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1 The Second Eigenvalue of a Hypergraph

In this section we will first define the second eigenvalue of 3-uniform hypergraph,
and then discuss the general notion, as it applies to other uniform hypergraphs and
graphs. To motivate our definition, notice that if G is an undirected d-regular graph,
i.e. each vertex has degree d, then the second largest eigenvalue in absolute value,
Ay, of G’s adjacency matrix, A, satisfies

p |
I/\2| =(A—-= I T 3
n
i .o A 2wy
where n = |V|.

Let G = (V, E) be a 3-uniform hypergraph; i.e. E is a subset of subsets of V' of
size 3. We consider the space, L*(V), of real valued functions on V with the usual
inner product; let ey, ..., e, be the standard basis for L?(V'), where ¢; takes the value
1 on the i-th vertex of V' and 0 elsewhere. It is natural to construct from G a trilinear
form, that is a map from 7, mapping triples of vectors in L?(V) to R, namely
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where
{1 if {i,j,k} € E
Ti gk =

0 otherwise

Let 1 denote the all 1’s vector, and let T@ f@ T denote the all 1’s trilinear form (ie.
the form v defined as 7 but with »; ;; = 1 for all 1, j, k). We define 7 to be d-regular
if
ey = BT RTBT

n
has the property that

o(1,u,v) = o(u,T,v) = o(u,v,1) = 0
for all v and v. In this case we define the second eigenvalue of G (and 7) to be

Agz= ||UI|L2(V) = sup lo(u, v, w)].
llll=llvll=llll=1

We pause for a few remarks. First of all, for simplicity we have abused some of
the usual tensor conventions; in particular, we will often identify spaces and elements
of spaces with their duals implicitly when the distinction serves no purpose and/or
needlessly complicates the notation or discussion. For example, the all 1’s trilinear
form is really the dual of T@ T® 1 in the usual conventions.

Second, just as ordinary directed graphs can have multiple edges and self-loops,
we can accomodate such notions here. If an edge {7, 7, k} occurs with multiplicity
m, then the six corresponding entries of 7 will have an m instead of a 1. Also, an
edge which is a self-loop, {¢,%,7}, should contribute 6 to 7;;;, on the principle that
the contribution should be determined so that each edge contributes a total of 6 to
all the entries of 7. Similarly an edge, {¢,7,7} should contribute 2 to each of 7,
Ti iy and Tjiie

Thirdly, we can also handle the notion of directed edges. We say that a directed
3-uniform hypergraph is a hypergraph where each edge {7, 7, k} has a specified order;
equivilently, E is a subset of V' x V' x V. Now the trilinear form 7 is defined by 7; ;«
being the multiplicity of the edge (1,7, k). From a directed hypergraph we can form
an undirected hypergraph, i.e. the usual notion of hypergraph, by forgetting about
the ordering on the edges. The new trilinear form is the symmetrized version of the
old one. This also explains why undirected degenerate edges such as {7,1,:} should
contribute 6 to 7;;; in the usual (undirected) notion of hypergraph. Identifying a
hypergraph with its trilinear form, we can think of undirected hypergraphs as special
cases of directed hypergraphs.

Fourth, we define for any trilinear form on L?(V), p, its first eigenvalue to be its
norm with respect to L*(V), i.e.

A(p) = “N”L?(V) = sup lu(u, v, w)).
llell=1lell=[lwll=1
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If u,v,w is a triple achieving the above sup, we shall call (u,v,w) or u X v X w an
ergenvector. We can also define d-regular for a general trilinear form as above, and
therefore extend the notion of second eigenvalue to directed hypergraphs. It is easy
to check that an undirected hypergraph is d-regular if for every vertices 1, 7, there
are exactly d vertices k for which {z, j, k} is an edge (with the case ¢ = j included);
similarly, a directed hypergraph is d-regular if for every vertices ¢, j there are d edges
of each of the forms (¢, 5,-), (¢,-,7), and (-, 1, 7).

Fifth, it becomes clear how we want to define the second eigenvalue in the more
general case. For any sets, Vi,..., Vi, we define the first eigenvalue of a k-linear form
mapping Vi X --- x Vi to R as its norm with respect to the norms L*(V;). A k-linear
form, 7, is d-regular if

d-—; —
0':7-_;1‘/1@'“@11/“
with n being the largest among the |V;|’s, satisfies
o(v1y...,v,) =0

whenever some v; is fv,.. In this case we define the second eigenvalue of 7 to be A;(o).
Notice that for a directed graph, with adjacency matrix A, which is d-regular, it’s
second eigenvalue in the new sense is the square root of the (classical) second largest
eigenvalue of AAT.

