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Abstract

We compare bounded round multi-prover interactive proof systems (MIP’s) with unbounded round
interactive proof systems (IPS’s). We show that for any constant €, any language accepted by an
unbounded round IPS has a bounded round, 2-prover MIP that has error probability €, resolving
an open problem of Fortnow, Rompel and Sipser [7]. To obtain this result, we show that a certain
1-round MIP that simulates the computation of an unbounded round IPS can be executed many
times in parallel to significantly reduce its probability of error.

1 Introduction

We study multi-prover interactive proof systems (MIP’s), introduced by Ben-Or et al. [3]. For k& > 1,
a k-prover interactive proof system is a protocol between a computationally limited verifier V' and k
powerful provers Py,... P;. The provers cannot communicate with each other during execution of the
protocol. Informally, the provers and the verifier share an input w, and the provers wish to convince the
verifier that the input is in a language L. The MIP accepts L with error probability ¢ if for all inputs
w € L, the provers can convince the verifier to accept w with probability > 1 — ¢, but for all w ¢ L, no
provers can convince the verifier to accept w with probability greater than e. In this paper we assume
that the verifier is probabilistic and is polynomially time bounded.
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The special case when k = 1 is the well-known interactive proof system (IPS) of Goldwasser, Micali
and Rackoff [8] and Babai [2]. Clearly, MIP’s generalize IPS’s; however it is not known whether they are
actually more powerful. To address this problem, we consider the number of rounds of an interactive
proof as a resource. In a round of an interactive proof, the verifier sends a string to each prover in turn
and receives a response from each prover. A protocol is a bounded round protocolif the number of rounds
is a constant independent of the input size. The main result of this paper is that any unbounded round
IPS can be simulated by a bounded round 2-prover MIP.

Theorem 1.1 For any constant €, any language accepted by an unbounded round IPS has a bounded
round 2-prover MIP that has error probabilily €.

Limitations on the number of rounds of an interactive proof has already been studied in detail for
IPS’s. Results of Babai [2] and Goldwasser and Sipser [9] show that bounded round IPS’s are equivalent
to 2-round IPS’s. However, it is not known whether unbounded round IPS’s are equivalent to bounded
round IPS’s. In fact, Aiello et al. [1] showed that there exists an oracle A and a language L such that,
relativized to A, L is accepted by an unbounded round IPS but not by a bounded round IPS. Thus our
result shows that bounded round, 2-prover MIP’s may be more powerful than bounded round IPS’s.

The problem of simulating unbounded round interactive proof systems by bounded round multi-
prover systems has previously been considered by Fortnow, Rompel and Sipser [7]. They proved the
following result.

Theorem 1.2 (Fortnow, Rompel, Sipser, [7]) If L is accepted by an unbounded round IPS, say
(Pr,Vr), then there is a I-round, 2-prover MIP (P, P2, V) with the following property. For some
polynomial p(n) and some N, for all strings w of length n > N,

1. if w € L, then the probability w is accepled by (Py, Py, V) is > 1—1/2"; and

2. ifw ¢ L, then for all provers P;* and Py, the probability w is accepted by (Py, Py, V) is < 1—1/p(n).

For completeness, we describe in Section 2 a protocol very similar to that of [7] and show that it
satisfies these properties. Throughout, we call such a MIP an IPS-simulalion protocol. However, for
some pair of provers, this IPS-simulation protocol may accept strings not in L with probability as high
as 1 — 1/p(n). To overcome this problem, Fortnow et al. proposed that this protocol be repeated many
times in parallel to reduce the probability of error. More precisely, suppose we define the d-product of a
MIP (P, P2, V) to be the MIP (P, 4, P24, Vy) obtained by executing (Py, P2, V') d times in parallel and
accepting if and only if all executions of the MIP accept. Then Fortnow et al. claimed that if for all
provers Py, Py, (Py, Py,V) accepts an input w with probability < p, then for all provers Py 4, Py 4, the
probability that (Pf, d,Pi a1 Va) accepts w is < p%. This claim, combined with Theorem 1.2, would be
sufficient to prove Theorem 1.1.

