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1 Introduction

We study two-person games of cooperation and multi-prover interactive proof systems. We first consider
a two person game (G, which we call a free game, defined as follows. A Boolean function ¢¢ is given.
Player I and II each pick a random number i and j in private, where 1 < 1,j < s, and then each chooses
a private number f(i) and g(j), 1 < f(i),9(j) < s. If ¢a(i, 4, f(7),9(j)) = 1, then both players win,
otherwise they lose. The objective of both players is to win collectively. We ask whether, if such a game
is played n times in parallel, the probability of winning all the games decays exponentially in n. This
question was posed in a more general context by Fortnow [4], which we discuss soon.

Formally we define the nth product game G" as the following two person game. Player I and II
each pick a vector of independent random numbers i = (iy,...,i,) and j = (ji,...,jn) in private,
1 < ix,jk < s, and then each chooses a private sequence of numbers fi(),..., fu(2), 91(5),- - ., 9 (5).
The goal for both players is to ensure Ay_; ¢a(ik,ji, fr(2), 9x(§)) = 1. We define the winning prob-
ability of the game G to be max; , Pr(éa(i, j, f(i),9(j)) = 1], where the probability is taken over
all randomly and uniformly chosen i,j in the range 1,...,s, and we denote it by w(G). The game
G is called nontrivial if its winning probability is neither 0 nor 1. We shall only consider nontriv-
ial free games. Similarly, the winning probability w(G™) of the product game G" is defined to be
MAaXysy,..,fnd1, 80 Pr[Ag=1¢G(ik!jk:fk(i)!gk(j)) = 1]'
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Intuitively, we might first expect that w(G™) is w(G)"; since all n instances of game G are drawn
independently, and if the players play all instances independently, the winning probability of the n-
product game is w(G)". However, Fortnow [4] showed that the answer is not so simple; he gave an
example of a free game G for which w(G?) > (w(G))%. He thus demonstrated that by using strategies
that depend on all the instances of the game G, the players can increase their chance of winning the
product game G™.

Before this work, it was unknown even if w(G") — 0 as n — oco. The first result of this paper is that
the winning probability of the product game G™ converges to 0 exponentially fast as n — co.

Theorem (2.1) If G is a non-trivial free game, then there exists a ¢ < 1 — e~ /2 and a universal
constant cq, such that the winning probability of G™ is at most coq™.

We can generalize this result to another class of games, defined as follows. Let ¢¢ be a Boolean
function as before, and let L be a nonempty subset of {1,...,s} x {1,...,s}. L is the set of legal
instances of the game. A pair (4,j) is chosen randomly and uniformly from L; i is given to player I
and j is given to player II. As before, the players choose numbers f(7) and g(j); and the players win if
éa(i, 4, F(i),9(5)) = 1. We similarly define the winning probability of the game w(G), and call a game
nontrivial if 0 < w(G) < 1. Note that free games are a special case of these games, where there is no
dependency between ¢ and j. We refer to these games simply as games in this paper. Then
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Theorem (2.2) If G is a non-trivial game, then there ezists a ¢ < 1 — e73°/2 and a universal

constant ¢, such that the winning probability of G™ is at most coq™.

Our study of games was motivated by recent work on multi-prover interactive proof systems (MIP’s),
introduced by Ben-Or et al. [2]. These are generalizations of the interactive proof systems (IPS’s) of
Goldwasser, Micali and Rackoff [6] and Babai [1]. Roughly, an interactive proof system for a language
L is a protocol between a prover P and a verifier V. The pair shares an input; the prover must be
able to convince the verifier to accept an input if and only if it is in L. We only consider interactive
proofs where the verifier is probabilistic and is polynomially time bounded. In a multi-prover system
(MIP), the verifier interacts with many provers; the provers cannot communicate with each other during
the proof. The protocol between the verifier and the provers consists of a number of rounds; in each
round the verifier sends a message to each prover in turn and receives a response. Because the provers
cannot communicate with each other, the response of any prover can only depend on the messages it
has received from the verifier so far, and not on the messages sent to other provers.

We restrict our attention in this paper to the case that the verifier interacts with two provers, P;
and P,. A language L is accepted by a MIP (P, Py, V) with error probability e(n) if

1. for all z € L, |z| = n, (P, P2, V) accepts z with probability at least 1 — ¢(n); and
2. for all # € L,|z| = n, and any provers Py, Py, (P, Py, V) accepts z with probability at most ¢(n).