Sixth, the first and second eigenvalue of multilinear forms as defined above are
always non-negative numbers. While much of the literature on graphs considers the
second eigenvalue as the eigenvalue with the second largest absolute value, sometimes
one simply considers the second largest (positive) eigenvalue. Here the distinction is
lost.

Lastly, we could define the eigenvalues and/or norms of multilinear forms with
respect to other norms on the space of functions on V', such as LP(V) for any 1 <
p < oo. In the applications we have in mind, it does not seem to help to consider the
other norms; and, in fact, one can say more about the L?*(V') norms than for other
values of p.

We return to the discussion of 3-uniform hypergraphs. There is a lot of structure
for graphs that we don’t know how to carry over to 3-uniform hypergraphs. For
example, we don’t know how multiply two hypergraphs. However, a fair amount of
the theory for graphs can be generalized to 3-uniform hypergraphs. We will prove:

Theorem 1.1 The first eigenvalue of a d- regulm 3- umform hypergraph is dn/?; i
the associated trilinear form 7 is mazimized on (1 T 1)

Theorem 1.2 A symmetric trilinear form T has a unit vector v such that ||7|| =
|7 (v, v,0)].

Theorem 1.3 Every 3-uniform, d-regular hypergraph has second eigenvalue > \/d(n — d)/n.



Next we’d like to prove a theorem about random hypergraphs. For graphs there
are probability spaces of random d-regular graphs that are easy to work with. For
hypergraphs the situation is more complicated. It becomes convenient to weaken the
requirement of d-regularity. For any trilinear form, 7, we define its second eigenvalue
with respect to d-regularity to be

d—; — —
haa(r) = It - “To 10 ).

Theorem 1.4 For any C there is a C' such that for any n and d > C'logn, «
random 3-uniform hypergraph om n vertices with dn® edges chosen randomly has
second eigenvalue < C'(logn)*?V/d with probability > 1 — np~Cmin(/dn'/®),

All of the above theorems have generalizations to t-uniform hypergraphs. Theo-
rems 1.1, 1.2, and 1.3 hold as is for t-uniform hypergraphs with ¢ > 3. The analog
of theorem 1.4 for t > 3 is:

Theorem 1.5 For any n, d > Ctlogn, a random t-uniform hypergraph on n ver-
tices with dn'~' edges chosen randomly has second eigenvalue < (Clog n)tlz\/c_i with

probability at least 1 — = C'min(Vdnlt49)/t,

We remark that presumably with more work, one could replace ¢/2 in the above
exponent of logn in the eigenvalue estimate with (¢t —2)/2 (see the end of section 6).
In our applications the logn factors are unimportant.

We do not know, at present, how to explicitly construct hypergraphs to match
the bounds in theorem 1.5. However, it is easy to construct graphs with A\; and A,
separated. Let G = (V, E) be any graph which is d-regular, and let G = (V,Vi=2x E).
It is easy to see that A\, (G) < nlt=2/2),(G).

To achieve smaller \;, we generalize the notion of Cayley graphs to hypergraphs.
Let G be a finite group, and H a symmetric set of generators. Then the ¢-uniform
Cayley hypergraph on G and H, has vertex set G and edges

E ={{®iy- « s Zip2wpoer 55 € H )

We can calculate the eigenvalues of the t-uniform Cayley hypergraph from those of
the Cayley graph and a knowledge of the decomposition of L*(G) under the right
regular representation. While most explicit constructions of graphs with essentially
optimal A, are Cayley graphs, A\, of Cayley hypergraphs are far from optimal:

Theorem 1.6 If |G| = n and |H| = d, then the t-uniform Cayley hypergraph on G
and H has Ay > n(t=2/4, /d(n — d)/n.

