3 The Move-To-Front Algorithm 120

4.4 Analysis of the Algorithm 126
4.4.1 Plan and Definitions oo 126

4.4.2 The GeometricTheorem « « v « ¢« « ¢ o« 128

443 Probabiletle Pagts . & o o i s 5 o mm v % 5.8 8 » 136

4.4.4 Extension to CI Distributions 139

&5 Colplumlons.o 5 i i, svim o 8.9 Sprghe '@ &% %% & ¥ & 8°F B 141
Relsfences & = « ; i ilehs s8R cH 2% » ok whe 5o 9 ¥ 143

iv

Chapter 1. Probabilistic Analysis of Geometric Algorithms

§1.1 Thesis Outline

This thesis describes and analyzes algorithms for solving some basic problems
in computational geometry. The algorithms that we discuss are simple and robust.
We show that, for specified input distributions, all of the algorithms discussed in
this thesis have fast expected running times.

There are four chapters. In the first chapter we describe the subtleties of proba-
bilistically analyzing algorithms in computational geometry. We also work through
a few simple examples of average-case analysis. The first analyzes Quicksort, the
second analyzes Quickhull, and the third analyzes interpoint distances between uni-
formly distributed points in hypercubes or hypertori.

In the second chapter we present a simple but effective preprocessing algorithm
for convex hull calculations in all dimensions. The algorithm is intuitive and short
(in two dimensions it requires only thirty lines of Pascal). It does a fast linear
scan through the points, identifying many that are not on the convex hull and can
therefore be eliminated. We perform an exact analysis of this algorithm showing
that, given n points distributed uniformly in the unit square, only about 8y/n of
them remain after preprocessing. Extending this analysis, we show that in higher
dimensions only cgn!~1/4 remain. We compare the predictions of the mathematical
analysis to simulation results. Finally, we end with a discussion of what distin-
guishes this algorithm from certain obvious variants.

In the third chapter we present an analysis of the sweep-line closest-pair algo-
rithm described in [HNS]. Our result is that, given n points uniformly distributed
in the unit square and then sorted, a simple six-line algorithm finds the closest pair
in O(n) time. Moreover, this algorithm uses no complicated data structures.

The fourth chapter discusses the calculation of maxima. It analyzes a new
heuristic, the Move To Front Algorithm, developed by Bentley, Clarkson and Levine
[BCL). We prove that the Move To Front Algorithm is extremely efficient; on
average it performs only one comparison per input point except on those in an
asymptotically negligible subset.

This thesis contains work both original and derivative. It is customary (and
necessary) to distinguish the two. In Chapter One the analysis of Quicksort is

classic and well known [Sel]. The fact that the average running time of Quickhull
is linear was also well known [OL]; the proof given here is new. The analysis of
interpoint distances seems to be part of the folklore, known by many but never
written down: the analysis of the nearest neighbor distance is implicit in prior
probabilistic analyses of geometric algorithms, e.g. [BWY], while the analysis of
closest pair distances doesn’t seem to be recorded anywhere. Chapter Two is a
rewritten, extended version of a paper presented at the Third ACM Symposium
on Computational Geometry [GS1]. Chapter Three is an improved version of an
unpublished technical report. The algorithm in Chapter Four is due to [BCL]; the
analysis is original.

§1.2 Introduction

The work in this thesis grew out of concern about what constitutes a good “real-
world” algorithm, one that an average programmer could and would implement if
called upon to solve a problem. Two criteria immediately come to mind as being
overwhelmingly important: simplicity and speed.

Simplicity means that the algorithm should be short, straightforward and aus-
tere. Short is self explanatory. Straightforward implies that it should take just a
few minutes to describe and, hopefully be understandable directly from its imple-
mentation. Austere means that it requires neither special treatment for a plethora
of unusual cases nor complicated data structures. If any of these conditions are
not met then an average programmer, deterred by its complexity, will probably not
attempt to implement the algorithm or, if he does, will have difficulties debugging
it

Speed is important for the obvious reason. If an algorithm is too slow then it
is unusable. Here, as everywhere else in theoretical computer science, the underly-
ing problem of complexity theory rears its head: how to measure the speed of an
algorithm? We would like to measure worst-case complexity, the longest time the
algorithm takes to run on any input of a given size. Unfortunately, it is unusual
to find a simple algorithm that runs well on all inputs. Therefore we concentrate
on expected running times, the average time the algorithm takes to run over all
inputs of a given size. This introduces other difficulties, the most obvious of which
is how to choose an input distribution that mirrors the real-world problem that the
algorithm is supposed to address

There is an interesting connection between our two criteria. Simple, short

2

programs frequently have less overhead than more complicated algorithms do and
thus often have faster expected running times [Pi]. We will exploit this fact often
in the problems that we will address.

The search for fast, easily implementable algorithms is not a new goal. Much
of the early history of computer science was devoted to finding just such algorithms
for sorting and searching problems. For example, all of the early sorting techniques
— Insertionsort, Mergesort, and Quicksort to name just a few — were exposed to
intense scrutiny in attempts to optimize their running times. Many of the analytic
techniques and approaches we rely upon today were developed during that search
[Kn1) [Kn3].

What we do in this thesis is apply these criteria to some algorithms in com-
putational geometry. Computational geometry, as its name implies, is the branch
of computer science that develops and analyzes geometric algorithms: algorithms
whose inputs and outputs are geometric objects such as point sets and line arrange-
ments. For a specified set of points some typical problems are finding the closest
pair it contains (Chapter Three), its convex hull (§1.2 and Chapter Two) or the
set of its maxima (Chapter Four). Another typical problem involves rectangular
range searching. For a given point set we want to preprocess the information so as
to answer queries of the form: list all points in the set that are contained in the
rectangle {(z,¥)| Zmin < Z < Zmaz, Ymin <Y < Ymaz}?

While the concept of an “algorithmic geometry” can be traced as far back as
Euclid, computational geometry as we know it today evolved only during the mid
1970’s. At that time researchers in diverse areas realized that many of the problems
they were dealing with were naturally expressed in geometric terms. Computer
graphics, for example, is such a natural source of problems that it is sometimes
hard to know where it ends and computational geometry begins. Very Large Scale
Integration (VLSI) chip design is another such area.

A third area of application is statistics. If we think of data points as existing
in multidimensional space, each attribute reported corresponding to a dimension,
then a statistical analysis frequently reduces to a geometric one. As an example it is
known that the outlier problem — identifying those data points very different from
the others in the set — is very similar to the convex layer problem in computational
geometry that has been studied by Chazelle [Ch]. See also Shamos’s discussion of
Computational Statistics in [Sha2]. We will discuss the connection to statistics in
more detail in Chapter Four.

For a comprehensive introduction to the field see Preparata and Shamos’s book

3

[PS]. Shamos’s 1978 Yale thesis [Shal] was one of the first major works to address
Computational Geometry as a distinct discipline. As such, besides being a good
survey of the major problems, it also provides a historical perspective, a glimpse at
a science in the making. Lee and Preparata [LP] provide a comprehensive bibliog-
raphy up to 1984. Aggarwal and Wein’s notes [AW] for the Spring 1988 Computa-
tional Geometry course at M.I.T. are an excellent introductory exposition. These
notes also include a more up to date bibliography than [LP] and a collection of
open problems.

To satisfy the purpose of this thesis, we must be able to design fast and simple
algorithms in computational geometry. Designing simple algorithms is easy; guar-
anteeing that they run fast is often difficult. To find fast algorithms we must be able
to perform probabilistic analyses on geometric algorithms. As we shall see later in
this chapter such analyses can get very complicated very fast and be much more
difficult than those of sorting and searching algorithms.

The question arises as to how the analysis of algorithms for sorting and search-
ing differs from the analysis of those in computational geometry. A quick review
of the literature points up a fundamental difference between how analyses in the
two areas are approached. As an overbroad generalization we offer the following
observations. In sorting or searching an attempt is usually made to analyze the
algorithms directly. In computational geometry the attempt made is usually made
to fit the algorithm to known geometric facts. To put it another way: in sorting or
searching the analysis is tailored to follow the the twisted path of the algorithm’s
execution. In computational geometry, by contrast, the algorithm itself is frequently
not analyzed directly. Instead we either exhume some old geometric fact or prove
an appropriate new one and use this fact to derive the general behavior of the al-
gorithm. Of course, we do not mean to imply that geometric algorithms are never
analyzed directly (see for example [BWY] or [Dw]), just that they usually are not.

To make this discussion more concrete we contrast canonical examples of the
two types of analyses. Quicksort is one of the older sorting algorithms [Kn3).
Working through its analysis (quickly reviewed in §1.3) we see that the analysis
follows the execution of the algorithm step by step, aping its behavior on every
possible input. Contrast this with the analysis of Giftwrapping, one of the older
convex hull algorithms [PS]. In two dimensions it is known to run in ©(nh) time
on inputs of n points where A is the number of points on the convex hull. Let E(-)
be the expectation operator. The expected running time of the algorithm is then
nE(h). A well known theorem of Renyi and Sulanke states:

B

Theorem [RS): Choose n points independently from a uniform distribution over
a convez polygon. Let h be the number of points on their convez hull. Then E(h) =
O(logn).

The Giftwrapping algorithm therefore runs in O(nlogn) expected time when it is
run on n points chosen independently from an appropriate distribution.

Without overly belaboring the point we would like to stress that in this analysis
the algorithm itself wasn’t analyzed. Rather, it was fitted to a previously known
geometric result. As we said before this seems to be the standard technique used
for analyzing algorithms in computational geometry.

There are at least three consequences of this method of analyzing algorithms.
The first is that many algorithms simply do not have their expected running times
examined. This is because it can be difficult to find appropriate geometric facts
that let us analyze the algorithms. The second is that there are algorithms that
are designed, not for ease of implementation, but so that they fit certain geometric
facts that guarantee a good average case analysis. The third is that it is extremely
difficult, if not impossible, to use such mathematical analysis to understand the
subtleties of the algorithm’s behavior. Understanding the subtleties is important
because it lets us fine tune the algorithm to yield a variant that runs well in practice.
It is known for example, that the ability to model Quicksort’s behavior analytically
led to a better understanding of variants of Quicksort (e.g.. median-of-three, fin-
ishing with an insertion-sort) that tend to run faster than the plain vanilla version.
This idea, that a full analytic understanding of algorithms leads to the design of
faster real world algorithms, runs through all of Knuth's work [Kn1] [Kn2] [Kn3].
Since the standard method of analyzing algorithms in computational geometry gives
us only an understanding of gross behavior it is sometimes very difficult to use this
information for fine tuning.

Obviously, theoretical computer scientists prefer to analyze algorithms directly.
Why, then, do we see so few direct analyses in probabilistic computational geom-
etry? The unsurprising answer seems to be that such analyses, even of simple al-
gorithms, tend to be much more complicated than those of comparable algorithms
for sorting and searching. A major reason for this complication is the extra de-
gree of conditionality that geometric algorithms introduce. An algorithm, almost
by definition, incorporates many if...then decisions which, in average case analyses,
are dealt with by analyzing corresponding conditional probabilities. In geometric
analyses these conditional terms are frequently hard to treat analytically. Another

5

reason that these analyses are more complicated is that a great many of the com-
binatorial tools developed over so many years by so many people to explain sorting
and searching behavior do not seem to be applicable here. For sorting and searching
algorithms the conditional terms described above can often be defined recursively
and therefore analyzed using standard combinatorial techniques e.g. generating
functions. For geometric algorithms these conditional terms are usually functions
of geometric structures which often have no easy combinatorial description.

The remainder of this chapter is devoted to describing the difficulties
inherent in attempting to perform average case analyses in computational
geometry and what the tools are that we will use to overcome these dif-
ficulties. We will do this by examining three very different examples of
analyses. The first example is of Quicksort. Its analysis illustrates how
sorting and searching algorithms are approached. We show how what
might be expected to be a geometric analysis is “combinatorialized” and
therefore simplified. The second example is of Quickhull, an algorithm that
finds convex hulls in two dimensions. Its analysis, although intrinsically
geometric, is still easy. This is because we will reduce the analysis of the
algorithm to the analysis of how the algorithm behaves on just one point,
effectively removing worries about conditionality. The third and last ex-
ample calculates the expected “nearest neighbor distances” between points
uniformly distributed in a hypercube or a hypertorus. In this example we
confront the problems of conditionality head on and introduce some stan-
dard techniques for dealing with them. The second, third, and fourth
chapters present simple effective algorithms for finding, respectively, the
convex hull, closest pairs, and maxima of point sets. The analyses of these
algorithms will show that they are, in an expected sense, relatively fast.
In order to perform these later analyses we need the tools and results that
are developed in the rest of this chapter.

§1.3 Two Algorithms and their Analyses

§1.3.1 Quicksort

Figure 1.1 provides Pascal code and an example describing Quicksort, one of
the older and more venerable sorting algorithms. Quicksort is a simple algorithm,

6

procedure quicksort(l, r : integer,)
var v, t i, j:integer
begin
if ~/then AlS|OIR

begin
vi=afr]; = I-1; ji=r AlA

repeat
repeat i:=/+1 until afi/>=v; A Aﬂ
repeat j:=j-1 until afjj<=v; .
swapl(i); K

until je=i;] |

X

X
P
P
P

N
N
N
G
L
:?ciggﬁ(!, i1); | -]

quicksort(i+1, r);
end
end;

v/(|O]|IZ||E ||] |>

Figure 1.1. The left hand side of the figure provides Pascal code for Quicksort.
Swap(i,7) is a procedure that swaps the values in a[i] and a[j]. To ensure that ¢ and
Jj are always legal indices of a] | we use sentinels: if the elements to be sorted are
originally in a[1], ..., a[n], then we set a[0] = —o0, and a[n + 1] = oo, as sentinels.
The right hand side of the figure is a worked example where the inputs are letters.
Each level of the example corresponds to a recursive level of the program. The
shaded letters on each level are the partitioning elements for their sets.

typically taught to most beginning computer scientists. Because it is so simple it has
been analyzed in excruciating detail, making it ideal for our purpose of illustration.

A quick description of the algorithm will be helpful here!. It starts by getting n
points (real numbers), ki,...,kn, as input and storing them in an array a[] where
ali] = k;. It then designates the last point, k,, as the partitioning element and
partitions the remaining points based on it. This means that it rearranges the array
(Figure 1.1) so that a[d] = ky, a[l], ..., al[d— 1] < ky, and a[d+ 1], ..., a[n] 2 kn.
It finishes by recursively sorting the two point sets a[l), ..., a[d — 1], and a[d +
1], ..., a[n].

! Since our purpose is not to analyze Quicksort but to show how its probabilistic
analysis differs from that of geometric algorithms what we provide is only a sketch.
For a better description of the algorithm see [Sel] which is the source for the code
and example given in Figure 1.1. For a complete description and analyses of efficient
variants see [Se2].

In keeping with the purpose of this work we would like to perform a probabilistic
analysis of Quicksort. For our model we will assume that the k;-s are real numbers
scaled so that they are all in the interval [0,1). An average case analysis of an
algorithm like Quicksort would ask the following question:

Suppose that we are given n points (real numbers) independently tdentically
uniformly distributed in the interval [0,1]. What is the ezpected running
time of Quicksort?

This is a purely geometric quesion about an algorithm that manipulates points
on a line segment. As such it seems to call for a (complicated) geometric analysis.
Fortunately there is an easier approach. The crucial observation is that Quicksort’s
behavior is dependent only upon the relative ordering of the points and not upon
their exact locations. Thus the point set (0.2, 0.1, 0.4, 0.3) is treated in exactly
the same way as the point set (0.1, 0.05, 0.6, 0.3). All that matters is that they
both have the same ordering as the permutation? 2 1 4 3. If the n points are chosen
independently identically distributed (I.1.D.) uniformly from the interval [0,1], then
the probability of any two of them being equal is zero, i.e. with probability one,
all points are unique. Therefore, there is some permutation that describes the
relative ordering of the points. Furthermore the n points are indistinguishable so
each of the n! permutations occurs with equal probability. This transforms our
original probabilistic question about a set of random points into one about random
permutations:

Suppose that we are given a permutation of n items chosen at random
uniformly from the n! possible permutations. What is the erpected running
time of Quicksort?

The analysis of Quicksort is now standard and very well known. Let ki kz ...ka
be the given permutation of [1---n] and let

C, = Average number of comparisons made by Quicksort on n elements,

where the initial conditions are Co = C; = 0. We can now derive a recurrence
relation for the C, by examining the code in Figure 1.1. The first step, comparing
each element to k,, requires either n or n + 1 comparisons, depending on whether

2 A permutation is a one-to-one mapping f : [1---n] — [1---n]. It is frequently
written in the form f(1) £(2) ...f(n). Thus 2 1 4 3 represents the permutation

f1)=2f(2)=1, f8) =4, f(4) =3.

the repeat loop terminates because j = i or because j < i. For the rest of this
section we will assume that the first step requires n + 1 comparisons. (We will see
later that replacing n + 1 by n will only change low order terms in the analysis
of C,.) How much time does each of the recursive substeps take? The answer
depends on the value of the partitioning element which, because the permutation
was chosen uniformly from the set of all permuatations, takes on all values with
equal probability, i.e.

Vie[l---n], Pr(k,=1i)=1/n.

If k, = i then the two recursive calls are on sets of size i — 1 and n — 1 respectively.
Furthermore the permutation of the elements [1---4] is random before the parti-
tioning and therefore the permutations of the two new subsets are also random.
This is because, in the partitioning step, the relative ordering of the elements is
not used: the only facts used are whether the elements are greater or less than the
partitioning element [Kn3]. The recursive call on the set of size i — 1 will therefore
perform, on average, C;; comparisons. Simlarly, the call on the set of size n — ¢
will perform C,,—;. Putting it all together

1
Co=n+l+= mz_;ﬂ(c,*,-_1 + Cn-i) (1.1)

which, by symmetry, is equivalent to

2
Co=n+l+= ¥z Cliy. (1.2)

Multiplying both sides by n we find

nC,=n(n+1)+2 z Ci-1. (1.3)

1<i<n

Subtracting this equation (with n — 1 substituted for n) from itself and simplifying
gives
nCp—-(n+1)Cro1=n(n+1)-(n=1)n+2Cph (1.4)
which gives
nCp=(n+1)Cp-1 + 2n.

9

We now divide both sides by n(n + 1) and telescope:

(n+1) n n+1
_Cna, 2 2
T n-1 n+l1 =n (15)
C 2 .
- _3£+ 2, k+
3<k<n
= 1+2(Hn+1—%)

The harmonic sum Hy = 3, <;<n 1/1 is approximated by Hy, = lnn so
Cn = 2nlnn.

Recall that we assumed that the first partitioning stage always makes n + 1 com-
parisons. What would happen if we assumed that it always made n comparisons, if
we replaced (1.1) by

1
Co=n+= Y (Cim1 4 Cni)?

1<i<n

An analysis exactly like the one we performed for (1.1) again derives that C, =~
2nInn. Therefore our assumption did not bias the analysis and Cp, = 2nlnn.

This is not the end of Quicksort’s analysis. There are myriad variants
(median-of-three, ending with an insertion-sort, . . .) many of which were
analyzed [Se2] so that their implementations can be fine-tuned to realize
good running times on real computers. The point that we wish to make
here is that what makes all of these analyses (and the implementations
based on them) possible is the recasting of the geometric problem of points
on a line into the combinatorial one of random permutations. If we can
combinatorialize a problem we have a chance of bringing the entire arsenal
of combinatorial analysis to bear on it. As we will see in the next section it
is not always possible to combinatorialize a problem. Sometimes we have
to perform the analysis in a purely geometric fashion.

10

| I | '
'V" X
|

(a) (b)

Figure 1.2. The diagram on the left shows a collection of nails on a board
with a rubber band stretched so that it surrounds them. On the right the
rubber band has been let go and snaps back to tightly surround the nails.
The rubber band is the convez hull of the nails.

£§1.3.2 Quickhull

Next we’ll look at an algorithm whose analysis is purely geometric, and unlike
that of Quicksort, requires knowledge of the physical locations of the points. The
reason we present it here is to give an easy example of a geometric analysis that
can’t be combinatorialized. The algorithm is Quickhull [OL] (also known as Bykat’s
algorithm) and its purpose is the calculation of convex hulls in two dimensions. In
order to understand the algorithm we’ll need to provide a few simple properties of
convex hulls.

First, some definitions. There is a simple physical system that provides geo-
metric intuition into the structure of convex hulls. Pound nails into a flat board.
Take a large rubber band and stretch it so that it surrounds all of the nails (Figure
1.2a). Next, let go of the rubber band and let it snap back tightly against the nails
(Figure 1.2b). The rubber band is the convex hull of the nails.

Mathematically a set P C R? is called convez if for every pair of points p,g € P
the entire line segment

pa={dp+(1-2)g|0<A<1}

11

e ——————————

@)

)
S

Figure 1.3. S is the collection of points, CH(S) is the bold polygonal line, and
CH(S) is the grey area.

Figure 1.4. Suppose p & S is a vertex of the covex hull of S. The bold lines are the
two convex hull edges that have p as an endpoint. The dotted line is the bisector
of the angle, e, that is formed by these two edges. !’ is the line perpendicular to
the bisector that goes through p. Since p € S we can slide !’ a positive distance
down the bisector until it hits some point q € S. Let ! be the line through q that is

parallel to ['.

is also in P. Given a finite set S = {p1, ...,pn} C R? we define the conver hull of
S as

CH(S) = the boundary of the smallest convex polygon containing S. (1.6)

There is some confusion in the literature over whether a convex hull is the boundary
of the smallest convex polygon or whether it is the polygon itself. We follow the lead
of [PS] and define it as in (1.6). Keeping our notation consistent we also denote

CH(S) = the smallest convex polygon containing S.

Figure 1.3 illustrates these concepts. We will also need the following elementary
facts about convex hulls:

Lemma 1.1: For any point set P C R? and its convex hull CH(S):

(i) The vertices of CH(S) are points in S.

(ii) A point p € S is a vertex of CH(S) if and only if there exists a line [through
p such that all of the other points of S other than p lie completely on one side of [.

12

Proof: (i) See Figure 1.4. Let p be a vertex of CH(S) and suppose that p ¢ S.
Convex hulls are simple polygons so there are exactly two edges of CH(S) that
have p as an endpoint. Let o be the angle formed at p by these edges. Let 4
be the line through p that is perpendicular to the bisector of c. Since p ¢ S and
S is finite we can always slide I’ a small amount along the perpendicular bisector
without hitting any points in S. Let ! be the “slid” copy of I’ and H the halfspace
under it. Since the intersection of two convex regions is convex we see, from our
construction, that H N CH(S) is a convex polytope containing S which is smaller
than S. By contradiction p must be in S.

(i) If p is a vertex of CH(S) then the line I’ through p that was defined in the proof
of (i) has the given property.

Otherwise suppose that p is not a vertex. We will show that there is no line
with the given property. There are two possible situations. The first is that p is on
some edge e = (r,s) of CH(S). In this case any line through p either splits S into
two nonempty sets (one containing r, the other s) or the line is tangent to e and
itself contains r and s. The second situation is that p is interior to m But
then any line through p intersects CH(S) in two places and therefore partitions S
into two proper subsets.

Q.E.D.

Corollary 1.2: If for a point p € S, there exist three other points g,r,s € S such
that p is inside the triangle Agrs, then p is not a vertex of CH(S).

Proof: A line through p splits the set {g,r, s} into two nonempty sets and therefore
also splits S.

We now know enough to understand Quickhull. First we describe the algorithm.
Let S = {p1, ...,Pn}. We want to construct CH(S). Quickhull starts by finding the
the leftmost and rightmost points of S and labeling them Py and Pg. It partitions
the points of S depending on whether they are above or below the line P Pr (points
on the line can be disposed of since they can not be vertices of the convex hull).

Q.={p|p€S and above PLPr}, Q,={p|p€S and below P.Pr}.

It then calls the routine QH (Py, Pr,Q.) to find the upper hull of S, i.e. the convex
hull of all the points on or above Py Pg. The lower hull can be found via a similar

13

routine (e.g. transform all of the points in S using g((z,y)) = (z,—y). The lower
hull of S is g of the upper hull of g(S)). After the upper and lower hulls have been
found it patches them together to construct CH(S). As output it prints the convex
hull vertices in clockwise order. If three or more input points lie on the same convex
hull edge the algorithm will return the endpoints of the edge. It might also return
the points that are on the edge but not endpoints: whether it does or not depends
on the order in which it examines the points.

QH(r,s,Q):

Input: Two points, r and s, and a set of points Q such that, for every p € Q,
p is above the line 75 and r.z < p.r < ¢.7.

Output: CH(Q U {r, s}).

Description:

Find the point py in Q that is the furthest distance from 73. Divide the points in Q
into three sets. @ is the set of all points above 75y; Q2, all points in the triangle
Arpys; Q3 all points above 7. We forget about the points in Q.

If Q, is empty let C; = 0. Otherwise recursively call QH(r,ps, Q) to find Cy,
the upper hull above 7p5.

If Q3 is empty let Ca = 0. Otherwise recursively call QH (py, s,Q3) to find Cs,
the upper hull above pgs.

The convex hull of Q U {r, s} is the concatenation {r} C; {ps} C2 {s}.

End.

Figure 1.5 illustrates a worked example of the algorithm. We must now show
that the algorithm correctly finds the upper hull of S. For simplicity’s sake we will
assume that the points are in general position — no three of them are collinear.
Then, from the comment immediately preceeding the algorithm’s description, the
algorithm should report all of the convex hull vertices and no other points.

First we have to prove that the algorithm always terminates. The only possible
way for it not to terminate is to have some infinite nested sequence of calls to
QH(r,s,Q). But each time QH() is called the size of Q decreases by at least one
and therefore there can be at most n — 2 nested QH() calls.

Next we show that the points reported by the algorithm are all on the convex
hull. A point p is only reported as a hull point if it is the furthest from the line
!’ = 73. Therefore all of the points in S are to one side of the line [that goes through
p and is parallel to I’. Lemma 1.1(ii) tells us that p is a vertex of the convex hull.

14

(a) (®) ©

Figure 1.5. A worked example of Quickhull. In (a) we identify the left and
rightmost points and the point furthest from the line connecting them. The points
in the grey triangles are discarded. In (b) we perform the next level of the recursion,
finding the furthest points in both the left and right sets. Again the points in the
grey triangles are disposed of. Finally in (c) we perform the third level of the
recursion (only on the right since there are no points remaining on the left). After
this stage we have found the convex hull.

Finally we show that all of the vertices of CH(S) are reported. From Lemma 1.1(i)
we know that all of the vertices of CH(S) are actually points in S. A point p € S is
not reported as a hull point only if it is in Q2 after some call QH(r, s, Q). Therefore
p € Arpss and by Corollary 1.2 is not in CH(S).

The algorithm is known as Quickhull because of its similarity to Quicksort.
Both algorithms share the idea of finding a partioning element, using it to partition
a set, and then recursively calling themselves on the two new, smaller subsets.
Quickhull was independently discovered by Eddy [Ed] and Bykat [Byk]. Bykat at
first thought that it had a worst case complexity of O(n log n) but it was later shown
by [Fo] that there are inputs that force the algorithm to take (n?) time (Figure
1.6). On average though, the algorithm can be shown to take only O(n) expected
time when the points are drawn LI.D. from a large number of input distributions.
The following theorem was first presented in [OL] although the proof given here is
different.

Theorem 1.3: If n points, p;,...,Pn, are chosen independently identically dis-
tributed from a uniform distribution in a bounded convex region F then Quickhull
runs iu expected O(n) time on those points.

Proof: Before starting the proof we must point out that the probability that any
three points are collinear is zero and that we can therefore assume that each p; is
either a vertex of the convex hull or interior to the hull.

15

Figure 1.6. A degenerate case of Quick-
hull. Choose the n points so that they
are on a circle: p; = (cos 37,sin 77) for
0<i<n-1and p,—1 = (1,0). The
solid polygon is the convex hull. Quick-

hull requires £2(n?) time for this point
set; each call of QH() will identify one
point on the hull and then make only
one recursive call on all of the remaining
points.

The first part of the algorithm, identifying P; and Pr and partioning the
remaining points depending on whether they are above or below P.Pg, can be
accomplished in two straight passes through the data and therefore only takes linear
deterministic time. The second part of the algorithm, stitching together the upper
and lower hulls, also can be done in linear time. Recall the definitions

Q.=1{p|p€ S and above PLFPr}, Qs ={p|p€ S and below PLPgr}.

We must show that the expected amount of time taken by the calls QH (P, Pr,Q.)
and QH(Pr, Pr,Qs) together is O(n). Suppose, deterministically, that |Q.| = n;
and |Qs] = np where n; + ny < n. We will show that the expected amount of
time taken by QH(Pr, Pgr,Q.) is O(n;). A similar argument would show that the
expected amount of time taken by QH(Pr, Pr, @) is O(nz). Combining the two
proves the theorem.

Each recursive call, QH(r,s, @), requires 2|Q| time: |Q| for the linear scan
through the points that identifies p; and another |Q| for the second linear scan that
partitions Q into @;,Q2, Q3. Using this fact we can calculate the total amount of
work done by all the calls to QH() by amortizing it over the points rather than over
the actual procedure calls. We say that a point p participates in a call on level i if
there is a series of directly nested calls

QH(r1,8,Q®), QH(r2,62,Q®), -, QH(r:,5:, Q")
wherepe Q¥ c ... c Q® c QW) = . If we set
W (p) = max{p participates in a call on level i}
t

16

(7) (8)

Figure 1.7. The initial call of QH (P, Pg,S’). It finds the point py which is
the furthest above PrPg. It then disposes of all the points in the triangle A =
AP LD fP R-

Figure 1.8. The general function call. It finds the point py which is the furthest
above 7:5;. It then disposes of all the points in the triangle A = Ar;pys;.

then, from our definition of level and the way QH() partions its input sets, p
participates in exactly one call on every level less than W(p) and none at any level
above it. Thus the total amount of work done by all of the calls to QH() will
be 23", W(p;) since, at each level a point participates, only two units of work are
performed on that point. The first unit occurs during the scan that determines the
furthest point from the current base line. The second occurs during the scan that
throws away the points in the triangle. The total expected amount of work done
will be E(23"; W(p;)) which by the linearity of expectation and symmetry among
the points will be equal to 2n,E(W(p;)). We will now show that E(W(p,)) < 2 and
the proof of the theorem will follow.

