HOW TO STORE A TRIANGULAR MATRIX
Andrea S. LaPaugh
Richard J. Lipton
Jonathan S. Sandberg

CS-TR-240-89

December 1989

How to Store a Triangular Matrix *

Andrea S. LaPaugh
Richard J. Lipton
Jonathan S. Sandberg
Computer Science Department
Princeton University

Abstract

We consider the problem of storing a triangular matrix so that each row and column is stored
as a “vector”, i.e the locations form an arithmetic progression. Storing rows and columns as vectors
can speed up access significantly. We show that there is no such storage method that does not waste
approximately one half of the computer memory.

1 Introduction

As part of our Massive Memory Machine Project [2] we are studying computations that require large
data structures. This work has led us to consider the following problem:

Problem: For large n, what is a good method to store an n x n upper triangular matrix in main

memory?

Many computations access a matrix by accessing elements in a row or a column consecutively. There-
fore, to serve our needs, a good storage method should provide fast access to both consecutive elements
in a row and consecutive elements in a column. We require our storage methods to have the following

property:

Stride Property For each row (resp. column) there is an initial address | and a stride s, both
depending on the row (resp. column), so that the row (resp. column) elements are stored at locations
L4514+ 2s,....

A storage method with the stride property allows fast array references. It greatly simplifies the
computation needed to get the address of each array element. On machines that support either vector
processing or that have multiple memory banks, data can be accessed in parallel [1]. Since main memory
is often a major bottleneck such parallel access to memory is very important. On vector machines the
cost of reading or writing elements from main memory is very sensitive to their location. If they are
“randomly” located, then an expensive memory access is required: this is often called a gather-scatter

*This research was supported by the Defense Advanced Research Projects Agency of the Department of Defense and by
the Office of Naval Research under Contracts Nos. N00014-85-C-0456 and N00014-85-K-0465, and by the National Science
Foundation under Cooperative Agreement No. DCR-8420948. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or the U.S. Government.

operation. However, if they are located at I, + s, + 2s,... then a “block” operation can be performed.
On many machines this is an order-of-magnitude faster.

Are there good methods, with the stride property, to store the n x n triangular matrix efficiently?
As usual we assume that all memory is allocated as contiguous blocks. So we measure the efficiency of a
storage mechanism by the amount of “wastage”, i.e. by the number of allocated locations that are not
used. Of course, it is trivial to store the triangular matrix so that it has the stride property: just store it
in the usual row major order. Then each row has a stride of one and each column has a stride of length
n. Storing an triangular matrix, containing n(n + 1)/2 values, in row major order leaves almost half
of the allocated memory unused, and thus is quite inefficient. (The same holds, of course, for column
major.)

At best, one can, save a factor of about two in memory;however, such a savings can be very significant.
Improvements in memory requirements can have non-linear effects: solving a problem with half as much
memory has a large payoff. A problem that requires more main memory than is available may not even
run, or may run much slower due to excessive disk references in a virtual memory system.

A nice example of this effect is observed in computing the “secondary structure” of certain sequences
of RNA [4,5,8,9,10]. (This is a problem we are studying, with Doug Welsh, a molecular biologist, as part
of our Massive Memory Machine Project.) Secondary structure is determined by a matching of the RNA
with itself that minimizes its energy. These matchings are found by dynamic programming on large
matrices. In particular, they require storing n x n upper triangular matrices, where n is determined
by the length of a strand of RNA (n =~ 3 x 10* is possible). Molecular biologists find that the size
of the triangular array and the high number of resulting page faults is the limiting factor in running
their algorithms. For example, runs on much smaller problems (n = 3,000) have been reported to take
months of computer time on VAX 11/780’s due to paging [8]. Thus, these triangular arrays must fit in
random access memory to avoid such “thrashing” i.e. excessive disk references.

‘We have obtained both upper and lower bounds on the amount of memory required to store an n x n
triangular array so that it has the stride property. The usual row major method of storing a triangular
array is optimal, (i.e. it is not possible to waste less than half of the allocated memory). While intuitively
this result is clear, the proof requires careful analysis of the possible storage mechanisms. Effectively,
the lower bound is a result from diophantine analysis that may be of independent interest.

2 A Lower Bound on Storage

We present an analysis of storage methods that satisfy the stride property. Recall that we allow a distinct
arithmetic progression for each row and column. Thus there may be as many as 2n distinct progressions
used to access the rows and columns of the matrix. For sufficiently large n, we will prove that all such
strategies waste space at least n?/2 — O(n%/3),

Our matrices are indexed with & increasing along the horizontal axis, from 0 to n— 1, and y increasing
along the vertical axis from 0 to n — 1. We choose the lower left corner to be the origin, and since we
consider upper triangular matrices, z < y.