Friedman has recently (see [Fri89]) constructed Cayley hypergraphs that nearly
achieve the above lower bound— let AFFINE(p) be the group of affine transforma-
tions on Z/pZ, and H = {r?z+r):r € (Z/pZ)*}. Thenn = p(p—1) and d = 2(p—1).
For the associated hypergraph we have:



Theorem 1.7 ([Fri89]) For the above hypergraph, Ay = 2plt—1/2,

In sections 2 and 3 we discuss an application of the notion of eigenvalue of a
hypergraph, based on a hope of finding explicit constructions to achieve the bounds
in theorem 1.4. In section 4 we continue the technical discussion, giving some simple
properties of hypergraphs. In section 5 we discribe the “Cayley hypergraphs,” and
give some bounds and mention one construction. In section 6 we prove theorem 1.4
and its generalization, theorem 1.5.

2 Dispersers and Randomness

Let ¥ = {0,1}. For a language L € £*, let L, = LNX". For a function a: N — [0, 1],
we define the class RATE(a) by L € RATE(a) iff for all (large) n,

log |L.,|
- < a(n).
Let k,m: N — N be functions, with k(n), m(n) = n®"). We shall be interested
in mappings p : * — (Z*)F that for each n, pu: ™™ — ("), For a language L
and a mapping u, let

p N (L)={y:pu(y)i € Lforalll <i<k}.

We say that p is efficient if u can be computed in determinsitic poly-time.

We say that p is a (universal) («, ) rate disperser if VL € RATE(«), p~ (L) €
RATE(f). (Note that a diperser acts as the “inverse” of compression, i.e. strives to
make languages sparser.)

There are several ways in which dispersers are intimately realted to randomized
computing, and they all stem from a fundemantal observation of Sipser [Sip86]. Think
of L as the language of non-witnesses of some RP algorithm!. Then an efficient
disperser p defines a new RP algorithm, with a language of non-witnesses p~!(L),
which is much sparser.

Typically, L € RATE(1 — 1/n) (i.e. error probability bounded by 1/2). Sipser
[Sip86] and Santha [San86)] also gave a probabilistic argument showing that most
mappings p are excellent dispersers.

Theorem 2.1 ([Sip86,San86]) Ve > 0 there ezist (1 — 1/n,n"') dispersers.

With our restriction that m(n), k(n) = n®®), [CW89] observed that the above theo-
rem is the best possible.

Theorem 2.2 ([CW89]) There are no (1 —1/n,n°M-1) dispersers.

The three motivations for constructing efficient dispersers, and the state of art
regarding them are summarized below (see also [CW89]).

It is natural, and discussed at length in [CW89,1Z89] to consider dispersers for BPP. We do not
pursue it here



2.1 Determinsitic Amplification

The first explicit construction of a disperser is implicit in [AKS87].

Theorem 2.3 ([AKS87]) For every k = k(n), there is an efficient (1 — 1/n,1 —
k/m) disperser, with m(n) = n + O(k(n)). (In particular, for some € > 0, efficient
(1 —=1/n,1— €) dispersers exist.)

By the discussion above, this immediately implies:

Corollary 2.4 ([CW89]) The error probability of any RP algorithm can be d ecreased

from 1/2 to 27% at the cost of only O(k) additional random bits.

The disperser construction of [AKS87] is based on random walks on expander
graphs. More elementary, though weaker, dispersers were later constructed in [1Z89].

2.2 Randomness vs. Determinism or Time vs. Space
That efficient dispersers can relate these two fundamental questions of computer

science, is the main issue of Sipser’s paper [Sip86].

Theorem 2.5 ([Sip86]) Assume that for some € > 0, efficient (1 —1/n,n™°) dis-
persers exist. Then at least one of the following statements hold:

1. RP = P.

2. For some € > 0, every t(n) > 2" and infinitely many n,
DTIME(t) C DSPACE(#-).

As will become clear later, we are far from constructing such good dispersers as
this theorem requires, and indeed we offer a way to go about it. However, [NW8§]
proved by a different mehod that a similar consequence can be proven without any
assumptions if we relax (1).

Theorem 2.6 ([NW88]) One of the following statements hold
1. RP = (\DTIME(2™).

2. For some e > 0, t(n) > 2" and infinitely manyn, DTIME(t) C DSPACE(t'~*

).



2.3 Weak Random Sources

An ensemble II is a family of probability distibutions II = (II;,II,,...) with II,, a
distribution of ¥,. A source S is a family of ensembles II.

