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Abstract 

The traditional model of virtual memory working sets 
does not account for programs that can adjust their 
working sets on demand. Examples of such programs 
are garbage-collected systems and databases with block 
cache buffers. We present a memory-use model of such 
systems, and propose a method that may be used by 
virtual memory managers to advise programs on how 
to adjust their working sets. Our method tries to mini- 
mize memory contention and ensure better overall sys- 
tem response time. We have implemented a memory 
“advice server” that runs as a non-privileged process un- 
der Berkeley Unix. User processes may ask this server 
for advice about working set sizes, so as to take max- 
imum advantage of memory resources. Our implemen- 
tation is quite simple, and has negligible overhead, and 
experimental results show that it results in sizable per- 
formance improvements. 

1 Introduction 

Algorithms for managing page replacement in a vir- 
tual memory system are designed and analyzed using 
a model of program behavior in which each process is 
assumed to have a particular pattern of page accesses. 
The future accesses of the process cannot be known in 
advance, but can be predicted (to some extent) by ana- 
lyzing the past accesses. The access pattern is assumed 
to be dependent only on the program and its input data. 
A virtual-memory management algorithm can be de- 
signed and evaluated with respect to a given set of pro 
cesses and their page-access patterns. There are many 
examples of page-replacement algorithms in the litera- 
ture, and much work has been done in evaluating their 
effectiveness[6]. 
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However, the usual assumption that the page-access 
pattern is an external variable, unmodifiable by the 
virtual-memory management algorithm, turns out not 
to be justified (at least for some classes of jobs). As we 
will show, systems that use compacting garbage collec- 
tion can (at some cost) modify their access patterns to 
use a smaller working set. This leads to a new and in- 
teresting kind of virtual-memory management: instead 
of paging a process out to disk, the operating system 
can advise a process to use a smaller working set. 

2 Copying garbage collection 

In its simplest form, a copying garbage collector [i’][4] 
works in two equal-sized memory spaces, only one of 
which is in use at a time. The allocator creates new 
cells in the aclive space. When it is time to collect, 
the garbage collector traverses all of the reachable cells 
in the active space, and copies them into the inactive 
space. Then the spaces are switched; that is, the other 
space is now used, and the formerly active space is left 
empty until the next garbage collection. 

The traversal of reachable cells can be done using a 
breadth-first or depth-first search, which takes time pro- 
portional to the number of reachable cells. The copying 
takes a constant overhead per cell, in addition to some 
time proportional to the total size of the cells copied. 

A most important property of the copying garbage 
collection algorithm is that it never visits a garbage cell, 
so that the execution time of the garbage collector is 
dependent only on the number (and size) of reachable 
cells, and is independent of the amount of garbage. 

The cost of garbage collection may be computed as 
follows (see [l] for the details). Let A be the number 
of reachable cells and M be the size of each of the two 
spaces. We’ll assume for this analysis that all cells are 
the same size. The traversal and copying requires a 
constant number of operations per cell: t = CA. 

We can amortize the cost of one garbage collection 
over all the allocations that can occur before the next 
collection. Each space can hold M cells, but after a 
garbage collection the new active space will already con- 

153 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98457.98753&domain=pdf&date_stamp=1990-04-01


t,ain A cells; so the number of allocations before the next 
collection is M - A. So the cost for every allocation is 
just 

CA 

M - A 

generational collection is difficult; in our concluding sec- 
tion we speculate about how to incorporate it into our 
model. 

Now, the program allocates new cells at a certain rate, 
say once every k instructions. The total proportion of 
garbage-collection overhead (relative to the amount of 
actual computation) is 

1 CA 
overhead = -- 

kM-A 

Clearly, the parameters k, c, and A are completely 
determined by the program and its input. But M, the 
amount of memory used, is independent: we can give the 
program a larger amount of memory and the overhead 
will go down, or a smaller amount (subject to M > A) 
and the overhead will go up. Furthermore, it is easy for 
the program to adjust to a changed memory size. After 
each garbage collection, the program can conveniently 
change the size of the active space before resuming al- 
location. 