Fortnow, Rompel and Sipser [5] considered the question: are two provers more powerful than one?
To address this question, they considered the number of rounds of a protocol and asked whether any
language accepted by an unbounded round IPS has a constant round MIP. Since an IPS can run for
polynomial time, the number of rounds, or interactions between the verifier and prover can be polynomial
in the input size. Results of Babai [1] and Goldwasser and Sipser [7] show that if the number of rounds
of a protocol is bounded by a constant independent of the input size, the number of rounds can be
collapsed to two. However, it is an open problem whether unbounded round IPS’s are equivalent to
constant round IPS’s. Therefore, a proof that any language accepted by an unbounded round IPS has
a constant round MIP would be of interest.



Fortnow et al. showed how to simulate any IPS by a 1-round MIP with the following property.

1. if = is accepted by the IPS, |z| = n, then the probability z is accepted by the MIP is > 1 — 1/2";
and

2. if z is rejected by the IPS, |z| = n, then the probability z is accepted by the MIP is < 1 —1/p(n),
for some polynomial p.

We call a 1-round MIP protocol that simulates an IPS using the method of Fortnow at al. an IPS-
stmulation protocol.

Fortnow et al. claimed that an IPS-simulation protocol could be run in parallel a polynomial number
of times in the length of the input, to obtain a l-round MIP accepting L with error probability e,
for any constant ¢. Intuitively this seems reasonable, since each of the games played in parallel is
chosen independently. However, Fortnow [4] later showed that although the verifier chooses each game
independently, it cannot be assumed that the provers play the games independently.

The protocol of Fortnow et al. on a fixed input is exactly a game of the type described above. Hence,
the question of whether any IPS can be simulated by a constant round, 2-prover MIP can be reduced
to the following problem: Is there some polynomial p’ and a constant A, 0 < A < 1, such that for
any nontrivial game G the winning probability of G" is at most A, for n = p’ (-1_—;((-:-)-) Unfortunately,
although Theorem 2.2 implies that the winning probability of G decays exponentially as n — oo, it is
not strong enough to resolve this problem.

Our next result exploits a special property of IPS-simulation protocols to solve this problem in the
case of free games. In the framework of the games described above, the property is roughly as follows.
Once ¢ and j are fixed and the response of one player is fixed, there is a limit on the number of possible
responses of the other player that satisfy ¢g. More precisely, we say G is (I,I')-limited if

1. given any i,j, k, |[{k' | ¢c(¢,4,k, k") = 1}| <; and
2. given any i, 4, k', |{k | da(i,j,k, k") =1} < I'.

Then the IPS-simulation protocols of Fortnow et al. [5] are (1,2)-limited. We will first develop the
idea in the special case of (1, 1)-limited free games, and then consider the more general (1,2)-limited
free games. Our result for (1,2)-limited free games is the following:

Theorem (4.1) Let G be a non-trivial, (1,2)-limited free game. Let w(G) = 1—e¢. Then ifn = [1/€],
w(G™) < 11/12.

We conjecture that this theorem can be generalized to non-free games. Finally, we note that if this
conjecture is true, then it follows that given any constant ¢, any language accepted by an (unbounded
round) IPS has a constant round 2-prover MIP that has error probability ¢. This is because the IPS-
simulation protocol can be run a polynomial number of times in parallel to reduce the error probability
to 11/12. Then for any constant k, this parallel protocol can be repeated sequentially a k times to reduce
the error probability to (11/12)*.

2 Results on the Convergence of Free and General Games

In this section we prove Theorem 2.1 and related results.



We begin by giving precise definitions of a game. We say G = (¢,L C X x Y, S,T) is a game if each
set X,Y,S, T is finite, L # 0, and
¢:LxSxT—{0,1}.

Without loss of generality, we assume that X,Y,S,T all equal {1,...,s}. We say G is a free game if
L = X x Y. We define the winning probability of G to be max; , Pr[é(z,y, f(z),9(y)) = 1], where
the probability is taken over all randomly and uniformly chosen pairs (z,y) € L. We call f and g the
strategies of Player I and II respectively. G is non-trivial if w(G) is neither 0 nor 1. This implies s > 1.