2.1 Definitions

Our first task is to formalize what it means to store a triangular matrix so that it has the stride property.

Definition: A storage function for an n x n triangular matrix is a injective function f(z,y) from
0 < ¢ < y < n to the integers.

A storage function maps the elements of the n x n triangular array into the integers. It must be
injective, i.e. not map two elements of the triangular array to the same location; otherwise, it would not
correspond to a valid storage scheme. Since memory is allocated in consecutive blocks, the “span” of the
storage function determines the amount of storage (or memory) that must be allocated to the matrix
(including wasted storage).

Definition: The storage required by a storage function f (denoted ||f|]) is defined to be

max |f(z,y) — f(u,v)| + L.

x’ylulv

Definition: A storage function f has the stride property if for each z in the interval [0,n — 2], there
is an integer ¢, such that for all y, f(z,y+ 1) = f(z,y) + ¢;, and for each y in the interval [1,n — 2],
there is an integer r, such that for all z, f(z + 1,y) = f(z,y) + ry. A storage function which has the
stride property is an arithmetic storage functlion.

Our analysis proceeds by transforming the general problem of finding good arithmetic storage func-
tions to a specific question about the diophantine equation az+by+ czy. We show that up to translation,
any arithmetic storage function must be of this form. This diophantine form shows that not only must
each row and column be accessed via an arithmetic progression, but that the row and column strides are
also in an arithmetic progression, each defined by a single constant ¢. The stride used for the i** row is
a + ci and the stride used for the j** column is b + ¢j. Lemma 2.1 states this formally.

Lemma 2.1 If f is an arithmetic storage function, then there are integers a, b, ¢, and d such that

flz,y)=azx +by+czy+d

Proof: Let f be an arithmetic storage function. Then f has the stride property. Examine the two
paths from (z,y) to (z+ 1,y + 1) for an arbitrary z and y with z < y. By the stride property, it follows
that

Ty41 — ry =Cpy1 — Cp- (1)

Define o = ry — ;. Thus, since # and y are arbitrary in equation (1), it follows that for any y > 0,
@ = ry41 — ry. A simple induction shows that for some 3 and all y, ry = ay + 8. Now by repeated use
of the stride property and this last observation,

fle,y) = flz-Ly)+ry
= flz-2,y)+2r,
= f(0,y)+zry
7(0,y) + z(ay + B).

But the stride property shows easily that f(0,y) is a linear function of y; hence, f(z,y) has the required
form. O

2.2 Main Results

The fundamental problem we are interested is the following: for a given n, how small can ||f|| be for an
arithmetic storage function? Again the row major method yields ||f|| of approximately n?. Our main
result is that this is best possible, i.e. approximately half the memory must be wasted. The key is that
lemma 2.1 proves that this question can be restated as a pure diophantine question:

Problem: For a given n, and constants a, b, ¢, and d, show that if f(z,y) = az + by + czy+d is an
arithmetic storage function, then ||f|| must be at least n* up to lower order terms.

Clearly, we can assume that d is zero and that ¢ > 0. Our analysis of this problem divides into two
cases based on whether ¢ is zero or not.

Theorem 2.1 If ¢ =0, then any arithmetic storage function f has ||f|| at least n(n — 1) + 1.
Thus, this theorem proves that the usual row major storage method is optimal, in this case.

Proof: Since c is zero, f(z,y) = az + by. Assume that [|f|| is less than n(n — 1) + 1. Then we will
show that f is not injective; this will prove the theorem. We can assume without loss of generality that
b > 0. Also since f is injective, both @ and b must be non-zero. Now since ||f|| < n(n—1) it follows that

f(z,y) = f(u,v) <n(n—1)
for any legal values z, y, u, v. We then use this observation as follows:

1. apply it to f(0,n — 1) and f(0,0) to show that b < n;
2. apply it to f(n —1,n — 1) and f(0,0) to show that a +b < n;
3. apply it to f(0,n — 1) and f(n — 1,n — 1) to show that —n < a.

Now there are two cases: First, assume that a < 0. In this case both f(b,n —1) and f(0,n — 1 + a)
are well defined. However, both are equal to b(n — 1 + a). This contradicts the fact that f is injective.
Thus, it must be the case that a > 0. Now consider f(b,n —a — 1) and f(0,n — 1). Both these are well
defined: the first since a + b < n. But again this contradicts the fact that f is injective since both these
have the common value b(n —1). O

Theorem 2.2 Ifc > 0, then any arithmetic storage function f has ||f|| at least n* — O(n/3).