We start by examining the first call, QH(Pr, Pg,S’). Let H be the parallelo-
gram P Ty TrPg and A the triangle APrpsPr as seen in Figure 1.7. Points in A
are disposed of on the first level so Pr(W(p;) > 1) is upper bounded?® by Pr(p; € A).
From the definition of Pr, Pr and py we know that Q@ C H and from the convexity

8 The probability is upper bounded by Pr(p; € A) but might not be equal to it
because p; may be one of Py, Pg, or py, the defining vertices of A. If this is the
case then Pr(W(p;) >1)=0

17

of F, the support of the distribution, we know that A C F. Therefore

_ Area(ANF)

~ Area(HNF)

_ Area(A)

" Area(HNF)
Area(A) 1

= Area(H) 2

Pr(p; € A)

and Pr(W(p,) > 1) <1/2.

Next suppose that p; has participated in every level up to and including some
level ¢ > 1. What is the probability that it will participate in the (¢ + 1)-st level?
When we made the i-th level call QH(r;,s;, Q) with p; € Q) there was some
triangle T that contained all of the points in Q(*) and two of whose vertices were
r; and s;. Let H be the quadrilateral r;t;t,s; and A the triangle Ar;pys; as seen in
Figure 1.8. Since H C T we have Area(A)/Area(H) > 1/2 and the same reasoning
we used for the first level gives Pr(p; € A) > 1/2. We have just shown that

Pr(W(p1)2i+1|W(p) 21 < 1/2, i>1

which put together with Pr(W(p;) > 1) <1/2 yields Pr(W(p;) 2' i) < 9-(i-1)
Using the standard formula for expectation we calculate

EW(p)) = Y Pr(Wm)24) <) 27¢D = 2.

i>1 i>1

Q.E.D.

What differentiates this analysis from that of Quicksort’s is that for
Quicksort we were able to combinatorialize the problem. Instead of fo-
cusing on point locations we were able to look at the combinatorics of
permutations. In Quickhull’s analysis, by contrast, we were unable to
perform a similar combinatorialization and had to work from a totally ge-
ometric perspective. Our analysis was still easy though because we were
able to reduce it to the analysis of how Quickhull acts on a single point.
This enabled us to avoid the problems introduced by conditionality and
interpoint dependencies. As we will see in the next section, we will not
always be so lucky.

18

§1.4 Interpoint Distances

§1.4.1 Definitions and Mathematical Preliminaries

Our final foray into introductory geometric analysis will illustrate the inherent
complexities of the subject. We examine the behavior of points taken from uniform
distributions in the d-hypercube and the d-hypertorus. The d-hypercube [0, l]d is
the region

{i: (z1,...,2d) | Vi, 0<z < 1}

where the distance function between two points is the standard L, metric of R4

d(J—C-,'f) 7 \/ z (z: —y;)z.
|

<i<d

The d-hypertorus can be thought of as the d-hypercube with “wraparound”: We
fold the hypercube so that each of the bounding hyperplanes z; = 0 touches the
parallel hyperplane z; = 1. The one dimensional torus is the circle with unit cir-
cumference (S!). The two dimensional torus (Figure 1.9) can be constructed by
taking a square and first taping its two horizontal edges together to form a cylinder
and then connecting the cylinder’s ends to form a doughnut. In higher dimensions
the construction is similar but harder to visualize. The distance function for the
one dimensional torus is

di(z,9) = min |z - yl, 1~z -)

while the distance function for the general torus is

d(x,5) = \/ Y dilmow).

1<i<d

To keep our notation consistent we will use the symbol < 0,1 >4 for the d-
hypertorus. Furthermore we will denote the uniform point distribution over [0, l]d
and <0,1>%as U0, 1]" and U< 0,1 >¢ respectively. Finally, we will say that
n points are LID. if they are independently identically distributed over some dis-
tribution. Therefore when we talk about “ n points 1.I.D. UJ0, l]d ” the intent is
that the n points are drawn independently from the uniform distribution over the
d-hypercube.

19

(a) (b)

Figure 1.9. Two representations of the two-dimensional torus. Figure (a) is a
physical construction. Figure (b) provides some intuition as to how “wraparound”
works in the plane. The heavy square in the middle is the actual torus. To find
the distance between two points p and g in the torus construct copies of g in the
surrounding squares. The distance in the torus between p and ¢ is the minimum
distance between p and the 9 different copies of g.

Let p1, ..., Pn be n points chosen L.I.D. from one of the distributions defined above.
In this section we will analyse two random variables which are functions of such
random point sets. The first is the minimum distance between p; and all of the
other points. We denote this distance by Y :

Y(D1isoosPn) = iz d(p1,Ppi)-

The second random variable is the minimum distance between all pairs of points,
which as known as the distance beween the closest pair. We denote this random
variable by Z :

Z(Pis+» ,Pn) = lsﬁlfsﬂd(phpi)'

Tables 1.1 and 1.2 present the results that we will prove later in this section.

We have two reasons for examining these random variables. The first, in keep-
ing with the spirit of this chapter, is to illustrate the standard difficulties inherent
in many probabilistic geometric computations. Our analysis of Quickhull, even
though we were unable to combinatorialize its behavior, was still relatively trivial.
This was because we were able to simplify the analysis by reducing it to the study of

20

n points L.I.D. E(YY)

U<0,1> F

U[0,1] = + o

U<'0;1 >* oan~Y4[1+ O (22)]
Ulo,1)* oan/4 (140 ((2)")]

Table 1.1: This table presents the results derived in §1.4.2. Y is the min-
imum distance between p; and ps,...,Pn Where the p; are chosen 1.I.D.
from some distribution. The first column is the appropriate distribution.

The second column is E(Y) under this distribution. The value 04 = 1;:1 4

d
where wg = 27%/2/dT'(d/2) is the volume of the unit sphere B(0,1).

n points L.1.D. lower bounds on E(Z) upper bounds on E(Z)
U< 0,1 >4 21/dgyn=2/4 (14 O (%)] 91+1/dg, n=2/d 140 ()]
ulo, 1J* Migyn-22[140(2)] 22Véoun=4[1+0(3)]

Table 1.2: This table presents the results derived in §1.4.3. Z is the min-
imum distance between the closest pair among p;,...,Pn Where the p; are
chosen 1.1.D. from some distribution. The first column is the appropriate
distribution. The second column contains lower bounds on E(Z); the third,
upper bounds.

21

the behavior of one arbitrary point. By doing this we managed to sidestep dealing
with how interpoint dependencies influence the running of the algorithm (such as
If point A is here then we don't have to check if point B is there ezcept if point C
is below it ...). In this section, especially in §1.4.3, we won’t be nearly as lucky.
At least half of our calculations will be devoted to understanding how interpoint
dependencies affect certain random variables, when they can be safely ignored, and
how addressing them can introduce uncertainties into our equations. These types of
calculations are present throughout this entire thesis - most importantly in Chapter
Three, where we must understand Z to understand the behavior of an algorithm
— 50 we begin to study them in these relatively simple situations. The second rea-
son for examining them is to introduce the analytic techniques that we will use
repeatedly throughout this paper. These include asymptotic expansions, Gamma
and Beta function techniques, and nested area arguments.

The next few paragraphs contain mathematical definitions and concepts that
we will need for our analyses. Most of them (except for Lemma 1.3) are fairly
standard and are presented for the sake of completeness. This section can be safely
skipped by those who are already familiar with the basics of real analysis.

Mathematical Preliminaries:

Definition: The Gamma Function of z is the definite integral
oo
I'(z) = f t=~le~tdt. (1.7)
0
Stirling’s Formula states that as £ — o0
T\" /211' §
I'(z) = (;) - [1 +0 (E):l ‘ (1.8)
Definition: The Incomplete Gamma Function of u and z is
o0
I'(z,u) = / F-letdt (1.9)
u
For fixed z, we have, as u — oo, the crude asymptotic bound
o0
I(z,u) < f e-2/3dy = O(e=*/2). . @10

Definition: The Beta Function of r and y is the definite integral
1
B(z,y) = [=11 — 1)t (1.11)
0

22

It is known [WW] that \
I'(z) I'(y)
) e 1.12
‘We will use the following very often:
Lemma 1.3: Let c be a real constant. As z — o0

Blc,z) = T(c) n=* {1 +0 (i)] . (1.13)
Proof: We know that I(e) T(y)
oA D\
ﬁ(.'c,y) - P($+C) s

From Stirling’s formula [WW] we find
N(e) (2)"yZ 1+0(3)]
z4c\Zte s
(=22)™ & [1+0 (k)] .
_ I"(c)ec (T) [z+c [1+O(—1—)] '
(x+¢c) \z+c x z
As r — oo standard asymptotic techniques show that
J===1+0 (3—)
T T
1 - 1
er == o (2)]
z * _. 3
(55) = [1+0(C)]

Inserting these identities into the previous equation yields the desired result.
Q.E.D.

Blc,z) =

We will also need to be able to identify the open region surrounding a point.
Definition: The neighborhood (ball) of radius a around a point p is

B(p,a) ={y | d(p,y) < a}.
The volume of B(p, @) in R? is vg = waa® where wq = 27%/2/dT(d/2) is the volume

of the unit sphere B(0,1).

Finally we will need the two asymptotic relations
e® =1+ 0O(z), z—0

In(1—z) = -2+ 0(z?), z=0 (1.14)

23

and the two summation formulae

Y i=zn?+0(n)

1<i<n

; (1.15)
Y. #=30°+0(n?).
1<i<n
§1.4.2 Nearest Neighbor to a Point
In this section we are given n points p;, ...,Pn drawn LLD. from one of our

two distributions and pick some distinguished point at random. Without loss of
generality we assume that we picked p;. Let Y be the distance from p; to its
nearest neighbor, i.e.

Y = min d(p1,p)-
What is E(Y) expressed as a function of n? The answer, for n points I.I.D. both

U< 0,1>? and UJ[0,1)%, is asymptotically cn=1/4 where c is a constant dependent
on d. Table 1.1 presents the results that will be derived in this section.

(a) First we will examine the simplest case: n points LLD. U<0,1>'. As
was previously mentioned, the unit-length one-dimensional torus is a circle with
circumference one. On this circle a pair of points is never more than distance 1/2
from each other so Y < 1/2. For a < 1/2 the event Y > a occurs if and only if
none of the points p2,---,Pn are in the neighborhood B(p;,a). Since the points
are independently and uniformly distributed

Pr(Y > a) = Pr(pa, :*,Pa € B(P1,0))
= (Pr(p2 € B(p1,0)))" "
= (Pr (1 - Area(B(p1,2))))" "’
=(1-2a)"".

(1.16)

The second equality follows from the independence; the third from the uniformity.
We now calculate the expectation to be exactly

1/2
EY)= | Pr(Y 2 a)da
(1.17)

1/2 1

n-—1
— . do = —.
fo (1-2a) Qs oo

24

(a') Now we look at the next simplest case, where the points are I.1.D. U0, 1]1.
A priori we would expect E(Y) to be greater here than it was in the previous case.
When p; is near the middle of the interval [0, 1] the situation looks locally like the
torus and we expect Y to behave the same way as it did for the torus. But, when
p1 is the leftmost (rightmost) point in the interval its closest point has to be to
its right (left) and Y is no longer the minimum of two numbers and, therefore, we
expect Y to be bigger than it was in the case of the torus.

The analysis here differs from that of the previous case in the derivation of
Pr(Y > a). For the torus we implicitly used the fact that the points on the torus
are indistinguishable from each other so

Pr(Y > a|p1 = 2)

was independent of z. For the unit interval this isn’t true because B(pj,) might
not be totally contained in [0,1]' and the probability

Pr(Y > a|p1=1z) = (1 - Area(B(p1,a)N[0,1]))*"*

is a function of both a and z. For z < 1/2 we can explicitly calculate (Figure 1.10)

2c if0<a<z
Area (B(p1,@)N[0,1])=<S z+a frz<a<l-z (1.18)
0 otherwise.

For x > 1/2 the calculations are similar (replace z by 1 — z on the right hand side
of brace). An expectation can be written as the weighted integral of conditional
expectations so

1
EY)= [) E(YY |p1 = z)dz

=f01 [folPr(Yza‘pl =z)da] dz.

Substituting the values from (1.18) and using the symmetry between z < 1/2
and r > 1/2

E(Y) =2 /o V2 [j: (1-20)"da + L g --a:—a)"“doz] dr. (1.19)

The two internal integrals can be evaluated
j (1-20)"da = (1~ (1-22)")
0 2n
l-2z 1
f (1-—:c—a)“‘1da=;(1—2z)“.

25

(b)

Figure 1.10. In (a) we see that if @ < z then Area (B(p1,a)N|[0,1]) =
2a. In (b) we see that if z < @ < 1—z then Area (B(p;,a) N [0,1]) = z+a.

Substituting back into the original equation

1/2
E(Y):Zfo — 14 (1-22)")dz = %+ n(n1+ 5

(1.20)

We see that our original guess was correct: E(Y') is greater for the unit interval
than it is for the unit torus. It’s not that much greater though; the correction term
is asymptotically negligible.

(b) Next we'll deal with n points I.LD. U< 0,1 >¢ with d > 2. We start the
same way as before, by calculating

Pr(Y 2 a) = (1- Area (B(p1,2)))"!

Observation shows that 0 < Y < v/d/2. If @ < 1/2 then Area (B(p1,a)) = waa®. If
a > 1/2 then there is no longer a simple formula for the area of the neighborhood.

This is because the boundary of the neighborhood overlaps itself (Flgure 1.11).

Fortunately a > 1/2 is the exponentially low probability event:

Pr(Y >1/2) = (1 1 %)"_1. (1.21)

26

Figure 1.11. The diagram is of the two dimensional torus. The shaded
area is the neighborhood B(p, 0.55) where p = (3, 3).

Therefore
vid/2
EY)= / Pr(Y > a)do
0

=i Pr(Y 2 a)da+ O [(1 - wa/27)].
0

-1/d -
Furthermore we can add [(1 —waa?) Yda = O [(1-wa/2%)] to the
previous expression so

-1/d

EY)= f:‘ (1- wdad)"_l de+ O [(1 —wa/29)]. (1.22)

The integral can be evaluated by using the change of variable u = wga? to get

-1/d

“a n-1 p(1/d,n)
/0 (1 = wdad) da = —dwT (123)
Set r1/d)
0= —-L (1.24)
dw;/d

Substituting (1.23) into (1.22) and using Lemma 1.3 we have just shown
1
EY)= ogn~/4 [1 +0 (;):I ; (1.25)

27

To review what we have just done: We saw that, for a < 1/2, Pr(Y >
e)=(1- waa?)" ™. We then used this to show that

Vid/2
EY)= /; Pr(Y 2 a)da

1/2
~ Pr(Y 2 a)da
0

1/2
- f (1- wdad)"—l da
3 -1/d

~/ s (l-udad)n-lda
0

_ B(Q1/d,n)
- dwf,/d :

This technique, of adding and subtracting asymptotically negligible quan-
tities to massage an integral into a more tractable form, is very standard
and will be used many times.

(b') If the n points are 1.I.D. UJ0, l]d we no longer have to worry about the
border of B(p1,ca) overlapping itself. We do have to concern ourselves with the
fact, similar to that observed in (a’), that B(pi,a) might not be totally contained
in [0, l]d. As a first step it is not difficult to see that, for a < 1/2, at least 1/2¢ of
the volume of B(p;,a) (in two dimensions a quadrant, in three an octant, etc.) is
contained in [0, 1)%. Therefore for a < 1/2

wga®/2¢ < Area [B(p;,a)ﬂ [0, 1]"] < waa®

and
(1-waad)"™ < Pr(Y 2 0) < (1-waa/29)"".

Calculations exactly like those that took us from (1.21) to (1.25) yield

oan~Y/4 [1 +0 (%)] < E(Y) < 204n~Y/4 [1 +0 (%)] (1.26)

With just a little more work we'll be able to show that the lower bound is tight
although we will lose some asymptotic precision. The difficulty in explicitly calcu-
lating E(Y') is that if p; is close enough to the border of [0, 1]‘, then B(py, @) isn’t
totally contained in [0, l]d. We will show that p; has a very low probability of
being close enough to the border for this to happen.

28

Figure 1.12. The unshaded region is R(7).

Let R(v) be the square ring (Figure 1.12) with width 4 around the border of
the hypercube:

R(y)={x=(z1,...,%,) |[Vi0<z; <yor (1=-7) <z <1}.
From the definition of conditional expectation

E(Y) =E(Y |p1 € R(7)) - Pr(p1 € R(7)) + E(Y |p1 € R(7)) * Pr(p1 € R(7)).
(1.27)
If @ > 1/2, then independent of the location of p;, we know that Pr(Y >
a|p1) € (1 —waa? /2")"_1. Again the same type of calculations we performed in
(b) show that

E(Y |p1 € R(7)) = j Pr(Y > o|p1 € R(v))da = O(n~Y/4).

Also Pr(p1 € R(v)) = v so the first term on the right hand side of (1.27) is
O(yn~1/9),

Now we calculate the second term. For p; € R(7) if @ < «4 then the entire
neighborhood B(p;,a) is totally contained in the hypercube and

Pr(Y > a|p1 € R(7))=(1 — waa®)*"1.
If o' =+ = (Inn/n)l/¢

29

Pi(Y 2 o'p1 ¢ R) =0 (1)

n

Integrating as before gives

E(Y |p1 & R(x)) = oan~ /¢ [1 +0 (%)] .

Finally, Pr(p1 € R(?')) = 1-49/(1—4') = 14+ 0(v'), and putting it all together
we have
E(Y) = O(yn~ ") + ggn=/4 [1 +0 (%)] [1+0()]

oo fio((2))]

§1.4.3 Closest Pair

We are now going to look at a slightly different problem, calculating the ex-
pected distance between the closest pair along n points LID. either UJ0, 1)¢ or
U< 0,1 >%. The random variable that we want to analyze is

Z(py; - Pn) = min d(pi,).

We will prove that, under both distributions, E(Z) = (©(n~!/24)) . Table 1.2 gives
the precise results derived in this section.
From Z’s definition we see that Z > o if and only p; is outside the a-

neighborhoods of all the p; with j < ¢, i.e.

Z2c & Vi,pi &) B). (1.28)

J<i

An alternate criterion is that all of the a/2 neighborhoods around the points in the
set are pairwise disjoint (Figure 1.13) i.e.

Z>a @ Vi#j, B(pi,a/2)NB(p;,a/2)=0 (1.29)

Before we start analyzing E(Z) we prove a simple, well known, fact that deter-
ministically bounds Z.

30

Figure 1.13. In this diagram Z, the distance between the closest pair, has
value a. The large circles centered at the points have radius a/2. Notice
that all of the circles are disjoint and the two in the lower right hand corner
are just touching each other.

Lemma 1.4: For any n points, p;,...,Pn, in [0, l]d or <0,1>4

Z(p1,...,Pn) < 80”14

where s is a constant dependent on both d and whether the distance function used
is that of the hypercube or that of the hypertorus.

Proof: This follows directly from (1.29). For @ < 1/2 the area of the intersection of
B(p;,a/2) with [0, l]d or < 0,1 >%is at least ca® where c is a constant dependent
on d and whether we are discussing the torus or the cube. Since these balls are
disjoint we must have cna® < 1 = Area ([0,1)¢) = Area (< 0,1 >¢). The proof of
the lemma follows.

(a) As usual we will first examine n points 1L.I.D. U< 0,1 >9. We need to find
the value of Pr(Z > a). Think of constructing the event Z > a on a point-by-point
basis. We use (1.28). First we place p; anywhere. Next we place p, anywhere
outside of B(pi,a). Next we place ps anywhere outside of B(p;,a)UB(p3,a). We
continue in this fashion until all of the points have been placed. The k-th step is

31

place px anywhere outside of Ui<xB(pi, a). Written in terms of probabilities

Pr(Z(p1, .--»Pn) 2 @) =Pr(Z (p1,p2) 2 @)
Pr(Z(p1,P2,P3) 2 a | Z(p1,P2) 2 @)
-Pr(Z (p1,P2,P3,P4) 2 @ | Z(p1,P2,P3) 2 @)
= [[Pr(Z(p1,....Ps) 2@ | Z(P1,-- -, Pk-1) 2 Q)

k<n
=TI ® (pk ¢ UB®ia) | Z(-.oPet) > a)
k<n i<k

While this might look forbidding, it is not hard to see* that the generic term

is just
1-E (Area (U B(pi,a)) | Z(P1y-.. Pec1) 2 a) (1.30)

i<k

given that Z(p1,---,Pk-1) = @. The problem we have in evaluating this expression
is that the neighborhoods of the points might intersect and therefore we can't cal-
culate the areas explicitly. We can bound (1.30) from below with (1 — (k — 1)wga?).
By using (1.29) we can also bound it from above ; even though the a neighborhoods
might intersect we know that the a/2 ones are disjoint and therefore (1.30) can be
upper bounded by (1= (k=1)wga?/2?). Since E(Z) = J"—”f’r(Z > a)da, we have
just shown that

-1/d -1/d

./.m [[a-iwia?)da < E2Z) < jm H(l—z’wdadﬂd)da. (1.31)
0 0

i<n i<n
We will evaluate the left hand side; the right hand side is evaluated similarly.
We use the asymptotic relations provided at the beginnning of this section.

H(l — iwga?) = exp (E In(1 - iwdad))

i<n i<n
= exp (Z [—iwda‘ h O(izazd)])
i<n
= exp (~waan(n - 1)/2+ O(na™))
= exp (—wdadnz/Z) 1+ O(na®) + O(naa“)] .

4 Because of Lemma 1.4 we no longer have to worry about a > 1/2 since a will
always be O(n~1/9).

32

From this we see that if @ > (1%3)1” then the product is O(1/n) because
the exponential term is the dominant factor. When a < (21““)1/d both of the O()
terms on the right hand side of the last line evaluate to O ('“ “) Therefore

[st [o) o 2
i<n
=/0‘(2'.'.‘5'“)1/a —waa*n?/240 4 O (%) '

We can evaluate this integral by the substitution v = waa?n?/2 to get

1/d , -2/d wglnn
(&) () [e
d 0

where the integral is 1 minus an incomplete Gamma function. Using (1.10) we find
that

n-1/d

1-T(1/d,wslnn) = T(1/d) + O (;1;) .

We have just shown that

E(Z) > 2Y404n?/? [1 +0 (%)] .

The same calculations that were used to evaluate the left side of (1.31) can be
used to evaluate its right hand side (substitute wq/2¢ for wq) giving

E(Z)<2 (jd)w (E(}/d;ﬂ) [1 +0 (%)] .

We have shown that

2} dgyn=2/d [1 +0 (%)] <E(Z) L 2V egyn~3/4 [1 +0 (-f};)] G E

(a') The analysis of Z when the n points are L1.D. U[0, 1)% is similar. As in sections
§1.4.2(a’) and §1.4.2(b’) we have to take into account the fact that not all of B(p;, @)
is contained in [0, 1]‘. But, again as before, we know that at least 279 of each of
the balls is in [0,1)%. Therefore

sn—1/d sn—1/d
] [[0 - iwsed)de < E(2) < f 101 - iwea®/4%) da. (1.33)
0 t<n 0 i<n

33

This differs from (1.31) only in the extra factor of 2~¢ in the right hand expression
so the exact same calculations that we used to go from (1.31) to (1.32) transforms
(1.33) to

ke T e [1 +0 (%)] <E(Z) < 22+Ydg n—2/d [1 +0 (%)] . (1.34)

§1.4.4 Scaling

Let us return for the moment to §1.4.2(b) of this and rexamine the behavior of
Y(pls * A0 ,pn) = 1%%11 d(Pl, P:)
where the p; are L1D. U< 0,1 >¢. We showed there that

E(Y) = a4n~/¢ [1 +0 (%)] ; (1.25)

This is fine as far as it goes but what does it really tell us about the distribution
of Y? Is it always “close” to E(Y') in the sense that its distribution is concentrated
around E(Y), or is Y very spread out? Since® E(Y,) is a fast decreasing function
of n the word “close” will have to mean something very different for n = 100 than
it does when n = 1,000,000. To make such a distinction rigorous we introduce
the concept of scaling, multiplying the Y,, by appropriate factors and examining
these scaled random variables on some absolute scale. In §1.4.2 we saw that the
distance from a point to its nearest neighbor was ©(n!/9). Intuitively then, n'/¢
might be an appropriate scaling factor since multiplying interpoint distances by it '
would transform them onto an absolute scale. In fact n1/4 is a good scaling factor.
We define
Y! = nt/?Y,.

Equation (1.25) tells us that
E(Y,) — o4, n— 00 (1.35)

but we can prove the following much stronger result:

5 For the rest of this section we will write Y,, (and Z,) instead of Y (and Z) to
make the reliance on n more explicit.

34

Lemma 1.4: Let X be an exponential random variable with parameter wq. Then
Y2 VX, now (1.36)
where the mode of convergence is in distribution, i.e.

Vz, Pr(Y! > z) = Pr(VX >z), n—oo. . (1.37)

We will delay the proof for a moment to see what type of information this gives
us. If f(n) is a function that goes to 0, e.g. In™" n, then (1.18) tells us that

Pr(Y. < f(n)) =0 or Pr(Y, < f(n)n~"/?) = 0.
Similarly if f(n) is a function that goes to oo, e.g. lnn,
Pr(Y! > f(n)) = 0 or Pr(Y, > f(n)n~'/%) = 0.

Therefore, if o is outside the narrow range “a constant times n~!/¢” then with

probability going to one, Y, is not close to a. If a is some “constant times i

then there is a positive probability that ¥, will be close to it. More specifically,
from (1.18) we know that for all positive constants 0 < ¢; < c2

PI(Cl‘n_lld < Y c2ﬂ-1/d) = Pr(cln < Yr: < 02) i e“dcf i e“’dcg > 0.

Proof of the lemma: The analysis in the paragraph preceeding (1.32) shows that
Pr(Yn > a) = (1 - waaa)" . (1.38)

Using the definition of Y, and the asymptotic relations (1.14) we find, for constant

c,
Pr(Y! > ¢) = Pr(Y, > cn~Y/9)

- (- Ed;c‘d)n-l (1.39)

)

Since Pr(X > c?) = e~“4 we are done.
Q.E‘D.

35

The same scaling technique that we used for the problem of §1.4.2(b) also works
for the problem of part §1.4.2(b’) where the points are 1L1.D. U[0,1)°. Writing an
equation analogous to (1.38) for probabilities instead of expectations we find that

Pr(Y > a) =Pr(Y 2 a|p1 € R(7)) - Pr(p1 € R(7))
+ Pr(Y 2 a|p1 € R(7)) - Pr(p1 € R(7))-

Setting 7 = o and using the same techniques we used to analyze (1.29) we find that
Pr(Ya > @) = (1-wa®)" " +0[(1-waa?/2)""a|. (140)

Again setting
¥ = Xanh*

we can prove Lemma 1.5 for this case as well by substituting (1.40) in place of
(1.38). The same consequences follow.

We won’t be able to get as nice a set of results for Z,, the distance between the
closest pair. This is because we weren’t able to find an exact asymptotic formula like
(1.38) for Z,,. The best we were able to accomplish when the points were U< 0,1 sl
was upper and lower bounding Z,, with

=25 [1+ O(ne?) + O(n?e??)] < Pr(Z, > @)

< e:%ﬁ# [1+O(na®) + O(n%a??)] .
(1.41)

We still get some utility out of the scaling argument though. The appropriate

scaling factor is n?/¢. Defining

Z! = Z,n¥4
we see that

e-_wfc_d [1 + (-71;)] <Pr(Z,>¢c) < e:ﬁﬁ: [1+ (%)] ;

Although we no longer can prove convergence in distribution to some random vari-
able, this still shows that

Pr(Z, < f(n)) =0, f(n)—0

and
Pr(Z, 2 f(n)) =0, f(n)— oo

36

with the attendant consequences for Z,. Furthermore there is still a positive prob-
ability of Z] being larger than any constant.

Finally notice that a similar phenomenon ocurrs if the points are UJ0, 1)%. The
only difference is that we replace (1.41) with

62‘# [1+4 O(na?) + O(n®a??)] < Pr(Z, 2 a)
< ezﬁﬂ“_ [14 O(na®) + O(n 3a?d)]

e—-wdcdfz [1 + (%)] S PI(Z:; 2 c) S e—wdc‘/234+1 [1 -+ (%)] @

To review: We choose n points, p1,...,Pn, I.I.D. U[0, 1]d or U<0,1>¢
and define Y,, to be the minimum distance between p; and its nearest

and get

neighbor. In this section we showed that as n — oo, the random variable
n1/9Y,, converges in distribution to ¥ X where X is an exponential random
variable with parameter wq. This told us that Y, is very concentrated
around the value n/9, i.e.

Pr(Y, > n-1/d lgn) — 0, n — 0o

and
Pr(Y, <n~Y4/1gn) =0, n— oo

We also applied a scaling argument to the random variable Z,,, the distance
between the closest pair among the p;. We showed that Z, ~ n~2/4, Even
though we were not able to prove that n?/¢Z, converged in distribution
to some random variable, we were able to show that Z, is very heavily

concentrated around n—2/¢4,

§1.4.5 Extensions to Other Metrics

In the previous subsections we analyzed the expected values of inter-
point distances (closest point and closest pair) assuming that distance was
defined under the L, metric. The L, metric defines the distance between
two points X = (z31,...,2q4) and ¥ = (y1,-..,¥a) in R? to be

dxy)= [@

1<i<d

37

and the distance between two such points in the d-dimensional hypertorus
to be

1<i<d

d(%,3) = ‘/Z (min(a: - wil, 1 - [z —)’

In this section we generalize our results to other definitions of distance,
specifically, for Lo, and L, distances. The Lo, distance is defined in R?
by

doo -x-,'}?) - 1%8‘2% lzt yil'

The analogous distance function in the d-dimensional hypertorus is
deo(%,¥) = max (min(|e; - gil, 1 - |zi - wil).

The L, distance (p > 1) function in R is defined by

1/p
dp(%,5) = ():Ix.—y,) ;

1<i<d

In the hypertorus we have

1/p
dp(X,¥) = (> (min(jz; — gil, 1 - | —yil))) :

1<i<d

The L, metric is the standard distance function. The Lo, metric can be
thought of as lim,_,o Lp. In what follows, the phrase “L, metrics” will be
taken to mean both the L, metrics and the Lo, metric.