However, Fortnow [6] later showed that surprisingly, this claim is false. To motivate our new results
in this paper, we explain Fortow’s argument in Section 2. Thus it remained an open problem whether
Theorem 1.1 was true, and, more fundamentally, whether the probability of acceptance of a MIP can be
decreased by taking the product of the MIP. The main technical contribution of this paper is to show
that by taking the product of the IPS-simulation protocol, its probability of error on strings not in L
can be lowered significantly.

Theorem 1.3 For some polynomial d(n), the d(n)-product of the IPS-simulation protocol of Theorem
1.2 for language L accepls any w & L with probability at most 7/8.



This theorem is proved in Section 3. From this theorem, we obtain the main result, Theorem 1.1,
easily. However, it is still an open problem whether for some polynomial d(n), the error probability of
the d(n)-product game is exponentially small in n. In Section 4, we discuss this and other interesting
open problems.

2 Background

We begin this section with a definition of a multi-prover interactive proof system. A k-prover interactive
proofis a tuple (Py, Py,..., P, V), where V is a probabilistic Turing machine, with a read-only input
tape, a read-write worktape and a source of random bits (a coin). In addition, the verifier has k special
communication tapes; informally, these allow the verifier to communicate with the provers.

The states of V' are partitioned into two types, reading and communication states. A transition
function describes the one-step transitions of the verifier. Whenever the verifier is in a reading state, the
transition function of the verifier determines the next configuration of the verifier, based on the symbol
under the tape heads, the state and the outcome of an unbiased coin toss. Whenever the verifier is in
a communication state, the next configuration is determined as follows. For 1 < ¢ < k, the contents of
the ¢th communication tape are replaced by a string written by the ith prover. Then, the next state of
the verifier is determined just as when V is in a reading state.

Each prover P; is specified by a prover transition function. This function determines what string is
written by the prover, based on the input and the sequence of all past strings written by the verifier on
the ith communication tape. Formally, if ¥ is the tape alphabet of the verifier and provers, and H is
the set of all finite sequences of strings over £*, then P; is a mapping P; : £* x H — £*.

We say (Py,...Pg, V) is a k-prover interactive proof for language L with error probability € < 1/2 if
there is some N such that for all strings w of length > N,

e if w € L, the probability that (P;,... Py, V) accepts wis > 1 —¢,
o if w ¢ L, and all provers Py, ..., Py, the probability that (Pf,..., Py, V) rejects wis > 1 —¢.

The number of rounds of a protocol is the number of times V enters a communication state. If at
the jth round, V' enters a communication state with a string « written on ith communication tape, we
say that V sends the string @ to P; at the jth round. Similarly, if P; writes the string y on the ith
communication tape, we say that V receives the string y from P; at the jth round. If 51,...,s; are the
strings sent by V' to P; in the first j rounds, then we denote the string sent by P; to V' at the jth round
by Pi(w, 81, 8;)-

The following fact follows from results of Goldwasser and Sipser [9], and Babai [2], and provides a
useful normal form for IPS’s, the special case where there is only one prover. If L is accepted by an
unbounded round IPS, then there is an interactive protocol (Pr, Vz) of the following form that accepts
L with error probability 1/2". On an input w of length n, the protocol has m(n) rounds, where m(n) is
some polynomial in n. At the jth round, V;, sends a random bit b; to Pr and receives a bit from Pr. Let
z be the string by ...by,(n) and let Pr(w,z) be the string Pr(w,by)Pr(w,b1,bs) ... Pr(w,by,. .. byn)).
When all the rounds are completed, V computes ¢r(w, z, Pr(w, z) ), where ¢, is some polynomial time
computable boolean function. If ¢ (w,z, Pr(w,z) ) = 1, Vi accepts, else Vf, rejects.



2.1 The IPS-Simulation Protocol

We now describe how an unbounded round IPS in the above normal form can be simulated by a 1-round,
2-prover MIP. We call this MIP the IPS-simulation protocol.