We now compute the minimum space a program needs 
to be able to run at all. A program using garbage collec- 
t.ion will typically have some areas of memory (of size 
S&d) not subject to garbage collection (used for ex- 
ecutable code, the runtime system, etc). In addition, 
each of the active and inactive areas must be large 
enough to hold the A cells of live data. So the minimum 
space requirement S,, = Sexed + 2A. The total space 
used is just St,, = Sfi& + 2M. The difference between 
these two is the “discretionary” or “flexible” memory; 
the more discretionary memory given the program, the 
less overhead it will incur. Clearly, Sn,, = 2(M - A). 

Since the amount of overhead a program incurs varies 
according to SU,, , we will denote the time spent on over- 
head (per unit of useful computation) as tfex. The non- 
garbage-collection time requirement we will call t,,,; 
clearly this is dependent on the program and its input, 
and not dependent on memory used. 

Thus for copying garbage collection as analyzed 
above, tflex is inversely proportional to Sfiex: 

1 CA 2cA 1 
tfjex = -- = -- 

LM-A k &I,, 

At this point it should be pointed out that modern 
garbage collectors use generational algorithms [8], which 
are much more efficient than the simple stop-and-copy 
collectors analyzed here. However, generational collec- 
tors still have the property that the overhead goes down 
as memory size goes up. And it is not difficult to or- 
ganize a generational collector so that it can adjust its 
memory size after a garbage collection [2]. Analysis of 

3 Flexible working sets 

One way to analyze virtual memory management algo- 
rithms is to note that any program at any period in 
its execution references only a subset of its pages. The 
working set model[5] assumes that in adjacent periods 
the referenced subsets will be similar. Given a period 
size At, the working set of a process at time t is that 
subset of its pages references between times t - At and 
t. An operating system using the working set algorithm 
will ensure that all of these pages are in main memory 
before resuming execution of the process. 

The very notion of “virtual memory” implies that the 
process is not aware of how much physical memory is 
allocated to it. Any decisions made by the operating 
system about which pages are kept in main memory are 
assumed to be invisible to the process. This implies that 
the process’ pattern of page-accesses is independent of 
the memory-management algorithm, and of the amount 
of physical memory available. 

But garbage-collected programs need not obey these 
assumptions. A program solving a given problem with 
a certain amount of live data can run in an arbitrarily 
large heap; and the larger (and thus sparser) the heap, 
the larger the working set. (This is probably true for 
all values of At, and it is provably true for large val- 
ues of At, e.g. ten times the interval between garbage 
collections.) 

A “conventional” (non-garbage-collected) process 
does not have much choice about how much virtual 
memory to use; this is determined by the algorithm it 
runs. But a garbage-collected process can decide (af- 
ter every garbage collection) how much virtual memory 
to use in the next round[2]. Clearly, the more virtual 
memory it uses, the less garbage collection overhead it 
will incur, and the more paging it will do. 

A good heuristic might be to use as much memory 
as is available without paging. But there might be sev- 
eral garbage-collectible processes using the same physi- 
cal memory, each trying to obtain as much memory as it 
can. We claim that the allocation of garbage-collection 
heap sizes should be centrally managed, just as the all@ 
cation of physical memory is managed by a conventional 
page-replacement algorithm. In the following section we 
discuss a number of strategies that may be used for man- 
aging the memory requirements of flexible working set 
jobs. 
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4 Strategies for flexible working 
set management 

Suppose we have two garbage-collectible processes Pi 
and Ps with minimum memory requirements Sreql and 
S reQ2 respectively, running on a computer with a physi- 
cal memory of size Sphys. Then let T = Sphys - (S,,, + 
Sreqg) be the amount of “discretionary” memory that 
can be divided between Snexl and Sflex2. We know that 

oi 
tflexi = - 

Sflexi 

where ai is a constant calculated from ki, ci, and Ai (a~ 
shown in Section 2). 