The first step in generalizing our analysis to include these new distance
functions is to generalize our definition of a neighborhood. We do this in
the natural way.

By(X, a) = {¥|dp(X,¥) < a}.

Figure 1.14 illustrates the two-dimensional unit-neighborhoods under the
L1/2, L, L3/2, L,, and L, metrics

The second step in generalizing our analysis is isolating those prop-
erties of B(X, a) that are used in §1.4.2 and §1.4.3 to analyze Y and Z
as functions of random points p;,...,Pn- In §1.4.2 we analyze Y, the dis-
tance between p; and its closest neighbor. We find that there are only two
properties of B(X, a) that are used in §1.4.2. The first is that fora < 1/2

38

(a) (b) (c) (d)

(e)
Figure 1.14. These are two-dimensional unit neighborhoods under dif-
ferent metrics: (a) is under the Ly metric, (b) La/2, (¢) L2, (d) Ls/2, and
(e) L.

the area of an o neighborhood (in both a d-dimensional hypercube and a
d-dimensional hypertorus) is directly proportional to a? :

Area (B(X,a)) = wga?, o<1/ (1.42)

The second is that, again for @ < 1/2, no matter where X is located, at
least 1/2¢ of the area of B(X,a) is in [0,1)°.

waa®/2? < Area [B(i,a)n 0,1°] < wae?, as1/2. (143)

It is not hard to see that the L, metrics also have these properties. To
do this we must introduce some new notation. Let wp 4 be the area/volume
of the unit ball defined by the L, metric:

wp,a = Area (By(0,1)).

For example, ws 4 is just the old wg, while w; ¢ = 1/d! and we ¢ = 4. We
can replace (1.42) and (1.43) by

Area (B,(X,0)) = wae?, a<1/2 (1.44)
and
wpa0?/2? < Area [B,(i, a)n o, 1]‘] < wpaad, a<1/2 (1.45)

where p can also take on the value co.

We then substitute these properties in place of (1.42) and (1.43) in
§1.4.2 to generalize its analysis of E(Y) to the L, metrics. We present the
generalized results in Table 1.3.

39

In §1.4.3 we analyze Z, the distance between the closest pair of points.
This analysis also uses (1.42) and (1.43). It needs two other facts about
B(X,) as well. The first fact, the only other one needed to lower bound
E(Z), is

Z>a & Vi,pi €| B(pj) (1.28)
J<i
This fact remains true under the L, metrics. Therefore the lower bounds
on E(Z) calculated in §1.4.3 under the L, metric are also valid under the
L, metrics after replacing wgq with wp 4. The second fact, the only other
one needed to upper bound E(Z), is

Z>a & Vi#j, B(pi,a/2)NB(p;,a/2)=0. (1.29)

We will show that this fact is true for any L, metric (p > 1. If p < 1 then,
in general, this last statement isn’t true). First we prove the <= direction.
Suppose that Z < a. There is some pair p;, p; such that dp(p:, ;) < .
From the definition of an L, metric we find that

Pi + Pj Pi +P; a
dp (Pi, 2 J) = dp (p.‘f’TJ) < 5

Thus B(p;,a/2) N B(p;,a/2) # 0.
Now we prove the = direction. Suppose that Z > a but there is

some pair p;, p; and a point q such that q € B(p;,a/2) N B(pj, /2). The
triangle inequality [Ru] yields

dp(Pi, Pj) < dp(Pi,Q) + dp(q,Pj) < @/2+a/2=c.

This contradicts the assumption that Z > a, an assumption which forces
dp(Pi, P;) 2 .

We have just shown that (1.29) is true for any L, metric. Therefore
the upper bounds on E(Z) calculated in §1.4.3 under the Ly metric are
also valid under any L, metric (p > 1) after replacing wq with wy 4. Table
1.4 presents the new upper and lower bounds.

What differentiates the interpoint distances’s analysis from
Quickhull’s is that here we had to worry about the how the lo-
cations of the points interacted with each other. The salient
characteristics of this analysis were

40

n points L.I.D. E(Y)

U<0,1> =

Ulo,1] =+ ;,-(;,’;—15
U< 158 opan~1/4
Ulo,1)° opan=1/4

1+0(%2)]

1+0((3)")]

Table 1.3: This table presents the results derived in §1.4.2 gen-
eralized to any L, (L) metric. Y is the minimum distance

between p; and p2,...,Pn where the p: are chosen I.ID. from

some distribution. The first column is the appropriate distribu-
tion. The second column is E(Y) under this distribution. The
value 0p 4 = ﬁ%ﬁ%ﬂ; where w/ is the volume of the unit sphere
B(0,1) defined by the L, (L) distance function.

n points 1.I.D.

lower bounds on E(Z)

U< 0,1>¢
Ulo,1)?

21/4g, 4n?/4[14 0 (1))
2Y/dg, yn=%/4 1+ O ()]

upper bounds on E(Z)

21437a, T4 110 (3)]
2/4g, 44 140 (2)]

Table 1.4: This table presents the results derived in §1.4.3 gen-
eralized to any L, (L) metric. Z is the minimum distance be-

tween the closest pair among p;, ..., Pn Where the p; are chosen

1.1.D. from some distribution. The first column is the appropriate
distribution. The second column contains lower bounds on E(Z);
the third, upper bounds.

41

(1) Integration over continuous probability measures of functions
that evaluate to Gamma and Beta functions.

(2) Identification of low probability events (such as p1 € R(7) in
§1.4.2(b')). Ignoring these events and conditioning the rest of the
problem on their not occurring.

(3) Appropriate scaling of random variables.

In the remainder of this thesis these three characteristics will
recur often.

42

Chapter 2. A Simple Convex Hull Algorithm

§2.1 Introduction

In this chapter we will present and analyze a simple, intuitive preprocessing
algorithm for convex hulls. In §2.2 we present the algorithm. It is a simplified
version of one proposed by Devroye and Toussaint in [DT). A Pascal implementation
is given along with a worked example. In §2.3 we analyze the expected number of
points remaining after running the algorithm. Our probabilistic assumption is that
the points are uniformly distributed in the unit square. Let S be the number
of points remaining after running the algorithm on n points. The analysis given
in [DT] shows that E(S) = O(y/n). This result was only of theoretical interest
because the constant in the O(y/n) was greater than 2,000,000. Our main result is
an analysis which proves that that E(S) < c¢y/n where c is a small constant less than
8. This shows that the algorithm is practical as well as simple. §2.4 discusses the
combined behavior of the preprocessing routine followed by some standard convex
hull algorithms. It also compares experimental results to those predicted by the
mathematical analysis. §2.5 proves the benefit of performing a tight analysis of the
algorithm. In it we present a variant of our convex hull preprocessing algorithm
and discuss why we would prefer one algorithm over the other. over the other. To
do this we need tight analyses of both algorithms. §2.6 discusses how to extend the
algorithm and its analysis to higher dimensional spaces. The result there is that
E(8) = O(n(4-1)/4) where d is the index of the dimension. We conclude, in §2.7, by
reviewing our results and presenting a simple intuitive argument why they should
be true.

§2.2 The Algorithm

In §1.4 we introduced the concept of convex hulls in R2. If § = {p;, ..., pn} C
R? is a finite set of points then we defined CH(S), the conver hull of S, to be the
boundary of the smallest convex polygon containing S.

Convex Hulls are among the most intuitive and useful structures studied by
geometers and as such they have been extensively examined and many elegant
algorithms exist for their computation [PS)]. In addition to these there is also a
very simple heuristic attributed to W.F. Eddy and R.W. Floyd [Ed] [Sel] for

43

improving the performance of any such algorithm. Pick any four points from S.
These points are the vertices of some quadrilateral - in the degenerate case a triangle
or line segment — Q. A straightforward generalization of corollary 1.2 shows that Q
is contained within the convex hull of p;,...,pn.
We can therefore eliminate all points that are in-

side Q without discarding any information essen-
tial to the construction of the convex hull (Figure
2.1). Our goal in this section is to identify a com-
putationally simple method for choosing the four
points such that after the elimination step only
a few of the p; will remain on average.
Specifically, suppose that py,...,p, are LL.D.
U[0,1)?. In §2.3 we will prove that the follow-
ing choice of points gives us good average case
behavior: Pick the four points that minimize the

Figure 2.1

four functions +z + y. Equivalently, these are the two points that minimize the
functions r + y along with the two that maximize the same functions, a fact that
we will utilize in programming our algorithm. Note that these choices might not
be well defined since there can be two or more points that minimize any of the
functions. We would like our algorithm to always work properly, not just when its
input points are in general position (points are in general position if no three of
them are collinear). To insure this we will specify the points with the lowest indices
that minimize the functions. Thus the four points (Figure 2.2a) are

a=(lyl)=p k=min{Vi:+z;+y; < 47+ %)

g2 = (25,93) = P« k=m’§n{v’:=+zj"yj < +z; - yi}

gs = (23,43) = px k=m5_in{Vi:—x_,-+y,- < -z + ¥i}

0a= (2§ 88) =pe k=min{Vi:-z;-y; < -z -y}
The next step is to eliminate those p; inside Q. In reality, round-off error makes the
problem of deciding whether a point is inside an arbitrary quadralateral computa-
tionally nontrivial. We therefore modify our elimination criteria somewhat. Instead
of disposing of all of the points inside Q we find a large rectangle R C Q and only

dispose of those inside R. Since these points are also inside Q we lose no essential
information. If Q is not degenerate there is a nice geometric method for finding a

44

. . 4

——- -
.

1 B

-

(c) (d)

Figure 2.2. (a) shows the sweep lines hitting g1 = p1, g2 = p2, @3 =
Ps, and g4 = ps and the quadrilateral Q they define. We resolve the tie
between pg and p; by choosing pg, the point with the lower index. (b)
illustrates how the g; are used to define R. In (c) we see that R C Q. After
eliminating the points in R we run any convex hull algorithm to find (d).

good R. Minimizing the function z + y can be thought of as sweeping in a 45° line
from the lower left corner of infinity until it hits some p; which will then be g;.
Similarly, minimizing = — y sweeps in a line from the upper left hitting g2, =z + y
sweeps in from the upper right hitting gs, and —z — y sweeps in from the lower right
hitting g4. By this reasoning the leftmost x-coordinate of R should be max(z{,z3)
since these are the points encountered by sweeping in from the left. The rightmost
x-coordinate will be the minimum of the two x-coordinates on the right, min(z3, z3)

45

(Figure 2.2b).The y boundaries of R are found in the same way and thus
R ={(z,y): max(z],2}) <z <min(zf,2z§) max(y{,43) <y < min(yz,45)}.

(If Q is degenerate then R is an empty set (either its x or y range has nonpositive
length) and thus none of the p; are inside of it and the algorithm is still well defined.)
It is very likely that there is an even larger rectangle parallel to the coordinate axes
that is contained inside Q but we are not looking for the largest, we are looking for a
large one that is easily computable. This is a property that R manifestly possesses.

Rectangle inclusion is trivial to program and much more numerically stable
than the more general quadrilateral inclusion. Figure 2.2 illustrates a worked ex-
ample of the preprocessing algorithm which we call eliminate. Program 2.1 is a
complete Pascal implementation of the algorithm. The procedure assumes the exis-
tence of a predefined data type point. The array p[1...n] contains the set of input
points. eliminate returns m, the number of points outside of R , and rearranges
p[...] so that its first m locations contain exactly those m points. The remaining
points will be in pm +1...n].

We end this section by pointing out that eliminate has an O(n) running time
since all it does is make two linear passes through the data. The first pass identifies
the four vertices of Q and the second disposes of the points inside R.

§2.3 Analysis

Let p; = (i,¥i), i =1,...,n, be chosen 1.LD. UJ[0,1]%.Our goal is to analyze
the asymptotic behavior of E(M), n — oo, where M is the number of points not
deleted by eliminate:

M(py,...,pn) = The number of points undeleted after running eliminate.
= The number of points outside R.

We designed eliminate to be a simple algorithm, one that is easy both to
understand and to implement. We did not design it to be simple to analyze. As we
shall see the calculation of E(M) and related values is complicated by the fact that
there is extreme probabilistic dependence between the values of g, and even more
so between the different boundaries of R. We will overcome this problem by finding
the expectation of another simpler random variable and using it to upper bound
E(M). To accomplish this we need to define the the following functions and regions
(Figure 2.3a):

46

function eliminate(N : integer) : integer;
var i1,i2, i3, i4, j, M :integer;
al, a2, a3, a4, highx, lowx, highy, lowy : real,
t: point;
begin
=1 i2:=1; i3:=1; i4:=1,;
al:=p[1]x +p[1]y; a3:=al;
az:=p[i].x-p[lly;, a4:=a2;
for j:=2to Ndo
begin
if plil.x +p[jly <al then
begin i1:=j; al:=p[j].x + p[jl.y; end
else if p[j].x +p [jl.y > a4 then
begin i4:=j; a4:=p[jl.x + p[jl.y; end;
it p[j].x - p[j].y < a2 then
begin i2:=j; a2:=p[j].x - p[ily; end
else if p[j].x-p[jly > a3 then
begin i3:=j; a3:=p[j].x - p[jly; end;
end;
lowx:= MAX(p[i1].x, p[i2].x); highx:= MIN(p[i3].x, p[i4].x);
lowy:= MAX(p[i1].y, p[i3].y); highy:= MIN(p[i2].y, p[i4].y);
M:=0; j:=N;
while j>M do
if lowx <p[]l.x and p[j.x < highx
and Jowy <p[jly and pfjly < highy then
ji=j-1
else
begin
M = M+1 .
t=pM; pM]:=p[; Ppl]=t
end;
eliminate = M;
end;

Program 2.1. A full Pascal implementation of eliminate. It is called with pa-
rameter N; the array p[1...N] holds the points. After the function is initialized
the for loop finds the four points that minimize the functions £z %+ y. 41 holds
the index of q;, 12 of g, etc. while al, a2, a3, a4 hold the respective minimized
values of =z % y. The next step calculates the boundaries of R: lowz, highz, lowy,
highy. The while loop rearranges the array so that the non-eliminated points are
at its bottom. When it returns the function has value M, the number of points that

weren’t eliminated.

47

- o > < a, > <« o, >
A{oy) . Afo) . Ada)
. . oy .

« o >

®)

Figure 2.3. (a) gives some test points with the a) noted and the Ax(ax) (shaded
areas) drawn. Note especially that Ax(ax) are all empty with a point (gx) on each
of their defining diagonals. (b) is (a) with Bx (dashed box) and R (thin lined box)
drawn in. The dotted boxes illustrate the relationship between the a; and X. The
g« are all inside the dotted boxes so Bx C R. By inspection Z = 17 and M = 10.

0= min z; + yi A(a)={(z,y): 0<z+y<a}
1<i<n

a; =1+ min z; -y Az(e)={(z,y): -1<z-y<—-(1-0)}
1<i<n

a3 =1- max z; -y Az(e)={(z,y): 1-a<z-y<1}
1<i<n

au=2- mex zi+ 1 Aa)={(z,9): 2-a<z+y<2)
<i<n

These definitions have very intuitive motivations: aj is the distance from the
k-th corner to the intersection of the corresponding diagonal and the horizontal
(vertical) boundary of the unit square. Ax(a) is the right isosceles triangle with
base sides a that fits into the k-th corner of the square. As defined above, ax and
Ay taken together have the following property upon which our analysis will strongly
depend:

Ai(ar) is empty and its defining hypotenuse has at least the one point gi on it.

We further define

X = max(a;, as, a3, 04)
Bx = {(z,y): (z,3) € (X,1 - X)*}
Z = |{p:i : pi ¢ Bx}|.

48

By is the open square whose sides are parallel to, and a distance X away from,
the sides of the unit square. Z is the number of points in By, the hollowed out
region surrounding By (Figure 2.3b). No matter what the placement of the p; we
always find that R D Bx. Therefore, the number of points inside R, n — M, is always
greater than the number of points inside By, n— Z : thus M < Z. The objective of
this section is to show that there exists a b > 0 such that E(Z) ~ by/n and therefore
E(M) = O(y/n). Before doing this we prove the following weaker result.

Theorem 2.1: Let X = max(a;,2,a3,04). Then, for n points chosen LID.
Ulo,1)?,
c
E(X) ~ 75 (2.1)

where ¢ = ﬁ[11@+2\/§—3] = 1.9636...

Proof: We split the proof into four parts. In the first we derive a truncated integral
representation for E(X). In the second we derive a closed form for the integrand.
In the third we use the Gamma and Beta function techniques introduced in §1.4 to
evaluate the general term of this closed form. In the fourth we combine the first
three parts to prove the theorem.

(i) The values of the oy range between 0 (a point at the k-th corner) and 2 (all
of the points are clustered at the corner diagonally across from the k-th one). Thus
0 < X <2 and we can write

E(X):./:afx(a)da=f°2Pr(X_>_a)da. (2.2)

where fx(a) is the probability density function of X. Now X > e if and only if 3k
such that ax > a. This in turn is true if and only if at least one of the four isosceles
right triangles Ax(a) is empty, thus

X2a® V{Ak(a) is empty} (2.3)

(V indicates the union of events). As occurred so many times in §1.4 we again have
to concern ourselves with whether the region we are examining is totally contained
within the support of our probability measure, i.e. whether Ax(a) C [0, 1}2.

If o < 1 then Ax(a) C [0, 1]2 and, for any point p;, we find that

Pr(p; ¢ Ax(a)) =1— Area(Ax(a))=1- o?/2.

49

The p; are independently distributed and therefore we can calculate
Pr(Ak(a) is empty) = Pr(Vi: p; € Ax(a))
= HPI'(PJ' ¢ Ax(a)) (2.4)

J
= (1-a?/2)".

We now have to evaluate Pr(\/, {Ax(a) is empty}). We do this by using the
inclusion-exclusion principle [GS2, p.6] which requires taking the probability of the
intersection of all possible combinations of one, two, three and four of the events
{Ax(a) is empty}. If the Ax(a) are pairwise disjoint then this is very simple. For
example

{A1(e) is empty} A {A2(a) is empty} < {A1(a) U Az(e) is empty} (2.5)

and we can find the probability of the right side of (2.5) by using the same type
of area argument that we used to derive (2.4): it is (1 — 2a?/2)". Notice that if
A;(a) and Az(c) intersect then we have to subtract the area of their overlap greatly
complicating our equations. This is especially complicated for the intersections of
three or four events. Essentially this is the same difficulty that we had in §1.4(ii.b)
with self overlapping neighborhoods. To avoid dealing with this difficulty we’ll use
the same technique we used there: showing that the bad event, here the Ax(ax) not
being pairwise disjoint, has an asymptotically negligent probability. |

The Ai(a) are pairwise disjoint if and only if a < -% s0 we must prove that
Pr(X > a) is small for @ > 1/2. But by (2.3) and (2.4)

Pr(X 2 a) < ZPr (Ak(e) is empty)
k (2.6)
=4(1-a%/2)"

In the special case that 1/2 < a < 2 this shows that Pr(X > o) < 4-(7/8)".
We have really proven that this probability is asymptotically negligible for a much
wider range of X. Suppose that Inn //n < a < 2. Then

In%n"
Pr(X2a)<4-(1-5=) = O(n~%1am) (2.7)
and therefore we can restrict the range of (2.2) to yield

E(X) =]0 # Pr(X > a)da + O(n~%!""), (2.8)

50

(ii) We have just shown that the only interesting situations are those where
a < Inn//n. assume that n > 75 and thus Inn /{/n < 1/2 and the Ax(c) are
pairwise disjoint regions. We now apply the inclusion exclusion principle to (2.3);

Pr(X > @)=Y Pr(Ax(a) is empty) = »_ Pr(Ay,(a)U Ax,(a) is empty)
k ki <kz

+ Y Pr(Ai(e)U Ak, (e) U Ay (@) is empty)
ky<kz<ks

— Pr(A;(a) U A2(a) U Az(a) U A4(e) is empty)

=4(1-0?/2)" - 6(1 — 20%/2)" + 4(1 - 30%/2)" — (1 — 42%/2)".
(2.9)
(iii) Plugging (2.9) into (2.8) reveals that the calculation of E(Z) involves the
evaluation of four integrals of the general form

f A (1 - ka?)"do. (2.10)
0

These can be evaluated by transforming them into Beta functions. The first step
in this transformation is to change the limits of integration. For a > Inn /\/n we
see that (1 — ka?)" = O(n~%!""). Therefore we can replace (2.10) with

o
f (1 - ko?)"da + O(n~kl»m), (2.11)
0

Setting u = ka? gives

k-i 24" 1 : -1/2 n
,/0 (l-ka) da=mL u (l—u) du (2.12)
= - B(3,n+1)
vk 2’

which by Lemma 1.3 and the fact that I'(1/2) = /7 evaluates out to

%\/'%n"* + 0(n~3%%).

Our general formula is then

/ = (1-ke?)" da ~ -12-‘/%11'1/2 + O(n~3%/?), (2.13)
0

51

(iv) We now prove the theorem.

E(X) = /0% PI'(X > C!) da + O(n'—% lnn)

- /ol%[4(1 - %2)“ - 6(1-0?)"

= +4(1--33—) (1-2a) Jda+0(n=/2) (212)

——[4f 6+4\/:—\/—] n-1/2 4 On~¥%)

— cn—l/2 5 O(n—3/2)

where we evaluate ¢ = 1.9636.... Q.E.D.

We now understand the behavior of E(X) but we still don’t know how well
it approximates X. One way of approaching this question is to use the concept of
scaling introduced in §1.4. From (2.9) we see that

Pr (X = i) =4(1-c?/2n)" —6(1 — 2/n)" + 4(1 - 3¢*/2n)" — (1 — 2¢%/n)"

T
= (4e-°’/2 —Ben ok 4632 e-”) [1 + (%)] :
(2.15)

Therefore X is concentrated in a strip which can best be described as “a constant
over y/n”. That is,

if f(n)—0 then Pr (X < {—(/%l) — 0.

Similarly,

if f(n) = o0 then Pr (X > i‘%)) — 0.

Another way of approaching the question is by comparing Var(X) to E(X). Starting
with

E(X?) = jo A DI

we integrate by parts and use the same technique that yielded (2.8) to find
: 7 1
E(X?) = 2/ aPr(X > a)da + O(n=4"n). (2.16).
0

52

The general term of Pr(X > a) is of the form (1 — ka?)" and thus evaluating (2.16)
means integrating terms of the general form

b, n k4
/ Gl — ko) di = j a(1 - ka?)" da + O(n=*1")
0 0 : (2:17)
— —klnn
e TR
Substituting (2.9) into (2.16) and evaluating using (2.17) we find that
2(04-844_1
gy 2403t E 4)+o(l2)
i m (2.18)

Since Var(X) = E(X?) — E?(X) we have just proven

Theorem 2.2: Let X = max(a;,a2,03,04) and ¢ = \/1?[744@ - 2\/%_— 3] =
1.9636. ... Then, for n points chosen LID. UJ0,1)?

Var(X) ~ % (2.19)
where ¢/ = 2 - ¢? = 0.3109...

We have just shown that m and E(X) are of the same order of mag-
nitude. This tells us the same thing as the scaling argument, namely that X is
concentrated in a strip whose values are “a constant over /n”. We will use this
fact to analyse E(Z). Theorem 2.1 tells us that E(X) is O(n~/2). By definition
Bx, the hollowed out region surrounding By, is composed of four strips each of
average area O(n~%) and so it also has an area of O(n~'/2). Since the value of X
is heavily concentrated around its mean (up to constant multiples) and there are n
points this would lead us to guess that E(Z), the expected number of points in Bx
(Figure 2.4), is n- O(n~1/2) = O(n!/2). It happens that this is true; what follows
is a rigorous proof of the fact.

Theorem 2.3: Let Z = |{p; : »: ¢ Bx}/ and c = \/17[74;@+2\/§—3] =
1.9636 ... Then, for n points chosen I.1.D. U|0, 1]2

E(Z) ~ 4cy/n. (2.20)

53

Proof: We prove this in three steps. In the first step we express E(Z) as a truncated
integral of the form [E(Z|X = a)fx(a)da. In the second we derive an asymptotic
expression for E(Z|X = a) as a function of . In the third we prove (2.20).
(i) ;
E(Z)= fo E(Z|X = a)fx(a)da.

The first step in the evaluation of this integral is the same as in Theorems 2.1 and
2.2; we restrict the integral to the region [0, -‘5&] It is always true that Z < n.
Therefore

[2 E(ZIX = a)fx(a)da < f Ix(a)d
=a)fx(a)da<n x(a) da
ing s

Inn (2.21)
=aPr (X 2 -\7—;)
- O(nl—ilnn)'
S0 jy
E(Z) = f " E(Z|X = a)fx(a)da+ O(nt~}12m). (2.22)
0

(i) Intuitively this step is simple. Mathematically it is the bottleneck since we
have to deal with the problems introduced by conditionality.

Pr(X > o) was analyzed during the proof of Theorem 1 where we obtained
the explicit formula given by equation (2.9). Differentiating that formula gives us
an explicit formula for fx(a) because fx(a) = 4 Pr(X > a). The only unknown
left to evaluate in (2.22) is the conditional expectation E(Z|X = a). Remem-
ber that X = max(a;,as,0s,a4), so finding E(Z|X = a) requires integrating
E(Z|a;,az,as3,a4) over a;,az,as, s conditioned on X = a. Formally

E(Z|X =a)= fE(Zlalaaz,03.04)%(01,02,03,&4) da) dazdazday (2.23)

where go (a1, 2, a3, 4) is the appropriate probability density function that condi-
tions on X = a.

Referring to Figure 2.4 we see that the analysis of (2.23) is much simpler than
it at first appears. Originally the n points are uniformly distributed in [0, 1)%.
Conditioning on aj,az,as,aq is equivalent to conditioning on the fact that the
Ax(ay) are empty and there are four points, the gi, on their boundaries. Thus the
remaining n — 4 points are uniformly distributed in the remaining region [0, 1]2 -
UAx(ax). This implies that each of the n — 4 points has probability p of being in

54

0,

a,

Figure 2.4. Fixing the a) implies that all of the points (aside from the
gr) are independently uniformly distributed outside of UixAx(ak)-s (the

grey areas). Thus the probability that a point is not in Bx (crosshatched
area of white region _ 1-Area(Bx)—Area(UsAs(ai))
area ol non gray region 1-Area(Ux Ak (ak)))

region) is p =

Bx where p is the probability that a point will not be in By conditioned on the
event that UAx(ax) is empty so

. Area(Bx) — Area(UxAr(er)) _ 1—(1-2a)’ - 13 o?

1 — Area(UxAx(ax)) i 1-1ya (2.24)

By the independence of the points, Z|a;, az, a3, a4 is a random variable that
has the same distribution as 4 + W where W(a;, a3, a3, ay) is a B(n — 4,p) (Bino-
mial) random variable!. All of the a; are less than a because max(a;, as, a3, a4) =
X =a and thus,asa — 0

! It is not difficult to construct a formal mathematical proof out of this argument.
First use limiting area arguments to calculate the probability density functions
f(Z =1,0;,02,03,04) and f(a;, az,as,04) and then divide to find

. _J(Z=io,0,03,04) (n—4) ;4 _\n-i
f(Z i ”Ial‘)azﬁasi 04) - f(algazgaa, 04) b l e 4 p (1 p) X

Thus Z =4+ W.

55

1—(1—2&)2—%Zaf=4a+0(02).
! _ 2
i =14 O(a®).

Combining these two formulae yields
p =4a +0(a?). (2.25)
Since we are only interested in a < %3 we find

E(Z|a,a2,03,04) = 4 + E(W)
=44+ (n—-4)p
= 4na + O(ln® n)
Using this and the fact that [ga(ei,2,3,as)da; dog dogdoy = 1 we integrate

(2.23) to get
E(Z|X = a) = 4na + O(In’n). (2.26)

(iii) Now we go back and evaluate (2.22).
E(Z) = /% E(Z|X = a)fx(a)da+O(n~3"")
0

(2.27)
Inn

e
=4nj a ada+0(ln2nPr(X2—)).
£ f X() \/7—1
Integrating by parts and applying (2.7) and (2.8) yields

j% afic(a)dn e -aPHr B4 fobn Pr(X > a)da)
; = O(n~#12") L E(X)
Combining this with (2.27) and the fact that Pr (X > “:) = O(n~¥!2") gives
E(Z) = 4en'/? + O(n~%/2) (2.28)
Q.E.D.

We close this section by calculating the variance and second moment of Z.
Besides using this information to determine how closely E(Z) approximates Z we
will also later use it to directly analyze certain convex hull procedures.

56

Theorem 2.4: Let Z = |{p; :p; ¢ Bx}| and ¢ = 2 — ¢ = 0.3109.... Then, for
n points chosen 1.1D. U[0,1)?

(a) Var(Z) ~16c'n (2.29)
) E(Z?) ~ -24—5n. (2.30)
Proof:
E(22) = / P EZ2X = a)fx(a)da + O(n-11") (2.31)
0

We again use the fact that Z|a;, az, a3, a4 has the same distribution as W + 4.

E(Z%|ou, a2, 03,04) = E((W +4)?)

(2.32)
= E(W(W - 1)) + 9E(W) + 16.
Since W is a B(n — 4,p) random variable
ak — yras - 2
EWW -1))=(n—-4)(n-5)p (2.33)

E(W) = (n - 4)p.

We know that p = 4a+0(a?) and @ < %ﬁ so we can put (2.32) and (2.33) together
to get
E(Zz|a1, az,03,04) = 16n%a® + 36na + O(ln2 n).

Integrating this over a;, a3, a3, a4 conditioned on X = o we get
E(Z%|a) = 16n%a? + 36na + O(Iln’n). (2.34)

Inserting this into (2.31) we find

a 1oz '
E(Z?) = 16n® /‘&3 o’fx(a)da + 9'"-'[afx(a)da + O(ln’n).
0 0
These are integrals that we have previously calculated (to derive (2.18) and (2.1))
and thus we can write 5
E(Zz) = -3—71 -+ O(ﬁ).

We have proven (b); (a) will follow from

Var(Z) = E(Z%) -E*(2) = 16(%5111 - c*n) = 16¢'n.

Q.E.D.