Theorem (1.2) (Fortnow, Rompel, Sipser, 1988) If L is accepled by a m(n)-round IPS, then
there is a I-round, 2-prover MIP (P;, Py, V') that satisfies the following property. For some N and all
strings w of length n > N,

1. if w € L then (P, Py, V) accepts w with probability > 1 — 2,
2. ifw¢ L, then for any Py, Py, (Py, P35, V) accepls w with probability <1 — -mmlﬂ ;

Proof: We describe a 2-prover interactive proof that is a simple modification of the protocol of
Fortnow et al. We first describe the protocol of the verifier V. Fix an input w of length n, and let
m = m(n).

(a) Generate a random binary string z of length m.

(b) Choose a number i randomly and uniformly from the set {1,...,m}.
Let 2’ be the prefix of z of length 1.

(c) Send z to the first prover and send 2’ to the second prover.

(d) Suppose V receives y from the first prover and y’ from the second prover.
If |yl = m, |y'| = |2'|, ¥’ is a prefix of y and ¢p(w,z,y) = 1, then V accepts,
else V rejects.

The provers P;, P; are defined to simulate the prover Pr. That is, Py(w,z) = Pr(w,z) and Py(w,z’)
is the prefix of Pr(w, ) of length |z/|. This completes the description of the protocol (P, Py, V).

We now show that this protocol satisfies properties 1 and 2 above. Fix an input w of length n and
let m = m(n). Suppose w € L. Then the probability w is accepted by (P, Py, V) is at least 1 — 1/2".
To see this, let X be the set of strings z of length m for which ¢z (w,z, Pp(w,z) ) = 1. Then (P, P, V)
also accepts w when V sends a string z € X to Py, since Pi(w,z) = Pr(w,z) and P2(w,z) is a prefix of
Py (w,z). Also, since the error probability of (Pr,Vy) is 1/27, the probability that V chooses a string
in X initially is at least 1 —1/2".

Next suppose that w ¢ L. Fix provers P; and P;. We show that the probability (P}, P;,V)
accepts w is at most 1 — 1/2m. We need one definition: we say a string £ = by ...b,, is reasonable if
ér(w,z, Py(w,z)) = 0 or if for some ¢,1 < ¢ < m, Py(w,b;...b;) is not a prefix of Py(w,b;...bi41).

Next we show that if z is chosen randomly and uniformly from {0,1}™, then z is reasonable with
probability at least 1 — 1/2". We do this by defining a prover P} for the IPS. For any sequence of
bits by,...,b;, let Pf(w,by,...,b;) be the jth bit of the string Py (w,b;...d;). Note that if 2 is not
reasonable then Pj(w,z) = P;(w,z) and ¢r(w,z, Pf(w,z)) = 1, and thus (P}, V) accepts w. Hence,
if z i1s chosen randomly and uniformly, the probability that it is not reasonable must be at most 1/2",
since for w € L, the probability that (P}, Vr) accepts w is at most 1/2". So the probability that z is
reasonable is at least 1 — 1/2".

Finally, we show that if z is reasonable, the probability that V accepts w, when V sends z to Py,
is at most 1 — 1/m. First suppose that ¢p(w,z, Pf(w,z)) # 1. Then with probability 1 V rejects.
Otherwise, for some ¢, 1 < i < m, Py(w,b;...b;) is not a prefix of Py(w,z). With probability 1/m, V'
sends by ...b; to Py, and V rejects.



Hence, (P;, Py, V) accepts w with probability at most 1 if V' initially chooses a string that is not
reasonable, and with probability at most 1 — 1/m otherwise; also the probability of choosing a string
that is not reasonable is at most 1/2". Therefore (P, Py,V) accepts w with probability at most
1/2" + (1= 1/2")(1 — 1/m ) < 1 — 1/2m for sufficiently large n, as required. O

2.2 The Product of a MIP

Let (Py, P2, V) be a l-round, 2-prover MIP. We define the d-product of (Py, P2, V) to be the MIP
(P14, P 4, Va), where V; simulates d independent copies of V and P; 4, P» 4 simulate P, and P, on each
copy. For notational purposes, we assume that the provers and verifier use the # symbol to separate
copies of the protocol on the communication tape. Thus, for example, if V; sends @14 ... #2z4 to a
prover, then z; is the string V; sends to that prover for the ith copy of the game.