A probabilistic algorithm works with source S if on input z it computes a length
l = I(z), receives (w.l.o.g) a single’ random string o € II; from some ensemble II € S,
and from that point proceeds deterministically. The class RP(S) is the class of
languages that are recognised by probabilistic poly-time algorithms working with S.
Thus, if UNIFORM is the source comprised of the single ensemble U = (U, Us,...),
with U, being the uniform distribution on X", then RP = RP(UNIFORM).

Much literature in recent years, e.g.[Blu84,5V84,VV85,CG85,CW89] is devoted
to proving RP = RP(S) for a variety of sources S, mostly sources with bounded
entropy rate plus structural restrictions.

Say that an ensemble II is a—FAIR? if for every n, every string ¢ € X" has
probability < 27°". § is a-FAIR if every II € S is a—FAIR, and § is FAIR if it is
a-FAIR for some a > 0. FAIR sources include most of the sources studied in the
literature, and many more.

Theorem 2.7 If efficient (1 —1/n,a) dispersers exist, then RP = RP(a-FAIR). If
for every a > 0 efficient (1 — 1/n,«) dispersers ezist, then RP = RP(FAIR).

Cohen and Wigderson [CW89] improved the [AKS87] construction of dispersers,
using explicit dense Ramanujan graphs ([Chu88,Hal86]). The following is the best
known bound.

Theorem 2.8 ([CW89]) There are efficeint (1 —1/n,1/2+¢€) dispersers f or every
e>0.

The reason for the 1/2 barrier in the above theorem, and the ideas for breaking
it are discussed in the next section.

3 Dispersers, Expanding Hypergraphs and Eigen-
values

Let us consider a mapping p : ™ — (Z7)¥. We will fix n, though we continue to use
asymptotic notation, and the reader should remember we are really working with an
infinite family of objects indexed by n.

*In some of the literature on weak random sources multiple access to the source is allowed. However,
single access serves to better clarify the probabilistic properties of the source.

3This seems the same as the PRB source of [CG85], only that they allow multiple access to the
source (see previous footnote).



p can be thought of (as in [CW89]) as a bipartite multigraph on £" U ™ with
degree k for every vertex in ¥™. Equivallently, it will be considered here as a k-
uniform (ordered) hypergraph G = G, = (V, E), with V = Z" and E C V*, |E| = 2™.

Let T C V. Define E(T) = ENT*, ie. all hyperedges contained in 7. It is
now natural to call G an («a, ) disperser if for every T' C V' with log |T| < a'log |V|
we have log |[E(T)| < Blog|E|. In words, if sparse subsets of V' contain a sparser
set of edges, G is a good disperser. For graphs, (k=2), this is the defining property
of expansion, which is why dispersers can be thought of as expanding hypergraphs.
Our aim is thus the explicit construction of expanding hypergraphs, where explicit
means that the 1-1 mapping p : ¥™ — E is efficiently computable (in P).

Let N = |V|+ 2", |[E| = M =2™. For the hypergraph G and any a = a(n), let

 flog|E(T)| | log|T]
ﬁg(a)—ma}c{ log|N| =~ logN Sa}.

By definition, G is a (a, fg(a)) disperser for every a. The question is when do we
have fg(a) < a? We shall mainly deal with fixed a € [0,1], and ignore o(1) terms
(ie. a = a+ o(1)).

A natural idea is to compose hypergraphs. If G = (V| E) is k-uniform and H =
(E,F) is l-uniform, then the kl-uniform hypergraph G o H = (V, R) is defined by
(V11 s V1ky ooy Uity . oo, 0ik) € R ff (e1,€2,...,6/) € F and for every 1 < i < I,
€y = (Uil, .. -;Uik) € FE.

Composition is clearly useful: if G is an («, §) disperser and H is a (3, v) disperser,
then G o H is an («,7) disperser. Also, if G® is the t-fold composition of G with
itself, then G is an (a,ﬂg)(a)) disperser for every a and t.

Remark: One must remember that we restrict k(n) to be n®®), which limits the
number of compositions allowed. However, a fixed number of compositions is always
allowed.

To understand the tools for constructing dispersers and their limitations, consider
simple graphs, i.e. k = 2. Assume G = (V, E) is d-regular, and A\, A; the first and
second (in absolute value) eigenvalues of its adjacency matrix. Then A\, = d and ),
give a basic upper bound on |E(T)| for every T C V:

Theorem 3.1 (Easy) |E(T)| < £|T|* + X,|T)|.