We define the product game G™ of G to be the game (¢", L™, S™,T™), where

¢" (2,7, F(),9() = )\ ¢(zi, i, fi(2), 9i(7))-
i=1
Here # is the n-vector (vy,...,v,) and f(Z), g(¥) are the n-vectors (f1(Z), ..., fn(Z)) and (91(%), .. ., 9n (%)),
respectively.

The probability that the players win all copies of the n-product game of G is at least w(G)™. This
is because if f, g are optimal strategies of players I and II of G respectively, that is, ¢(z,y, f(z),9(y)) =
w(@), then when the players use strategies f and g in parallel on each copy, the probability of winning is
[T, (=i, yi, f(2i), 9(¥i)) = w(G)™, since the z; and y; are all chosen independently and randomly. Thus
for any game G, w(G™) > w(G)"; a natural question is whether w(G") = w(G)". Fortnow [4] showed
that the answer to this question is no, by constructing the following free game G for which w(G) = 1/2
but w(G?) = 3/8 > (1/2)%. Fortnow’s game G is defined by setting X =Y = 5 =T = {0,1} and
defining ¢ by

62,9, 1(@),99)) = [V 1)) # (v V 9))]

The winning probability of this game is 1/2; an example of a pair of optimal strategies of the players is
f(z) = z, g(y) = y. On these strategies, the players win when one receives a 0 and the other receives a 1,
which occurs with probability 1/2. Next consider the product game G?. In this game, player I receives
bits z; and zs, player II receives bits y; and ys; and the goal of the players is to ensure that

(21 V fizr,22)) # (1 V 91(y1,¥2))) A ((22 V fa(@1,22)) # (y2 V 92(y1,92))).

Suppose the players use the following strategy: f(z1,z2) = (0,0) if ; = 2z = 0; otherwise f(z;,z2) =
(1,1). Symmetrically, g(y1,y2) = f(y1,y2). This pair of strategies guarantees that the players win with
probability 3/8: when z; = 2, = 0, the players win when y; and y2 are not both 0; and by symmetry
when 3, = y2 = 0, the players win when z; and 2, are not both 0. Hence the players win on 6 of the 16
possible random choices for 2, z2,y1, y2.

Fortnow also observed that the winning probability of the product game G”™ is at most (3/4)", since
the players can never win if z; = y; = 1 for some i. In general though, such an argument is not sufficient
to show that w(G™) — 0 as n — oo, since there may not be an instance of the game on which the
players always lose. For example, by modifying Fortnow’s game so that the players automatically win
when z = y = 1, that is, letting ¢(z,y, f(2),9(¥)) = ((z V f(z)) # (yVg(v))) V (z A y), we obtain a
non-trivial game for which this argument fails. Our first theorem uses a result of Zarankiewicz [3] to
show that if a free game G is non-trivial, then the winning probability of the n-product game converges
to 0 exponentially fast as n — oo.

Theorem 2.1 If G is a non-trivial free game, then there exists a ¢ < 1 —e™3%/2, and a universal
constant co, such that w(G™) < coq".



Proof: Suppose a pair of strategies f,g for the two players are given. Let N = s™, the size
of the sample space in the product game. Define a bipartite graph (X,Y, F), where X and Y con-
sist of all inputs to each player, thus |X| = [Y| = N. An edge e(z,y) exists between z and y iff
A::l ¢G(Ik; ykafk(xla . '}zn)agk(yl" = 7.%1)): where z = (171: “isn 1$n) and y = (yl; ceey yn)‘ We show
that |E| = O(N2-2(), for some A(s) > 0. This clearly implies a bound on the probability of winning
the product game.

Consider the set of all pairs of (ordered) s-tuples from X and Y, § = {((z?,....2%),(¥},...,¥"))|z’ €
X,y' € Y}. Given any such pair ((z!,....2*),(¥},...,%*)) € S and any k, 1 < k < n, consider the pair
of s-tuples formed by “the kth coordinates”, ((z1,....z}), (i, ..,¥})). The number of such pairs where
both entries are permutations of 1 to s is s!2. Thus the number of such pairs where at least one entry is
not a permutation of 1 to s is s?* — s!>. Now consider the set of the pairs ((z',....2°),(¥',...,¥°)) € 8
so that for all k,1 < k < n,at least one of (z},....2}) or (y},...,y}) is not a permutation of 1 to
s. This set has cardinality (s?* — s!?)". Hence, the set of the pairs ((z!,....2%),(y,...,¥*)) € S
such that there exists k,1 < k < n,both (z},....z}) and (yi,...,y}) are permutations of 1 to s has
cardinality N2* — (s2* — 5!%)". Each of these has been counted exactly s!? times in the totality of all
(ordered) pairs of (unordered) set of s distinct elements from X and Y, thus the number of (ordered)
pairs of (unordered) set of s distinct elements from X and Y, where, for all k£ “the kth coordinate tuple”