Suppose that for all provers Pf and Ps, (Py, P;,V) accepts a string w with probability < p. We
might expect that for all provers Py ;, Py 4, (Py 4, P3 4, Va) accepts w with probability < p?. Certainly
this is true if for each i, the response of each prover on the ith copy of the protocol depends only on the
string sent to that prover for the ith copy, and not on the strings for other copies. However Fortnow [6]
constructed a simple MIP that accepts all inputs with probability 1/2, but there exist provers for the
2-product MIP which cause it to accept all inputs with probability 3/8.

Fortnow’s construction is as follows. The protocol of the verifier does not depend on the input, so we
ignore the input in this description. The verifier chooses two bits b, b’ randomly and uniformly, sends b
to P; and b to P». Then V receives a bit y and 3’ from P; and P, respectively. The verifier computes
the function ¢(b,b',y,y') = ((bV y) # (V' V'), and accepts if and only if it equals 1. The provers P;
and P, are defined by P;(b) = b and Py(¥') = ¥'.

Clearly (P, P;,V) accepts any input with probability 1/2, since V accepts when b # ¥, which
happens with probability 1/2. Next consider the 2-product of this MIP. In this game, the first prover
receives a string by#bs and the second prover receives a string b)#b; and the provers return strings
y1#y2 and Y} #yh, respectively. V accepts if

((br V) # (1 V31)) A (82 V 32)) # (B3 V 13))).-

Suppose we define Py ; and Py ; as follows (where d = 2): Py ;(b1#ba) = 040 if by = by = 0, otherwise
P} j(b1#b2) = 14#1. Py ; is defined identically.

Then (Py 4, P 4, V) accepts all inputs with probability 3/8 because if b; = b; = 0, V accepts when
b} and b, are not both 0; and by symmetry if b} = b, = 0, V accepts when b, and b, are not both 0.
Hence V' accepts on 6 of the 16 possible choices for the bits by, bo, b}, b5,

3 Main Result

In this section we show that the d(n)-product of the IPS-simulation protocol of Theorem 1.2 has error
7/8, for some polynomial d(n).

Theorem (1.3) For some polynomial d(n), the d(n)-product of the IPS-simulation protocol of The-
orem 1.2 for language L accepts any w ¢ L with probability at most 7/8. And for w € L, il accepts w
with probability 1 — O(%2)).



Proof: We first describe the d(n)-product of the IPS-simulation protocol on a fixed input w. In this
theorem we denote the product by (P;, P2, V), and as before we denote the m(n)-round IPS by (Pr, V).
Let m = m(n) and let d = O(m); its exact value will be given later. The protocol of the verifier V is as
follows.

(a) Generate d independent random binary strings z1,...,z4, each of length m.
b) For each string z;, choose a number i; randomly and independently from the range
ETj g g

{1,...,m}. For each j, let z} be the prefix of string z; with length ;.

(c) Send x1# ... #x4 to the first prover and send z}# ... #uz/, to the second prover.

(d) Suppose V receives the string y1# ... #yq from the first prover and y{# ... #y}
from the second prover. If for all j, 1 <j <m, |y;| =m, |y;| = |2}, y; is a prefix of y;
and ¢r(w,z;,y;) = 1, then V accepts, else V rejects.

The provers P and P, are defined to simulate the prover Py of the original IPS protocol. Thus,

Pi(w,z1#...#za) = Pr(w,z1)# .. . #Pr(w,zq) and Po(w, 2\ # ... #z})) = Pr(w, z))# ... #Pp(w,z}).

Fix an input w of length n and let m = m(n). If w € L, then with probability (1—2")¢ = 1-0(42),
the verifier accepts.

Next suppose that w ¢ L. Fix provers P} and Py. We show that the probability (Pf, Py, V) accepts
w is at most 7/8. The proof is organized just as the proof of Theorem 1.2 and consists of three parts. We
first define what it means for a sequence z1, ..., z4 to be reasonable. Then we show that most sequences
are reasonable, and finally we show that if V' sends a reasonable sequence to Py, then V rejects w with
high probability.