57

§2.4 Uses and Simulation Results

Eliminate has been used as a preprocessing step preceeding a standard convex
hull algorithm. In the previous section we calculated how many points would be
left untouched after its run. The question now is “How fast we can calculate a
convex hull?” The answer obviously depends on what convex hull algorithm follows
eliminate. Formally, let A be a convex hull algorithm. We would like to know how
fast the eliminate/A pair runs. We also would like to know whether running the
preprocessing heuristic is worthwhile: how fast is the eliminate/.A pair as compared
to A alone? The answer obviously depends on the choice of .A. In the paragraphs
that follow we’ll answer these questions for two standard convex hull algorithms:
gift-wrapping and Graham'’s scan. (For full descriptions of these algorithms and
derivations of their stand-alone worst-case and expected running times see [PS).)
In this section we continue to assume that the n points are chosen 1.1D. U[0,1]* .

Theorem 2.5: The combined eliminate/gift-wrapping pair has an expected O(n)

running time.

Proof: The eliminate/gift-wrap pair has two stages. The eliminate stage is O(n)
worst case and discards all but M points. When run on z points gift-wrapping has
an O(z?) worst case running time. The gift-wrapping stage will therefore require
at most O(M?) < O(Z?) where M is the number of points left over by eliminate
and Z is the number of points in Bx. The combined expected running time of the
pair of algorithms will be O(n) + O(E(Z?)) which, by Theorem 2.4(b), is O(n).
Q.E.D.

This result is much better than the expected O(nlogn) running time for the
stand-alone gift-wrapping algorithm with n points chosen LID. U[O,l]z. It even
compares favorably with more sophisticated algorithms such as Quickhull which
was described in §1.4. Quickhull also has an O(n?) worst case and O(n) expected
and running time [OL] but has to employ a complicated nested recursion with high
overhead and constants to achieve this. This is only to be expected. Eliminate is
very much like the first step of Quickhull (eliminating some points) but we are are
tailoring our choice of points to a particular distribution so one elimination step
suffices and the algorithm is much simpler.

We can extend this idea further. Quickhull runs in expected linear time over
a number of distributions, i.e. those where the points are uniformly distributed in

58

a convex bounded polygon?. If this distribution is known in advance then we can
modify eliminate to work well: find the points that are “closest” to the corners of
the convex polygon (where closeness of a point is measured by the length of the
projection of the line between it and the corner on the perpendicular bisector of
the angle at that corner) and eliminate all of the points inside the convex hull of
the “close” points. It is not difficult to modify our analysis of eliminate to show
that only O(y/n) points will be left on average. It must be stressed though that the
corresponding algorithm will not be as simple as eliminate because it will have to
test for arbitrary polygon inclusion.

Graham’s scan is another classic convex hull algorithm. First it sorts all of
its input points radially (by angle) around some point internal to the hull. Next
it does a linear scan through the points that decides which points are on the hull.
The first stage is asymptotically dominant and will take O(nlogn) time when run
on n points. We can now use Theorem 2.1 to prove

Theorem 2.6: The combined eliminate/Graham’s-scan pair has an expected
O(n) running time. Furthermore eliminate’s running time strongly dominates (in
an average sense) that of Graham'’s scan.

Proof: As in the proof of Theorem 2.5 the eliminate stage discards all but M<Z
points. When run on m points Graham’s scan has an O(mlog,m) worst case
running time. Thus the expected running time of the Graham’s scan is upper
bounded by

E(Zlog, Z) < E(Z)log,n ~ 4cy/nlogyn

which is dominated by eliminate’s O(n) running time.
Q.E.D.

This tells us that the eliminate/Graham’s-scan pair has an O(nlogn) worst
case time and O(n) expected time, the best possible results that can be achieved
by any convex hull algorithm. This is an extremely attractive result from a com-
putational point of view especially because these bounds were achieved through an
exceptoinally simple process; the bulk of the running time is devoted to eliminate’s
two straightfoward linear passes through the data.

In Table 2.1 we present the results of test runs on random points. Each row

2 Quickhull also runs in expected linear time even if the convex region is not a
polygon, e.g. a circle. Our heuristic is not linear in such cases.

59

n \/’_"Yn 7ﬂ/ﬁ -ﬂn/\/ﬁ

1000 1.874 7.025 3.410
2000 2.042 7.759 3.699
3000 1.996 7.714 3.645
4000 2.033 7.839 3.765
5000 1.849 7.235 3.386
6000 1.983 7.693 3.669
7000 1.966 7.675 3.558
8000 2.009 7.863 3.710
9000 1.966 7.696 3.645
10000 1.965 7.698 3.435

Table 2.1. For each value of n we chose 100 sets of n random points. For each
of these sets we found X, Z, and M and then averaged over all the sets to calculate
X., Z., and M,. Normalizing (multiplying/dividing by v/n) yielded the values in
the table.

contains the values v/ Xn 3, Zn/v/n, and M,//n. These are the normalized
values of the respective random variables averaged over 100 sets of n random points
(n fixed). Theorems 2.1 and 2.3 predict that for large enough n

VnE(X,)~1964 and E(Z,)/vn =~ 7.854

and we do see this behavior.

To close this section we present a medium-size example that illustrates elimi-
nate’s utilility. We randomly picked the four hundred points in Figure 2.5a. After
running eliminate only the 52 points of Figure 2.5b remain. The dotted line in
5b is the convex hull of the points (16 points). It is clear that running eliminate
tremendously reduces the amount of time that the subsequent convex hull routine
will require.

§2.5 A Variant

In this section we will try to illustrate one of the major advantages of tight
algorithmic analyses: they allow us to fine-tune our algorithms to provide better

3 Until now we only implicitly noted the fact that E(X), E(Z), and E(M) are
functions of n. We now make the dependency explicit and write X,, Z,, and M.

60

L] . . (X ®
‘e . ks . . .

. . . ., . . .

. . * 9 . - L
.'- s . - - . » ‘
L} L . . .

b o . b b
. s 8 % . .
. " ., . . ¢
. .® . .
. . . . *
. .
. * . s ® L .
. .
. ~
H « * o’ e %
] ..
. L)
. . . 5 - . .: *
5 *s ., . . * e ¢ %
h) e N
- * ” . - . L ., P
. o*
. . * .
. " . .l « * 9
s % *% . X - U. .
..
LA . o o © L'-' ..
. . . *s” o
P £ . * * e
3 o] .t . . * . .

.

- . >
. . . . »

» LA
- a
oy, .. 2 .
. . LI . L] 3 L]
. . . L] ..
. S e * 0 e o .
.
. % L} -
. . 3 . . L= .
il .

I Dok i et o e o .
i 5
g ‘-'
P e F
1
-
L]
§
-
.
‘ -
-8
: .
4 L]
': .
E‘ *
¢ .
3
I Y
i ¥
i .
H

Figure 2.5: (a) shows 400 randomly chosen points in the unit square.
Running eliminate erases all but § = 52 = 2.6v/400 of the points as
illustrated in (b). The convex hull (16 points) is represented by the dotted
line.

61

< O, > <0;-> <o ->
4ol o)
Afer) - . ‘ 4
e . . .
L L] ®
]
o By
e
- o

A) o)
< a)> - ®) <oy->

Figure 2.6. (6a) gives some test points with the aj noted and the A} (a;}) (shaded
areas) drawn. Note especially that A} (a}) are all empty with a point (gx) on each
of their defining perimeters. (b) is (a) with Bx+ (dashed box) and R (thin lined
box) drawn in. The dotted boxes illustrate the relationship between the o} and X'.
By definition Bx: C R. By inspection Z = 17 and M = 10.

running times. They do this by providing complete information about the algo-
rithm'’s behavior. This, in turn, lets us understand the effect of minor changes in
the algorithm on its running time.

We will examine a variant of eliminate which we will name eliminate2. At first
elim2 will look even better than the original algorithm because we will be able to
calculate an even lower bound for the number of points that it leaves untouched than
we were able to for eliminate. But, as we shall see, elim2 performs slightly more
comparisons than eliminate and this will be enough to offset elim2’s advantage of a
smaller output. We are only able to make the above claims because our analyses of
the two algorithms are tight and provide the multiplicative constants of the leading
order terms.

Our new algorithm is very simple. In the original version of eliminate we swept
in 45 degree diagonals from each of the four corners until each hit a point. elim2
will sweep in squares from each of the four corners until each one hits a point. This
is most easily understood via a diagram such as Figure 2.6. Program 2.2 provides

62

function elim2(N : integer) : integer;
var i1,i2,i3, 4, j, M : integer;
al, a2, a3, a4, highx, lowx, highy, lowy : real;
t : point;
begin
:=1 i2:=1; i3:=1; 4:=1;
a1:=MAX(p[1].x,p[1].y); a4.=MAX(1-p[1].x,1-p[1].y);
az:=MAX(p[1].x,1-p[1].y); a3:=MAX(1-p[1].x,p[1].y);

for j:=2 to Ndo

begin
if MAX(p[j].x.p[j].y) < at then

begin i1:=j; a1.=MAX(p[j].x,p[il.y) end;
if MAX(1-p[jl.x,1-p [jl.y) > a4 then

begin i4:=j; a4:=MAX(1-p[j].x,1-p[jl.y) end;
if MAX(p[j].x, 1-p[jl.y) < a2 then

begin i2:=j; a2:=MAX(p[j].x,1-p[].y)
if MAX(1-p[j].x,p[j]l.y) > a3 then

begin i3:=j; a3:=MAX(1-p[j].x.p[il.y)
end;

nd;

nd;

lowx:= MAX(p[i1].x, pli2].x); highx:= MIN(p[i3].x, p[i4].x);
lowy:= MAX (p[i1].y, p[i3l.y); highy:= MIN(p[i2].y, p[i4].y);
M:=0; j:=N;
while j>M do
if lowx <p[jlx and pfj].x < highx
and Jlowy <p[jly and p[jly < highy then
ji=j-1
else
begin
M :=M+1;
t:=p[M]; pM]:=p[]; pl]:=t
end;
elim2 := M;
end;

Program 2.2. A full Pascal implementation of elim2. It is called with parameter
N; the array p[l1...N] holds the points. After the function is initialized the for loop
finds the four points that minimize the appropriate functions. i1, £2, 18, 14 hold the
indices of these four points etc. while al, a2, a8, a4 hold the respective minimized
values of thr functions.The next step calculates the boundaries of R: lowz, highz,
lowy, highy. The while loop rearranges the array so that the non-eliminated points
are at its bottom. When it returns the function has value M, the number of points

that weren’t eliminated.

63

a Pascal encoding. The analysis follows that of §2.3 almost step by step. First we
make the appropriate definitions:

a) = min max(z;,y;)

1sizn Aj(e) = {(z,y): 0<z,y<a}
o= i, mak(z,,1=5) Ay(a) = {(zy): 0<z,1-y<a)
o = mip max(l - 2:,3) Ay(e) = {(z,y): 0<1-z,y< e}
g = lléliiéﬂmﬂ(l - zi,1-) Ay@)={(z,y): 0<1-z,1-y<a}

These quantities are analogous to the aj and Ax(a) that were defined in §2.3. The
a), are the lengths of the base sides of the largest empty squares that fit into the k’th
corner; the A} (a) are squares with base side a. Together they have the property
that A} (a}) is empty and has at least one of the p; (from the original point set) on
its perimeter. We also define

X' = max(a], 05, 05, a})
Bx = {(z,3) : (z,y) € (X", 1= X')"}
Z' = |{p: : pi ¢ Bx:}|.

First we provide some intuition as to why we would guess Z’ < Z. Since
Area(Aj(a)) > Area(Ax(a))
it follows that
Pr (A} (a) is empty) < Pr(Ax(a) is empty)

and therefore we expect o} < ax and X’ > X. This would lead us to guess that
Bx: D Bx and Z’' < Z. We will be able to prove that this is true and even more,
that

E(Z) ~ V2E(Z').

The steps leading to the calculation of E(Z’) parallel those that led to to that
of E(Z). We will only fill in the high points. We start with the calculation of E(X").
First notice that (2.4) can be replaced by

Pr(A;(e) is empty) = (1 — o?)". (2.35)

This means that we can replace (2.9) by

64

Pr(X’' > a)= Y Pr(Ai(e) is empty) — Y Pr(4j},(a)U 4}, (e) is empty)
k

ki <kz

+ > Pr(4,(a)U A}, () U A}, (o) is empty)
ky<kz<k;

— Pr(A4](a) U A3(a) U A5(a) U Aj(a) is empty)

=4(1-0a?)"-6(1-2a%)" +4(1 - 3a®)" - (1 - 4a?)".
(2.36)
All of the integrals in §2.3 that were of the form [(1 — ka?)" da will be replaced
by integrals of the form [(1 — 2ka?)" da. Since

f (1 - 2ka?)" do = -%] (1 - 2ke?)" da

we can finish the proof to show
Theorem 2.1": Given n points U[0,1)?and X defined as above then

(2.37)

where ¢ = \/F[%@ +2\/§_-—3] = 1.9636....
We can then prove
Theorem 2.3": Given n points U[0,1]?and Z’ as defined above, then

E(Z') ~ 4cV2n.

Proof: The same as for Theorem 2.3. The only major difference occurs in the -
equation that replaces (2.24):
o 12 Area(BYy) — Area(Uedi(e})) _ 1-(1-2a)* - T o'}

1 - Area(UrAj(a})) 1-Y a?

(2.38)

This does not require any revision in the proof because the only use of (2.24) was
to prove
p = 4a + 0(c?) (2.25).

This last equation can be derived from (2.38) so we are done.

We have just shown that, on average, Z’ is definitely smaller than Z. Therefore
it might seem that elim2 is a better algorithm to implement than eliminate. We
shall now see that this is not true. We compare the two programs by examining

65

the number of operations each performs within its for loop. First we examine the
number of if-then statements: Program 2.1 executes two if-then statements each
time it enters the for loop while Program 2.2 executes four (although through clever
coding we might be able to reduce this to two statements). Next, we compare the
number of additions: each program performs two. Program 2.1 calculates p[j].z +
plj].y and p[j).z — p[j].y while Program 2.2 calculates 1 — p[j].z and 1 — p[j].y.
Program 2.1 performs no other operations. Program 2.2 still has to find two MINs
and two MAXs (although clever coding might reduce them to one of each type).
Therefore Program 2.2 performs substantially more work than Program 2.1 when
run on large inputs.

Our mathematical analysis showed that elim2 leaves fewer points than elimi-
nate. We have just shown that elim2 takes more time than eliminate. Therefore,
the question of which algorithm is better reduces to the question of whether elim2’s
advantage of producing a smaller Z’ offsets the extra work it has to do. If we are
going to feed the output of the preprocessing algorithm into an nlogn convex hull
finding algorithm such as Graham’s-scan then eliminate should be used because,
as proven in Theorem 2.6, the amount of work performed by the preprocessing
algorithm overwhelms that performed by the convex hull algorithm.

§2.6 Extensions to Higher Dimensions

§2.6.1 The Algorithm

Until now we have been discussing convex hulls in £2. We can easily extend
eliminate to higher dimensional spaces. First suppose we are given a set of points
S = {p1, -.. ,Pn} in d-space, ie.

pi = (pi(1),...,p:i(d)), fae .. .0
The convex hull of S is
CH(S) = boundary of the smallest convex polytope containing S.

Our plan is the same as it was in two dimensions: to identify some polytope con-
tained in CH(S) and elimimate the points in that polytope.

The algorithm we present is a natural generalization of the two dimensional
one. First we sweep in diagonal planes from each vertex of an “infinite” hypercube

66

until they each hit some point in S. We find a large rectangular box contained in
the convex polytope which has the hit points as vertices. We then eliminate all of
the points in that box. The two dimensional analysis of §2.3 can also be generalized.
It will show that only O(n(?-1)/2) points will, on average, remain after running the
algorithm.

Before proceeding with the presentation of the algorithm and its analysis some
words of both apology and caution. Conceptually, what follows is extremely simple.
Mathematically and notationally, it is tedious and cumbersome. Unfortunately this
is standard procedure for generalized multidimensional discussions.

In two dimensions we found the four points that minimized the functions +z+y.
In d-dimensions we find the 2¢ points that minimize the functions £p(1)£p(2)...+
p(d). Let cx be the 2¢ vectors in {1, —1}* in the standard binary order.

R b T PO U

c2 =(1,1,...,1,-1)
o ={) 1 —-1,1)
IR UD RESROs (O |

Bae B{=1; =1, 1 ixy1y=1):

The 2¢ functions £p(1) & p(2)... =% p(d) can be written as the inner products
ck-pF k=1,...,2¢ and the points that minimize them* will be

Q% = Pm m=m‘_in{Vj:ck-p,-TSck-p§‘} k=1,---,2d- (2.39)

Let Q be the convex hull of g;,...,g2¢. As before, we can eliminate all points
inside Q without discarding any information necessary for the construction of the
convex hull of py,...,pn. Unfortunately the calculation (and storage) of Q is com-
plicated. Furthermore the elimination of points inside Q is even more prone to
round off error now than it was in two dimensions. We sidestep these difficulties by
again finding a large rectangular prism (in 2-d it was a rectangle) R C Q and only
eliminating the points inside R .

4 In case of ties we again pick the point with lowest index that minimizes the

inner product.

67

How will we find a good R? Recall that in two dimensions R was of the form
R={(z,9): a(l) <z <b(1), a(2) <y<b(2)}

where a(1), (1), a(2), and b(2) all had nice geometrical definitions: a(1) was the
maz of the two points hit by the two lines (z + y = const) in the increasing z
direction sweeping in from the left while b(1) was the min of the two points hit
by the two lines (—z £ y = const) sweeping in from the right. a(2) and b(2) were
defined similarly for the y coordinate. This idea can be extended to d dimensions.
R will be of the form |

R={(z(1),...,2(d): a(i)<=z(i)<b(), i=1,...,d}

where a(i) will be max;{gx(i)}, g« running over those points that are hit by a
sweep hyperplane (cx - z7 = const) that approaches in an increasing z(i) direction.
Similarly b(i) will be mink{gk(¢)}, g« running over those points hit by a sweep
hyperplane that approaches in a decreasing z(#) direction. The planes entering in
an increasing direction are those whose defining equations have a +1 as their i-th
coefficient while those entering in a decreasing direction have a —1 there. If we
define the index sets

J1+ = {k . ck(i) = -|-1}, J‘- = {k . Ck(i) —3 —1}, t=1,... ,d (240)
then we can write

R={(z(1),...,2(d)) : max gk(i) < z(i) < min g(i), i=1,...,d}. (2.41)
keJ} keJ;”

1

Calculating R and eliminating the points inside it is an O(n) time operation.
Figure 2.7 describes the three-dimensional version of this algorithm and shows that
while the notation is somewhat dense the concepts behind each step are intuitively
clear and the full algorithm is relatively easy to program. This is especially true in
the lower dimensional cases (d = 2,3) where convex hull problems are frequently
found.

§2.6.2 The Analysis

Suppose that p;,p2,...,Ppn are chosen LLD. U[O,l]d. What can we predict
about the performance of the modified algorithm? More specifically, if we define

M(pi,...,pn) =The number of points undeleted after running eliminate.

= The number of points outside R

68

Ajfoy)

Afo) |

91 = Pm
g2 = Pm
43 = Pm
ds = Pm
gs = Pm
g6 = Pm
97 = Pm

ggs = Pm

Kt ={1,2;3: 43,
Ji = {5,6,7,8),

Figure 2.7. (a) illustrates eliminate in 3 dimensions (for clarity the points
are assumed to be inside the unit cube). Each of the 8 corner simplices Ax(ax) are
empty and have the point gi on their defining hyperplanes. The g, are found using
the definitions of (b). Eliminate will dispose of all the points inside R as defined by

Ada)

B \ " Afey)

BT T Y
L4

m = min{Vj

m= nliin{Vj :
m= n:lt_in{Vj :
m= miin{Vj :
m= miin{Vj :
m= miin{Vj -
m= m‘_in{Vj 4

m = min{Vj :
1]

(2)

: 4+pi(1) + pi(2) + pi(3) < +p;(1) +p;(2) +2;(3)}

+pi(1) = pi(2) + pi(3) < +p;(1) — p;(2) +p;(3)}
+pi(1) = pi(2) = pi(3) < +p;(1) — p;(2) - p;3)}
-pi(1) + pi(2) + pi(3) < —p;(1) + pi(2) + p;(3)}
-pi(1) +pi(2) - pi(3) < -p;(1) +2;(2) - p;(3)}
-pi(1) — pi(2) + pi(3) < —p;(1) — p;(2) + p;(3)}
=pi(1) — pi(2) = pi(3) < —p;(1) - p;(2) - p;(3)}
Jt={1,2,56}, Ji=1{1,357}.

J; =1{3,4,7,8}, J; ={2,4,6,8}
(b)

(
+pi(1) + pi(2) — pi(3) < +p;(1) + p;(2) = p;(3)}

(

(3

(2.41) where the J;" and the J;” are as given above.

69

what can we say about E(M)? We parallel the two dimensional analysis and define a
d-cube By C R. Defining Z as the number of points outside Bx we see that Z > M.
Thus showing that E(Z) = O(n(#-1/4) will show that E(M) = O(n{4~1)/¢), Our
method will be a straightforward generalization of the two dimensional analysis of
§2.4 yielding multdimensional theorems analagous to Theorems 2.1 and 2.3.

In two dimensions we examined the four isosceles right triangles with base edges
of length o at the four corners of the unit square and determined the probability
of their being empty. These triangles, denoted by Ax(a), had base edges that lay
on the border of the unit square and hypotenuses that lay on their corresponding
sweep lines.

Generalizing this idea to d-dimensions requires introducing the concept of a
regular a-isoceles simplex or, more simply, an a-simplez. We define this to be a
full dimensional simplex that has a corner p with the following properties: each
edge touching p has length o and any two edges leaving p are perpendicular to each
other. We will call p the anchor of the simplex. Equivalently we will say that the
simplices are anchored at p. As examples both

{z: 1) +z2)+---+z(d)<a, 0<z(i)i=1,...,d}

and
{z: z()+2z2)+ -+z(d)>d-a, z(i)<1li=1,...,d}

are a-simplices. The first is anchored at (0,0,...,0) and the second at (1,1,...,1).

We will be interested in the 2¢ a-simplices that are anchored at the 2¢ corners
of the unit d-cube and oriented so that their right triangular faces are flush with the
faces of the d-cube. Each of these simplices is then fully identified by its remaining
face. This face is of the form cx-z7 = const (const a function of a to be determined
below) which is just one of our sweep hyperplanes. Let Ax(a) be the a-simplex
defined by the k-th hyperplane. Its anchor will be c, the first corner of the unit
d-cube to be hit by the k-th hyperplane. This anchor satisfies

¢, €[0,1)¢ such that Vz € [0,1)° ci-c;T <ex-2”. (2.42)

Note that c}, is the solution to a linear programming (minimization) problem. Since
linear programming problems always have a vertex solution there is always a cj,
that satisfies (2.42) and is a corner of the unit d-cube. We can find such a cj by
inspection.

70

By definition cx - ¢ = ¥ cx(8)ch(i). If ck(i) = 1 then setting ci(i) = 0
minimizes the term c (i) c}(i). Similarly if cx(i) = —1 we set c; = 1. Letting
1=(1,1,...,1) we can rewrite this in vector notation as

s %(1 i), (2.43)

Since this correspondence is one-one we can call ¢ the k-th corner of the unit
d-cube. This is notationally convenient; the k-th hyperplane first hits the cube at
its k-th corner. With this notation it is easy to check that

Arl@)={z: cx-(z-¢c})T < a} (2.44)

is the a-isoceles simplex that is anchored at the k-th corner (Figure 2.6a) where we
omit the appropriate feasibility conditions 0 < z(i) or z(i) < 1 because we already
know that the points we are dealing with are distributed in the unit square.
Continuing with our generalization of the two-dimensional analysis we now
need to define o) such that the interior of Ax(ax) is empty and there is at least
one point on its defining hyperplane. By (2.39) we know that gx will be on this
hyperplane so
ok = ¢k~ (gF = ci)- (2.45)
Finally we set
X =max{aj,...,a}.
B, ={z: z € (a,1-a)%}. (2.46)
Z =|{p: : pi; € Bx}.
It isn’t hard to see® that Bx C R from which it follows

Z = number of points outside Bx > number of points outside R = S.

5 The main difficulty to seeing this is purely notational. From (2.45) Bx CR iff

max gx(1) <X and 1-X < max gk(3) i= L cand (2.47)
keJ} keJ

L]

To convince ourselves that (2.47) holds we note that from (2.45) cj (i) = 0 then
k(i) < ax and if c(i) = 1 then gi(i) > 1 — ax. The geometric meaning of this is
that g is within the small d-cube with edge lengths a; that is flush with the unit
d-cube at ¢i. If k € J; then by (2.43) ck(i) = +1 and thus by (2.41) c(i) = C.
Therefore gi(i) < ax < X. Similarly if k € J then cx(i) = -1 and ci(i) = 1.
Thus 1 — X <1 - ax < gk(i)

71

Establishing asymptotics for E(Z) will therefore also yield asymptotics for E(S).

Theorem 2.7: Given n points chosen LLD U[0,1]%nd X = max{ai,...,az}
then there is some constant ¢4 such that

E(X) ~ cgn™1/4. - (2.48)

Proof: The proof is a generalization of the one given for Theorem 2.1 and follows
the same format.

(i) For all k, o) < d (otherwise Ax(ax) would contain the entire unit d-cube),
and therefore X < d. Thus '

E(X) = fo 5 Pr(X > a)da (2.49)

where
Pr(X > a) = Pr(max{ax} > o)

=P Qr 2 @
=Pr(\/{A4k(a)is empty}).
k

If o < 1/2 then Ax(c) is totally contained inside the unit d-cube and so by the
independence of the p;

Pr(Ax(a) is empty) = (1 — Volume(Ai(a))". (2.51)
It is a well known fact that the volume of an o-simplex is a?/d! and therefore
Pr(Ax(a) is empty) = (1 — a?/d")". (2.52)

Combining (2.50) and (2.52) we find that for @ > n=/¢Inn

In%n
d n
Pr(X > a) <2%(1- -)
=0(n"~ In(4-2) n/d'y (2.53)
=O('n' lnn)
leading us to
n~nn
E(X) = f Pr(X > a)da + O(n~'="). (2.54)
0

72

(i) If we assume that n is large enough so that in the range of the integral in (2.54)
n~1/4lnn < 1/2 then the 2¢ a-simplices are disjoint and it is not diffcult to use the
inclusion-exclusion principle to show that

PriX 2 a)=Pr (V(Ak(a) is empty))
k

=3 Pr(Ax(a) is empty) = Y Pr(Ax, (@)U A, (e) is empty)
k ky <kz

+ Z PI(A’H (a) U Ak,(a) U Ag, (a) is empty) -

ky <kz<ks
+ (—1)""’1 Pr(UxAi(a) is empty)

=¥ (2:)(-1)*+1(1—ka4/d!)".

1<k<24
(2.55)

(iii)
k-lld

n~Yenn
f (1-ke?)"da =] (1-ke?)"da + O(n~'"")
0 0

1
= [@-wud-iau 4 40 B39
0

 JRRIE | .
=Wﬁ(3,n <+ 1) + O(n In)
which by Lemma 1.5 is
L(3) 14 et
Efg—l—/—dn + O(n)
(iv) We can use this last fact to evaluate (2.54). We integrate the value for P(X 2 a)

given by (2.55) and get an an integral over a sum. Evaluating each of the sum’s

terms separately we find
E(X) =cqn~*

where P(l)ﬁ ”
=23 ()t

1<k<24
Q.E.D.
We can also prove the following generalization of Theorem 2.3. -

Theorem 2.8: Given n points chosen I.I.D. UJ[0, l]d, Z =\|{p;: p: € Bx}, and
and cy as defined in Theorem 2.7

E(Z) ~ 2dcan’T . (2.57)

73

Proof:

d
E(2) =/0 E(Z|X = a)fx(a)da
(2.58)

n~Y4lnn
- f E(Z|X = a)fx(a)da + O(n}~").
0

(ii) Z|ay, . . .,aq has the same distribution as 2¢+ W where W is a B(n—2¢,p)
binomial random variable with p the ratio between the area outside of BxU|J Ax(ax)
and the area outside of |J Ax(ai). The reasoning behind this uses the same area
argument as in two dimensions. Thus E(Z|ay,...,a2¢) =2¢+p(n—2%). If X =
a < 1/2 then the Ax(ax) are volume disjoint and using the fact that, ax < a for
all k, we can calculate asymptotics for p as follows:

1-(1-20)"-4 T of
- 1- 320k
= 2da + 0(c?)

Integrating, as in (2.26), over aj,..., g conditioned on X = a we find
E(Z|X = a) = 2dna + n0(a?) + O(2). (2.59)
If a <n~¢lnn then
E(Z|X = a) = 2dna+ O(n~%). (2.60)

(iii) Combining (2.58) and (2.60) yields

n~Yénn

E(Z) = 2dn j; (8 e 4 oY),

Integrating this by parts
n~141nn
£(Z) = 2dn / Pr(X > a)da + O(n~3). (2.61)
0

While proving Theorem 2.7 we evaluated the integral in (2.61) to be can~d +
O(n~%-1) and thus
E(Z) = 2dn@-D/4 4 O(n~1).

Q.E.D.

74

Theorem 2.8 tells us that the multidimensional version of eliminate does, on
average, eliminate most of the original points. In the 3-dimensional case only O(n})
will remain. We can prove a generalization of Theorem 2.5 and show that running
gift-wrapping after eliminate takes O(n) time on average. There is a much better
result though. Preparata and Hong [PS] give O(nlogn) worst case algorithm for
finding convex hulls in three dimensions. We can thus obtain a result analagous to
Theorem 2.6:

Theorem 2.9: The combined eliminate/Preparata-Hong 3-dimensional con-
vex hull algorithm has an average case O(n) running time. Furthermore eliminate’s
running time strongly dominates that of the Preparata-Hong part.

Proof: The same as for Theorem 2.6.

This is not the first three dimensional expected linear time algorithm; Bentley
and Shamo’s [BS1] divide and conquer algorithm is easily proven to have expected
linear time for a large number of distributions. The major benefit of using eliminate
is the same here as it was in two dimensions: It is simple to program, runs fast, and
disposes of most of the points. Therefore the actual convex hull algorithm, which
in three dimensions tends to have very high overhead, only runs on a very small,

1-1/d

n , number of points.

