
An Advisor for Flexible Working Sets

Rafael Alonso Andrew W. Appel

Department of Computer Science
Princeton University

Abstract

The traditional model of virtual memory working sets
does not account for programs that can adjust their
working sets on demand. Examples of such programs
are garbage-collected systems and databases with block
cache buffers. We present a memory-use model of such
systems, and propose a method that may be used by
virtual memory managers to advise programs on how
to adjust their working sets. Our method tries to mini-
mize memory contention and ensure better overall sys-
tem response time. We have implemented a memory
“advice server” that runs as a non-privileged process un-
der Berkeley Unix. User processes may ask this server
for advice about working set sizes, so as to take max-
imum advantage of memory resources. Our implemen-
tation is quite simple, and has negligible overhead, and
experimental results show that it results in sizable per-
formance improvements.

1 Introduction

Algorithms for managing page replacement in a vir-
tual memory system are designed and analyzed using
a model of program behavior in which each process is
assumed to have a particular pattern of page accesses.
The future accesses of the process cannot be known in
advance, but can be predicted (to some extent) by ana-
lyzing the past accesses. The access pattern is assumed
to be dependent only on the program and its input data.
A virtual-memory management algorithm can be de-
signed and evaluated with respect to a given set of pro
cesses and their page-access patterns. There are many
examples of page-replacement algorithms in the litera-
ture, and much work has been done in evaluating their
effectiveness[6].

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-359-0/90/0005/0153 $1.50

However, the usual assumption that the page-access
pattern is an external variable, unmodifiable by the
virtual-memory management algorithm, turns out not
to be justified (at least for some classes of jobs). As we
will show, systems that use compacting garbage collec-
tion can (at some cost) modify their access patterns to
use a smaller working set. This leads to a new and in-
teresting kind of virtual-memory management: instead
of paging a process out to disk, the operating system
can advise a process to use a smaller working set.

2 Copying garbage collection

In its simplest form, a copying garbage collector [i’][4]
works in two equal-sized memory spaces, only one of
which is in use at a time. The allocator creates new
cells in the aclive space. When it is time to collect,
the garbage collector traverses all of the reachable cells
in the active space, and copies them into the inactive
space. Then the spaces are switched; that is, the other
space is now used, and the formerly active space is left
empty until the next garbage collection.

The traversal of reachable cells can be done using a
breadth-first or depth-first search, which takes time pro-
portional to the number of reachable cells. The copying
takes a constant overhead per cell, in addition to some
time proportional to the total size of the cells copied.

A most important property of the copying garbage
collection algorithm is that it never visits a garbage cell,
so that the execution time of the garbage collector is
dependent only on the number (and size) of reachable
cells, and is independent of the amount of garbage.

The cost of garbage collection may be computed as
follows (see [l] for the details). Let A be the number
of reachable cells and M be the size of each of the two
spaces. We’ll assume for this analysis that all cells are
the same size. The traversal and copying requires a
constant number of operations per cell: t = CA.

We can amortize the cost of one garbage collection
over all the allocations that can occur before the next
collection. Each space can hold M cells, but after a
garbage collection the new active space will already con-

153

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98457.98753&domain=pdf&date_stamp=1990-04-01

t,ain A cells; so the number of allocations before the next
collection is M - A. So the cost for every allocation is
just

CA

M - A

generational collection is difficult; in our concluding sec-
tion we speculate about how to incorporate it into our
model.

Now, the program allocates new cells at a certain rate,
say once every k instructions. The total proportion of
garbage-collection overhead (relative to the amount of
actual computation) is

1 CA
overhead = --

kM-A

Clearly, the parameters k, c, and A are completely
determined by the program and its input. But M, the
amount of memory used, is independent: we can give the
program a larger amount of memory and the overhead
will go down, or a smaller amount (subject to M > A)
and the overhead will go up. Furthermore, it is easy for
the program to adjust to a changed memory size. After
each garbage collection, the program can conveniently
change the size of the active space before resuming al-
location.

We now compute the minimum space a program needs
to be able to run at all. A program using garbage collec-
t.ion will typically have some areas of memory (of size
S&d) not subject to garbage collection (used for ex-
ecutable code, the runtime system, etc). In addition,
each of the active and inactive areas must be large
enough to hold the A cells of live data. So the minimum
space requirement S,, = Sexed + 2A. The total space
used is just St,, = Sfi& + 2M. The difference between
these two is the “discretionary” or “flexible” memory;
the more discretionary memory given the program, the
less overhead it will incur. Clearly, Sn,, = 2(M - A).