We want to make the most effective use of the dis- 
cretionary memory T. We can vary the parameter 
x = S+,l/T from 0 to 1. There are different assump- 
tions we can make about what to minimize, however: 

Assumption 1: We want to complete processes 1 
and 2 in the minimum time. The optimum strat,egy is 
to halt process 2, run process 1 to completion, and then 
run process 2. That is, set I = 1 so that tflexi = 9, 
which is as low as possible. (A similar trick works as a 
page-replacement algorithm for non-garbage-collection 
processes; it’s called “batch execution.“) 

We reject this solution on the grounds that we want 
each process to make steady progress. 

Assumption 2: We will give each process equal 
time-slices for treqi (that is, execut.ion not including 
garbage-collection time), and minimize Ct~exi (the to- 
tal garbage-collection time). Thus, we minimize 

s+ 
(1 $T 

This has a minimum at 

that is, each process gets discretionary memory propor- 
tional to the square root of its o. (Assuming similar 
ki and Ci, a process gets discretionary memory propor- 
tional to the square root of its live data.) 

Assumption 3: Each process is given equal time- 
slices for its execution including garbage collection, and 
we want to minimize collection overhead. Thus, if we 
let zi be a variable that determines how much of process 
i gets executed m each timeslice, 

and we want to minimize 

This is minimized when 

I= JX+j/Z 
Intuitively, the more time a process spends doing useful 
work (treq), the less it garbage-collects; and if it doesn’t 
collect much, then it doesn’t need a lot of discretionary 
memory. 

Assumption 3 is better than assumption 2 because 
it “charges” effectively for garbage collection. A pro- 
cess that does more garbage collection will get less work 
done, in contrast to the cost assumptions in strategy 2. 

We can generalize these strategies for more than two 
processes. We will spare the reader the formal analysis, 
but the result is that 

Stlevi = uJ= 
where u is such that 

c SBexi = T 
i 

5 Implementing the advisor 

When one of the authors (Appel) runs a big program 
on a time-shared machine in ML (a garbage-collected 
language)[3], he first runs the UNIX command vmstat 
to see how much memory is free, and manually tells 
ML to use that amount as its heap size. This works 
quite well, except when other big-memory jobs are sub- 
sequently started on the same machine. We wanted to 
improve and automate this procedure. 

One way to do this is to integrate the management of 
flexible-memory processes into the operating system’s 
page-replacement algorithm. However, this turns out 
not to be necessary (at least for an initial implemen- 
tation). We have implemented a “working set advi- 
sor” that can tell collectible processes how to size their 
garbage-collection spaces. Our advisor runs as a non- 
privileged (i.e. user level) process in Berkeley Unix; it 
watches the virtual memory statistics using the vmstat 
program, and it responds to advice queries from col- 
lectible processes. 

A collectible process asks for advice after each 
garbage collection (every minute or so). It passes the 
parameters of its current time and space usage: 

t req The amount of non-garbage-collection CPU-time 
since the last advice call. 

tnex The amount of garbage-collection time since the 
last advice. 

t red The amount of real (wall-clock) time since the last 
advice. 
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S re9 The minimum (inflexible) memory the process re- 
quires; equal to fixed-space plus twice the live data. 

Ssex The amount of discretionary memory the process 
is currently enjoying. 

The advisor responds with AS indicating how Ssex 
should be changed. 

The advice parameters can be easily calculated. Be- 
fore and after each garbage collection, the collectible 
process makes a system call to learn the cumulative 
CPU time of the process, and subtracts accordingly. 
The real (wall-clock) time is also learned from a sys- 
tem call. The time parameters passed are time used 
since the last advice call. Since a garbage collection ef- 
fectively measures the amount of live data, it is easy to 
calculate Seex and subtract to get Sr,. 

From these parameters, the advisor can calculate cr, 
the proportionality constant between teex and Siei. 

According to assumption 3 (described in the previ- 
ous section), we should make SH,, for each process pro- 
portional to (atrq)-.5. However, some processes spend 
much of their time idle (waiting for user I/O), or have 
low priority; these processes should be given less mem- 
ory because it doesn’t matter if they garbage collect a 
bit more. We can formalize this by changing our inter- 
pretation of k, the time between allocations. We have 
implicitly assumed that k is measured in CPU-seconds; 
but if we measure it in real (wall-clock) seconds, then 
by assumption 3 we have 

We will allow non-garbage-collected processes to run 
on the same computer, and we will allow parts of the 
“fixed” (non-collectible) pages of each process to be 
paged out if they are not in the working set. 