§2.7 Conclusions

The purpose of this chapter was to prove that, given n points uniformly dis-
tributed in the unit square, eliminate eliminates all but O(y/n) of the the original
pointset without destroying any information essential to the construction of the
convex hull. If the n points are distributed in the unit d-cube then eliminate elim-
inates all but O(n(4-1)/4) of them. Therefore, eliminate followed by an O(nlogn)
worst case convex hull algorithm (such as exist for 2 and 3 dimensional space) yields
an algorithm that constructs a convex hull in linear expected time. Furthermore,
the expected running time of the second item in the pair, the actual convex hull
algorithm, will be sublinear. From the computational point of view another benefit
is that eliminate performs only simple comparisons (is z > a?) while most convex
hull algorithms perform more complicated geometric ones (is point P above line I7).
For extremely large random point sets, it is the case that the convex hull can be
found in about the time it takes to access each point twice (once to participate in
various comparisons to compute R and once to be eliminated).

75

In particular, for random points chosen 1.1.D. uniformly in the unit square, the
method we describe certainly outperforms “Quickhull” and is substantially easier
to program. Often, the points used for the first stage of “Quickhull” are chosen to
make the implementation of the recursive step more convenient: our results show
that a proper choice makes the recursive step unnecessary.

It should be made clear that our choice of the unit square (d-cube) as the
rectangular support of the point distribution was purely expository; the analysis of
eliminate in section two (four) works just as well (after scaling) if the points are
uniformly distributed in any rectangle (rectangular d-prism) oriented so that its
sides are parallel to the Cartesian axes.

A final point that needs to be made is that there is another classic perspective
on convex hulls which, while not yielding an analysis of eliminate, does provide
some intuitive rationale as to why it performs as well as it does. If we are given a
set S of n points L.I.D. uniformly in a bounded convex polygon P then, as n — oo,
the convex hull of S will approach the perimeter of P very closely. An alternative
way of expressing this is that the CH(S) is a very close approximation to P. This
suggests that the number of points on the hull will be comparatively small (and the
number distributed inside will be relatively large). In fact this is the content of a
famous theorem due to Rényi and Sulanke [RS]: If h signifies the number of points
on the hull then E(h) ~ clogn, where c is a function of the number of edges of P.

In our case P is the unit square. Since the rectangle R constructed by eliminate
is defined by the four points “closest” to the corners we can see R as a very close
approximation of the square and therefore of the convex hull (X can be seen as a
measure of this closeness). The points that are left will be squeezed between the
perimeter of the hull and the perimeter of R and therefore, intuitively, should be
few in number.

76

Chapter 3. Closest Pair Algorithms

§3.1 Introduction

The closest pair problem, finding the closest pair among a set of points, is
one of the most basic problems in computational geometry. In §1.4 we showed that,
given n points chosen I.1.D. UJ[0, 1]2, the expected distance between the closest pair
is O(n). In this chapter we analyze two methods for finding the closest pair. A large
number of algorithms, approaching the problem from many different perspectives,
exist for its solution. There are “practical” O(n logn) time algorithms that are rel-
atively simple and easy to program: Shamos and Hoey’s [Shal] divide-and-conquer
algorithm and Hinrichs, Nievergelt, and Schorn’s [HNS] sweep-line algorithm are
representative. There are two randomized algorithms, one due to Rabin [Ra], the
other to Weide [We], that both run in expected linear time on all inputs. There is
a “theoretical” algorithm due to Fortune and Hopcroft [FH], really a modification
of [Ra], that manages to get rid of the randomization by adding complexity and
raising the running time. There are algorithms that solve the closest pair problem
as a side effect of solving a more complicated problem such as constructing Voronoi
diagrams [SH]. There is also an algorithm, due to Bentley, Weide, and Yao [BWY],
that finds the closest pair by using a “gridding method”, i.e. by using the floor func-
tion. When run on n points drawn L.I.D. U[0, 1]2, this last algorithm requires O(n)
expected time.

In this chapter we will analyze the probabilistic performance of two algorithms
for finding the distance between the closest pair. Both of these algorithms can be
easily modified to return the points in the pair rather than the distance between
them: we concentrate on distance finding procedures because they are conceptually
easier to describe. Most of this chapter will be devoted to analyzing the probabilis-
tic behavior of the first algorithm, the sweep-line algorithm described by [HNS].
We will then show how to use the techniques developed for analyzing that algo-
rithm to analyze a variant of the projection algorithm described by Bentley and
Papadimitriou [BP].

The purpose of this chapter is twofold: one practical, the other theoretical. The
practical purpose is to show that, in a probabilistic sense, it is unnecessary to use
complicated data structures such as 2-3 or AVL trees in the sweep-line algorithm.

7

The algorithm is very simple. Its first step sorts the points by their z coordinates
using whatever efficient sorting algorithm is available. Its second step is a straight
scan through the points. The main result of this chapter is to show that the scan
will take, on average, linear time.

The theoretical purpose is the same as in the rest of this thesis: to provide
direct average case analyses of algorithms that were designed to be simple but was
not designed to be simply analyzed. We should stress that this chapter provides
no new theoretical results in the sense of providing improved asymptotic (O()
notation) running time. It does, however, provide simple, fast algorithms.

A short description of the sweep-line algorithm is provided in §3.2. In §3.3
we perform its analysis and calculate the expected running time of the algorithm
given that its n input points are chosen I1.1.D. U[0, 1]2. We demonstrate that, even
though it’s scan stage has Q(n?) worst case performance, it runs in linear expected
time when the points are chosen 1.I.D. U[0,1]?. We also compare our theoretical
statements to experimentally derived results.

In §3.4 we analyze a a variant of Bentley and Papadimitriou’s [BP] projection
algorithm, one whose worst case performance can be shown to be O(n%2) when
closest is defined using the L., metric. We show that after performing two sorts,
this algorithm’s second stage will use only linear expected time when its input
points are chosen I.1.D. UJ0, 1]2. Finally, in §3.5, we discuss extending the analysis
to other distributions and why it can’t be extended to higher dimensions

§3.2 Description of the Sweep Line Algorithm

The algorithm we consider here is the sweep line algorithm for computing the
closest distance! among points in the plane. Before presenting our analysis we give
a quick description of the algorithm. For a more complete description as well as a
correctness proof and implementation details see [HNS].

Suppose we are given n points p; = (z;,%:), ¢ = 1l...n, in the plane. Sort
them in increasing z order (arbitrarily breaking ties). We use the standard notation
for order statistics. The i'th sorted point is denoted by p;y = (2 (), y(i)) where

Z() < Z2) < 0 £ T(n-1) £ T(n)-

! In our description of the algorithm and in its analysis we will assume that
closest is defined by the Euclidean (L) metric. Later, in §3.3.4, we will show how
to generalize the description and the analysis to any L, metric, p > 1.

78

The z-coordinate of p; is the i-th smallest z-value. The y-coordinate of p(;) is the
y coordinate that was associated with z(;). For example, if the original points were
p1 = (5,3), p2 = (3,7), and p3 = (18,6), then the relabeled points are p;y = (3,7),
P2) = (5,3), and p(3) = (18,6).

Let é; be the distance between between the closest pair among the first ¢ points,
ie.

6 = g Sid (pay> P1y)

where d((z,y), (z',v’)) = /(z — 2')2 + (y — ¥’)2. The closest pair distance problem
is then seen to be the problem of determining §,,. It follows from the definition of
6; that

6i41 = min (5£, 12132,-‘1 (P(i+1),19(k))) . (3.1)

Updating 6; only requires calculating the minimum among d (p(i+1), p(k)) . Fur-
thermore, if there is some k < i such that d(p(41),P(x)) < 6 then for that k,
Z(i+1) — T(k) < 6;. Thus we only have to check the distance between p(;;;) and
those points whose z-coordinates are in the interval (z(i+1) — 6i,T(i41)], a region
which we will call the §;-interval (see Figure 3.1(a)).

There is a geometric fact (proven in [HNS]) that is essential to understanding
how to assure the algorithm O(n log n) worst case behavior. Suppose we have sorted
the points in the é;-interval by their y-coordinates. Furthermore suppose that

dk <1i such that d (p(i+1),p(k)) < 6;.

Then p(x) has to be one of the four points immediately above or one of the
four points immediately below the point p(i4;) in the §;-interval. Thus, if the
points in the §;-interval are stored in a balanced tree sorted by y-coordinate, we can
calculate 6;4; in O(logn) time by retrieving these eight points. All that remains is
to describe how to update the §;-interval, i.e. update the y-sorted balanced tree so
that it contains the points in the §;4;-interval. This is not difficult. First we insert
P(i+1) into the balanced tree in O(logn) time. Then, using the fact that we already
have the points sorted in increasing z-order (and have stored somewhere the index
of the leftmost point in the §;-interval) we scan rightward deleting points from the
tree until we enter the 6;41-interval (see Figure 3.1(b)). Since each point is deleted
at most once during the execution of the algorithm the total time for deletion is

O(nlogn). Furthermore, since all other operations are O(logn) time per step we

79

il) »,

‘P, P ‘P, P

‘P,

Figure 3.1. The minimum distance among all points preceeding py is d(p;,p2) so
8s = d(p1,p2). In (a) the shaded region has width és and is what we called the
bg-interval. While checking all the points in the ég-interval against pg we find that
d (p9,ps) < 6g and thus g = d(pg,ps). We now find the dg interval by scanning
rightward from pg until we hit the first point (pg) whose z-coordinate is within &g
of p1g.z. During this scan both p; and pg were deleted from the current § interval.
This gives us Figure (b).

find that the entire second stage of the algorithm can be implemented in O(nlogn)
time.

The main purpose of this chapter is to show that, probabilistically, the perfor-
mance of the second stage of this algorithm — scanning through the sorted points
while updating é; — will be much better than the worst case analysis suggests. In
fact, we will show that it is possible to dispense totally with complicated balanced
tree data structures and still get very good behavior: if we compare p(;41) to all
of the points in the é;-interval the algorithm will still run very fast on the average.
We give a short but full listing of code for this version of the algorithm in Figure
3.2. It is not hard to see that the algorithm will require Q(n?) time in the worst
case when run on n, z-sorted points, e.g. if the points are all on the same vertical
line. We will show that, on average, it will take linear time.

Mathematically, given n points p;, ... p,, chosen 1.1.D. U|0, 1]2, we set

N; = number of points in the §;-interval .

80

Figure 3.2. A Pascal listing of code that

implements the linear scan to find the closest ;o5 ._ 1. gepta : = dist(o[1], pl2));
pair. We assume that the points are sorted by for j:= 7to n-1 do

z-coordinate in the array p[] and that there begin

is a distance function, dist(p,q), that returns while (pfi+1].x - p[lefi].x) > delta do

. : left ;= left + 1,
t.he f:hstance between points p and g. Left and for j:= leftto ido
¢ point to the leftmost and rightmost points in if dist(pfj], pfi+1]) < delta then
the é;-interval. The while loop updates the delta := dist(p[j], pli+1]);

points in the é;-interval. The inner for loop end;
updates the current value of §; by comparing
pli + 1] to all of the points in the §;-interval.

The amount of work needed to update é; to 6;4; is N; so the total amount of work
performed by the algorithm is 3~ N;. To prove that the algorithm runs in expected

linear time we must show that

E(zn:N ZE = O(n). (3.2)

i=1 i=1

It would be very satisfying to show that there exists some constant ¢ such that
E(N;) < c for all i. Linearity of the algorithm would follow immediately from (3.2).
Unfortunately, there is no such ¢. As we shall soon see no better uniform bound than
E(N;) = O(n!/3) can be found. This yields, at best E(Y_ N;) = O(n*/®) which is not
nearly good enough. While there is no uniform bound on the E(N;) we will be able
to prove an adaptive one; the expected values decrease as i increases. Furthermore
they decrease just fast enough for the cumulative work to be linear.

More specifically

E(N;) = 0 (-7) ; (3.3)

Using the fact that 3., 1/ Vi = O(y/n) this proves that

E(zﬂjN,-) =0 (zn: \/?) = 0(v/n) O (Y) =0m). (34)

i=1 1<t<ﬂ

We will also show that this bound is tight so a uniform bound can not exist:
for large enough 7 there is a matching lower bound:

E(N;)=Q (% . i>n'3lgn (3.5).

81

In the next section we will prove both of these facts.

§3.3 Analysis of the Sweep Line Algorithm

§3.3.1 Probabilistic Assumptions and Notation

We will assume that we are given n points p; = (zi,%), ¢ = 1,...,n, chosen
L1LD. Ujo, 1]2 . The p;-s are then sorted by z-coordinate® and renamed p(;) =
(z (i), ¥(i)) where

) < Z2) < *+* < Z(n-1) < L(n)- (3.6)
We need to define the following random variables:

X)) = 23) 57)

b= gin d(pw)pw)-

The distance function, d(-, -), is the L, distance function. In §3.3.4 we will show
how to generalize our analysis so that it is valid under any L, metric. Given a real
X we say that the a-interval is the strip of width a to the left of the line z = X.
The number of points in an a-interval will be denoted by

L(X,a) = number of p; in the a strip to the left of X
=|{pi| X —a<z; <X}

and the number of points in the §;-interval is
N; = L(X(i41), 6:)-

Directly from the definitions we see that N; < 4. Our goal in this section is to analyze
E(N;) = E(L(X(i+1),6:)). There is a major difficulty with any such analysis: if o is
a constant then it is not difficult to calculate that the conditional expectation
i
E(L(X+1),0) | Xy =2) = — (3.8)

2 A technical quibble: this definition is not valid if there are two points with
the same z-coordinate. We don’t have to worry about this happening. If the
points are chosen 1.I.D. U[0,1]? then two points sharing the same z-coordinate is a
zero probability event which we can safely ignore. This restriction, that the points
have unique z coordinates, is only made to simplify the analysis; the algorithm
correctly finds the distance between the closest pair even when there are points

with duplicated z-coordinates.

82

Figure 3.3. The large rectangle is R. The
shaded rectangle is the a-interval. If a
point is chosen from a uniform distribu-
tion in R then the point has probability
a/z of being in the shaded region. If i
points are chosen I.I.D. uniformly from R
then the number of points in the shaded
region is going to be a B(i,a/r) binomi-
ally distributed random variable.

Conditioning on X(;41) = = means that the ¢ points p(), ... ,p() are LLD. uni-
formly distributed in the rectangle

R=[0,z] x [0,1]

which has area z. This makes [L (X(,-.,_l),a) | X(i41) = :r] a binomial® B(i,a/z)
random variable (Figure 3.3) with mean ia/z.
This does not imply that
E(N; | X(ig1) = &, 6 = o) = E(L(X(i41),6) | Xggy = 2, 6 = @) = g (3.9)
Conditioning on §; = « totally changes the distribution of the points. It restricts all
pairs of points from being less than a distance o from each other and also requires
that there is some pair that is ezactly a distance o apart. These extra conditions
mean that we can no longer assume that [N,- | Xi+1) =2, 6 = a] is binomially
distributed. A good portion of our analysis will be devoted to developing a method
of sidestepping this problem.

3 A random variable Y is binomial B(m,p) if

Pr(Y = k) = { (MpFA-p)™ ™ H0<k<m
0 otherwise.

83

Before we start the actual analysis let’s get some feel for why E(N;) is O (n/ z) .
Why should we expect E(IN;) to have this value? To answer this question we're go-
ing to break the rules temporarily and indulge in some illegal calculations; we will
assume that random variables are concentrated at their mean. In §3.3.2 we will
show that E(X(;)) = 737 so we start by setting X(;) = 7i7. We can scale (see
the closing remarks of this section) the techniques developed in §1.4.3 for finding
the expected closest distance between n points chosen 1.I.D. U[0,1]? to show that,

ignoring multiplicative constants,

VE

E (6,, |X(i) = 1.‘) s T (3.10)
Therefore _ .
1
E (5,— | X i) = n+1) ~ = (3.11)

Again breaking the rules we’ll assume both that §; is concentrated at its mean and
that (3.9) is true. Then

L
i 1 z:;.,'_n n
E (L(X(i+1)a5£) | X(i41) = L b = \/ﬁ) = Xt~ \/? (3.12)
n+1

Tragically neither real-life nor mathematics is ever this simple. This is especially
true in probability theory where conditionality is a sad, inescapable fact of life. The
laws of rigor intrude and force us to avoid all simplifying illegal assumptions, leaving
the final proof much less straightforward.

83.3.2 Order Statistics

We are now ready to start our analysis of E(N;). In this analysis we will find
it useful to have upper and lower bounds for the X(;). We take advantage of the
fact that the X(;) have been extensively studied [De] because they are the order
statistics of random variables. More specifically, since the p; = (z;,y;) are L.LD.
uniformly in the unit square the z; have to be L.I.D. uniformly distributed in [0, 1].
The sorted z-coordinates, X(;), are the order statistics of n uniformly distributed
random variables on [0,1]. The probability density fq(z), of X(;) is well known
(see [De], p. 17, for a derivation) and is given by

n!

fol@ = Gohim =)

! & 1-2)"" zel01) (3.13)

84

Using the standard properties of the Beta and Gamma functions the next lemma
lets us calculate all of the moments of X;) :

Lemma 3.1:
n!(k+1i-1)!

Gi-1)!(n+ k)

E(X?i)) =

Proof.
1

1 i n—i
E(Xﬁ-)) = o 1)?(11 =D ./0 g1 (1 - 2)" " dx

n! g "
g Y Tevr o LA
3 n! Fk+i)l(n-141)
T@E=-1)(n—-i)! T(n+k+1)
_nl(k+i-1)
TE-1D)!(n+ k)
These equations lead directly to
Corollary 3.2:
B(Xi) a2
() = n+ 1'
2 %L i(14+1)
E(XG) = CESWCED) (3.14)
] 1-1)
Var(Ken) = SR R K) = B .

This gives us the result that we will use in §3.3.3 to restrict the range of X 1) :

Corollary 3.3:

; | 4
Pr (X(i+1) ¢[%%:%%,%H%]) e (3.15)

Proof. By Chebyshov’s inequality and Corollary 1

‘ : 141
Pr (X #1353 34588]) = Pr (K = Bl > 30)

2
< Var(X(i41)) (2(?1 2 1))

<

85

§3.3.3 Asymptotics of E(N;) = E(L(X(i41),6:))

Theorem 3.4: Choose n points 1.I.D. UJ0, 1]2 . Let N; be the number of points
in the é;-interval . Then

E(N;) =0 (% , i >n'3gn. (3.16)

More specifically

\/3%\/?+0(\/§) SE(N;')S\/?\/?+4+O(\/§).

Proof: The proof is complex and will be split into two parts. In the first we
will show that we can effectively restrict X(;41) to the bounded subinterval D; =
[3 335, 4445%]. In the second we will use this restriction to D; to bound the
conditional expectation E(L(X(i+1),6:) | X(i4+1) = z) from above and from below.

Before starting the actual proof let’s look at two reasons why the restriction
i > n1/3 is necessary. First, a quantitative reason: By definition N; < 4. If i & n'/3
then \/17/—1 > n!/? and the lower bound part of the theorem E(N;) = O (n/z)
can’t be true®.

Next, a qualitative one: Look at the average values “calculated” in (3.9)
through (3.12). If i ~ n!/3 then from Corollary 3.2 X(;41) ~ n~2/3. From (3.10) we
also expect that §; ~ n~2/3, This leads us to believe that the §;-interval contains
at least a constant fraction of the first 7 points and there is no appreciable savings
made by the algorithm at this stage. Later we will see that for just this reason

1/3

i =n'/? is an explicitly critical value in our calculations.

(i) Writing out the standard formula for conditional expectation we find that
1
E(N,) ='/0 E (N, |X(,;+1) = .'L‘) f(,'.|.1)(.'17) dz
-] BN Xy =) fean(a)de (317)
zeD;

<+ ‘/‘E . E (N, |X(g+1) - :L‘) f(.;+1)($) dz.

1t

4 At this point the attentive reader is probably asking why the the lgn factor
in (3.16) is needed. The answer is that it isn’t required for the proof. The theo-
rem works just as well with any restriction i > g(n)n'/® where g(n) montonically

increases to infinity. The choice of lgn was made to simplify the proof.

86

From Corollary 3.3 and N; < 7 we immediately see that

/gp E (N‘ ,X(i+1) = :c) f(,-+1)(:t:) dr < i:Pr (X(,'_H) ¢ D,)

< .42 <4
t+1
We can therefore rewrite (3.17) as
E(N;) = f = E (Ni | X(i41) = :L') f(;+1)($) dz + O(1). (3.18)
z€D;

(ii) We will show that, for ¢ > n!/3lgn and any z € D;,

E(N;| X441 =2) =0 (\/%_) :

The proof of the theorem will follow by the insertion of this last statement into
(3.18).

From now on we assume that X(;;;) = z for some constant z € D;. As before,
R is the rectangular region to the left of the line z = X(;,) :

R = [0;2]™ [0,1].

Conditioning on X(;4+1) = = we know that there are exactly ¢ points in R. We can
randomly relabel the points so that ¢ = (z1,¥1), -+, ¢ = (i, y:) are the ones in R.
The crucial fact upon which our analysis will be based is that after the points are
relabeled the qy,---,q; are LI.D. uniformly in R.
We define new random variables (Figure 3.4):
1 fr-6<zj<z
Dy {O otherm;e. e

This is the indicator function for the event that g; ¢s in the é;-interval, so N; =
S j<i Mj. Because the g;-s are L1D., linearity of the expectation operator yields®

E(N;) = E(M)). (3.19)

5 As we said before, all random variables and expectations in this part are
conditioned on X(;4;) = z. For the sake of clarity we don’t write this explicitly.
For example, (3.19) should be read as

E(N,‘|X(,‘+1) = .'E) = 1E(M1|X(,_+1) = 17)

87

-— § —»

o= o, —>0
o, —>0

(a) . (b) .

- X > - X

Figure 3.4. In both figures the large rectangle is R while the shaded one is the
b;-interval. The point on the dotted line is ¢;. In (a), ¢;’s distance, from the right
boundary, z — 1, is less than §; so M; = 1. In (b), the distance is greater than §;
so M; =0.

Since ¢; is (uniformly) distributed in R we can find E(M;) by integrating over
the conditional expectation given that g; is fixed, i.e.

1 1 T
E(M;) = ;/ Of E(M 0y = (o1,00)) do . (3.20)
= 1=

At first glance it might seem that all we've done is exchange one complicated
integral, (3.17), for another. In the next few lines we give a few simple transforma-
tions that enable (3.20) to be rewritten in a more pliable form.

1 1 X g
E(M,) =;[Pr(M; =1|q = (z1,11)) dz1dy;
v

1=0 z;=0

1 1 z
=-—-f Pr(z—6; <z <z|q = (21,%1)) dz1dy (3.21)
T Jy1=0Jz,=0

1 1 x
=-—f Pr(6; 2 z1|q1 = (z — 71,91)) dz1 dy1.
Y

T 1=0Jz;=0

88

The first equality follows from M; being an indicator function, the second from the
definition of M;, and the third from the transformation z; — (z — z1).

Our plan is to bound E(M;) by calculating upper and lower bounds on Pr(é; >
71 |q1 = (z—71,1)) and integrating over them in the last line of (3.21). Calculating
these bounds will require only minor modifications of the techniques derived in
§1.4.3 for finding the closest distance between all pairs of points when the points
are chosen L.ID. U[0,1]?. The two major features that differentiate the current
situation from that in the unit square are (a) that we are now conditioning over a
particular placement of the first point ¢; = (z1,%1) and (b) that the points are no
longer 1.1D. U[0,1)? but LID. uniformly in R.

(A) Lower bounds:
Recall the notation of §1.4.3. Given q1,- -, qm, points in the plane, Z was the
distance between the closest pair, i.e.

Z(q1, 1 qm) = lsﬁ&md(%,m)-
We proved that, when the points were LLD. U[0,1)?, then E(Z) = © (n~!) . What
happens if we change the distribution so that the points are now IL.I.D. uniformly
inR = [0,z] x [0,1] where z € D;?

In §1.4.3 we derived an alternative characterization of Z :

Z(Ql:"'an)za < Vk: nguB(Qﬁa)

i<k

where B(g;,a) is the Euclidean ball of radius a around g;. We can think of this
characterization as defining a point placement process. The points are sequentially
placed in R, each under the constraint that it is outside the a-neighborhoods of its
predecessors. Viewing the situation from this perspective lets us write

Pr(Z(q1, " ,qm) = @) = Pr(Z(q1,92) 2 @) - Pr(Z(q1,92,93) 2 @ | Z(q1,92) 2)
-Pr(Z(q1,92,93,92) > a | Z(q1,92,93) >)"
=[] Pr(Z(a1,---) 2 @ | Z(q1,"-,qk-1) 2 @)

k<m

= H Pr| g ¢ U B(gj,a) | Z(q1,-"1qk-1) 2 @

k<m i<k
(3.22)

89

Because the gi are uniformly distributed in R

Pr(Qk 4 U B(Qj’a) | Z(QIa"'st—l) 20)

i<k

it (Area [Uj<k B(g;,) ﬂR]

. >
Area(R) ‘ Z(q1y "y Qr-1) 2 a)

E (A'rea [Uj<k B(gj,) na] l Z(a1,+qko1) > a)

T

=1]1-

(3.23)

The fact to be stressed here is that, no matter where the g; are placed, we can
always bound Area (B(gx,) NR) < ma® so we can upper bound the expected area
and therefore lower bound the product in (3.22) by

2
Pr(Z(ar,+ram) 2 0) 2 [] [1 _ o] . (3.24)
k<m

We will need a technical lemma to evaluate this product.
Lemma 3.5: For any constant ¢ > 0

1 [- the?/z] = e*™@"/%% [1 + O(ma?/z + m®a* /%)) . (3.25)
k<m

Proof: Standard asymptotic manipulations [GKP] give

H [1—tko?/z] = exp Z In(1 - tka?/z)
k<m Lk<m
= exp (Z (=tka?/z + O(kza'i/xz))] (3.26)
Lk<m

= exp [-tm(m — 1)o?/2z + O(m®a*/2?)]
= e~tm*e?/2¢ [1 4 O(ma?/z + m3at/z?)] .
Q.E.D.
Return to (3.24) for a moment. Its derivation never used the fact that ¢; was

chosen from a uniform distribution. This means the derivation remains valid even
if we specify that g; has an arbitrary fixed value. Therefore

krz?
Pr(6; > z1|q1 = (x—z1,71)) > H 1- i {(3.27)
k<i *

90

Remember that we are always assuming that £ € D; so we can write z = ci/n
where 1/2 < ¢ < 3/2. Setting m = i,t = 7, and @ = z; we use Lemma 3.5 to
evaluate the right hand side of the last equation. '

Pr (6 > 21 |q1 = (& — 21,31)) 2 €”™"1/% [14 O(na} + ina?))] .
We can now upper bound E(M;). Suppose® z; = /Ign /in then
e~™n1/2¢ [1 4 O(na? + in?z})] = n~00E™), (3.28)

Therefore, for any value of y;

1
] Pr (6 2 o o= (&= »i.31))de
0

1
2 / e—rinzifzc [1 4 O(nxf +in23%]d.'c1
0

l\%g
- / e-min21/2¢ [1 4 O(na? + in%z?)] dzy + n~ 08"
0

VE o)

Again using z = ci/n we insert this back into (3.21) and get

(3.29)

1
E(M) = -/ / Pr(6; 2 z1|q1 = (z — z1,%1))dz1dys

> Syam 1o ()] [@
\/;\/Ta o(F):

Recalling (3.20) this gives the lower bound for E(N;) :

E(N;) = iE M1)>\/; \/_ (@ (3.30).

6 This is where we use i > n!/31gn. From the definitions of z and z, we must
have /lgn /in = z; < x = ci/n. If i was O(n!/3) this would not be true, whereas
for large enough n and i > n!/31gn it is always true.

g1

Remember that all probabilistic statements this section were conditioned on
X(i+1) = = € D;. Remember too, that for these z, we know that 1/2 < ¢ < 3/2.

Therefore we've proven

: 4 [n n
E(N; | X¢41) =) 2 \/§ﬁ+0 (\/;3)

Reinserting this into (3.18) immediately proves the lower bound of the theorem.

(B) Upper bounds:

We will now prove an upper bound on Pr(6; > z,|q1 = (z — 1,%1)). Inserted
back into (3.21) this will give an upper bound on E(M;) and thence E(N;). In order
to do this we will first find an upper bound on Pr(Z(g;,:--,gm) =) given that
the g; are I.I.D uniformly in R.

In §1.4.3 we provided a second characterization of Z:

Z(ql')"'sqm) ca <« Vl?éks B(Qlaa/2)nB(kaa/2) = 0. (331)

Assume for the moment that a < z € D;. It follows that for every g; at least one
full quadrant (upper right, lower right, etc.) of B(g;,a/2) is totally contained in R.
If Z(q1,--+,qk—1) > @ then combining this last fact with (3.31) gives

Area [U B(g;,a) DR] > Area {U B(g;,/2) ﬂR]
i<k i<k
= ZArea [B(gj,a/2) NR] (3.32)
i<k
> (k- 1)ma?/4.

This bounds the expected size of the area.
E (A’"ea [U B(gj,) ﬂﬁ] I Z(q1y 1 qk-1) 2 a) > (k- 1)ma?/4.
j<k

We now mimic the transformations that yielded the lower bound in part (A).
Insert the lower bound on the expected area into (3.28) and insert the resulting
inequality into (3.22). This yields

kmra?
Pr(Z(q1, -+ ,qm) 2 @) < H [1— ye] (3.33)
k<m

92

We now have an upper bound on Z but it looks like we still haven’t developed a
technique that enables us to deal with the conditioning on ¢; = (z1,%:1) in (3.21).
In reality we don’t need one: what we have is strong enough. No matter what the
value of g1 = (z1,¥1) it is always true that

61'. = Z(ng"'qu) S Z(Q2l"'$Qm)-

Probabilistically this implies
PI‘(&,’_ 2 I IQI = ((II - mhyl)) S Pr(Z(Q2’ sQi) 2 :L'l).