Since the amount of overhead a program incurs varies
according to SU,, , we will denote the time spent on over-
head (per unit of useful computation) as tfex. The non-
garbage-collection time requirement we will call t,,,;
clearly this is dependent on the program and its input,
and not dependent on memory used.

Thus for copying garbage collection as analyzed
above, tflex is inversely proportional to Sfiex:

1 CA 2cA 1
tfjex = -- = --

LM-A k &I,,

At this point it should be pointed out that modern
garbage collectors use generational algorithms [8], which
are much more efficient than the simple stop-and-copy
collectors analyzed here. However, generational collec-
tors still have the property that the overhead goes down
as memory size goes up. And it is not difficult to or-
ganize a generational collector so that it can adjust its
memory size after a garbage collection [2]. Analysis of

3 Flexible working sets

One way to analyze virtual memory management algo-
rithms is to note that any program at any period in
its execution references only a subset of its pages. The
working set model[5] assumes that in adjacent periods
the referenced subsets will be similar. Given a period
size At, the working set of a process at time t is that
subset of its pages references between times t - At and
t. An operating system using the working set algorithm
will ensure that all of these pages are in main memory
before resuming execution of the process.

The very notion of “virtual memory” implies that the
process is not aware of how much physical memory is
allocated to it. Any decisions made by the operating
system about which pages are kept in main memory are
assumed to be invisible to the process. This implies that
the process’ pattern of page-accesses is independent of
the memory-management algorithm, and of the amount
of physical memory available.

But garbage-collected programs need not obey these
assumptions. A program solving a given problem with
a certain amount of live data can run in an arbitrarily
large heap; and the larger (and thus sparser) the heap,
the larger the working set. (This is probably true for
all values of At, and it is provably true for large val-
ues of At, e.g. ten times the interval between garbage
collections.)

A “conventional” (non-garbage-collected) process
does not have much choice about how much virtual
memory to use; this is determined by the algorithm it
runs. But a garbage-collected process can decide (af-
ter every garbage collection) how much virtual memory
to use in the next round[2]. Clearly, the more virtual
memory it uses, the less garbage collection overhead it
will incur, and the more paging it will do.

A good heuristic might be to use as much memory
as is available without paging. But there might be sev-
eral garbage-collectible processes using the same physi-
cal memory, each trying to obtain as much memory as it
can. We claim that the allocation of garbage-collection
heap sizes should be centrally managed, just as the all@
cation of physical memory is managed by a conventional
page-replacement algorithm. In the following section we
discuss a number of strategies that may be used for man-
aging the memory requirements of flexible working set
jobs.

154

4 Strategies for flexible working
set management

Suppose we have two garbage-collectible processes Pi
and Ps with minimum memory requirements Sreql and
S reQ2 respectively, running on a computer with a physi-
cal memory of size Sphys. Then let T = Sphys - (S,,, +
Sreqg) be the amount of “discretionary” memory that
can be divided between Snexl and Sflex2. We know that

oi
tflexi = -

Sflexi

where ai is a constant calculated from ki, ci, and Ai (a~
shown in Section 2).

We want to make the most effective use of the dis-
cretionary memory T. We can vary the parameter
x = S+,l/T from 0 to 1. There are different assump-
tions we can make about what to minimize, however:

Assumption 1: We want to complete processes 1
and 2 in the minimum time. The optimum strat,egy is
to halt process 2, run process 1 to completion, and then
run process 2. That is, set I = 1 so that tflexi = 9,
which is as low as possible. (A similar trick works as a
page-replacement algorithm for non-garbage-collection
processes; it’s called “batch execution.“)

We reject this solution on the grounds that we want
each process to make steady progress.

Assumption 2: We will give each process equal
time-slices for treqi (that is, execut.ion not including
garbage-collection time), and minimize Ct~exi (the to-
tal garbage-collection time). Thus, we minimize

s+
(1 $T

This has a minimum at

that is, each process gets discretionary memory propor-
tional to the square root of its o. (Assuming similar
ki and Ci, a process gets discretionary memory propor-
tional to the square root of its live data.)