We have the problem of realistically determining T, 
the total amount of memory allocable to the Sfiexi. We 
could say that T is the size of physical memory minus 
the “fixed” part of all processes (where the “fixed” part 
of a non-collectible process is the entirety). However, 
this ignores the fact that the resident set of a process is 
a subset of its pages; we could use a larger value of T 
and still not page very much. 

What we desire is a value of T that is large enough so 
that there isn’t much garbage-collection overhead, but 
small enough so that there isn’t much paging. We can 
say that T is just the size of physical memory minus the 
sum of the resident set sizes of all processes. There is no 
guarantee that this is optimal, however, since the notion 
of the working set is a heuristic, and is dependent on an 
arbitrary parameter At. Furthermore, this method of 

determining T first “optimizes” the paging, then opti- 
mizes the garbage collection subject to that. amount of 
paging; we want to consider both simultaneously. 

The tradeoff between paging and garbage collection 
can be adjusted empirically. A virtual-memory manager 
can measure the paging and garbage-collection over- 
heads for one value of T, can accurately predict the 
garbage-collection overheads for any value of T, and 
can adjust T accordingly until the paging and collection 
overheads balance. We have chosen a simpler approach. 

We compute T, the total discretionary memory, as 
follows: vmstat tells the number of free physical pages. 
To this we add the sum of Sseui. Then we subtract 
a “headroom” amount (perhaps a megabyte on a 16- 
megabyte system) to allow the operating system some 
free space without paging. 

We implement the tradeoff between paging and col- 
lecting by decreasing T proportionally to the amount 
of paging. That is, for each unit of page-outs per sec- 
ond, we decrease T by C,,, pages. This will decrease the 
pages used for collecting processes and thereby free some 
pages for use by paging processes, which will reduce the 
amount of paging. The page-out rate is available from 
vmstat. Unfortunately, vmstat doesn’t tell the number 
of pages in swapped out processes, and there’s no good 
way of computing this short of employing the expen- 
sive UNIX ps command (which returns process status 
information); so we will make do by using the exponen- 
tially weighted average of page-out activity over the last 
minute or two as an indication that there are swapped- 
out processes. Thus, 

T = &ree + c kleBkzPO(‘) t 
for appropriate kl and kz. 

The advisor is easy to implement. It maintains a 
socket for advice calls; a process needing advice just 
connects to this socket and periodically sends requests. 
The advisor maintains a table of all the treali, Ssexi, 
etc., and updates this table on an advice request. When 
process j requests advice, the advisor recomputes the 
constant of proportionality 

lJ= CJ hexi%kxi 

i 
t ~eali - tflexi 

and then gives the advice 

AS T 
J 

hexj flexj S 
=- 

u tRdj - tllexj 
- sfleXj 

This advice is a bit inconsistent; we really want the 
advisor to recompute ASi for all processes simultane- 
ously. But the other processes are not in a convenient 
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position to receive advice at the moment. As all the pro- 
cesses eventually request advice, the system will evolve 
to an approximately optimal configuration. 

Furthermore, when a process is to be given AS ad- 
ditional flexible memory, we will instead give it only a 
portion of its deserved increase (e.g. AS/3); this pre- 
vents the first process that asks advice from getting all 
the resources. Of course, that process will eventually 
ask advice again, and if there is little competition for 
memory, it will be given an additional l/3 of available 
resources, so that all processes should eventually con- 
verge to the optimum sharing. There is an important 
reason for being conservative about giving out memory 
shares: the larger a process’s heap, the longer it will take 
before the next garbage collection (and hence the next 
advice request). If a process is given too little mem- 
ory, it will soon garbage-collect and seek advice again, 
at which point the mistake can be corrected. But if a 
process is given too much, it will be long time before 
advice is requested and an adjustment can be made. 