Since g, - - ¢; are I.ID. uniformly in R we can use (3.33) to bound

Pr(6; > z1|q1 = (- 21,1)) < H [1—km%]-

k<i-1 iz

We again use Lemma 3.5 to evaluate the right side of this equation. The same
sequence of steps that we used to find (3.29) now gives

Pr(8 > o1 | a1 = (z — 21,31)) < e7™"51/% [14 O(na? +in’a})] . (3.34)

As we did for the upper bound, we again split our analysis into two parts
depending on whether or not z; > \/m For the moment we assume that
zlz\/l—gm. We would like to insert this value of z; into this last inequality
and evaluate the resulting right hand side. Remember though that we based its
derivation on (3.33). But in (3.33) we required that a < z which in (3.34) translates
into z;(= a) < z. But \/M = z; < z = ci/n follows from the theorem’s
assumption that ¢ > n'/3lgn. Therefore we can legally evaluate (3.34) with z; =

V1gn [/in giving
g~ ming] /8e [1 + O(nz? + inz:c?)] = n~gn)
and from the monotonicity of the probability distribution function

Pr(6 > z1|q = (z — z1,31)) < n~ 8"

for all z; > +/lgn /in.
To get the desired upper bound we now follow essentially the same sequence of

transformations that we used in (3.29). We leave out the intermediate steps because
they are almost exactly the ones we performed before.

' 8c 1
/0 Pr(6; >z, |q1 = (z — x1,31))dz; < = [1+ 0 (:)]

93

and

s < Z /5 +0(22)

Inserted into (3.20) this yields the final result

E(N;) < E(M;) < \/}?E\/gJ“ 0] (\/g) :

All probabilistic statements this section were conditioned on X(j;1) =z € D;.
For these z, we know that 1/2 < ¢ < 3/2. Therefore we have actually proven that,

for z € D;,
/16 /n n
; ; —_ " s i [—
E(N, |X(,+1) I) s pes 5 + O (\/:;)

Reinserting this into (3.18) immediately proves the upper bound of the theorem.
Q.E.D.

§3.3.4 Two Loose Ends Retied

In the preceding pages we made two claims that we did not prove because they
were not needed by our analysis. One, made in in §3.3.1, was that we can directly
evaluate E (65 | Xy = :c) The other, made in §3.2 and §3.3.1, was that we can
generalize the sweep-line algorithm and its analysis so that they both continue to
be valid even when the distance function d(g, ¢’) is replaced by the distance function
for the L, metric (p > 1), dy(g,¢’). We now prove both of these claims.

We start by proving the first claim. In §3.3.1 we stated that the techniques of
§1.4.3 could be scaled to derive

E (6, |X(,‘) = :E) ~ ? (3.10)

We shall show that this statement is true whenever two conditions are fufilled.
The first condition is the same one that Theorem 3.4 had: i > n/31gn. The second
condition is more technical, that £ > i/(nlgn). This is not a particularly onerous
restriction since (3.13) shows that Pr(X(; < i/(nlgn)) is extremely small.

Now, let g;,---,g; be chosen L.I.D. uniformly in R = [0, z] x [0, 1]. By definition

Pr(Z(gy, @) 2 a) =Pr (6 > a|X() = 2)

where Z is the distance between the closest pair among the points. During the proof
of Theorem 3.4 we derived the following upper, (3.24), and lower, (3.33), bounds

on this last expression:

94

I1 [1 - k’;‘”z] <Pr(Z(a1,--a) 2) <[] {1 - k:f] : (3.35)

k<i k<i

The left inequality is always true. The right inequality is true when a < z. Since
V2
0

we may integrate the left and right sides of (3.35) to bound E (§; | X(;) = z) from
above and below. These bounds yield (3.10).

We will integrate the right side since we will need its value in §3.5. The inte-
gration of the left side is done similarly.

Lemma 3.5 lets us write rewrite the upper bound in (3.35) as

Pr (6 2 o| X = 1) =Pr(Z(q,---,9) 2 @) (3.37)
= e-wi2a2/8z [1 + O(,,:QZ/:B g 1:30.'4/.’172)] :

where, as stated above, we assume that a < z.

Let a = 1/zlgn/i. We would like to insert this value of a into (3.37). To do this
we must show that /zlgn/i < z. This will follow directly from our assumptions
i>n'/31gn and i/(nlgn) < z. The first assumption can be rewritten as lg2n/i? <
i/(nlgn). Combined with the second assumption this yields 1g2n/i? < z which

gives /zlgn/i < z.
We can therefore insert a = /zlgn/i into (3.37) to get

s (61 ..>_ \/Elgn/i IX(,,) = .‘B) - n—n(lgn).

We can now integrate the right side of (3.36) to calculate (3.10)’s upper bound.
Vzilgn/i S
E(6:| Xy = z) <n~ 08" 4 f e~ /8 [1 4 O(ia? [z + i°a* [2?)]
0

4
Sn—ﬂ(lgn) o} /w e—qrizagls:n [1 4 O(ISi n]

()
(3.38)

The lg* n/i value in the second inequality comes from substituting = > i/nlgn into
the O() term.

95

Now we prove the second claim. Let p; = (z;,¥:), i = 1,...,n. We must first
show that the algorithm still finds the closest pair when closest is defined by

dp(pi,p;) = (J&i — 5P + |y — y;1P)*7?

where d,(p;, p;) is the L, metric (1 < p < 00). We must then show that our analysis
of the algorithm, when the p; are chosen 1.1.D. UJ0, 1]2, remains valid.
The validity of the algorithm for the standard L, metric was a result of

bi+1 = min (&', B4 (P(i+1),P(k))) - (3.1)

and the paragraph immediately following it. The salient fact used there was that “if
there is some k < i such that d (p(i+1), P(x)) < 8 then for that k, 2(i41) — Z(x) < 6.7
This fact and (3.1) are still true when we relace d(p,q) by any d,(p,q) (where
1 < p < 00), so the algorithm does find the closest pair for any L, metric.

Next we show that our analysis of the algorithm remains valid after replacing
d(pi,p;) with dp(p;,p;). Reviewing the proof of Theorem 3.4 we find that it uses
only four properties of d(p;,p;). The first two properties deal with the size of the
a-ball surrounding a point and how much of such a ball must be in the unit square:
they are

Area (B(p, a)) = ma?, a<1/2

and
7o’ /4 < Area [B(p, a)n [0, 1]2] < ma?, pe [0,1*and a <1/2. (3.39)

The second two properties are characterizations of Z(p;, -, pm), the distance
between the closest pair of points:

Z(py,,pm) 2@ & Vk: pe € | B, o),
i<k
and

Z(Ph"',Pm)Ea \ 4 VI")éka B(pha/z)nB(pk’a/2)=@'

In §1.4.5 we proved that these four properties are all true for any L, metric
(1 < p < o0) if, in (3.39), we replace 7 by the area of the unit ball under the L,

metric,

Wp2 = Area (BP((O’O)a 1))

96

where
B,(g,2) = {q¢'|dp(q,d) < a}.

Therefore we can generalize Theorem 3.4 to any L, metric:
Theorem 3.4: Choose n points 1.1.D. U[0,1]*. Let the distance function be some
L, metric. Let N; be the number of points in the §;-interval. Then

E(N;)=© (-,) : i>n'3lgn

where the constants implicit in the ©() notation depend upon the metric used.
Inserting this result into (3.4) proves that the algorithm takes expected linear
time under any L, metric (1 < p < 00).

§3.3.5 Simulation Results

Numerically, we can calculate the constants implicit in the theta notation.

Using the fact that 3" /n/i ~ 2n and Y /n/i® = O(y/n) we can add over i in
(3.16) to get

0.6514... n+ O(vn) < E(N;) < 6.2567...n+ O(v/n).

The constant on the right hand side is small so the algorithm should run relatively
fast. How well does this work in practice? In Table 3.1 we provide statistics on
E(S"N;) collected by running the algorithm on random point sets. For each value
of n we ran 100 random trials and averaged the results. The statistics seem to show
that the running time of the algorithm is much closer to the lower bound than to
the upper.

§3.4 The Projection Algorithm

In §3.2 and §3.3 we discussed the sweep-line algorithm and showed that, after
the sort, it finds the closest (defined by any L, metric, p > 1) pair in linear expected
time when the points are chosen 1.1.D. UJ0, 1]2. We mentioned in passing that the
sweep-line algorithm has Q(n?) worst case behavior. In this section we present and
analyze another algorithm for finding the closest pair, one based on Bentley and
Papadimitriou’s projection method [BP]. This algorithm also starts with a sort and
also has a second pass that will find the closest (defined by any L, metric, p > 1)
‘pair in linear expected time when the input points are 1.1.D. UJ0, 1]2. It will follow

97

n E:’ N; ;1{ Z,’ N;
1000 1287.9 + 437.6 1.287900 + 0.4376
2000 2578.0 £ 870.9 1.288995 + 0.4355
3000 3886.7 + 1355.5 1.295583 £+ 0.4518
4000 5218.2 + 1704.2 1.304547 £+ 0.4260
5000 6665.0 + 2179.6 1.332996 + 0.4359
10000 14254.9 + 4981.7 1.425485 £ 0.4982
15000 19627.2 + 6512.7 1.308477 £ 0.4342
20000 27536.2 £ 9550.5 1.376812 £ 0.4775
25000 36641.9 £+ 13681.5 1.465676 + 0.5473
30000 38866.0 + 12462.7 1.295532 + 0.4154
35000 50043.5 £ 13718.0 1.429814 £+ 0.3919
40000 56985.9 + 17986.8 1.424649 + 0.4497
45000 63917.4 £+ 20805.6 1.420386 + 0.4623
50000 67907.2 £+ 19342.2 1.358143 + 0.3868

Table 3.1. For each value of n we generated 100 sets of n random points. Each
set was sorted and Y N; was calculated. The value in the second column is the
average value of 3 N; over all 100 point sets. The value in the third column is the
value in the second normalized by division by n.

from a result of [BP] that this new algorithm has an O(n®/2) worst case running
time when closest is defined by the L., metric.

This section is divided into two parts. In §3.4.1 we present the projection al-
gorithm for finding the closest pair. This algorithm is a modified version of the
“nearest-neighbor” algorithm presented in [BP]. For more information about the
algorithm and for an analysis of its worst case running time see [BP]. In §3.4.2 we
analyze the expected behavior of the projection algorithm. We find that the tech-
niques developed in §3.3 to analyze the sweep-line algorithm are directly applicable
to the analysis of this new algorithm. Our result is that, after the sort, the second
stage of the projection algorithm requires only O(n) expected time when its input
points, p1,---,Pn, are chosen L.ID. UJ[O0, 1]2. As was the case for the sweep-line
algorithm, our analysis remains valid when “closest” is defined by any L, metric,
pz21l

98

§3.4.1 The Algorithm

In [BP] Bentley and Papadimitriou describe an algorithm for solving the “post-
office” problem. Given n points, p;,---,pn, the “post-office” problem is to prepro-
cess them so that, given a new point, g, we can always find the point p; which is
closest to g, i.e.

Vjv d(QLPi) < d(Qapj)'

The preprocessing step proposed by [BP] sorts the p;’s by increasing z-coordinate.
To find the closest point to a new point, g, they compare g to the points which are
nearest to g by projection on the z axis. This is a two step procedure. They first use
a binary search to find p; such that p;.z < ¢.z < p;y1.z. They then, using their own
phrase, “search out,” g’s nearest neighbor by always comparing g to the point whose
z-coordinate is closest to ¢ and to which g has not yet been compared. While doing
this they keep track of d, the closest distance between g and all of the points it has
been compared to so far. They terminate the search when g has been compared to
all points p; whose z-coordinates are within the range [g.z — d, g.z + d]. We call this
algorithm NNX : NNX(g) returns the distance between g and its nearest neighbor.
In Figure 3.5(a) we provide a worked example of NNX and in Figure 3.5(b) we list
pseudo-code implementing it.

The problem with this algorithm is that it can take Q(n) time, e.g when all of
the p; lie on the same vertical line. In an effort to avoid this problem [BP] notes that
there is nothing sacred about projection on the z-axis; we can just as easily write
the algorithm so that it projects on the y-axis by “searching-out” the points whose
y-coordinates are closest to ¢’s y-coordinate. This algorithm, which we call NNY,
also requires 2(n) worst case time. We can also interleave projection on the z-axis
with projection on the y-axis. That is, we can run the two versions, NNX and NNY,
in lockstep: at each stage comparing g to the point with closest z-coordinate, and to
the point with closest y-coordinate (Figure 3.6). This last version of the algorithm,
which we call NN, has an interesting combinatorial worst case analysis. [BP] prove
that if we run” NN(p;), NN(p2),...NN(pn-1), and NN(p,) the total time taken
by the algorithm will be O(n3/2) as compared to an £(n?) worst case bound if
we had run just the z-projection version NNX(p;), NNX(p2),...NNX(pn-1), and

" By running NN(p;) we mean finding the point p; # p;, such that p; is closest
to p;. This requires us to slightly modify our code so that it p; is not reported as

its own nearest neighbor.

99

function NNX(q : point) : real;
var left, right, i :Iinteger;
delta, nextdist : real;
begin
Use a binary search to find i
such that pfil.x < q.x <= pfi+1].x;

left := i; right = i+1;
delta := dist(q, p[i]);
nextdist := min(p[left].x-q.x, q.x-p[right].x)

while delta > nextdist do
begin
If g.x-pfleft].x < p[right].x-g.x then
begin
delta := min(delta, dist(q, pfleft]));
left := left -1;
end
else
begin
delta := min(delta, dist(q, p[iright]));
right := right +1;
end
end;
nextdist := min(q.x-p[left].x, p[right].x-q.x);
end;

NN :=delta
end;

(b)
Figure 3.5. (a) is a worked example of NNX. The algorithm scans through the
p; in the order defined by increasing size of |g.z — p;.z| : it first looks at the p;
for which |g.z — p;.z| is minimal, then it looks at the one for which |g.x — p;.z| is
second smallest, etc. It remembers which of the points scanned so far is closest
to ¢. In this example it examines the points in the order p;,p2,ps, Ps,Ps,Pe. The
closest neighbor to g is ps. After finding d(g, p5), the algorithm knows that it doesn’t
have to examine any points outside of the gray strip {(z,y) : |¢.z — z| < d(g,ps5)}.
Therefore it examines pg, the last point that satisfies |g.x — p;.z| < d(g,ps), and
terminates, because it knows that ps is ¢’s closest neighbor.

(b) is pseudo-code for NNX. We assume that the points are sorted by z coordi-
nate so p[i].z < p[i+1].z and that there are two dummy nodes p[0] = (—o00, —00) and
p[N + 1] = (00, 00). The function operates by always comparing g to the unchecked
point with the closest z-coordinate. While doing this it updates delta, the minimum
distance between g and all of the p[j] that have been examined so far, i.e. the j
which satisfy left < j < right. The function terminates when there is no unchecked

point whose z-coordinate is within delta of g.z.
100

NNX (pn).

We now modify this last algorithm so that it finds the distance between the
closest pair. Obviously one way of doing this would be to calculate all of the
values NN(p;), ...,NN(p,) and report the minimum value. A more sophisticated
technique uses information already calculated. Suppose we have already calculated

= mln(NN(pl): NN(pz), o sNN(pi))'

We will only be interested in calculating NN(p;41) if NN(pi4+1) < s;. If we can
convince ourselves that NN(p;4+1) > s; then we can truncate the search performed
by NN(p;+1). The truncation is implemented by stopping the execution of NN(p;4+1)
if there are no points in {(z,y)|pi+1.T — 8; < T < pi+1.Z + 8;} or if there are no
points in {(z,¥y) |pi+1.¥ — 8i < ¥ < pit+1.¥ + 8i}. In Figure 3.7 we present code for
this truncated search closest-pair algorithm when we are only projecting/searching
on the z-axis. We call this algorithm CPX. It is straightforward to generalize this
code to perform interleaved z and y projections/searches. We name the interleaved
closest pair algorithm CP. [BP]’s result implies that CP takes O(n®/?) time in the
worst case when closest is defined by the L, metric. They also point out that, while,
in general, they can’t extend this O(n3/2) bound to the L, metric, in practice, the

use of finite precision arithmetic does let them extend it.

§3.4.2 Analysis

In this section we will prove that, after the initial sorting stage, algorithm CP
will perform an expected linear number of computations if the input points are cho-
sen L.LD. U[0,1)?. We will actually prove something stronger, that after its sorting
stage, algorithm CPX will perform an expected linear number of computations if the
input points are chosen 1.1.D. UJ0, 1]2. Since algorithm CP can not perform more
than twice the number of comparisons that algorithm CPX performs, this implies
the desired result. We mentioned before that [BP]’s analysis proves that algorithm
CP takes O(n®/?) worst case time when closest is defined by the L., metric. Thus
we have an algorithm that takes O(n®/2) worst case time and, apart from the sorts,
takes only O(n) expected time.

Theorem 3.6: After the initial sorting stage, algorithm CPX performs only O(n)
expected comparisons when its input points, p1,---,p, are chosen LI.D. UJ0, 1]2.
Proof: As the first step in proving the theorem we must translate its statement into

mathematical terms. We start by recalling some old definitions and introducing

101

function NN(q : point) : real;
var Jefi, right, up, down, i : inmteger;
deita, nextXdist, nextYdist : real;
begin
Use a binary search to find i such that pfi].x < §.x <= pfi+1].x;
Use a binary search to find j such that rjl.y < .y <= rfj+1].y;

left := I; right = i+1; up = j+1; down = j;
delta := dist(q, pfi]);

nextXdist = min(pfleft].x-q.x, .x-pfright].x)
nextYdist := min(rfupl.y-q.y, q.y-fldown].x)

while (delta > nextXdist) AND (delta > nextYdist) do
begin
H q.x-pfieft].x < pfright].x-q.x then
begin
deita = min(delta, dist(q, pfleft]));
left = loft -1;
end
eise
begin
delta := min(delta, dist(q, pfiright])):
right := right +1;
end;
if g.y-ridownly < ruply-q.ythen
begin
delta := min(delta, dist(g, ifdown]));
down:= down -1;
end
eise

begin
delta := min(delta, dist(q, fup));
up = up+1;
end
end;
nextXdist ;= min(g.x-pfleft].x, p[right].x-q.x);
nextYdist = min(q.y-ridown].y, fupl.y-q.y);
end;

NN = delta
end;

Figure 3.6. Pseudo-code for NN, the algorithm which finds g¢’s nearest neighbor
using interleaved projection on the z and y axes. We assume that the set of points
is sorted by increasing z-coordinate so that p[i].z < p[i + 1].z and another copy of
the points is sorted by increasing y-coordinate and stored in the r[] array so that
r[i).y < r[i + 1].y. We also assume that there are two dummy nodes in each copy:
p[0] = r[0] = (—o0,—00) and p[N + 1] = r[N + 1] = (00,00). At each step by
compares g to the previously unchecked point in p[] with the closest z-coordinate
and to the previously unchecked point in r[] with the closest y coordinate. It is
possible that a point will be checked twice: once during the z-scan and again during
the y one. While performing these checks the algorithm updates delta, the minimum
distance distance between g and all of the p[i] and r[k] that have been examined so
far, i.e. the j that satisfy left < i < right and the k which satisfy down < k < up.
The function terminates when there is no unchecked point whose z-coordinate is
within delta of g.z or when there is no unchecked point whose y-coordinate is within

delta of g.y.
102

function CPX() : real;
var left, right, i : Integer;
delta, nextdist : real;
begin
left := i; right = i+1;
delta := dist(p[1],p[2]);

fori:= 1to Ndo

begin
nextdist := min(p[left].x-q.x, q.x-p[right].x)
whiledelta > nextdist do
begin
if g.x-p[left].x < p[right].x-q.x then
begin
delta := min(delta, dist(q, p[left]));
left = left -1;
end
else
begin
delta := min(delta, dist(q, p[iright]));
right := right +1;
end
end;
nextdist := min(q.x-p[left].x, p[right].x-q.x);
end;
end;

end;

Figure 3.7. Pascal code for CPX, the algorithm which finds the closest
pair using projection on the z-axis. This code is a modification of the code
given in Figure 3.5 for finding the nearest neighbor to a point. We assume
that the points are sorted by increasing z-coordinate so p[i).z < p[i + 1].z
and that there are two dummy nodes p[0] = (—o0,—00) and p[N + 1] =
(00,00). The function operates by running through the p[i] and, for each
p[i] performing a truncated search for its nearest neighbor: the nearest
neighbor search is almost the same as it was in Figure 3.5. We truncate
this procedure by halting the search for p[i]'s nearest neighbor when we
find that its nearest neighbor is further than delta away. Otherwise the
nearest neighbor search is exactly the same as the one presented in Figure
3.5(a).

103

some new ones. Using these definitions will enable us to apply the results of §3.3 to
this new problem. Recall our notation for order statistics. Given n points, p1,---,pi,
we sort them by increasing z-coordinate and rename them p(;) = (i), y(i)) Where

) <I@e) <+ <Tn-1) < IT(n)- (3.6)

As in the analysis of the sweep-line algorithm, we do not have to worry about two
points sharing the same z-coordinate because this is a zero probability event when
the points are chosen 1.I.D. UJ[0, 1]2. We defined the random variables

X =2
(3.7)

6= min_d(pw),pe)-

X(;) is the z-coordinate of the i’th sorted point and §; is the minimum distance
between the first 7 sorted points. We also defined

L(X,a) = number of p; in the a strip to the left of X .

(3.12)
=|{p;| X —a < z; < X}

We now introduce corresponding notation for the number of points in the « strip
to the right of X :

R(X,a) = number of p; in the a strip to the right of X

(3.40)
=|{pj| X <z; < X +a}|
It is very easy to see that, for a < 3,
L(X,0) <L(X,8) and R(X,a) < R(X,B). (3.41)

We also introduce a random variable whose value is the minimum distance
between the first ¢ points and all of the points:

v= min d(p)» P())-

1<1<n

k#3
The definitions introduced above arise naturally in the analysis of algorithm
CPX. The algorithm scans through the sorted points in order. It compares the

current point it is scanning, p;), to all of the points whose z-coordinates are within

104

v; of X(;), i.e. while executing the truncated search for p;’s nearest neighbor it

compares p;) to all of the points in the vertical strip

{(z,9) : lpey-x —z| £ v}

Therefore it performs exactly L(X(;),v;) + R(X(;), v;) comparisons. We can now
translate the statement of Theorem 3.6 into the following mathematical statement:

“Given pj,---,Pn, n points chosen LI.D. UJ0, 1]2, sort and relable
them by increasing z-coordinate so that p(;) = (z(;),y(;)) where

Ta) <T)< - < Z(n-1) < T(n)-

Then
E (Z L(X(g), V,') + R(X(i), Vi)) = O(Tb).” (3.42)

1<i<n

We will prove (3.42) by separately proving that E (Zl <i<n LX), v,-)) and
E (leiSH R(X(,-),v,-)) are both O(n).

() E (Ticign LX) = O(n)
We can prove this by applying the results of §3.3. First, from their definitions,
we see that v; < §; < 6;—1. Therefore
E(L(X (), ¥i)) < E(L(X(i), 6i-1)) = E(N;i-1)
where N; has been previously defined by

N; = L(X(i41),6:)-

Theorem 3.4 tells us that, for i > n'/3lgn, E(N;) = O(y/n/i). Therefore,
following (3.4),

E(> L(X(,-),v,-)) <E() N
1<i<n i=1
- n 1

105

(3.43)

(ii) E (ZISiSn R(X(i),u;)) =0(n):

We will prove this by deriving upper bounds on the individual E(R(X;,v:)).
We start with an observation. Suppose that we fix X(;) = z. Futher, suppose that
a < 1—z is a random variable that is independent of the locations of all of the points
all of the points p(i11),P(i+2)s-- -1 P(n)- Then R(X(;,a) is a Binomially distributed
B(n—i,a/(1—z)) random variable. This is because the points p(i+1), P(i42)- -+ P(n)
are LLD. in the rectangle [z,1] x [0, 1] which has area 1 — z : the probability that
a particular point is in the strip [z + o, 1] X [0,1] is @/(1 — z). We have just shown
that

-(-—)—"1__;“ ifa<z
E(R(X(,‘), a) |X(,;) = :L') = (344)
n—1 otherwise.
Notice that we have proven something quite powerful, namely that
-("1—__23 fa<z
E(R(X(,-),é,-) |X(i) = :L',(S,' = a) = (345)
n—1 otherwise.

This is true because, even though §; is a random variable, it is independent of
the random variables p(i1), P(i+2);---,P(n). Contrast this with the problems we
encountered in §3.3.1 when trying to calculate E(L(X;),6) | Xu) = 2,6 = a).
There, the random variable was not Binomially distributed because conditioning on
6; = a skewed the distribution.

We will also need the following Lemma which lets us restrict the location of
X(i)'

Lemma 3.7: Let p;,- -+, pn be chosen L.ID. U[0, 1]2 with X(;y their order statis-
tics as defined previously. Then the following statements are true for all i :

(1) Pr (x(t) < fgn) <0 (21)
(o 1- 552 <o (2).

Proof: (1) We use the fact that we explicitly know X(;)’s probability distribution

function
n!

EICE] £ 1-2)", zelo1) (3.13)

f(:')(-’ﬂ) =

106

If z < i/(nlgn) then, for large enough n, Stirling’s formula tells us

i .y =1
n 1 . nlgn
f('-)(x)sﬁ(nlgn) —O(12t)

i wTew 1
Pr (X(i) < nlgn) = ./0 f(,-)(x) dz=0 (E) §

(2) This follows from (1) and the fact that X,_; and 1 — X(;) have the same
distribution function.

Therefore

Q.E.D.

We are now ready to upper bound E(R(X(;),v;)). We split this section of the
proof into three parts depending on whether (a) i < n'/3lgn, (b) i > n—n'/3 or

(c) nt/®lgn < i< n—nll3

(a) First we assume that i < n!/3Ign. Let p; be the minimum distance between
P(i) and all of the points to its right:

Wi = 1}1>11=1 d(p:, p;)-

By definition, v; < p;, so (3.41) tells us that R(X(;),v;) < R(X(;), p;) and thus

E(R(X (i), v:)) < E(R(X(iy, 1:)). We would like to evaluate E(R(X(;), 1)) by apply-
ing (3.44): we can not apply it because p; is not independent of the points to the
right of p(;). To avoid this problem we will bound u; from above by some function
of n, g(n) Then E(R(X(;), 1)) < E(R(X(;),9(n))) and, since g(n) is independent
of the points to the right of p(;), we may use (3.44). to evaluate E(R(X(;),g(n))).

First, a simple area argument yields

Pr(Xgssgny > 1/2) = . (’:)2-"

0<i<nl/3 lgn
- nn”a lgn,1/3 lgn
e on
=0 (2-\/’7) .

For all i < n'/%1gn, we know that X; < X, /31gns SO We have just proven that
Pr(Xu >1/2)=0 (2“/’-‘-) A i <n'/llgn.

107

Since this is such a low probability we may assume that X(;) < 1/2. Under this
assumption

Pr(p; 2 1/v/n) < (1 - %ﬁ)m

< (1 - E—}/_—;)ﬂ/z =0 (e“/’_‘/4) .

Therefore we may also assume that u; < 1/y/n. This value is independent of the
points p(i+1), P(i42)s- - - s P(n) SO We may finally use (3.44). Formally,

E(R(X(5), %)) <E(R(X (i), p:))
<E (R(X(), i) | X5y £1/2, pi £ 1/v/n) + O (e—\/m)

DLk AT (e"ﬁM)

=172 Vo
=0(v/n).
We have just shown that
E(RX),u)) =0(vn) i<n3lgn (3.46)
80
Y ERXg,w)=0(n). (347)

1<i<nl/31gn

(b) Now we assume that i > n — n'/3. The very definition of R(X,) tells us that,
deterministically, R(X(;),v;) is less than or equal to the number of points to the
right of p(;), i.e.

E(R(X(,-),v,‘)) S n—1 S n1/3, 1 2 o n1/3.
Therefore we have just proven that

> E(R(Xg),w)) = O(n). (3.48)

n—-nl/3<i<n

(c) We have upper bounded E(R(X(;),v;)) when ¢ is small and we have upper
bounded it when i is large. We must now upper bound it when 1 is in the midrange.

We assume
nlgn <i<n-n3 (3.49)

108

We start by using the same bounding argument that we used in part (i). We
mentioned there that v; < §; so

E(R(X (), 1)) < E(R(X (), 6:))-

It will therefore be sufficient for us to upper bound E(R(X;), §;)).

Before calculating the upper bound we should provide some intuition as to
where we are headed. Suppose for the moment that we have fixed X(;) = z and
6; = a. Then, subject to the constraint @ < 1 — z, we can use (3.45) to evaluate

(n—1)a

E(R(X(,-),E,;) |X(,-) =z, 6,' e Ot) . e . (350)
Keeping X(;) fixed and taking expectations over é; we find that
(n —1)
E(R(X(i),6f)] X(,;) =g)= = E(6; |X(i) = %),
Now we can use the result of (3.38) which states that
E(6|XsH=z2)=0 (?) , (3.51)
Plugging this in the previous equation would prove that

We finish by integrating over (3.52) to calculate an upper bound on E(R(X;),6;)) :

1
E(R(X(:),8:)) =0 ([0 E (R(X(),6) | X() = z) fiy() dl') : (3.53)

This last equation can be evaluated using the Beta function techniques we employed
earlier in the chapter.

The reason that we can not perform the analysis in the manner just described
is that, in the foregoing sketch, we did not take into account the conditions that
must be satisfied in order for the formulas to be valid. For example, to use (3.45)
we must satisfy @ < 1 — z. Similarly to use (3.51) we must satisfy z > i/(nlgn).