Assumption 3: Each process is given equal time-
slices for its execution including garbage collection, and
we want to minimize collection overhead. Thus, if we
let zi be a variable that determines how much of process
i gets executed m each timeslice,

and we want to minimize

This is minimized when

I= JX+j/Z
Intuitively, the more time a process spends doing useful
work (treq), the less it garbage-collects; and if it doesn’t
collect much, then it doesn’t need a lot of discretionary
memory.

Assumption 3 is better than assumption 2 because
it “charges” effectively for garbage collection. A pro-
cess that does more garbage collection will get less work
done, in contrast to the cost assumptions in strategy 2.

We can generalize these strategies for more than two
processes. We will spare the reader the formal analysis,
but the result is that

Stlevi = uJ=
where u is such that

c SBexi = T
i

5 Implementing the advisor

When one of the authors (Appel) runs a big program
on a time-shared machine in ML (a garbage-collected
language)[3], he first runs the UNIX command vmstat
to see how much memory is free, and manually tells
ML to use that amount as its heap size. This works
quite well, except when other big-memory jobs are sub-
sequently started on the same machine. We wanted to
improve and automate this procedure.

One way to do this is to integrate the management of
flexible-memory processes into the operating system’s
page-replacement algorithm. However, this turns out
not to be necessary (at least for an initial implemen-
tation). We have implemented a “working set advi-
sor” that can tell collectible processes how to size their
garbage-collection spaces. Our advisor runs as a non-
privileged (i.e. user level) process in Berkeley Unix; it
watches the virtual memory statistics using the vmstat
program, and it responds to advice queries from col-
lectible processes.

A collectible process asks for advice after each
garbage collection (every minute or so). It passes the
parameters of its current time and space usage:

t req The amount of non-garbage-collection CPU-time
since the last advice call.

tnex The amount of garbage-collection time since the
last advice.

t red The amount of real (wall-clock) time since the last
advice.

155

S re9 The minimum (inflexible) memory the process re-
quires; equal to fixed-space plus twice the live data.

Ssex The amount of discretionary memory the process
is currently enjoying.

The advisor responds with AS indicating how Ssex
should be changed.

The advice parameters can be easily calculated. Be-
fore and after each garbage collection, the collectible
process makes a system call to learn the cumulative
CPU time of the process, and subtracts accordingly.
The real (wall-clock) time is also learned from a sys-
tem call. The time parameters passed are time used
since the last advice call. Since a garbage collection ef-
fectively measures the amount of live data, it is easy to
calculate Seex and subtract to get Sr,.

From these parameters, the advisor can calculate cr,
the proportionality constant between teex and Siei.

According to assumption 3 (described in the previ-
ous section), we should make SH,, for each process pro-
portional to (atrq)-.5. However, some processes spend
much of their time idle (waiting for user I/O), or have
low priority; these processes should be given less mem-
ory because it doesn’t matter if they garbage collect a
bit more. We can formalize this by changing our inter-
pretation of k, the time between allocations. We have
implicitly assumed that k is measured in CPU-seconds;
but if we measure it in real (wall-clock) seconds, then
by assumption 3 we have

We will allow non-garbage-collected processes to run
on the same computer, and we will allow parts of the
“fixed” (non-collectible) pages of each process to be
paged out if they are not in the working set.

We have the problem of realistically determining T,
the total amount of memory allocable to the Sfiexi. We
could say that T is the size of physical memory minus
the “fixed” part of all processes (where the “fixed” part
of a non-collectible process is the entirety). However,
this ignores the fact that the resident set of a process is
a subset of its pages; we could use a larger value of T
and still not page very much.

What we desire is a value of T that is large enough so
that there isn’t much garbage-collection overhead, but
small enough so that there isn’t much paging. We can
say that T is just the size of physical memory minus the
sum of the resident set sizes of all processes. There is no
guarantee that this is optimal, however, since the notion
of the working set is a heuristic, and is dependent on an
arbitrary parameter At. Furthermore, this method of

determining T first “optimizes” the paging, then opti-
mizes the garbage collection subject to that. amount of
paging; we want to consider both simultaneously.