After giving the advice, the advisor assumes the ad- 
vice will be taken, and updates SRexj accordingly. It 
also computes values treqj and t,,~j consistent with the 
change in Sflexj and enters them in the table. 

A process is expected to tell the advice server when 
its execution completes. In the case that a process exits 
abnormally, the advisor will continue to believe that it 
is using resources. This distorts the advice given to the 
other processes, but not fatally: the dead process’ pages 
will show up as free pages reported by vmstat, and can 
be given to other processes. Of course, in doling out 
these pages, the advisor will attempt to save a share 
for the dead process; but each time it does this, the 
dead process won’t use them and they will show up in 
the free pages reported by vmstat. Thus, over time 
the number of wasted pages will diminish exponentially. 
Finally, when a process has not requested advice for 
several hours, it is assumed dead and removed from the 
table. 

The client program’s runtime system must be mod- 
ified to seek advice. Obviously, the client must keep 
track of the time at the beginning and end of each 
garbage collection, and must communicate with the ad- 
visor. In addition, we found the following change was 
helpful: In the generational garbage collector, advice is 
requested only after a major-cycle garbage collection; 
but if a really large heap is used, there could be hun- 
dreds of minor cycles before another major cycle; there- 
fore we limited the number of minor cycles per major 
cycle to 200. 

6 Performance measurements 

We ran our advisor on a 32-megabyte VaxStation-III 
workstation running Ult,rix. The processes request- 
ing advice were implemented in Standard ML of New 
JerseyIS], which uses two-level generational garbage 
collection[2]. W e use four different benchmark jobs: 

pig A compute-bound process that allocates frequently 
but uses little live data (it solves a real-number 
partition problem using backtracking). 

hog A compute-bound process that uses a lot of mem- 
ory (the ML compiler). 

dog An io-bound process that uses little memory (it 
solves a real-number partition problem, then sleeps 
for several seconds). 

hippo An io-bound process that uses a lot of memory 
(it allocates large arrays and sleeps). 

All processes allocate new cells very frequently, but 
some have a larger amount of live data at any given 
instant. 

In the absence of advice, a process could be expected 
to use an amount of flexible memory proportional to 
the amount of live data. A conservative heuristic would 
be to use Ss,, = Siive/2, and a liberal heuristic would 
use Sfiex = Slive * 3. These heuristics don’t need an 
advisor at all, but we implemented them as versions 
of our advisor so that we could collect statistics in a 
consistent way. 

The cost of the advisor is negligible. Over a 3200- 
second interval with 4 jobs requesting frequent advice, 
the advisor took 8 seconds of cpu time, vmstat took 7 
seconds, and our vmstat interface program took 5. 

Figure 1 illustrates the performance of the advisor 
when four processes (a pig, a hog, a dog, and a hippo) 
are contending for memory, and figures 2 and 3 illustrate 
the performance of the conservative and liberal heuris- 
tics. The top graph in each figure shows the amount 
of free memory and the amount of paging activity as 
reported by vmstat over the half-hour interval. The 
bottom graphs indicate the Sreq (in black) and Ss,, (in 
white) of each process. These are only measured at 
garbage collections, when advice is taken (the vertical 
lines), and between these times are only interpolations. 

Clearly, the conservative policy is not making good 
use of the available memory, and is suffering increased 
garbage-collection overhead (as one can tell by counting 
the number of vertical lines in plots of the individual 
jobs, or by looking at Table 1); the liberal policy is 
thrashing the paging device. The advisor is able to avoid 
both of these problems. 
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Job Mix 

pig+hog+dog+hippo 

pig+pig+hog 

hog 

Pig 

hog+hog+hog 

Policy to g.c. faults sum real-time 

Advice 1603 275 5390 1892 1961 
Conserv. 1603 477 10 2080 2181 
Liberal 1657 223 138,750 2213 2131 
Advice 2626 144 10 2781 2847 

Conserv. 2612 519 10 3132 3229 
Liberal 2620 239 10 2870 2935 
Advice 451 98 10 550 578 

Conserv. 455 178 10 633 663 
Liberal 454 107 10 561 587 
Advice 1083 7 10 1090 1121 