Thus, this theorem shows that for ¢ non-zero, approximately the same amount of storage is wasted,
i.e. at least n?/2 storage, as in the case when ¢ is zero. In order to prove this theorem we first require a
number of lemmas.

Lemma 2.2 Suppose that r > 0,5 > 0,0, 3 are integers, and let A be the following set:
{z0<z<y<nandz+a=0modr and y+ # = 0 mod s}.
Then, 2= — O(n/r) — O(n/s) < |A| < £= + O(n/r) + O(n/s).

2rs

Proof: We can assume that 0 < o < r and 0 < # < s without loss of generality. Now 2 must equal
rk—afork=1,...,[(n+a)/r]; also y must equal sl — 3 for some [= 1,..., [(n + 8)/s]. Then,
Lint+a)/r] [(n+B)/s]
=) 3, I (2)
k=1 rk—oa<sl-p
nta)/r] [(n+8)/s]

1 (3)
k=1 I=[(rk+p-a)/s]

where we define the sum of 1 from i to j to be 0 whenever i > j.

If » > n, then there is a unique value of # equivalent to o and k only takes on the value 1. Then
|A| = maz{0, |(n+ B)/s] — [(z + B)/s]} which clearly satisfies the lemma.

For r < n, we will use the fact that O(r/s) = O(n/s). We first derive the upper bound on |A|:

(nta)/r] [(n+B)/s]
Al > I
k=1 I=[(rk+p—a)/s]

Then for each k there is at least one [for which rk — o < sl — 3 since

%(rk+ﬂ— a) < %(r[(n+ a)/r|+B8—a) < %(n + 3).

We have
L(n+a)/r]
1< D ((n+B)/s] = [(rk+ B - a)/s])
k=1
and since (8 — a)/s > —r/s,
e o TR
4= 3, G-k rom)
k=1
< Un+a)/rl(Z+Z+00) - - (l(n+a)/r] + 1) |(n + a)/r]
< 2 votw voton - £(2) (1)
ol
< 2= +0(n/s) + Oln/r).

We now derive the lower bound on |A|. Beginning with equation (3) and noting that (3 —a)/s <1,
we have:

Lnte)/r]
Al = D0 (Un+B)/s] = [(rk+B—a)/s])
k=1
[(n+e)/r]
> (n/s— Ek—O(l))
k=1
> |+ a)/r) (2= 0() - (U +@)/r] + 1) |(n +a)/r)
n? r/n n
2 5 —o/-0k/n-5 (T +1) (3)
> é—f; — O(n/s) = O(n/r).

]

Lemma 2.3 Suppose thal p,q are distinct primes and o, 3 are inlegers, and let A be the following set:
{(z,0<z<y<n and (z+ a)(y+ #) = 0 mod pq}

2
Then, |4] 2 (1 - 5&) = O(n/p+n/q)

Proof: The key to the proof is to define the following two sets: let 3; be the set
{(z,y)0<z<y<nand z+a=0modpand y+ f = 0mod ¢q}
and let By be the set
{(z,y)0<z<y<nand &+ a=0mod ¢ and y+ = 0 mod p}

(Note, these sets are the same except that the roles of p and ¢q have been reversed.) Also let C'= B;NBs.
Now B; and B, are both subsets of A; hence,

|Al > [By] + |Ba| - [C]. (4)

By lemma 2.2, both |B1| and |Bs| bounded below by
n2
2pq
Now (z,y) is in C provided 0 < z < y < n and z + @ = 0 mod pq and y + 3 = 0 mod pg. Thus, again
by lemma 2.2, |C| is bounded above by

—O(n/p+n/q).

n2
Py + O(n/pq).

Equation (4) and the expressions for By, Ba, C' imply that |A| is at least

n2 n?

r 2%
This concludes the proof of the lemma. O

—O(n/p+n/q).

Lemma 2.4 Suppose that I is an subinterval of the integers. Also assume that there are k elements
x1,...,2 in I so that for each z;, 2; = 0 mod m. Then, |I| > (k—1)m.

Proof: Let I be the interval [a, 3]. Clearly, without loss of generality, we can assume that
a<z <---<zp <.

Now it is easy to see that zy > zy + (k — 1)m. Thus, 8 > a + (k — 1)m. Therefore, it follows that
B —a > (k— 1)m. Since |I| is at least § — a the lemma is proved. O

We are now ready to prove theorem 2.2.