We first give the definition of a reasonable sequence of strings. Let T' denote the set of all binary
strings of length between 1 and m, T'= { b,...b; | by € {0,1} and 1 < i < m }. We can express the
function Pj, for the fixed input w as the concatenation of d functions ¢; : 79 — T, 1 < j < d, where

Pr(w,zi#... #z) = b(=l, ..., 25)# ... #a(x], ..., 25).

That is, £; (2}, ..., z}) is the response of P5 on the jth copy of the protocol. Fix any strings zs,...,z4
of length m. We define a majority function My, determined by z2,...,z4 as follows. M; = M7? " is
a function from T to T,

M (z) = majority { {(z,25,...,2y) |z, € T isaprefixof z;,2< k<d}

(Ties, if any, are broken in favor of the lexicographically minimum string). One can similarly define

majority functions M; for any d — 1 fixed strings z1,...,%j_1,%j41,...,24 of length m: M;(z) =
majority { £;(z},...,25_1,2,&541,...,24) | 2}, €T is aprefix of z;,k # j }.
We say the sequence zi,...,z4 is j-reasonable if the following conditions are satisfied: Let z; =

by...bp, either ¢r(w,z;, M;(x;)) = 0 or for some i,1 < i < m, M;(b;...b;) is not a prefix of
M;j(by...biy1). We say that z1,...,z4 is reasonable if it is j-reasonable for all j,1 < j < m. The
next lemma shows that most sequences are reasonable.

Lemma 3.1 Suppose zy,...,24 are binary strings of length m chosen independently and uniformly.
Then
Prob[zy,...,z4 is reasonable | > 1 — d/2".



Proof: We first show that for any j and for any fixed ,,...,2j-1,%j41,...,2q, if 2; is chosen
randomly then z1,...,24 is j-reasonable with probability at least 1 — 1/2". Without loss of generality,
suppose that j = 1, and fix any zs,...,z4. From M;, we define a prover P} as follows. For any sequence

of bits by,...,b;, let Pf(w,by,...,b;) be the ith bit of the string M (b ...b;).

Just as in Theorem 1.2, for any «, if z,z2,...,24 is not 1-reasonable, then P} (w,z) = M;(z), and
¢r(w,z, Pf(w,z)) = 1, and thus (P}, V) accepts w. Hence, if z is chosen randomly and uniformly, the
probability that @, zs,...,z4 is not l-reasonable must be at most 1/2", since for w ¢ L, the probability
that (P}, VL) accepts w is at most 1/2"%. So the probability that z,zs,...,z4 is 1-reasonable is at least
1—-1/27,

To complete the proof, note that

d
Prob|zy, ..., z4 is not reasonable | < Z Prob[zy,...,z4 is not j-reasonable | < d/2".
j=1

Finally, we need to show that if z;, ..., x4 is reasonable then (P}, Py, V) rejects w with high proba-
bility when V sends z,,...,24 to P;. Assume therefore that z,,...,z, is reasonable.

Let Q9 be the d-dimensional cube of lattice points up to m, Q¢ = { (i1,...,ia) | L <i; < m }. For
each j, the function £;, when restricted on prefixes of z;,...,24 gives a natural labeling of the cube Q9.
That is, the label of (4; ...44) is £;(z},...,z}), where }, is the prefix of zj of length i;. We denote this
label by £;(i1,...14). Let Fi,..., F,, be the d — 1 dimensional flats along the first dimension, defined by

Fr={(k,is,...,iq) |1 <idp,...,0a<m }1<k<m.
We can similarly define flats along every other dimension.
To simplify notation in the rest of the proof, let y1#ya ... #yq = Py (w, z1#tzadt ... #24q).

Lemma 3.2 For each dimension j, 1 < j < d, either ¢p(w,z;,y;) = 0, or there ezists a flat F' along
dimension j, such that the set

Hj ={peF|Lp) is not a prefiz of y; }
has cardinality > m?-1/2.