Now, we start the real analysis. Assume for the moment that X(;) = z where

n—1

<z<l- (3.54)

nlgn nlgn’

109

Our goal is to use (3.44) to show that

B(R(Xg,0) | Xy =) = B2, (3.55)

To use (3.44) we must restrict « < 1 — z. Therefore we would like to show that
Pr(6; > 1 — z|X(;) = z) is small. To do this we use a formula derived in §3.3.4:

Pr(6: > | Xy = z) = ™2 /% [1 4 O(ia® [z + i%a?/2?)] . (3.37)

This equation is valid whenever i > n}/3lgn and z > i/(nlgn), both of which are
currently assumed to be true (3.49) (3.54). Evaluating this equation witha =1-z
we find that

Pr(6; >1-z|Xy=z)=e ™ 0-2)/8 [1 1 O(n%)]. (3.56)

(We used the fact that £ > i/(nlgn) to get the O(n®) term.) The important
thing to realize is that, since we are assuming (1 — z) > (n —1)/(nlgn) (3.49) and
n'/® <in—i<n-nl/3(3.54) we know that

2/3 (, _ »1/3)\2 1/4
n?3(n—-n)>n

i2(1-1z)% > ,
(yz n2lgn -2
Inserting this back into (3.56) we get
Pr(621-2|Xg=2)=0(e"). (3.57)

If @« < 1 — z then we can apply (3.45) to get

n-—t)a
E(R(X(i),ﬁi) IX(,-) = .'1.',6,' e a) = (1 —.‘I:) .
Combining this with (3.57) yields
n—1 —nl/4
E(R(X(,‘),(ﬁ,‘) IX(,-) =z) = (1 - ﬂ',') E(6; |X(,’) =z)+0 (ne) : (3.58)

We will use one more result from §3.3.4: (3.38) states that, when i > n'/3lgn
and z > i/(nlgn), then

£ 6% =) =0 (£).

110

Combining this with (3.58) proves that

B(R(Xw:aHX(i)=$)=O((?(1:);/)—)’ nl-gn< z<l- nI;:;'

We are now almost done. Inserting this last result into (3.53), applying Lemma
3.7, and using the definition of f(;)(z) given in (3.13) we find that

1-(n—i)/(nlgn) :
2RX60)= [0 (GT2SE) o) +0 ()

=0 (/ L _12 1{3{ ()‘)(z)) +0 (n/2)

xi‘lfz(l 5 e d:c) + 0 (n/2%)

-o(Z=m
0 (ﬂ(n m— Bi+1/2,n—)) +0 (n/2).

Using B(a,b) = I'(a)T'(b)/T'(a + b) and Stirling’s formula we see that we have

just proven
E(R(X(;),6:)) =0 (\/?) ., nPlgn<i<n-nl/s

We started this part of the proof by showing that
E(R(X (3, v:)) < E(R(X(3),6:))

so we have just proven that
n
z E(R(X(iy,us)) < Z v O(n).
nl/3lgn<i<n—nl/3 1<i<n
Combining this with (3.47) and (3.48) proves
> E(R(X(),w)) = 0(n)
1<i<n

and we are done.

Q.E.D.
In §3.3.4 we showed how to extend our analysis of the sweep line algorithm so
that it remains valid when the L, metric is replaced by any L, metric (p > 1). The

111

reasoning used there applies here as well. Therefore, we have really shown that, for
n input points chosen I.I.D. U|0, 1]2, algorithm CPX performs only O(n) expected
comparisons after the sort when closest is defined by any L, metric (p > 1).

§3.5 Conclusions

We proved that — given n points uniformly distributed in the unit square and
then sorted — a simple linear scan through the points of the type described in §3.2 will
determine the closest pair in expected ©(n) time. This gives a practical algorithm
for finding the closest pair. First, sort the points by = coordinate. Next, run the
linear scan. The nlgn time required by the sorting stage is dominant since we have
proven that the scanning stage is linear. The advantage in using this algorithm
is that you can use your favorite fine tuned sorting routine and therefore get an
algorithm that runs fast on your particular machine. We also showed how to use
the techniques we developed for analyzing the sweep-line algorithm to analyze the
use of [BP]’s projection method for finding the closest pair.

An interesting open question is whether it is possible to tighten the results
obtained here to show that there is some evauable constant o such that

1
EEE(N{)—PO’, n — 00.

i<n

In order to find such a o (at least if we continue using the techniques of this
chapter) we would have to be able to calculate much tighter bounds on §;. Unfortu-
nately, to the best knowledge of the author, no such bounds are known, even for the
simple case of 6, = Z(p1,-*+,Pn). It is not even known if there exists an evaluable
~ such that

nZ(p1, +*yPn) =7, N—©

where the p;, - - -, pn are U[0, 1]2 . If such a v were known then it might be feasible
to use this fact to get tighter bounds on the E(6;) and thence on E(N;). One approach
to finding such a 7 could be to modify the Poisson process techniques utilized by
Steele [St] for finding tight bounds on the probability that a given vertex of the
Euclidean minimal spanning tree of a random point set has a specified degree. This
approach offers the possibility of success.

Another open question is whether it is possible to extend the results of this
chapter to points that are picked from other distributions. The underlying principle

112

behind the behavior of the N; seems to be that (a) if 7 is small then N; must be
small whereas (b) if i is large then §; is small so N; must be small as well. It is
conceivable that this principal still holds for points chosen uniformly from other
regions, e.g. the ones below.

<] O 0O P>

A final question, and one that we must answer in the negative, is whether
it is possible to extend the algorithm to d > 2 dimensions. The first step of the
algorithm would still be to sort the points by z-coordinate and then relable them

Pi) = (2@ V6) 2())»
z) <2 < o S T(n-1) £ T(n):
It would then scan through the points updating

b= Join St.d(P(k),Pu))-

As before it would do this by comparing p(;41) to all of the points in the §;-interval
which is now
(.’IJ(,;+1) - 5;',.'17(,;4.1)] X [0, 1] Xoeeoe X [O, 1].
The same style of off-the-cuff analysis ((3.10) through (3.12)) that told us that
the (post-sort stage of the) algorithm is linear in two dimensions will show us that

it is not linear in higher dimensions. As before we assume z(;41) ~ i/n. Scaling the
techniques of §1.4(ii) we can show that

. 1/d
6 _ 1) %6 e
E\ e =g)~ ~\m) -

Since we expect N;, the number of points in the §;-interval to be almost binomially
B(4,6;/z) distributed we expect N; to be about

. d
is; i(£)Y! pi-d
z & A
This would mean that
nl-1/d g
- ~ p2(1-1/d
IS e
i<n i<n

113

The same result would hold for the analysis of the d-dimensional projection algo-
rithm: after the sorting stage it would perform © (n2(1~1/4)) expected comparisons.

We have just shown that the second stages of the two algorithms described in
this chapter are not linear in higher dimensions and are therefore asymptotically
bad. For example, if d = 3 the expected running times of the second stages are
© (n*/3). Whether these are good or bad running times in practice depends on
the size of the algorithms’ inputs. If d is small and the inputs are of medium size,
e.g. d = 3 and n = 10000, then it might make sense to use the simple sweep line
algorithm. If n is very large then it probably wouldn’t.

114

Chapter 4. The Move To Front Maxima Algorithm

§4.1 Introduction

The purpose of this chapter is to address a conjecture posed by Bentley, Clark-
son, and Levine in [BCL]. In that paper they constructed and analyzed a linear
expected-time algorithm for finding the maxima of sets of points. They also pre-
sented another algorithm, a Move-To-Front (MTF) heuristic, that was simpler to
code and more robust than the first algorithm

Experimental evidence suggested that the MTF algorithm was also faster than
the first algorithm. More specifically, their simulations showed that, when run on n
points, the MTF algorithm required, on average, only n + o(n) point comparisons.
They conjectured that this could be mathematically proven.

In this chapter we analyze the MTF algorithm under the assumption that the
input points are I.I.D. from a Component Independent (CI) distribution in R?. Our
main result is that, with probability 1 — n~?(&") the heuristic will perform only
n+ O (n®71g° n) point comparisons. '

In §4.2 we define the maxima of a point set. We also introduce the concept of
a CI distribution and calculate the distribution of the number of maxima in a set
of n points that are chosen I.I.D. from a CI distribution.

In §4.3 we introduce [BCL)’s MTF algorithm. We also present the results of
their simulations which led them to believe that it performs only n + o(n) point
comparisouns.

In §4.4 we analyze their algorithm. We use an amortization argument to show
that, with probability 1—n=?08")_ it requires only n+O (n®71g° n) point compar-
isons when run on inputs of n points in R? chosen LLD. from a distribution with
the CI property.

Finally, in §4.5, we conclude by discussing our results and the open problem of
proving [BCL]’s conjecture in higher dimensions.

115

*P1

Figure 4.1: The maxima of this set of i

points are p;, p2, P3, P4. Drawing a pair
of Cartesian axes through p; we see that e
the upper right quadrant is empty since = :
p3 is maximal. The maxima listed are the | ?” """"""""""""
(++) maxima. The (-+) maxima are p; " s

and ps. The (--) maxima are ps, ps, and

po. The (+-) maxima are ps and pg.

84.2 Introduction To Maxima

§4.2.1 Definitions

In this section we define the maxima of a point set and describe some of their
applications. We also discuss the relationship between maxima and convex hulls.

We start by examining the two dimensional case. Let p = (p.z,p.y) and ¢ =
(g.z,q.y) be points in R?. We say that p dominates q if p.z > q.7 and p.y > g.y. Let
S be a set of points in R?. We say that p € S is a mazimal point of S (sometimes
known as a mazimum) if p is not dominated by any point in S. An equivalent
definition involves drawing Cartesian axes parallel to the standard ones and whose
origin is p: p will be a maximal point if and only if the upper right quadrant formed
by these new axes contains no points in S (Figure 4.1). The maximal points of S
are known as the mazima of S.

We can easily extend the definition of maxima to higher dimensions. Let p =
(p1y ...y pd), @ = (g1, ..., ga) be points in d-space. We say that p dominates g if
pi > q; for all 1 € 1 < d. The mazimal elements of a set S C R? are the points
in S that are not dominated by any point in S. As before we call these points the
mazima of S.

Maxima finding occurs naturally in a great many applications: statistics, eco-
nomics and operations research to name a few [PS]. Another application is found
in [BCL]. They discuss how [BDMW] use maxima to rate 329 cities using data
found in [BS2]. The cities are assigned nine values describing characteristics such

116

as climate, health care, and housing costs. The cities can be therefore be thought
of as 329 points in nine-dimensional space. [BDMW] use the dominance relation
to rate the cities.

Another reason for being interested in maxima is that, like convex hulls, they
describe the “boundary” of a point set. In fact, there is a very natural relationship
between maxima and convex hulls. To describe it we need to generalize the definition
of maxima. As defined in the beginning of this section the maxima of a set S are
the points in S that have no points to their upper right. We will call these points
the mazima in the (++) orientation. It is also possible to define maxima in the (+-)
sense (Figure 4.1). These are elements of S that have no points in S to their upper
left. Mathematically, p is a maximal point in the (-+) sense if there is no point
g € S such that g.z < p.z and q.y > p.y. Similarly, we can define a (--) maximal
point (no points to its lower left) and a (+-) one (no points to its lower right). With
these definitions we can prove the following lemma:

Lemma 4.1: Let S C R% If p € S is on the convex hull of S then p is a maxima of
S in at least one of the four orientations.

Proof: Suppose p € S is not maximal in any of
the four orientations. We can then find four points
g1, G2, 93, g4 € S such that g; is in the i-th quad-
rant of Cartesian axes that have p as an origin. This
means that p is inside CH({q1, g2, g3, g4}) and can
not be on CH(S).

84.2.2 Distributions of Maxima

In §4.4 we will need to answer the question, “How many maxima are there in
a set of n points?” It is of course possible that every point in the set is maximal,
e.g. the n points lie on a line of negative slope. We are more interested in the
probabilistic question, “Given n points I.I.D. from some distribution what is the
distribution of the number of maxima?”

We start by addressing the question when the n points are 1.I.D. UJ0, 1]2 :
Afterwards we will define the component independence property and examine the
situation where the n points are chosen I.LD. from any distribution over R? with
the component independence property. We will conclude by quoting the results of
[BKST] on the expected number of maxima in point sets in higher dimensions.

117

Figure 4.2: The points have previously P

been sorted by decreasing z-coordinate and o)

relabeled. p(;), p(s), and p(s) are maximal P
80 Z, = Z3 = Zg = 1. The other three s . “Pa)
points are not maximal so Z(g) = Z(4) = P

Zs) = 0.

Lemma 4.2: Suppose that py, ..., p, are L1.D. UJ0, 1]2 . Let M, be the number

of maxima in the set containing p;, ..., Pn,

M, = |{p; : p; maximum in {p1, ..., Pn}}|-

Then M,, has the same distribution as Z;+ 2+ - -+Z,, where the Z; are independent
Bernoulli random variables with Pr(Z; =1) = 1/i = 1-Pr(Z; =0).

Proof: (See [Knl], 1.2.10, for a different proof.) We start with labeled points
pi = (z;,4:), 1 <1 < n. Since the z;’s are L.1.D. U[0,1] we can assume that the
z;’s are all unique (repeated values are a zero probability event). Sort the points
by decreasing z coordinate and relabel them as p(;y,...,p(») Where

Z(1) > Z2) > > T(n)- (4.1)

Thus, if the original points were p; = (5,3), p2 = (3,7), and p3 = (18,6), then the
relabeled points are p(;) = (18,6), pi2) = (5,3), and p(3s) = (3,7).

Let Z; be the indicator function of p(;) being a maximal point. Since p(;) is
maximal if and only if its y-coordinate is greater than the y-coordinate of all points
to its right (Figure 4.2) we can write

=1 Vi<i, yu) <ye)- 4.2
Zi= {0 otherwise. %2)

By definition, M,, = Z, + Z5 + - - - + Z,. To prove the lemma we have to show
that, for all 4, Pr(Z; = 1) = 1/i and Z; is independent of Z;, ..., Z;_1. The y;’s
were originally chosen I1.ILD UJ[0,1] and are independent of the z;’s. Therefore,

118

after the sorting, the y(;y’s can be assumed chosen 1.I.D. from U[0,1] . This is a
continuous distribution so we may assume that there are no repeated values among
the y(;) (repeated values are a zero probability event). The y(;) are indistinguishable
S0 :

Pr(Z; =1) =1/i.

Independence follows from the fact that the value of Z; is independent of all
order information on y1),...,¥(i-1). By this we mean that Z; is independent of any

knowledge of the relative order among y(1),...,¥(i-1) :

Pr(Z; = 1|yeq)) > Ye@) > > Yei-1))) = Pr(Z; = 1)

where o is any permutation of 1,...,1 — 1. The only information that is contained
in Z;, ..., Z;— is order information, so Z; must be independent of them.

Next, we will extend the lemma to points that are I.I.D. from any distribution
that has the component independence property. We say that a distribution over R?
has the component independence (CI) property if the z and y coordinates are chosen
independently from continuous distributions. The U[0,1]? distribution has the CI
property. CI distributions can be much more general: The z coordinate might be
chosen from a normal N(0,1) distribution and the y coordinate from a Cauchy
distribution. As long as the z and y coordinates are chosen from independent
distributions and those distributions are both continuous we say that the combined
distribution has the CI property. We can now generalize Lemma 4.1:

Lemma 4.3: Suppose that p;, ..., p, are chosen LI.D. from a distribution in
R? with the CI property. Let M,, be the number of maxima in the set containing
P1y-.cy Pn,

M, = |{p; : p; maximum in {p1, ..., Pn}}|-

Then M, has the same distribution as Z,+Z2+- - -+Z, where the Z; are independent
Bernoulli random variables with Pr(Z; =1) = 1/i = 1-Pr(Z; = 0).

Proof: The proof is essentially the same as the proof of Lemma 4.3. Looking back
at Lemma 4.3 we see that the only properties of U[0, 1]2 used in its pfoof were that
the z and y coordinates are independent and that both of them are drawn from
continuous distributions. Since these two properties exactly define the CI property
the proof follows.

119

Corollary 4.4: Suppose py, ..., Pn are chosen I.I.D. from a distribution with the
CI property. Let M, be defined as above. Then

EMy)=) 1/i=H,.

1<i<n

Proof: Apply Lemma 4.3 and take expectations.

EM,)= Y E(Z)=) 1/i=H,.

1<i<n 1<i<n

With very little extra effort we can also prove the following lemma bounding
the expected number of points on a convex hull.

Corollary 4.5: Suppose pi, ..., pn are chosen LI.D. from a distribution with the
CI property. Let C be the number of points on the convex hull of p;, ..., pn. Then
E(C) < 4H,,. :

Proof: Lemma 4.3 and Corollary 4.4 were proven for maxima defined in the (++)
orientation but are also true for maxima defined in the (-+), (--), and (+-) orien-
tations. Let M,,, M_,, M__, and M, _ be the number of p; that are maximal in
the respective orientations. Lemma 4.1 tellsusthat C < M, + M_,+M__+M,_
and the result follows by taking expectations.

We conclude this section by mentioning a result about maxima in higher di-
mensions. A distribution over RY is said to have the CI property if the d coordinates
are chosen from d independent one dimensional distributions, each of which is con-
tinuous. Bentley, Kung, Schkolnick, and Thompson [BKST] prove the following

extension of Corollary 4.4:

Lemma 4.6: If py, ..., pn are chosen LLD. from a distribution in R?¢ with the
CI property then the expected number of maxima is O(Ig?~" n).

Later, in §4.3, we will present a long quote from [BCL). Part of that quote is
a graph (Figure 4.4) giving the number of maxima found in point sets chosen 1.1.D.
from U[0,1)%, d = 2,3,4,5.

§4.3 The Move-To-Front Algorithm

In §4.2 we defined the maxima of a point set and mentioned some applications.

In this section we discuss algorithms for finding the maxima.

120

Program 4.1: This is [BCL]'s pseudo- TopMax := 1
code for the MTF maxima finding algo- Max[TopMax] := 1
rithm. The queue of current maxima is for/:=2to Ndo

stored in the array Maz|[]. TopMaz is the J=1
while J<= TopMax do

current number of points in the queue. The if pt Max(J] dominates pt I then

input points are read in sequentially from move Max[J] to front of Max(1..J]
another array: when the J’th point is read J := TopMax + 2
it is compared to the current points in the else if pt | dominates pt Max[J] then

shift Max[J+1..TopMax]
to Max[J..TopMax-1]
TopMax := TopMax - 1

queue. If a current maximal point dom-
inates the J’th point then that maximal

point is moved to the front of the queue. else if pt / equals pt Max[J] then
If the J’th point dominates a current maxi- J = TopMax + 2
mal point then that maximal point is thrown else //pts |, Max[J] incomparable

J=J+1
if J= TopMax + 1 then

TopMax := TopMax + 1
then it is placed at the end of the queue. Max[TopMax] := |

off the queue. If the J’th point isn’t dom-
inated by any maximal point in the queue

The code signals the special case of a du-
plicate point by setting J := TopMaz + 2.

First we need some background. It is possible to show that finding the maxima
of a set of n points in two dimensions requires 2(nlgn) time in the comparison
tree model of computation: this is done via a reduction to sorting [PS]. There is an
algorithm [PS] for finding maxima that matches this lower bound; it requires only
O(nlgn) comparisons. [KLP] give an algorithm that finds maxima in d-dimensions.
It runs in O(nlg® ?n + nlgn) time and is extremely complicated to implement.

Deterministic running times are not our major concern here. As in the rest of
this thesis, we are interested in simple algorithms with fast expected running times.
In [BCL] Bentley, Clarkson, and Levine present an algorithm that runs in O(n)
expected time on a set of n points I.I.D. U|0, l]d. They then extend their algorithm
so that it runs in O(n) expected time even if the the points are chosen I.ID. from
an arbitrary distribution with the CI property.

After presenting this second algorithm they comment that it was “designed to
be efficient for CI inputs and easy to analyze for that case but ... not necessarily
robust for point sets from other distributions.” They then continue “We will now
study an algorithm that is easy to implement, very efficient for CI distributions,

121

Current Point Current Queue All points

P,
P1 1]
7,
5"
D2 Ipl |p2l
P,
P oy,
P3 [Pl IPzJPaI
"
LR
P4 |P2 IP3|P4|
L)
s
s |Ps [P2(ps] ’
% 5
, ‘P,p’-p
Pe [ps |pa[p2] »,
7 »
r,nw,p
p7 rara ?,
P, ?, P
'P;-E'E_p
P8 |P2 |Ps| 'p:

Figure 4.3: A worked example of the move to front maxima finding algorithm. It
shows the status of the queue after comparing the current point against the current

maxima.

122

and somewhat robust for other distributions.” The algorithm referred to in the
second quote is the Move-To-Front (MTF) algorithm. We present their pseudo-
code implementing it in Program 4.1 and a worked example in Figure 4.3. The
algorithm scans the points pi, ..., pn in sequential order maintaining a queue T
that contains the current maximal elements among the currently scanned points.
The algorithm updates the queue by comparing p, the current point being scanned,
to the maxima in the queue in left-to-right order.

If p dominates some point g in the queue then g is no longer maximal and is
thrown away. If p is not dominated by any point in the queue then p is currently
maximal and is placed at the end of the queue. Otherewise p is dominated by some
maximal element, g, in the queue. This point g is moved to the front of the queue.

How fast is the MTF algorithm? Obviously the algorithm runs in O(n?) time
since, when p; is scanned, it is compared to at most ¢ — 1 points in the queue. It
is not hard to construct a degenerate two-dimensional example where these i — 1
comparisons are all made: the points (p.z,p.y) are all on the line p.x = —p.y. As
always we are more concerned with discovering the expected running time of the
algorithm.

[BCL] observed that the total number of point comparisons performed by the
MTF algorithm is bounded from above by 3", ., M; where M; is the number of
maximal elements in the set py, ..., p;i :

M; = |{p; : p; maximum in {py, ..., pi}}|.

If the n points are chosen I.ID. from any CI distribution in d-dimensions then
Lemma (4.6) tells us that E(3° M;) = ¥ 0(1g? ™ i) = O(nlg ' n).

The next few paragraphs are an extended quote from [BCL] describing their
experiments on the MTF algorithm and their subsequent conjecture about its actual
running time. Figures 1, 2, and 3 referred to in the quote are Figures 4.4, 4.5, and
4.6 in this paper. Algorithm M3 is the MTF algorithm and “the sequence T " is
the queue in which the current maxima are kept.

We will turn now to an analysis of the run time of Algorithm M3. The expected
size of the sequence T after M elements have been ezamined is precisely the expected
number of mazima in o set of M points, which is monotone increasing in M. The
ezpected size of T is therefore O(logX™ N), and the expected total cost of the N
searches is O(NlogK~' N). To understand the constants in the big-oh, a series

of experiments investigated the average number of marima. Ten point sets were

123

1000 :
3
5
5
s 2 ;
5 . !
100 — i. ¥ 3 « ¢
S 4 4 s o, 33 Maima
s 4 3 3
i A 3 3
3 2
- 3 °? i 2 3 a2 °
2 B :
2 2
2
T I I I
100 1000 10000 100000
N
Figure 4.4: The number of maxima.
50
204
10+
Comps
FI’
5 Point
24
1+
I 1 T T
100 1000 10000 100000
N
Figure 4.5: Comparisons per point.
1000000 — 5 5
5
5 4
100000 ~ s 4
5 4 4
s 5 . 4 , s 3
10000 — i 4 s 3 Surplus
Point
1000 —
100 -
10~
I I I 1
100 1000 10000 100000

N

Figure 4.6: Surplus point Comparisons.

124

generated for N at each power of two from 32 to 65536 and for each K from 2 to 5.
The N points were uniformly distributed over the K -dimensional hypercube. Figure
1 plots the number of mazima observed (averaged over the ten point sets), using the
dimension as the plot symbol.

The distribution of the mazrima and the move-to-front heuristic might, however,
make the algorithm substantially faster than the O(N log~* N) ezpected bound. We
ezamined the running time in the same series of experiments shown in Figure 1.
Figure 2 shows the average number of point comparisons used, divided by N. The
plot symbol is the dimension; the lines denote mean values.

The average number of point comparisons per point is substantially less than
the number of mazima in the set. At N = 65536, the mean ratios were 1.037, 1.331,
3.998, and 20.49, for D = 2, 8, 4, and 5, while the mean number of mazima were
18.2, 61.6, 268.9, and 881.6. When we first ran the ezperiments, we ezpected the
ratios to increase with N (though we hoped not quite as quickly as the O(log% ~1N)
bound). When we ezamined Figure 2, however, we conjectured that the number of
comparisons per point is approaching a different constant for each dimension K.

In Figure 2, though, each curve appears to grow to a peak and then to decrease
again. After running a handful of large experiments (N up to 1,000,000), we con-
Jectured that the ratio approaches 1 for all values of K. To test this hypothesis, we
re-expressed the data in Figure 2 by plotting the number of point comparisons be-
yond N, which we shall refer to as the surplus comparisons.t The means of surplus
comparisons are shown Figure 3.

A weighted least squares regression shows that for K = 2 the number of surplus
comparisons grows as 7.6N-°1% — 27.7; the regression yields well-behaved residuals
(apparently normally distributed). We have therefore plotted the function 7.6v/N —
28 on the Figure 8, which is a close fit to the ezperimental data. Algorithm M1 helps
to explain why Algorithm M3 might behave this way: a single point very near (1,1)

1 Our first attempt to eramine the surplus comparisons resulted in a warning
from the regression/plotting package that it had tried to take the logarithm of a
negative number. Investigation showed that on one set of N = 32 points in K = 2-
space, Algorithm M3 found 2 mazima using 31 point comparisons. We first feared
that this was evidence of a program bug, but examining the input point set showed
us how it happened. We leave the explanation as a puzzle for the reader. (Hint: the
probability of Algorithm M3 finding the mazima of a planar set in ezactly N — 1
point comparisons is at least 1/N2.)

125

tends to stay near the front of the sequence, and dominates all but roughly VN of
the other inputs. Regressions for the other surplus values yield 37.1N-°%% — 237 for
K = 3, 31.8N799 — 333 for K = 4, and 32.1N-%6 — 733 for K = 5 (though the
residuals are not particularly well behaved). This data and the heuristic arguments
support the following:

Conjecture 2-6. Algorithm M$ finds the mazima of N points chosen from a
K -dimensional CI distribution in O(N) time, using N + o(N) point comparisons,
for any fired dimension K.

We suspect that one might even be able to tighten the number of surplus com-
parisons to near O(N1~1/K),

In the next section we shall address their conjecture when K = 2. We shall show
that, for n points chosen 1.ID. from a distribution over R? that has the CI property,
the number of comparisons point comparisons made by the MTF algorithm is n +
O(n8/71g% n).

§4.4 Analysis of the Algorithm

§4.4.1 Plan and Definitions

We first analyze the MFT algorithm’s performance under the assumption that
it is run on py, ..., Pn, n points L1D. U[O,l]2 . Afterwards we show how to ex-
tend the analysis to n points chosen I.I.D. from any CI distribution. Our analysis
bounds the number of surplus comparisons performed by the MTF algorithm. The
algorithm must perform at least one point comparison for each input point p;, ¢ > 1
— the comparison that compares p; to the first element in the queue. Surplus com-
parisons are the extra point comparisons the algorithm performs when it compares
p; to elements deeper in the queue; if the algorithm performs a total of C' point
comparisons then it performs C — n + 1 surplus comparisons. Surplus comparisons
are a logical measure of the cost of the algorithm since any comparison-based max-
ima finding algorithm must perform at least one point comparison for each input
point.

The analysis is divided into two parts. The first part calculates a limit on the
number of surplus comparisons where the limit is a function of geometric random
variables. The second part derives probabilistic bounds on the geometric random
variables. Inserting these bounds into the first part yields a probabilistic bound

126

C=1-o1]x[l-e,1] A T &
Ti=l-olx[l-a-6,1-a]
To=[1l-a-81-0a x[l-a,l]
D=[1-a-f,1-a-f]x[l-a,1-aq]
A =[1-a,1]x[0,1-a-/f]

Az =[0,1-a-g]x[1-a,l] Vv W | A
Wi=[l-a-06,1-a]x[0,1-a-/]
We=[0,1-a-f]x[1-a-f,1-a]
V=[0,0x[1-a-81-a-0)

W, D T

<« —>€Q >

Figure 4.7: A partition of the square into rectangular regions that are functions
of @ and 5.

on the number of surplus comparisons. We also define random variables that are
functions of the distribution of the points in the rectangles.

As mentioned above we first prove the theorem for points in the unit square.
Let o and f be positive real numbers such that a + 8 < 1. We divide the square
into rectangles as illustrated in Figure 4.7.
Random Variables:

M; = |{j:j<1i p; maximalin py, ..., p;}| (4.3a)

M = max M; (4.3b)
1<i<n

A = |pi:p E.A1UT1UCU7§U.42}| (4.3¢)

W = [{pi:pi€e WIUDUW,}| (4.3d)

F = 11511‘_1%1“{2 : p; € C} (4.3¢)

Gp = lxéliagcn Igl?i})l{k :pivk EDori+ k=n} (4.3f)

M; is the queue size after reading the i’th point. M is the maximal queue
size encountered while executing the MTF algorithm. A and W are the number of
points found in their respective regions. F¢ is the index of the first point in C. Gp
is the maximum number of points, k, that we must scan to the right of any p; to
be sure of reaching a point in D, i.e. the maximum gap between any two points in
D. As an example, suppose that n = 10, p» € D, p; € D, and the remaining eight
points arenotin D: Gp=7-2=25.

127

§4.4.2 The Geometric Theorem

Theorem 4.7: The number of surplus comparisons performed by the MTF algo-
rithm when run on n points py, ..., p, € [0, 1]2 is less than

MF. + MAGp + MW, (4.4)

We delay the theorem’s proof for the moment and instead concentrate on how
it is applied. Set @,/ to be functionsof n: a =n"%",f=n"* where o/, ' > 0.
In §4.4.3 we will prove the following probabilistic facts:

Pr(M>1g¥n) < n %0 (4.5a)
Pr(A4>6n'™) < ot-n (4.5b)

Pr (W > enl-ﬁ') < ot-m (4.5¢)
Pr (Fc > n2 lg n) < nflen) (4.5d)
Pr (Gp > n2#' 1g? n) < n%0en) (4.5¢)

Inserting these back into Theorem 4.7 we see that the MTF algorithm performs
(0 (max (n2°" 1g°n, nl=o'+20 15 18148 n)) (4.6)

surplus comparisons with probability 1 — n=%(87%) We minimize this expression by

setting
n2e = pl-o'+28" _ p1-F' (4.7

Solving gives o’ = 3/7, #' = 1/7 and (4.7) becomes O(n®/71g° n). This proves our
main theorem:
Theorem 4.8: The number of surplus comparisons performed by the MTF algo-
rithm when run on n points chosen I.1.D. UJ0, 1]2 is O (nsf 71g® n) with probability
1 o n_Q(lgn)_ .

Since the MTF algorithm never performs more than n? comparisons we have
also proven the following corollary:
Corollary 4.9: The expected number of point comparisons performed by the
MTF algorithm when run on n points chosen 1.1.D. U[0,1)? is n 4 O (n®71g°n)..