The tradeoff between paging and garbage collection
can be adjusted empirically. A virtual-memory manager
can measure the paging and garbage-collection over-
heads for one value of T, can accurately predict the
garbage-collection overheads for any value of T, and
can adjust T accordingly until the paging and collection
overheads balance. We have chosen a simpler approach.

We compute T, the total discretionary memory, as
follows: vmstat tells the number of free physical pages.
To this we add the sum of Sseui. Then we subtract
a “headroom” amount (perhaps a megabyte on a 16-
megabyte system) to allow the operating system some
free space without paging.

We implement the tradeoff between paging and col-
lecting by decreasing T proportionally to the amount
of paging. That is, for each unit of page-outs per sec-
ond, we decrease T by C,,, pages. This will decrease the
pages used for collecting processes and thereby free some
pages for use by paging processes, which will reduce the
amount of paging. The page-out rate is available from
vmstat. Unfortunately, vmstat doesn’t tell the number
of pages in swapped out processes, and there’s no good
way of computing this short of employing the expen-
sive UNIX ps command (which returns process status
information); so we will make do by using the exponen-
tially weighted average of page-out activity over the last
minute or two as an indication that there are swapped-
out processes. Thus,

T = &ree + c kleBkzPO(‘) t
for appropriate kl and kz.

The advisor is easy to implement. It maintains a
socket for advice calls; a process needing advice just
connects to this socket and periodically sends requests.
The advisor maintains a table of all the treali, Ssexi,
etc., and updates this table on an advice request. When
process j requests advice, the advisor recomputes the
constant of proportionality

lJ= CJ hexi%kxi

i
t ~eali - tflexi

and then gives the advice

AS T
J

hexj flexj S
=-

u tRdj - tllexj
- sfleXj

This advice is a bit inconsistent; we really want the
advisor to recompute ASi for all processes simultane-
ously. But the other processes are not in a convenient

156

position to receive advice at the moment. As all the pro-
cesses eventually request advice, the system will evolve
to an approximately optimal configuration.

Furthermore, when a process is to be given AS ad-
ditional flexible memory, we will instead give it only a
portion of its deserved increase (e.g. AS/3); this pre-
vents the first process that asks advice from getting all
the resources. Of course, that process will eventually
ask advice again, and if there is little competition for
memory, it will be given an additional l/3 of available
resources, so that all processes should eventually con-
verge to the optimum sharing. There is an important
reason for being conservative about giving out memory
shares: the larger a process’s heap, the longer it will take
before the next garbage collection (and hence the next
advice request). If a process is given too little mem-
ory, it will soon garbage-collect and seek advice again,
at which point the mistake can be corrected. But if a
process is given too much, it will be long time before
advice is requested and an adjustment can be made.

After giving the advice, the advisor assumes the ad-
vice will be taken, and updates SRexj accordingly. It
also computes values treqj and t,,~j consistent with the
change in Sflexj and enters them in the table.

A process is expected to tell the advice server when
its execution completes. In the case that a process exits
abnormally, the advisor will continue to believe that it
is using resources. This distorts the advice given to the
other processes, but not fatally: the dead process’ pages
will show up as free pages reported by vmstat, and can
be given to other processes. Of course, in doling out
these pages, the advisor will attempt to save a share
for the dead process; but each time it does this, the
dead process won’t use them and they will show up in
the free pages reported by vmstat. Thus, over time
the number of wasted pages will diminish exponentially.
Finally, when a process has not requested advice for
several hours, it is assumed dead and removed from the
table.

The client program’s runtime system must be mod-
ified to seek advice. Obviously, the client must keep
track of the time at the beginning and end of each
garbage collection, and must communicate with the ad-
visor. In addition, we found the following change was
helpful: In the generational garbage collector, advice is
requested only after a major-cycle garbage collection;
but if a really large heap is used, there could be hun-
dreds of minor cycles before another major cycle; there-
fore we limited the number of minor cycles per major
cycle to 200.

6 Performance measurements

We ran our advisor on a 32-megabyte VaxStation-III
workstation running Ult,rix. The processes request-
ing advice were implemented in Standard ML of New
JerseyIS], which uses two-level generational garbage
collection[2]. W e use four different benchmark jobs:

pig A compute-bound process that allocates frequently
but uses little live data (it solves a real-number
partition problem using backtracking).

hog A compute-bound process that uses a lot of mem-
ory (the ML compiler).

dog An io-bound process that uses little memory (it
solves a real-number partition problem, then sleeps
for several seconds).

hippo An io-bound process that uses a lot of memory
(it allocates large arrays and sleeps).