Proof: Without loss of generality let j = 1 and let &y = b, ...b,,. Suppose ¢ (w,z;,y;) = 1. All
points p on each flat along dimension 1 are partitioned into equivalence classes according to their label
¢1(p). We ask the question: is there an 7, such that the ith flat F; along dimension 1 has at least m®—1/2
points p with label £, (p) different from the majority function My (b ...b;)?

If so, then no string labels more than half the points on F}. In particular, the prefix of y; of length
i labels at most half the points on flat ¢ and hence flat F; satisfies the lemma.

Now suppose the answer to the question is no. Then, on each flat along dimension 1, more than
half of the points are labeled My(by...b;). Since zi,...,zq is reasonable, in particular, 1-reasonable,
and by assumption, ¢r(w,zy,y;) = 1, it must be the case that either M;(z;) # y; or there exists an
i, 1 < ¢ < m, such that M;(by...b;) is not a prefix of M;(b;...b;iy1). To complete the proof, note
that when M (b ...b;) is not a prefix of M1(by ...bi41), then either M;(b; ...b;) is not a prefix of y; or
Mi(by ...bi41) is not a prefix of y;. Thus in this case, either F; or Fj;; satisfies the lemma. O



We can now show that if @;,..., &, is reasonable, then when V sends @14 ...# x4 to P;, the prob-
ability that V rejects is high. This is immediate if for some j, ¢(w,z;,y;) = 0, since then V rejects
with probability 1. Hence suppose that for all j, ¢r(w,z;,y;) = 1. Let H = U; H;j, where H; is defined
as in Lemma 3.2. Note that for any point (i,...,34) € H, if V sends the string {4 ...#z} to P,
where |z| = ig, then V rejects. This is because for some j, P;’s response on the jth copy of the game,
£;(z,...,24) is not a prefix of y;. Hence the probability that V rejects w is at least (1/m®)|H]|, since
there are exactly m? possible strings that V' can send to P, with equal probability, given that it sends
z1# ... #xg to P. We next get a lower bound on |H]|.

From the lemma, |H;| > m?=1/2. Also, |H;NH| < m4=2 for all j # k, since the flats are orthogonal.
Hence

ICJHJ'I = Zd:IHJ‘—UHkI

i=1 i=1 k<J
d
> > [IHj| - (G - )m*?
j=1

dm?=1/2 — d(d — 1)m?~2/2

mé

> ?(1+%), if d = [m/2].

v

Hence, (Py, Py, V) accepts w with probability at most 1 if V' initially chooses a sequence of strings
that is not reasonable, and with probability at most 7/8 — 1/4m otherwise; also the probability of
choosing a sequence of strings that is not reasonable is at most d(n)/2". Therefore (P}, P3, V) accepts
w with probability at most d(n)/2" + (1 — d(n)/2")(7/8 — 1/4m)) < 7/8 for sufficiently large n, as
required. This completes the proof of Theorem 1.3 O

From Theorem 1.3, our main result now follows easily.

Theorem (1.1) For any constant €, any language accepted by an unbounded round IPS has a bounded
round 2-prover MIP that has error probability .

Proof: Let k be an integer satisfying (7/8)F < e. To accept L with probability at most ¢, an MIP
simply repeats the product protocol of Theorem 1.3 sequentially k times. O

4 Conclusions and Open Problems

Theorem 1.1 shows that for any constant ¢, any language accepted by an unbounded round IPS has
a bounded round 2-prover MIP that has error probability ¢. However, the number of rounds of the
protocol depends on €. It is still open whether for any ¢ and any language accepted by an unbounded
round IPS, there is a one-round 2-prover MIP that accepts L. A related question is whether the hierarchy
of bounded-round, two-prover protocols collapses to 1-round protocols, as is the case for single provers.

More generally, if a MIP accepts an input w with probability p, what can we say about the probability
that the d-product of the MIP accepts w? In [5], Cai, Condon and Lipton provide partial answers to
this problem for restricted types of MIP’s, showing for example that as d — oo, the probability that the
d-product MIP accepts w — 0. However, even for these restricted types of MIP’s, it is not known if this
probability is strictly decreasing as d increases!
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