Conserv. 1075 179 10 1255 1292 
Liberal 1079 65 10 1144 1173 
Advice 1393 475 96,455 2100 2032 

Conserv. 1387 538 77,500 2111 2243 
Liberal 1449 362 173,605 2228 2819 

Table 1: Benchmark data 

Table 1 tabulates the performance of the three al- 
gorithms on a variety of job mixes. The ‘(60” column 
shows the non-garbage-collected part of the computa- 
tion (summed over all jobs in the mix); the “g.c.” col- 
umn shows tsex, the garbage collection overhead; the 
“faults” column shows the total number of page-outs 
(estimated). We estimate that the microvax-III takes 
2.4 milliseconds of CPU time to process a page fault, 
so we can compare paging time to garbage collection 
time using that multiplier. The “sum” column shows 
to + Glex + .0024 * faulfs. Finally, the last column 
shows the wall-clock time to completion of the last job 
in the mix; ideally, this would be equal to the “sum” 
column, but our measuring techniques are not perfect. 
All times are in seconds. 

Figure 4 shows the breakdown of garbage collection 
and (estimated) paging overhead (summed over all the 
jobs in each mix), and figure 5 shows the wall-clock time 
to completion of all the jobs in the mix, and also shows 
the non-overhead (computation) time for all jobs. In 
both of these figures, A indicates the advice policy, C 
indicates the conservative policy, and L indicates the 
liberal policy. 

In all cases, the advice policy is the best policy. In 
some cases, it is only marginally better than the con- 
servative policy, and in some cases it is only marginally 
better than the liberal policy; but it is always better 
than the best of those two. 

Consider a “moderate” policy, which used a fixed ra- 
tio of heap size to live data between that of the con- 
servative and liberal policies. Clearly, it would have an 
amount of garbage collection between that of the lib- 
eral and that of the conservative, and an amount of 
paging between that of the liberal and the conservative. 
Clea.rly, for second, third, and fourth job mixes in the 

table, the moderate policy would not perform as well 
as the “advice” policy (since there was no paging in 
these runs); for the first and fifth job mixes, the moder- 
ate policy might be competitive with the advice policy. 
Overall, however, the Advisor seems likely to give bet- 
ter results than any policy that does not take global 
information into account. 

In most cases, the amount of overhead is not very 
high. This is a consequence of the remarkable efficiency 
of generational garbage collection. If the benchmarks 
did not use generational collection, then the garbage 
collection times would be a bigger proportion of run 
times, and the differences between the policies would 
be magnified. 

7 Conclusion 

In this paper we have explained how garbage-collected 
jobs do not follow the usual assumptions about fixed 
working set sizes and can indeed expand or cont.ract 
their memory demands at will. This presents t,he op- 
portunity to operating system designers of creating a 
centralized service that will manage heap request.s by 
garbage-collected processes so as to alleviate memory 
contention. We have implemented such an advisory ser- 
vice, and our experimental results show that it can sub- 
stantially improve performance of garba.ge-collected sys- 
tems. 

Our current advisor implementation runs as a user 
level process under Berkeley UNIX, but it is clear that 
it would be advantageous to implement such a process 
as part of the operating system itself. The advant.ages of 
such an approach are three-fold. First, there is reduced 
overhead in obtaining the advice as part of a system call 
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(as opposed to using the interprocess communication 
features of Berkeley UNIX). Furthermore, our advisor 
does not know whether the amount of free memory in 
the system is really available or whether a job (who was 
told it could increase its heap size) is in the process of 
requesting it. Lastly, our server’s advice is just that: a 
hint to the process; the advisor has no way of enforcing 
its advice. 

Finally, for generational collectors, we believe that 
the techniques presented in this paper are most relevant 
to the youngest generations. Older generations are col- 
lected so rarely that the garbage collector cannot quickly 
respond to advice about their size, and have a locality of 
reference that can be exploited by a conventional paging 
system. Younger generations are collected frequently 
and exhibit very poor locaiity, so it makes sense to con- 
trol their size using advice. We plan to experiment with 
a hybrid system. 
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Figure 3. Four jobs using the liberal strategy. 
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