All processes allocate new cells very frequently, but
some have a larger amount of live data at any given
instant.

In the absence of advice, a process could be expected
to use an amount of flexible memory proportional to
the amount of live data. A conservative heuristic would
be to use Ss,, = Siive/2, and a liberal heuristic would
use Sfiex = Slive * 3. These heuristics don’t need an
advisor at all, but we implemented them as versions
of our advisor so that we could collect statistics in a
consistent way.

The cost of the advisor is negligible. Over a 3200-
second interval with 4 jobs requesting frequent advice,
the advisor took 8 seconds of cpu time, vmstat took 7
seconds, and our vmstat interface program took 5.

Figure 1 illustrates the performance of the advisor
when four processes (a pig, a hog, a dog, and a hippo)
are contending for memory, and figures 2 and 3 illustrate
the performance of the conservative and liberal heuris-
tics. The top graph in each figure shows the amount
of free memory and the amount of paging activity as
reported by vmstat over the half-hour interval. The
bottom graphs indicate the Sreq (in black) and Ss,, (in
white) of each process. These are only measured at
garbage collections, when advice is taken (the vertical
lines), and between these times are only interpolations.

Clearly, the conservative policy is not making good
use of the available memory, and is suffering increased
garbage-collection overhead (as one can tell by counting
the number of vertical lines in plots of the individual
jobs, or by looking at Table 1); the liberal policy is
thrashing the paging device. The advisor is able to avoid
both of these problems.

157

Job Mix

pig+hog+dog+hippo

pig+pig+hog

hog

Pig

hog+hog+hog

Policy to g.c. faults sum real-time

Advice 1603 275 5390 1892 1961
Conserv. 1603 477 10 2080 2181
Liberal 1657 223 138,750 2213 2131
Advice 2626 144 10 2781 2847

Conserv. 2612 519 10 3132 3229
Liberal 2620 239 10 2870 2935
Advice 451 98 10 550 578

Conserv. 455 178 10 633 663
Liberal 454 107 10 561 587
Advice 1083 7 10 1090 1121

Conserv. 1075 179 10 1255 1292
Liberal 1079 65 10 1144 1173
Advice 1393 475 96,455 2100 2032

Conserv. 1387 538 77,500 2111 2243
Liberal 1449 362 173,605 2228 2819

Table 1: Benchmark data

Table 1 tabulates the performance of the three al-
gorithms on a variety of job mixes. The ‘(60” column
shows the non-garbage-collected part of the computa-
tion (summed over all jobs in the mix); the “g.c.” col-
umn shows tsex, the garbage collection overhead; the
“faults” column shows the total number of page-outs
(estimated). We estimate that the microvax-III takes
2.4 milliseconds of CPU time to process a page fault,
so we can compare paging time to garbage collection
time using that multiplier. The “sum” column shows
to + Glex + .0024 * faulfs. Finally, the last column
shows the wall-clock time to completion of the last job
in the mix; ideally, this would be equal to the “sum”
column, but our measuring techniques are not perfect.
All times are in seconds.

Figure 4 shows the breakdown of garbage collection
and (estimated) paging overhead (summed over all the
jobs in each mix), and figure 5 shows the wall-clock time
to completion of all the jobs in the mix, and also shows
the non-overhead (computation) time for all jobs. In
both of these figures, A indicates the advice policy, C
indicates the conservative policy, and L indicates the
liberal policy.

In all cases, the advice policy is the best policy. In
some cases, it is only marginally better than the con-
servative policy, and in some cases it is only marginally
better than the liberal policy; but it is always better
than the best of those two.

Consider a “moderate” policy, which used a fixed ra-
tio of heap size to live data between that of the con-
servative and liberal policies. Clearly, it would have an
amount of garbage collection between that of the lib-
eral and that of the conservative, and an amount of
paging between that of the liberal and the conservative.
Clea.rly, for second, third, and fourth job mixes in the

table, the moderate policy would not perform as well
as the “advice” policy (since there was no paging in
these runs); for the first and fifth job mixes, the moder-
ate policy might be competitive with the advice policy.
Overall, however, the Advisor seems likely to give bet-
ter results than any policy that does not take global
information into account.