((z},....z}1), (¥}, ..,y})) do not both form permutations, is
N 2 N2.s _ (325 _ 3!2)"
s) sl?
- (sz" _ 5!2)n
- 512

L.z 1
HE* -0

N2s+log,(1—:%)
sl2
Nza_ Tog s-e2°

= s!?

IA

Let’s consider the following sum
2
> ean=im(,",).
m—1
ACX,BCY,|A|=|B|=m
where e(A, B) denotes the number of edges between A and B, and s <m < N,

Let

N 2
M={(4,8) | |4] =Bl =m & (4, B) > [Ello=a)_

2y

iz

The size of M can be estimated as follows:

N \? E|{ N \?
E < - b
| I(m—l) < Mim” + 2 (m—l) '

2
2y 1EI( N
|[M]|m* > 2 (m 1) ;



Applying Zarankiewicz’s Theorem [3] to the bipartite graph induced on A x B for each (A, B) € M,
we get a complete subgraph K, ,, provided the number of edges is at least (s — 1)1/ ‘-1l 4 %lm.
An easy consequence is that if the number of edges ¢(A, B) > 2m2~1/* then there is a subgraph K, ,.

Now let A = W, and suppose |E| > 2eN2-*. Let n > 1/As = logs - (1+ 2s?) - 2* /s and
m = [N*¥]. As N = ", clearly m > s. Moreover for (4,B) € M, e(4,B) > eN*"Mg27)* >

2m2~1/2 Therefore we have at least one K, , for each (A,B) € M. Each such K, , can appear in at

most (, 8)2 many pairs, thus there are at least (—I#l)—g many K ,.
We have
N 12
iMl |E1 (m—l)
Wy * ey
2—-A (N —m + 1)2(’_1)
2 eN m2s
ENZJ—A m—1 2(s-1)
= — (1 N ) ;
Since m < N** +1,
1 1 1

m2s > (N)m i 1)2s 2 e2 NA2s?’
as N > s.

Also, m — 1 < N**, thus,

m— 1)\ 26D 1 2s—1) 1 2(s—1)
(1_ N ) > (1_ Nl—«\s) = (1-— S(I—As)n) :

Since (1 — As)n > %—1:1‘3&% >2logs-s- e,

s

S 2(s—1) 1 2(s=1)
(=) > ()
N g2logs-se
(]
12.

*
s
Hence
IM| . eN2s=A(1425%)
(.Y )2 e? st?
m-—s
Nz"—log.-cﬁi
- s!2 '

It follows that there are K, , on some pair of (unordered) s-sets, such that, for some k, 1 < k < n,
“the kth coordinates” ((z},....z%),(ys,-..,yi)) both form permutations of 1 to s. Therefore the original
game G has a perfect strategy, and is thus trivial.

Therefore, the winning probability of the product game for a nontrivial game is bounded by 2eq®,
for n 2 10g3(1+282)€2’/3, where q = e_l/(1+239)32’ i ZH“TIQF + - o which is less than, say,



1 —e™3#/2, for all s. Note that for n < logs(1 + 2s%)e?* /s, ¢" is bounded below by 1 —log2/2 > 1/2,
so that the bound w(G™) < 2eq™ holds for all n and 5. O

For a nontrivial game G that is not free, one can easily extend ¢ to ¢ = ¢ V [(z,y) ¢ L], so that the
extended game G is free, and since w(G) < w(G), and 1 — w(G) > Js%l(l —w(G)) > 0, G is nontrivial.
Applying Theorem 2.1, we have

Theorem 2.2 If G is a non-trivial game, then there evists a ¢ < 1 — e~3%/2 and a universal constant
co, such that the winning probability of G™ 1is at most cyq™.