Proof of Theorem 4.7: The heart of the theorem is a technical lemma. It bounds

the number of surplus comparisons performed while checking subsequences of points

128

that conform to a very restrictive type. We first prove the lemma and afterwards
show how to partition pj, ..., pn into restricted subintervals of the desired type.
Taken together the two parts prove the theorem.

First we introduce some new notation. By scanning a point or a sequence of
points we mean comparing the point(s) to the maxima in the queue using the MTF
algorithm. The number of surplus comparisons performed while scanning a point,
p, is the number of points in the queue that p is compared to, minus one. For
example, suppose the queue holds

Lg [r]s]t]

and we are currently scanning the point p to determine if it is maximal. If ¢ is the
first maximal point in the queue that dominates p then 3 surplus comparisons are
performed while scanning p and ¢ is moved to the front. The new queue is

Lt lalr]s]

The maximum number of surplus comparisons that can be performed for any point
is M — 1 since, by definition, M is the maximal queue size.

Lemma 4.10: Suppose that at some point during the MTF algorithm’s execution
the following conditions are fulfilled:
(i) There is some maximal point ¢ € C in the queue.
(ii) The current maximal point at the front of the queveist € ; UCU T5.
(iii) The next m points to be scanned, g1, ..., gm, are all in VUW, UD UW,.

Then the total number of surplus comparisons performed while scanning the ¢’s can
be bounded depending on the location of £.

(I) t € C : No surplus comparisons are performed.
(II) t € 7; : The number of surplus comparisons is less than M - W,,, where

Wi={g : s e W2 UD, 1<i<j}

W; is the number of points in g, ..., g; that are in W, UD.
(II1) t € T : The number of surplus comparisons is less than M - W, where

Wi=H{g:a €eWUD, 1<i<j}.
WJ’ is the number of points in ¢y, ..., g; that are in Wy UD.

129

|
)

2; -a, &y .y -
Figure 4.8: This illustrates how w, - D

|

to force a point in V to participate in < -

a large number of surplus comparisons.
We start with t € 7; at the front of the
queue. After scanning q;, g2, g3, and g4,

the front four maxima in the queue are b, W
1

ai, az, ag, and a4 forcing gs € V to par-

ticipate in four surplus comparisons.

Proof: The main purpose of condition (i) is to guarantee that no maximal points
are taken off or added to the queue while scanning the g; : the only operations that
transform the queue are of the move to front type. This is because ¢ dominates
the g;, precluding any of them from being maximal. Furthermore no maximum ¢
in the queue can be dominated by any of the g; since this would imply that ¢ is
dominated by c leading to a contradiction. This forces all of the maxima currently
in the queue to be in A, UT; UCU T, U A,.
(I) t € C : Before starting the scan the queue looks like

el , teC.

Because of condition (iii) this ¢ dominates all of the points g1, ..., gm € V s0 no
surplus comparisons are ever performed.

(II) t € 7; : In Figure 4.8 we have drawn an example where { € 7 dominates
all of the g; in VUW,. The lemma’s result makes it seem that we are going to prove
that points in VUW), are always dominated by the first point in the queue and only
points in D U W, can cause surplus comparisons. This isn’t true. In Figure 4.8 we
illustrate a counterexample. The queue starts off as

[t [ai]az]asfaq] -]

After scanning the points ¢, g2, 3,94 the queue looks like

laa [as]azai[t]---]

130

The next point scanned, gs, is in V but participates in four surplus comparisons.
It is not hard to see that we can generalize this example to force a point in V to
participate in arbitrarily many surplus comparisons.

There are two properties in the above example that we would like to stress.
The first is that the a;-s moved to the front of the queue are sorted by decreasing
z-coordinate. The second is that the number of surplus comparisons performed
while scanning ¢s is not arbitrary. Rather, it is the number of points in W, UD
that were scanned since the last time ¢ was at the front of the queue.

We will show that these two properties are not particular to our specific exam-
ple. This fact will let us take all of the surplus comparisons performed while scanning
g1, ---, gm and amortize them over the W, occurrences of points in W, U D. By
amortization we mean distributing the total cost of a long sequence of operations
over the number of appearances of certain specific occurrences (see [Ta] for more
on the theory of amortization). In order to proceed with our proof we will need one

more definition:

Definition: A queueisin statei,1=0,1,2..., if it has the form
teT;UC _
loi lais[---Jaa[t]---] = 4. eMuT, 1<j<i (4.8)

;.2 > Qi—1.T > - > Q1.2.

The first 7 maxima in the queue are in .A; U 7; and are sorted by decreasing z-
coordinate. The ¢+ 1’st maximal point is in 7; UC. The remaining maxima can be
anywhere. Figure 4.9 illustrates the first four queue states. In the example given at
the beginning of this proof the queue starts in state 0: while scanning g, g2, g3, g4 it
goes into states 1,2, 3, 4, and finally returns to state 0 after scanning gs. In this new
terminology, condition (ii) of the lemma states that the queue is in state 0 before
¢1 is scanned.

Suppose now that the queue is in state 1. We will show that after scanning a new
point, g, the queue will be in one of only three possible states: 0, 7, ¢ + 1. Therefore
the numbered states defined in (4.8) contain all of the possible queue configurations
that can occur while scanning ¢;, ..., gm. While showing this we will also count
how many surplus comparisons are performed during the state transitions. Table
4.1 summarizes the possible outcomes and associated costs.

When ¢ € VUW, there are two possibilities. If the maximal point at the front
of the queue dominates ¢ then we perform no surplus comparisons and remain in

131

State Queue Description Conditions

o L[tl-] teTiue
1 e [t teT,UC, a1 €A UT;
o o2 fa[t]---] teT,UC, a1,a2 € ApUTy, a2.2> a1.7

3 [as [apfasft]---] te T1UC, aj,az,a3 € A,UT,, a3.z > a2.2 > a,.

Figure 4.9: The first four queue states and their associated conditions.

Outcome Location of ¢ Transition Surplus Comps.
(a) geEVUW, queue remains in state g 0
(b) " queue returns to state 0 1
(c) geEW,UD queue remains in state ¢ 0
(d) » queue goes to state 1 + 1 M-1
(e) ? queue returns to state 0 M-1

Table 4.1: Possible queue state transition outcomes and the maximum
number of surplus comparisons they can cost.

state ¢ : this is outcome (a). Otherwise, g is not dominated by a;. Condition (iii) of
the lemma implies that a;.y > g.y for all 1 < j < 4. It follows from the definitions of
domination and the queue states that g.z > a;.z > a;—1.2 > -+ > a;.z. Therefore t
is the first maximal point in the queue that dominates g and we performed ¢ surplus
comparisons discovering this fact: outcome (b).

When g € W, UD there are also two possibilities. Again, if the maximal point
at the front of the queue dominates g, then no surplus comparisons are performed
and we remain in state i : outcome (c). Otherwise, again as before, we find that
g.x > @;.T > ai—1.x > --- > a;.7 and none of the a; dominate g. Therefore the
first maximal point that dominates g, the one that will be moved to the front of
the queue, is not one of the a;. Since we do not know where this maximal point

132

comes from we can only bound the number of surplus comparisons performed by
M — 1. If this new maxima is in A3 U 7, then call it a;4;. From the definition of
domination a;4+1.x > ¢.z > a;.z : outcome (d). If it isn’t in Az U 73 then it can't
be in .A; because a point in .A; dominates no point in W, U D. Therefore the new
maximal point must be in 7; UC : outcome (e).

We now use these facts about transitions to finish the proof of this part of the
lemma. The general idea is that the only expensive outcomes are of type (b), (c),
and (d), and the type (b) outcomes can be charged to the type (d) outcomes that
precede them. The proof will be by induction on m where the base case, m =0, is
obviously true.

Assume now that the lemma is true for all valid sets of less than than m points.
We know that before scanning g; the queue is in state 0.

Suppose first, that while scanning g; the queue enters state 1 and subsequently,
while scanning gs, ... ,qm, it never returns to state 0. Referring to Table 4.1 we see
that all surplus comparisons that occur must result from outcomes of type (d).
These occur only while scanning points in g; € W, UD and there are W, of these.
Therefore at most (M — 1)W,, surplus comparisons are performed and we have
proven the lemma.

Otherwise the the queue does return to state 0 while scanning g, ..., gm. Let

i = II;!{I{?, : queue returns to state 0 after scanning g;}.
1'—

By definition the queue never returns to state 0 while scanning qi, ..., gm’—1 so the
analysis performed in the previous paragraph tells us that at most (M — 1)Wp,_;
surplus comparisons are performed while scanning g, ..., gm/—1. Furthermore, we
know that after scanning g,'—; the queue is in state ¢ where i < Wy,»_; because
only transitions leading to outcome (d) can increase the state number and there are
at most W,,.r_; of these.

It remains to calculate how many surplus comparisons are performed while
scanning gn, a step which we know returns us to state 0. If g,y € VU W), then we
know that we see outcome (b) and W,,,» = Wy:—;. Therefore the maximum number

of surplus comparisons performed while scanning g, ..., gm’ is less than

Otherwise, ¢ € W, U D and we see outcome (e), Wyr = Wy + 1, and the

maximum number of surplus comparisons performed while scanning g, ..., gm’ i8
(M - 1)er_1 +M-1= (M - I)er.

133

In both cases we have proven that at most MW, surplus comparisons are
performed while scanning ¢y, ..., gm'. Furthermore, after scanning g, the queue is
back in state 0 so inductively applying the lemma yields that fewer than M (W, —
W) surplus comparisons are performed while scanning gm/41, ... , gm. Combining
these two facts proves part (II).

(III) t € T3 : The proof for this case follows that of part (II)’s.

Q.E.D. (Lemma 4.10)
(Continuation of the proof of Theorem 4.7:) Our next step is to partition our
original point set p;, ..., pn into parts, many of which are in the form required
by the lemma. First we divide py, ..., p, into stages which we define as follows:
Starting with i; = F, let #; be the j'th point found in A; UT; UC U T3 U A; while
scanning from left to right:

to=1

i, = Fe

i2=i12n>ii_11{i :pi € AUTTUCUT U Az}
i3=i1:fl>i£12{i :pi € AAUTTUCUT U Ay}
i4=ix4n>'u‘_13{i :pi € AAUTHTUCUT, U A}

Now, we define the j’th stage to be the set of points!

pija p‘i_-,'+11 e pi_,’+1—1'

These stages are almost in the form required by the Lemma 4.10. After scanning
the first stage we know that there will always be a maximal point ¢ € C in the
queue and thus condition (i) will be satisfied while scanning all subsequent stages.
Furthermore, every point except for the first in a stage isin VUW, UD U W,
and so satisfies condition (iii). To be able to apply the lemma we must also satisfy
condition (ii). We can not satisfy this condition for the entire stage but, fortunately,
we will be able to satisfy it for a significant portion of the stage.
For each stage j > 0 let t; be the first point in D in the stage:

;= Félz?{z : p; € D}

1 The final stage is a special case. If p; ; is the pointin Ay UT; UCU 7> U A, with
the highest index then we say that the i;’th stage consists of the points p;,, ... ,pn-

134

Point location Surplus Comps. Table 4.2: Maximum number of

Stage 0 MF; surplus comparisons performed on
Initial parts of all stages MAGyp all points that appear in the given
Terminal parts of all stages MW location.

Next, split the j'th stage into two parts: an initial and a terminal.

initial part = p;;, pi;41,. .., Pt;
terminal part = Pt_,-+n pt,'.i.z’ .o s)pi:'+1—1'

As we shall soon see, scanning p;; forces a maximal point in 7o, UC UT; to the
front of the queue (condition (ii)). This fact will let us employ the lemma to bound
the number of surplus comparisons done while scanning each stage.

The 0’th stage contains F¢ —1 points, so at most (M —1)F¢ surplus comparisons
are performed on it. After scanning the 0’th stage there is some maximal point in
C in the queue and therefore condition (i) of the lemma is always true during the
remaining stages.

How many comparisons are performed while scanning the remaining stages?
Since each stage starts with a point in A; UT; UCU 7, U A, there are at most A
stages. From definition (4.8) we know that, no matter where we start, after scanning
Gp points we will encounter some point in D. Therefore, for every j the size of the
initial part of the j’th stage, t; — i; + 1, is less than Gp. Thus the total number of
surplus comparisons performed while scanning the initial parts of all of the stages
taken together is less than (M — 1)AGop.

We would like to employ Lemma 4.10 to analyze the terminal parts of the
stages. To do this we must prove that conditions (i), (ii), and (iii) all apply. We
have already seen that (i) is true. The definition of a stage requires that all of
its points (except the first) are in Wy UD U W, UV so (iii) is true.. To show (ii)
we examine what happens when p;; € D is scanned. We know that p,; can’t be
a maximal point because it is dominated by c¢. Therefore a maximal point that
dominates p;; is moved to the front of the queue. Since any such point must be in
71 UC U T, condition (ii) is true immediately before scanning p;, 4.

Applying the lemma we find that the number of surplus comparisons performed
while scanning the points in the terminal part of the j’th stage is less than

M -|{pi : t; <i<pjs1, pi EWLUDUW,}|.

135

Summing over all of the stages proves that the total number of surplus com-
parisons performed while scanning the terminal parts of all of the stages is less than
MW.

Combining the bounds for the 0’th stage, the initial parts of all stages, and the
terminal parts (Table 4.2) proves the theorem.

Q.E.D. (Theorem 4.7)

§4.4.3 Probabilistic Facts

It is left for us to prove the various probabilistic facts that, inserted into The-
orem 4.7, let us prove Theorem 4.8. These facts were

Pr(M>lg®n) < n %0 (4.50)

Pr (A > 6n1_°") < 2" (4.5b)
Pr(W > snl-ﬁ’) < oi-n (4.5¢)
Pr (Fc > n?* Ig? n) < n~%en) (4.5d)
Pr (G’p > n?? 1g? n) < n00sn) (4.5€)

Remember that we assume that the n points are chosen LLD. U[0,1)*. The
proofs of the above facts follow from standard probabilistic manipulations. (4.5a)
is the hardest to prove. It states that, with high probability the maximum queue
size is less than 1g® n. The proof of (4.5a) will follow from the next lemma which
bounds the queue size at any given time.

Lemma 4.11: Given n points, p;, ..., Pa, chosen 1.ID. U[0, 1]2 , let M; be the
queue size after the MTF algorithm has scanned p;. Then, for all ¢ less than or
equal to n,

Pr(M; > lg3n) < n~0n),
Proof: Lemma (4.3) permits us to write
M,=21+22+4 -+ Z;

where the Z;’s are independently distributed Bernoulli random variable with Pr(Z; =
1) = 1/j. Let | = |lgn|. We split the Z;’s up into I + 1 sets of geometrically in-

136

creasing size by defining new random variables Y :

Yo=2,
Yi=2:+23
Yo=24+ 25+ Z¢ + Z7

Ye=2+ Zok g1+ -+ + Zgks1

Y}=Z2l+221+1+ e +Zi.

By definition M; =) ..« Y;, so to prove the lemma it is enough to prove
that, for each k,
Pr(Y: > 1g%n) < n~en),

If k < 2lglgn then, deterministically, Yx < 2* < lg?n. We may therefore assume
that k > 21glgn. We know? that

Yk = sz + Z2"+1 '+ ¥ 3 +Z2k+1_1.

For any j > 2F it is true that Pr(Z; = 1) < 1/2F. Therefore for any constant ¢ we
can write

k
Pr(Ye = ¢) < (26) (2-17 x % (4.9)

Suppose ¢ > lgZ n. Applying Stirling’s formula to (4.9)
Pr(Yi=¢c)=0 (n'n('g")) :
Summing over all ¢ > lg2 n shows that
Pr(Yi > 1g%n) =0 (n—ﬂﬂs">)

and proves the lemma.

From this we can derive (4.5a).
Corollary 4.12:
Pr(M > 1g3n) < n~%en) (4.5a)

2 It is possible that the I’th row isn’t the sum of 2! random variables, i.e. i #
2!+1 _ 1. When this occurs we pad Y; by defining Z;41 = Zi40 =+ = Zgi+1_; = 0.

137

Proof:
Pr(M >1g°n) < Y Pr(M; > 1g*n) < n~ 0,

1<i<n

Next we are going to prove (4.5b), a probabilistic bound on A. Let g be a point
chosen UJ0, 1]2 . The probability that g€ A; UT1UCUT, U Ay is

p=Area(A;UT;UCUT,UA;) =2n"% —n~2° (4.10)

It is not hard to see that A is a B(n,p) binomially distributed random variable.
Therefore

Pr(A=i+1)= () p'(l-p)""
o ME
i+ 1 1 -
If ¢ > 2np this implies Pr(A =i+ 1) < Pr(4 = z) /2. Telescoping this inequality
gives

Pr(A =]

Pr(A =3np) < 27" Pr(4 =2np) < 27".

Telescoping again gives

Pr(A > 3np) = Pr(A = 2np) ZT" <= (4.11)

i0
Substituting p = 2n~* — n®" back into this equation yields (4.5b).
The same technique will prove (4.5¢). Replace A with W and (4.10) with
p=Pr(pi e WL UDUW,) =2n"% — =28 _gpo'+F"
Evaluating (4.11) gives (4.5c).
Next we are going to prove (4.5d). This time we let
p="Pr(p; €C) =20~

Then
Pr(Fc > j)=Pr(p; ¢C,i < j)=(1-p)

giving
! -2a’ 2
Pr(F.>n"2 1g%n)=(1-p)" B "< en), (4.12)

138

C = [a,00] x [a, 00 A Y c
T, = [a,00] |8, 0 (X)
T, = [B,a] x [a, 0]
D = [B,a] x [8,0]
A, = [a,00] X [-00, f]
Az = [~00,] X [a, 0] v W | A
Wi = [B,a] x [~o0, f]
W, = [-00, 8] x [B, 0]

V = [-00,0] x [-00, 8]

(X)) (o.B)

Figure 4.10: We partition the plane into rectangular regions that are functions of

a, 8.

A similar technique proves (4.5¢). Let
p=Pr(pieD)= 2n=2¢,

For each ¢ < n let S; be the minimum number of points to the right of p; that
we must scan before encountering a point in D : S; = mingso{k : piyx € D}
A calculation similar to (4.12) shows that Pr(S; > n=2%'1g%n) < n~%&n), By
definition Gp = max; S; so ;

Pr(Gp > n~# 1g?n) < Y Pr(S; > n2 g% n) < n~0em),

§4.4.4 Extension to CI Distributions

In §4.4.2 and §4.4.3 we analyzed the probabilistic behavior of the MTF algo-
rithm given that its input points were chosen L.I.D. U[0, 1]2 . We promised there
that we would later extend this analysis to apply when the points are chosen I.I1.D.
from any distribution over R? with the CI property. The purpose of this section is
to fulfill that promise.

Our first step will be to modify the definitions of the rectangular regions that
were presented in Figure (4.7). We assumed there that the input points were con-
fined to [0, 1]2, so our rectangular regions partitioned [0, 1]2. Now, dealing with

139

points that can be anywhere in the plane (the support of an arbitrary CI distribu-
tion might be all of R?), our rectangular regions must partition the entire plane.
We present the new, modified, definitions in Figure (4.10).

These new definitions preserve all of the ordering information that was present
in the original ones. By this we mean that if, under the old definition, the z (y)
coordinates of all points in region one were greater than the z (y) coordinates of all
points in region two then, under the new definition the z (y) coordinates in region
one will still be greater than those in region two. For example, the x coordinates
of a point in C were greater than those of all points in D under the old definitions:
they are still greater under the new ones. The reason that we stress the preservation
of the ordering information is that this information contained the only geometric
facts used in the proof of Theorem 4.7. Therefore Theorem 4.7 is still valid under
these new definitions.

Next, we choose suitable values for the parameters a and (. If p = (X,Y) is
chosen from a CI distribution then the probability density functions

Fx(:ﬂ) = PI‘(X S .’E), Fy(y) = PI‘(Y S y)

are, by definition, continuous. This, together with the fact that probability distri-
bution functions are always monotonic implies that Fx (z) and Fy (y) are invertible.

For positive constants a’, 3’ we can therefore define
a=Fy" (1—11‘“'), g= Fy? (l—n'“' -n—‘s'). (4.13)

The rationale behind these definitions is to ensure that the probability that a point
will be in a particular region remains invariant: We want the probability that a
point will be in a particular region to be the same under the definitions in Figure
4.10 and the parameter settings of (4.13) that it was under the old definitions in
Figure 4.7 and the settings @ = n=', 8 = n~#". For example, the probability that a
point was in C under the old definitions/settings is the same as it is under the new:
the probability is n=2¢". This is a consequence of second part of the CI property’s
definition, which states that the x and y coordinates are independent, i.e.

Fxy(z,y) =Pr(X <z,Y <y) = Fx(z) Fy(y).

These probabilities (of whether a point is in a region) were the only facts used
in the proofs of (4.5b)-(4.5€) so these facts continue to be true. The proof of (4.5a)
was based on Lemma 4.3. Lemma 4.3 is true for any CI distribution and not just

140

ujo, 1]2 and therefore (4.5a) is also true for any distribution with the CI property.
To finish this section we note that the proof of Theorem 4.8 followed directly from
the Theorem 4.7 and (4.5a)-(4.5f) so we have just generalized Theorem 4.8 to get
Theorem 4.8’: The number of surplus comparisons performed by the MTF algo-
rithm when run on n points chosen I.I.D. from a distribution with the CI property
is O (n®/71g®n) with probability 1 — n=(8n),

We have also generalized its attendant corollary
Corollary 4.9’: The expected number of point comparisons performed by the
MTF algorithm when run on n points chosen I.I.D. from a distribution with the CI
property is n + O (n%71g%n) .

§4.5 Conclusions

In this chapter we proved the following conjecture of Bentley, Clarkson, and
Levine [BCL]: the MTF algorithm performs only n + o(n) expected point com-
parisons when run on n points chosen L.ID. from any distribution over R? with
the CI property. More specifically, we proved that when the points are chosen
from such a distribution then with probability 1 — n=2&7) only n + O(n71g®n)
point comparisons will be made. The proof depends on an amortized probabilistic
technique.

There are two open questions left to answer. The first one is whether it is
possible to improve our result to match the experimental evidence gathered by
[BCL]. The second one is whether it is possible to extend our result so that it
remains valid in higher than two dimensions.

We start with the first question. Recall (Figure 4.6 and the extended quote pre-
sented in §4.3) that [BCL] found experimental evidence that the expected number of
surplus comparisons performed on n points chosen 1.1.D. UJ0, 1]2 is 7.6n'515 - 27.7.
Unfortunately it does not seem possible to extend Theorem 4.8 to show this. The
proof of the theorem was based on a balancing argument that minimized (4.7). This
balancing argument seems to show that the techniques employed by our analysis
can’t be pushed to provide even tighter results.

Now, we come to the second question: can Theorem 4.8 be generalized to show
that with high probability the number of surplus comparisons is sublinear no matter
what the dimension of the space that underlies the CI distribution? Unfortunately
it does not seem possible to extend the techniques of this chapter in that direction.

This is because the techniques made implicit use of the ordering properties of points

141

in two dimensions. More explicitly, Lemma 4.10 can not be extended. In Lemma
4.10 we used the fact that all of the maxima that would dominate g;, ..., gm are
either in 77 or in .43 U T UC. Furthermore the maxima in A2 U7, UC at the front
of the queue would appear sorted by their z-coordinates. It is this last fact which
does not seem to generalize.

142

REFERENCES:

[AW] Alok Aggarwal and Joel Wein, “Computational Geometry (Lecture Notes for
18.409),” MIT/LCS/RSS Research Seminar Series, (August 1988).
[BDMW] R.A. Becker, L. Denby, R. McGill, and A.R. Wilks, “Analysis of Data from
the Places Rated Almanac,” The American Statistician, 41(3) (August, 1987)
169-186.
[BCL] J.L. Bentley, K.L. Clarkson, and D.B. Levine, “Fast Linear Expected-Time

Algorithms for Computing Maxima and Convex Hulls,” Symposium on Dis-
crete Algorithms, (1990).

[BKST] J.L. Bentley, H.T. Kung, M. Schkolnick, and C.D. Thompson, “On the Aver-
age Number of Maxima in a Set of Vectors and Applications,” Journal of the
Association for Computing Machinery, 25(4) (October 1978) 536-543.

[BP] J. L. Bentley and C. H. Papadimitriou, “A Worst-Case Analysis of Nearest-
Neighbor Searching by Projection,” 7th Int. Conf. on Automata, Languages
and Programming, (August 1980) 470-482.
[BS1] J.L. Bentley and M.I. Shamos, “Divide and Conquer for Linear Expected
Time,” Information Processing Letters, 7(2) (Feb. 1978) 87-91.

[BWY] J.L. Bentley, B.W. Weide, and A.C. Yao, “Optimal Expected-Time Algo-
rithms for Closest Point Problems,” ACM Trans. on Mathematical Software,
6(4) (Dec. 1980) 563-580.

[BS2] R. Boyer and D. Savageau, Places Rated Almanac, Rand McNally. (1985).
[Byk] A. Bykat, “Convex Hull of a Finite Set of Points in Two Dimensions,” Infor-
mation Processing Letters, T (1978) 296-298.
[Ch] Bernard Chazelle, “On the Convex Layers of a Planar Set,” IEEE Transac-
tions on Information Theory, IT-31(4) (July 1985) 509-517.
[De] Luc Devroye, “How to Reduce the Average Complexity of Convex Hull Find-
ing Algorithms,” Comp. and Maths. with Appls., 7 (1981) 299-308.
[DT] L. Devroye and G. Toussaint, “A Note on Linear Expected Time Algorithms
for Finding Convex Hulls,” Computing, 26 (1981) 361-366.
[Dw] Rex Allen Dwyer, “Average-Case Analysis of Algorithms For Convex Hulls
and Voronoi Diagrams,” Thesis - Carnegie-Mellon University, CMU-CS-88-
132 (1988).
[Ed) W.F. Eddy, “A New Convex Hull Algorithm for Planar Sets,” ACM Transac-
tions on Mathematical Software, 3 (1977) 398-403.

143

[FH] S. Fortune and J.E. Hopcroft, “A Note on Rabin’s Nearest Neighbor Algo-
rithm,” Information Processing Letters, 8(1) (1979) 20-23.

[Fo] A. Fournier, “Comments on Convex Hull of a Finite Set of Points in Two
Dimensions,” Information Processing Letters, 8 (1979) 173.

[GKP] Ronald Graham, Donald Knuth, and Oren Patashnik, Concrete Mathemat-
ics: A Foundation For Computer Science, Addison-Wesley, Reading, Mass.
(1988).

[GS1] M.J. Golin and R. Sedgewick, “Analysis of a Simple but Efficient Convex
Hull Algorithm,” Proceedings of the Fourth Annual Symposium on Computa-
tional Geometry, (1988) 153-163.

[GS2] G.R. Grimmet and D.R. Stirzaker, Probability and Random Processes, Claren-
don Press, Oxford. (1985).

[HNS] Klaus Hinrichs, Jurg Nievergelt, and Peter Schorn, “Plane-Sweep Solves the
Closest Pair Problem Elegantly,” Information Processing Letters, 26 (Jan-
uary 11, 1988) 255-261. '

[Kn1] Donald E. Knuth, The Art of Computer Programming: Fundamental Algo-
rithms (2nd ed), Addison-Wesley, Reading, Mass. (1973).

[Kn2] Donald E. Knuth, The Art of Computer Programming: Seminumerical Algo-
rithms (2nd ed), Addison-Wesley, Reading, Mass. (1981).

- [Kn3] Donald E. Knuth, The Art of Computer Programming: Sorting and Search-
ing, Addison-Wesley, Reading, Mass. (1973).

[KLP] H.T. Kung, F. Luccio, and F.P. Preparata, “On Finding the Maxima of a
Set of Vectors,” Journal of the Association for Computing Machinery, 22(4)
(October 1975) 469-474.

[LP] D.T. Lee and F.P. Preparata, “Computational Geometry - A Survey,” IEEE
Transactions on Computers, c-33 (12) (1984) 1072-1101.

[OL] Mark H. Overmars and Jan van Leeuwen, “Further Comments on Bykat’s
Convex Hull Algorithm,” Information Processing Letters, 10 (July 5, 1980)
209-212.

[Pi] Rob Pike, “Notes on Programming in C,” Unpublished Manuscript,.

[PS] Franco P. Preparata and Michael Ian Shamos, Computational Geometry, An
Introduction, Springer-Verlag, New York. (1985).

[Ra] M.O. Rabin, “Probabilistic Algorithms,” Algorithms and Complezity: New
Directions and Recent Results (J.F. Traub ed.), (1976) 21-39.

[RS] A. Renyi and R. Sulanke, “Ueber die konvexe hulle von n zufallig gewahlten
punkten, I,” Z. Wahrschien, 2 (1963) 75-84.

144

[Ru] Walter Rudin, Real and Complez Analysis, McGraw Hill, New York. (1966).
[Sel] Robert Sedgewick, Algorithms, Addison-Wesley, Reading, Mass. (1983).
[Se2] Robert Sedgewick, Quicksort, Garland Publishing, New York. (1980).
[Shal] Michael Ian Shamos, “Computational Geometry,” Thesis (Yale), (1978).
[Sha2] M.I. Shamos, “Geometry and Statistics: Problems at the Interface,” Algo-
rithms and Complerity: New Directions and Recent Results (J.F. Traub ed.),
(1976) 251-280.
[SH] Michael Ian Shamos and Dan Hoey, “Closest Point Problems,” 16°th Annual
Symposium on Foundations of Computer Science (FOCS), (1975) 151-161.
[St] J.M. Steele, “Growth Rates of Euclidean Minimal Spanning Trees with Power
Weighted Edges,” The Annals of Probability, 16(4) (1988) 1767-1787.
[Ta] Robert E. Tarjan, “Amortized Computational Complexity,” SIAM J. Alg.
Disc. Math, 6(2) (April 1985) 28-40.
[We] Bruce W. Weide, “Statistical Methods in Algorithm Design and Analysis,”
Thesis (Carnige-Mellon University). CMU-CS-78-142, (August 1978).
[WW] E.T. Whittaker and G. N. Watson, A Course in Modern Analysis, Cambridge
University Press, London. (1973).

145