Proof of Theorem 2.2: Now f(z,y) is equal to az+by+czy with ¢ > 0. Choose two distinct primes
p and ¢ so that they are approximately equal to n'/3. By Bertrand’s Postulate [3], we can always do this.
Since c¢ is fixed, it is relatively prime to both p and ¢. Let 0 < d < pq be choosen so that ed = 1 mod py.
Clearly, g(z,y) = f(2,y)+ abd is an arithmetic storage function with the same span as f. Therefore, we
will prove that g has a large span. A simple calculation shows that g(z,y) = (cz + b)(y + ad) mod pq.
Lemma 2.3, applied to g, therefore, shows that g(z,y) is congruent to 0 modulo pq for at least

.
2pq
pairs (z,y). Since g is injective this implies that the span of g includes at least this many values that
are congruent to 0 modulo pg. Therefore, lemma 2.4 can be applied to show that the span is at least

n? 1
- (5(1 - 5) - Olnfp + n/q))

L (1~ 51) ~ O(w/p + n/a)

in size. But, this implies that the span is n? — O(n*/3) and it completes the proof of the theorem. 0O

3 Conclusion

Using arithmetic progressions in the storage of triangular matrices wastes 50% of the allocated memory.
We have proved this by reducing it to a diophantine problem that may be of independent interest.

A generalization of the diophantine problem asks:

Problem: For a given a, b, ¢, d, ¢ and n, what is ||f|| if f(z,y) = (az + by + czy + d)moa 4 is a
injective function from 0 < & < y < n to the integers.

It is interesting that ||f|| can be much smaller when modular arithmetic is used. In fact, setting
a=|2],b=[2]+1,c=0and ¢ =a(n+b)+b gives an f with ||f|| < 2n®+ O(n) for n > 3. It is also
natural to ask similar questions for the full nzn matrix. We can show that, up to symmetry, row major
order is the only arithmetic storage scheme on the full matrix which uses no more than n? storage.

At a more practical level, for an interleaved memory system to take advantage of arithmetic pro-
gressions in accessing rows and columns of a matrix, the progressions must produce memory references
which are distributed evenly over the memory banks [7]. For example, consider two interleaved memory
banks storing words with odd and even addresses, respectively. The stride used in accessing a row or
column element must be odd so that references will alternate between memory banks. In this case, the
choice of a and b is very important. Therefore, the characterization of the set of a,b pairs for which
storage functions use n(n — 1) + 1 memory locations is an interesting open problem.

References

[1] P. Budnick, D.J. Kuck, “The Organization and use of Parallel Memories,” IEEE Transactions on
Computers, vol. c-20, no. 12, Dec 1971, pp. 1566-1569.

[2] H. Garcia-Molina, R. Lipton and J. Valdes, “A Massive Memory Machine,” IEEE Transactions on
Computers, vol. C-33, no. 5, May 1984, pp. 391-399.

[3] G.H. Hardy and E. M. Wright, “An Introduction to the Theory of Numbers,” Oxford University
Press, London, 1975.

[4] A.B. Jacobson, L. Good, J. Simonetti, and M. Zucker, “Some Simple Computational Methods to
Improve the Folding of Large RNA’s,” Nucleic Acids Research, vol. 12, no. 1, 1984, pp. 45-52.

[5] M. Kanehisa and C. DeLisi, “The Prediction of a Protein and Nucleic Acid Structure: Problems
and Prospects,” Acta Applicande Mathematicae, no. 4, 1985,pp.115-137.

[6] D.E. Knuth, “The Art of Computer Programming,” vol. 1, Addison-Wesley, Reading, Ma., 1973.

[7] D.H. Lawrie, “The Prime Memory System for Array Access,” IEEE Transactions on Computers,
vol ¢-31, no. 5, 1982, pp. 134-141.

[8] R. Nussinov, G. Pieczenik, J.R. Griggs, and D.J. Kleitman, “Algorithms for Looping Matching,”
SIAM Journal of Applied Mathematics, vol. 35, no. 1, 1978, pp. 68-82.

[9] D.Sankoff, J.B. Kruskal, S. Mainville, and R.J. Cedergren, “Fast Algorithms to Determine RNA Sec-
ondary Structures Containing Multiple Loops,” in Time Wraps, String Edits, and Macromolecules:
Theory and Practice of Sequence Comparisons, D. Sankoff and J.B. Kruskal editors, Addison-Wesely:
Reading, MA, 1983, pp. 93-120.

[10] M. Zucker and P. Stiegler, “Optimal Computer Folding of Large RNA Sequences Using Thermody-
namics and Auxiliary Information,” Nucleic Acids Research, vol. 9, no. 1, 1981, pp. 133-148.