It is convenient to consider all quantities in logarithms to the base N, so let
T =N% d= N% )\, = N7. The theorem above gives a function fg > Bq, with

Zadbol fa>144—14§

3 — 14-6
&wﬂ—{ ﬁ% fa<l+y—3§

Note that #(a) < a only if a € [y/6,1 ++ — é]. The proof of thm [CW89] is
essentially an application of this fact, together with the composition of (explicitely
constructable) graphs with v/§ = 1/2 for dense enough sequences of value 4.
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This method gets stuck at 1/2, as no explicit construction with v/§ < 1/2 (i.e.
Ay — d?7¢) is known (for interesting d). In fact, if d < N/2, this is impossible.

Theorem 3.2 (Easy) \; > y/d(n —d)/n.

To see how bad this eigenvalue estimate 3 is relative to 3, even for random graphs,
consider as an example a random graph G of degree d = VN, and sets T, || e VvN.
With high probability, A\, = O(N'/*) = O(d"/?), so fz(1/2) = 1/2. However, with
high probability, |[E(T)| = O(v/N), so

log |[E(T)| 1

log|E| 3
and Bg(1/2) = 1/3. This means that most graphs G with degree v/N are (1/2,1/3)

dispersers, but the eigenvalue bound does not prove it.

This is bad news, since for explicitely constructed graphs, the eigenvalues of the
associated matrices are almost the only means to bound |E(T)].

To give a better bound for |E(T)|, we observe that for a k-uniform hypergraph
G = (V, E) on n vertices, with second eigenvalue with respect to d-regularity \,, the
following generalization of proposition 3.1 holds.

Theorem 3.3 For every T C V, |E(T)| < &|T|F + Ao|T|*/2.

For every d-regular k-uniform hypergraph, \;(G) = dn*=?/2 and for every k-
uniform hypergraph on dn*~! edges certainly \(G) > dn*=2/2, Tt is therefore
surprising and promising that according to theorem 1.4 there exist k-uniform hyper-
graphs with dn(*~2/2 edges whose second eigenvalue is < (¢logn)*/2v/d.

Call a d-regular hypergraph G with Ay(G) = O(v/d) Ramanujan. It turns out
that for our purposes, even explicitely constructible hypergraphs G with \y(G) =
20 Ne()dO) will suffice to construct better dispersers than the state of the art.
We cannot build such expanding hypergraphs. In section 5 we describe methods for
explicitly construcing hypergraphs with nontrivial bounds on A,, and hope these will
be improved upon.

Let us consider again the eigenvalue estimate fg, for highly expanding hyper-
graphs. Recall that T = N%, d = N® )\, = N?. Then for a < %(1 + v — 6),

- 342 . . . [ 2% 2
e b he int . ] S = § .
Ba(a) 1 k-1 So Bg is decreasing in the interval Pyt ]c( +~-6)|,

with a unique fixed point in the left boundary. Composing G with itself can get us
ot ) = o P2 2

arbitrarily close to the left boundary, i.e. 8g(t) (E(l o - 6)) o0 ng"
This motivates two definitions: B

Definition 3.4 (k,6,~) will denote that there is an explicitely constructed family of

k-uniform hypergraphs G;(Vi, E;) (of dense enough cardinalities) with d; = |V|® and
A2(Gi) = O((Va)").



For example, the graphs of projective geometries and the graphs of Chung re-
spectively give:

Theorem 3.5 (Hall) For every integer r > 2, (2,1 —1/r,1/2(1 —1/r)).
Theorem 3.6 (Chung, Katz) For every integer r > 2, (2,1/r,1/2r).

Definition 3.7 [a — ] will denote that for every e > 0 there is an explicit dense
enough family of (a + €, 8 + €)-dispersers.

A useful observation is:
Lemma 3.8 [a — f],[8 — 7] = [a — 1]
The discussion above implies in this notation:
Theorem 3.9
(k,6,7) = [21 47— ) o o]
= - PR . S
T [T k+26—2
This and either of the theorems above ([Hall, Chung]) imply:
Theorem 3.10 (1 — 7+ 1/2) for every fized 7 > 0.

Using this theorem, Theorem [CW89] is implied from [AKS87].
For Ramanujan hypergraphs, v = §/2. To realize their potential we prove:

Theorem 3.11 [For every fized k,(k,1/2,1/4)] = [1/2 — 0] = RP = RP(FAIR).