In most cases, the amount of overhead is not very
high. This is a consequence of the remarkable efficiency
of generational garbage collection. If the benchmarks
did not use generational collection, then the garbage
collection times would be a bigger proportion of run
times, and the differences between the policies would
be magnified.

7 Conclusion

In this paper we have explained how garbage-collected
jobs do not follow the usual assumptions about fixed
working set sizes and can indeed expand or cont.ract
their memory demands at will. This presents t,he op-
portunity to operating system designers of creating a
centralized service that will manage heap request.s by
garbage-collected processes so as to alleviate memory
contention. We have implemented such an advisory ser-
vice, and our experimental results show that it can sub-
stantially improve performance of garba.ge-collected sys-
tems.

Our current advisor implementation runs as a user
level process under Berkeley UNIX, but it is clear that
it would be advantageous to implement such a process
as part of the operating system itself. The advant.ages of
such an approach are three-fold. First, there is reduced
overhead in obtaining the advice as part of a system call

158

(as opposed to using the interprocess communication
features of Berkeley UNIX). Furthermore, our advisor
does not know whether the amount of free memory in
the system is really available or whether a job (who was
told it could increase its heap size) is in the process of
requesting it. Lastly, our server’s advice is just that: a
hint to the process; the advisor has no way of enforcing
its advice.

Finally, for generational collectors, we believe that
the techniques presented in this paper are most relevant
to the youngest generations. Older generations are col-
lected so rarely that the garbage collector cannot quickly
respond to advice about their size, and have a locality of
reference that can be exploited by a conventional paging
system. Younger generations are collected frequently
and exhibit very poor locaiity, so it makes sense to con-
trol their size using advice. We plan to experiment with
a hybrid system.

Acknowledgements. Rafael Alonso was supported in

part by an IBM Research Initiation Grant and an SRI David

Samoff Research Center Grant. Andrew W. Appel was supported

in part by NSF Grant CCR-8806121.

References

[l] Andrew W. Appel.
Garbage collection can be faster than stack alloca-

tion.
Information Processing Letters, 25(4):275-279,

1987.

[2] Andrew W. Appel.
Simple generational garbage collection and fast al-

location.
Software-Practice/Experience, 1989.

[3] Andrew W. Appel and David B. MacQueen.
A Standard ML compiler.
In Gilles Kahn, editor, Functional Programming

Languages and Computer Architecture (LNCS
274), pages 301-324. Springer-Verlag, 1987.

[4] C. J. Cheney.
A nonrecursive list compacting algorithm.
Communications of the ACM, 13(11):677-678, 1970.

[5] Peter J. Denning.
The working set model for program behavior.
CACM, 11(5):323-333, 1968.

[6] Peter J. Denning.
Working sets past and present.
IEEE Bans. Software Engineering, SE-6(1):64-84,

1980.

[7] Robert R. Fenichel and Jerome C. Yochelson.
A LISP garbage-collector for virtual-memory com-

puter systems.
Communications of the ACM, 12(11):611-612, 1969.

[8] Henry Lieberman and Carl Hewitt.
A real-time garbage collector based on the lifetimes

of objects.
Communications of the ACM, 23(6):419-429, 1983.

159

Free 20M
bytes

lOM-

Page-Outs l: -
Per sec. 200 1

b 40
I I

1000 1500 2&o jrr

Free
bytes 20M

Pig

Hog

NT

fiPp0

Figure 1. Four jobs using advice.

0 500 1000 1500 2ooo &SC.

Figure 2. Four jobs using the conservative strategy.

160

0
100

Page-Outs 2~
Per sec.

Hog

20M
Free
bytes 1 OM

t 9
I I I I

0 500 1000 1500 3)oo XC.

I I

Figure 3. Four jobs using the liberal strategy.

161

pig+hog+dog+hippo

pig+pig+hog

hog
Pig

I
0

I I I
200 400 600

Garbage-collection and Paging (SK)
Figure 4.

I
800

pig+hog+dog+hippo

pig+pig+hog

hois
A

hog+hog+hog C
L computation

I
0

I I
1000 2ooo
Real time to completion (set)

Figure 5.

I
3000

162