3 Games with the Uniqueness Property

In this section we consider games that satisfy the uniqueness property, that is, games such that for all
z,y,z' there is at most one y’ such that ¢(z,y,2’,y’) = 1 and for all z,y,y’ there is at most one &’ such
that ¢(z,y,2',y") = 1. We need the following technical lemma.

Lemma 3.1 Suppose py,...,p, and qi,...,q, are nonnegative real numbers such that Y p; 5-1 and
2 ai <1l Let1/2<a < 1. IfY pigi > «a, then for some k, p > a and g, > a.

Proof: Without loss of generality suppose that py > ps > ... > p,. First note that p; > . Otherwise
for all i, p; < . Then )" pigi < a}" ¢; = a, contradicting the fact that 3 pig; > a.

Therefore we must show that ¢; > «a. We first argue that 3.;_,pigi < (1 — p1)(1 — ¢1). This is
because . ,
drai<py i <(1-p)(1-q)
=2 i=2

Now, suppose to the contrary that ¢; < a. Then since p; > 1 — py,

dopgi<pa+(l-p)(l-q)<api+(1—-a)(l—p1) <apr+a(l—p) =a.
This contradicts the fact that " p;¢; > . D

Theorem 3.1 Let G be a non-trivial free game that satisfies the uniqueness property. Let w(G) = 1—c.
Then if n = [1/€], w(G™) < 7/8.

= |T| = s. To prove

Proof: Let G be the game (¢, X x Y, S,T) and assume that |X| = |Y]| = ||
(1/4)e)". From this the

the theorem, we show by induction on n that if n < [1/€], then w(G™) < (1 -
theorem follows easily, since when n = [1/¢], (1 — (1/4)¢e)™ < 7/8.

The basis case, when n = 1, is trivial, since w(G) = 1 —¢ < 1 — (1/4)e. Let n > 1. Fix strategies
J and g of the players in game G™ that maximize w(G™). With respect to these strategies, define
w(G"|zy = a,y; = b) to be the probability that the players win the game G", given that z; = a and
y1 = b. Note that for any pair (a,b), this probability is at most w(G"~!). Also, let H be the set of pairs
(a,b) in X x Y for which w(G"|z; = a,y1 =b) > (3/4)(1 — (1/4)e)"~1.

w(G?) = 1/s? Z: w(G" |2y = a,y; = b)

(a,b)eX xY

< YSLY w@ Y+ Y 3/4-(1/49" Y
(a,b)eH (a,b)E(XXY)—H

< Ll__(l‘g/ji[ Z 1+ E (3/4)].

(a,b)eH (a,h)e(XxY)—H



We claim that |H| < (1 — €)s®. From this the lemma follows easily, since then
w(G") < (1= (1/4)e)* M [(1 = €) + (3/4)e] = (1 - (1/4)e)".

It remains to prove the claim. For each a € X, k € S, let a;, be the probability that f;(a,zs,...2,) =
k, where 4, ...z, are chosen randomly and uniformly from X. Similarly, for each b € Y and k¥’ € T,
let by be the probability that g1(b, y2,...yn) = k', where ya, ... yn are chosen randomly and uniformly
from Y.

We define the set U(a, b) to be {(k,k")|#(a, b, k, k') = 1}. By the uniqueness property, each k occurs in
at most one pair and each k' occurs in at most one pair. Hence Z a; < 1 and Z b < 1.
(k,k")eU(a,b) (k,k")EU(a,b)

Then w(G"|z; = a,yn = b) < Z apby. To see this, note that if z = (a,z,,...,2,) and
(k,k")EU (a,b)
7= (b,y2,-..,Yn), the players win only if for some pair (k, k') € U(a,b), f1(Z) = k and g1(y) = k’. The
probability of this is apby for each pair (k, k'), since the z;’s and the y;’s are chosen independently.

Hence if (a,b) € H, Z arbir > (3/4)(1—(1/4)e)*~ L. Since n < [1/e€], (1 —(1/4)e)*~* > 3/4,
(k,k")eU(a,b)
and so Y apbyr > (3/4)? > 1/2. By Lemma 3.1, if (a,b) € H then for some pair (k, k') € U(a,b),
ar > 1/2 and by > 1/2.