We picked § = 1/2 and v = 1/4 as an example. The interested reader can
compute the envelope of values for which the consequence RP = RP(FAIR) holds.
Proof: The premise (k,1/2,1/4) implies, by Theorem 3.9 that

3 1
55~ =1

for every k. Using Lemma 3.8 and composition, we get [3/4 +— 0]. With [CW89] and
Theorem 2.7 this implies RP = RP(FAIR).
4 Basic Facts about Hypergraphs

In this section we will prove some basic facts about the eigenvalues of hypergraphs.
We will call a multilinear form, 7, d-regular if it satisfies the conditions of regularity
stated before for hypergraphs.

Theorem 4.1 Let 7 be a non-negative, d-reqular k-linear form on n wvertices. Then
the first eigenvalue of H is dn®=9/2 with 1@ --- @ 1 being an eigenvector.

10



Proof We shall proceed by induction on k. For k = 1 this is clear, for then the
associated multilinear form, 7, is just a one-dimensional vector proportional to 1. For
general k, let the associated trilinear form, 7, take its maximum over the product
of unit balls at (uq,...,u). Since 7 has non-negative coeflicients, we can assume
that each u; has non-negative coefficients (or replace the u; by such vectors while
preserving their norm and without decreasing the absolute value of 7 at (uy...,uy)).
But viewing u; as fixed, the k—1 form 7(uy, -, ..., ') is easily seen to be a non-negative,
f-regular form where 6 is the sum of the components of u,; therefore, by induction,
then norm of this &k — 1-linear form is Gn(’“_3)/2 with f@ -® T being a corespondin_g
eigenvector. But the ratio of 8 to [ui]| is rna.mmlzed when u, is proportional to 1,
and so the norm of 7 is dn*=2/2 with 1®---® 1 being a corresponding eigenvector.

O

Theorem 4.2 Let T be a symmetric k-linear form. Then there is a vector u € L*(V)
such that u @ --- @ u s a first eigenvector for 7.

Lemma 4.3 Let v be a symmetric 2-linear form. If u and v are unit vectors such
that ||v|| = |v(u,v)|, then also ||v| = |v(u,u)|.

Proof By linear algebra, v is diagonalizable with an orthonormal basis. Let 7 be
the associated endomorphisn of L*(V). If #’s largest eigenvalue in absolute value is
A, then ||v|| = [A]| = ||7||. Since

Al = [w(u, ) = [(7(w), 0)| < [[F()][[lo]] = 7],
u must be an eigenvector with corresponding eigenvalue = =||v||, and so ||v| =
o

O

The theorem easily follows. If u; ® - - - ® uy is a first eigenvector for 7, then applying
the lemma to the bilinear form (-, -, us,...,u;) we see that we can replace uy by u;.
Similarly we can replace all the u; by wuy, successively, proving the theorem.

O

We now give a lower bound for the second eigenvalue. Since the projection of

a vector with a ones and n — a zeros onto 1+ has norm va(n — a)/n, the following
proposition follows immediately from the definition of second eigenvalue:

Proposition 4.4 Let H be a k-uniform, d-reqular hypergraph. For any subsets
Uyy...Up of V, the number of edges in Uy X --- x Uy 1s

d Ul(n —|U Ulln — U
—|U1|---|Uk|+e)\2\/' (e~ | ll)...\/l (n 104D
7 n -

for some 8 with 6| < 1, and where )\, 18 the second eigenvalue of the hypergraph.

11



Now take any Uy,...,U_; consisting of one vertex. Then we can find a U, of
size n — d for which E contains no edges in U; X - -+ x Uj. It follows that:

Proposition 4.5 Let H be as in proposition 4.4. Then

AQZ\/M.

In the literature there are many methods for obtaining upper and lower bounds
on the second eigenvalue of graphs. We remark that when we consider the bilinear
form 7(vy,...,vk-2,-,) with each v; being one of the standard vectors, e;, we get a d-
regular graph, and can therefore apply lower bounds known for the second eigenvalue
of graphs. The preceding proposition is an example. Applying another known lower
bound for graphs (see [Alo86]) yields:

Proposition 4.6 For some constant C we have that if d < n'/C then Ay > 23/d — 1—
C/log,n.