We now define strategies f’ and g’ for players I and II of G and show that if the players use these
strategies, the probability of winning the game G is at least |H|/s?. From this it follows that |H| <
(1 —¢)s?, since w(G) = 1 —¢. For any a € X, let f'(a) = i where i is an arbitrary element of S such
that a; = max ag. Similarly, for any b € Y, let g'(b) = j, where j is an arbitrary element of T such that

bj = m,?,x bk.

Finally, we show that on these strategies, the players win on all pairs (a,b) € H. This is because if
(a,b) € H and f'(a) = i, g’'(b) = j, then a; > 1/2 and b; > 1/2. We already showed that if (a,b) € H
then for some pair (k, k'), ax > 1/2 and by > 1/2. Also, since Y ap < 1 and ) by < 1, there must
be a unique i,j for which a; > 1/2 and b; > 1/2. From this it follows that (i,j) € U(a,b). Hence,
#(a,b,i,7) = 1 = ¢(a,b, f'(a),g'(b)) = 1. This completes the proof that |H| < (1 —¢€)s?. O

4 Results on (1,2)-limited Free Games

In this section we extend Theorem 3.1 to free games that are (1,2)-limited. A game is (1,2)-limited if
for all &,y, z’ there is at most one y' such that ¢(z,y,z’,y’) = 1 and for all z,y,y’ there are at most two
z' such that ¢(z,y,z',y') = 1.

Theorem 4.1 Let G be a non-trivial, (1,2)-limited free game. Let w(G) = 1— €. Then if n = [1/€],
w(G™) < 11/12.

Proof: Let G be the game (¢, X x Y,S,T) and assume that |X| = |Y|=|S| = |T| = s. Just asin
Theorem 3.1, we show by induction on n that if n < [1/¢], then w(G™) < (1 — (1/6)¢)". From this the
theorem follows easily, since when n = [1/¢], (1 — (1/6)¢e)” < 11/12.

The basis case, when n = 1, is trivial, since w(G) = 1 —€e < 1— (1/6)e. Let n > 1. Fix strategies
f and g of the players in game G™ that maximize w(G™). With respect to these strategies, define



w(G"|zy = a,y; = b) to be the probability that the players win the game G", given that 2; = a and
y1 = b. Note that for any pair (a,b), this probability is at most w(G™~?). Also, let H be the set of pairs
(a,b) in X x Y for which w(G"|z1 = a,y1 = b) > (5/6)(1 — (1/6)e)"~1.

w(G") = 1/s Z w(G" ey = a,y1 = b)

(a,b)EX XY

< Y[ ) w(@ T+ Y. (B5/6)(—(1/6)e)* ]
(a,b)EH (a,b)E(XXY)—H

< %[ z 1+ E (5/6)].

(a,b)eH (a,b)e(XxY)-H

We claim that |H| < (1 — €)s*. From this the lemma follows easily, since then

w(G") < (1= (1/6)e)* M [(1 - €) + (5/6)] = (1 - (1/6)e)".

It remains to prove the claim. For each b € Y, k € T, let by, be the probability that g1(b,ya,...yn) = £,
where ya,...yn are chosen randomly and uniformly from Y. Clearly 3, by = 1.

Let S(a,b,k) be the subset of S such that k' € S(a,b,k) if and only if ¢(a,b, k', k) = 1. Since G is
(1,2)-limited, |S(a,b, k)| < 2 for all a,b, k. Also, if ky # k; then S(a,b, k1) N S(a,bd, k,) is empty. This is
because if &' € S(a,b, k1) N S(a,b,k2), then ¢(a,b, k', k1) = ¢(a,b, k', ks) = 1. Since G is (1, 2)-limited,
there is at most one k for which ¢(a,b, k', k) = 1; hence ky = k. Let ap i be the probability that
fi(a,za,...,2,) € S(a,b, k), where 23, ...z, are chosen randomly and uniformly from X. Since the sets
S(a,b, k) are disjoint for fixed (a,b), >, asx < 1. Then

w(Gnlml =a, = b) < Pr[(fl(a,xg,.. ':"":ﬂ) € Sk) and (gl(b’y% .. 'yﬂ) = k)]
= Pr[fi(a,za,...,2n) € Skl Prlga(b,y2,...yn) = k]

(since the z; and y; are independent)

= Ek ab,kbk.

Hence if (a,b) € H, Zab,kbk > (5/6)(1 — (1/6)e)*~1. Since n < [1/€], (1 — (1/6)¢)*~! > 5/6, and
k
so Y apkbr > (5/6)2 > 2/3. By Lemma 3.1, if (a,b) € H then for some k, ay; > 2/3 and by > 2/3.

We now define strategies f’ and g’ for players I and II of G and show that if the players use these
strategies, the probability of winning the game G is at least |H|/s%. From this it follows that |H| <
(1—€)s?, since w(G) =1—¢. Forany b €Y , let g'(b) = j, where j is the first element of 7 such that
bj = max by. Note that for any e and any b such that (a,b) € H, Pr[f(a,za,...,2z,) € S(a,b,¢'(b))] >

2/3, since this probability is a; gr(3).

For any a € X, if (a,b) ¢ H for some b, define f'(a) arbitrarily. Otherwise, let f’(a) be the first
element of
Nibi(ap)emyS(a; b, g'(0))-

The fact that f’ is well-defined follows easily from the next claim.

Claim: Fix a, and suppose that (a,b) € H for some b. Then Nyj(a,n)em}S(a, b, g’ (b)) is not empty.



To prove the claim, fix some b such that (a,b) € H. Then since Pr[f(a, z3,...,2,) € S(a,b,¢'(h))] >
2/3 and |S(a,b,¢'(b))| < 2, there must exist ¥’ € S(a,b,g’'(b)) such that Pr[f(a,2s,...,2,) = ¥'] >
1/3. Hence for all ¥ such that (a,¥') € H, k' € S(a,V',g'(V')): otherwise, Pr[f(a,z2,...,2n) €
S(a,b,g'("))] < 1-1/3 < 2/3. Hence k' € Npy(ap)en}S(a,b,g'(h)), completing the proof of the
claim.

Finally, we show that on these strategies, the players win on all pairs (a,b) € H. This is be-
cause if (a,b) € H, f'(a) € S(a,bd,g'(b)), by the above claim. Then by the definition of S(a,b, g'(b)),
é(a,b, f'(a),g'(b)) = 1. This completes the proof that |H| < (1 —¢€)s*. O

Theorem 4.1 can easily be extended to (1,!)-limited games, by replacing 11/12 in the statement of
the above theorem by %’;’Ti)frl.

5 Conclusions and Open Problems

Theorem 2.1 shows that the winning probability of the product G™ of a free game G converges to 0
exponentially fast as n — oo; the rate of convergence is O(¢"), where ¢ < 1 — e~3¢/2. This theorem can
be improved by decreasing the number ¢. Ideally, we would like to show that the winning probability of
G"™ is O(w(G)™); that is, the winning probability converges to 0 at the same rate as w(G"). However,
we do not know how to prove this.

Another problem that remains unsolved is to generalize this result to other types of two-person
games. In particular, the computation of a general class of 1-round, 2-prover interactive proof systems
on a fixed input can be modeled by the following type of game: (¢,E C X x Y,S,T), where ¢ is a
probabilistic function, ¢ : £ x § x T — [0,1]. Can Theorem 2.2 be extended to this class of games?

References

[1] L. Babai, Trading Group Theory for Randomness, Proceedings of 17th STOC, 1985, pp 421-429.

[2] M. Ben-Or, S. Goldwasser, J. Killian and A. Wigderson, Multi-Prover Interactive Proofs: How to
Remove Intractability, Proceedings of the 20th STOC, May, 1988.

[3] B. Bollobas, Extremal Gaph Theory, Academic Press, 1978.

[4] L. Fortnow, Complexity-Theoretic Aspects of Interactive Proof Systems, Ph. D. Thesis, Tech Report
#MIT/LCS/TR-447, MIT.

[6] L. Fortnow, J. Rompel and M. Sipser, On the Power of Multi-Prover Interactive Protocols, Proceed-
ings of the conference on Structure in Complexity Theory, 1988, pp 156-161.

[6] S. Goldwasser, S. Micali and C. Rackoff, The knowledge complexity of interactive protocols, Pro-
ceedings of 17th STOC, 1985, pp 291-304.

[7] S. Goldwasser and M. Sipser, Private Coins versus Public Coins in Interactive Proof Systems, Pro-
ceedings of 18th STOC, 1986, pp 59-68.

10