As for obtaining upper bounds, the strongest methods don’t seem to directly gen-
eralize. The so-called “trace method,” which uses multiplication of graphs and taking
the trace of a graph (its adjacency matrix), does not have an obvious generalization
(that we see). However, for graphs which are Cayley graphs, such as those of [LPS86]
and [Mar87], there is a natural generalization, and it turn out that to analyze their
second eigenvalue is suffices to analyze the second eigenvalue of the corresponding
graph (and to understand the representations of the underlying group), so the trace
method can be applied there. For random graphs, we don’t know how to apply re-
sults that use the trace method, such as those of [Wigh5], [BSS7], [Fri88]. However
the method of Kahn and Szemerédi, in [FKS89], does generalize quite readily, and
we can prove theorem 1.4, which will be done in section 6.

For applications we would like to come up with constructions to match this bound.
Often we would like the graph to be constructible in poly log of the number of nodes,
for example in using weak random sources. We do not have an explicit construction
to match the bound in theorem 1.4, not even one which is constructable in polynomial
time in the number of nodes. We will describe two types of constructions; one is very
easy, and yields a weak eigenvalue bound. The second type is an analogue of Cayley
graphs, which we call Cayley hypergraphs. This gives somewhat improved bounds,
but we also give a lower bound to show that Cayley hypergraphs cannot match the
bound of theorem 1.4. We find this interesting because most explicit constructions
of graphs with small second eigenvalue that we know are Cayley graphs. Perhaps
there is a better generalization of this concept that can yield hypergraphs with small
second eigenvalue; one such construction might be buildings with finite groups or
finite quotients of buildings of rank ¢+ — 1 Lie groups (for t-uniform hypregraphs)
(see [BT71]). We finish this section by giving an easy construction for a graph with
slightly small second eigenvalue.

12



Let G = (V, E) be any graph which is d-regular, and let G= (V. V2% B

Proposition 4.7 If A, is the second eigenvalue of G, then the second eigenvalue of
G is no greater than \/n|\|.

Proof It is easy to see that the associated 7 is d-regular. If v,w € {1}, then clearly
I7(e;, v, w)| < Ag||v||||w|| for any standard basis vector e;. Thus

()

|7(u, v, w)| < (Z Iuil) Aafvllllwll < VrAs|lull][v]|]lw].

i=1

5 Cayley Hypergraphs

Let G be a group, and H a subset of G. The Cayley graph on G generated by H is
defined to be the graph with vertex set G and edge set

{(z,y) |2y~ € H}.

(We do not require that H generate G, nor that H = H~'.) This gives a d-regular
directed graph, and if H = H~! we can view the graph as undirected. We define the
Cayley sum graph similarly, though taking the edge set to be

{(z,y) | zy € H}.

Perhaps the easiest way to get a 3-regular hypergraph from this data is to keep G as
the set of vertices and to take

{(z,y,2) | zyz € H}

as the edge set; we will call this hypergraph the (3-regular) Cayley hypergraph on G
and H.

The eigenvalues of Cayley graphs and, as we shall see, hypergraphs, can often be
estimated when one understands the decomposition of L*(G) under the right regular
representation. We recall the following facts about representations of finite groups
(see [Rob83] for details). We will, for the moment, let L?(G) denote the space of
complex-valued functions on G with the usual inner product:

(u,v) = Z UgUy.

geEG

L?*(@) can be decomposed into subspaces

Ly(G) = é}E,;

1=1

with the following conditions:

13



1. Each E; is invariant under the natural action of G on L,(@), given by g(u(z)) =
u(gz).

2. dim(E;) = d? for some d; corresponding to the dimension of an irreducible
unitary representation of G, p; : G — GIl(C,d;), in the sense that a complete
orthogonal basis for E; is given by the d? entries of p; with respect to any basis
of C". Also, the norm of each coefficient of p;, as an element of L*(G), has

norm 4/n/d;.

3. r is equal to the number of conjugacy classes in G.

It follows that the matrix A of any Cayley graph on G vanishes outside the E; x E;
blocks, in the sense that 7(u,v) = 0 if u and v are contained in different E;’s.
More generally, the t-regular hypergraph generated by G and H vanishes outside the
E; x---x E; blocks. Let us assume, for simplicity, that the Cayley graph is generated
by an H which satisfies H=H~'. It then follows that the eigenvalues of A are real,
and there is an orthogonal set of real eigenvectors.

Theorem 5.1 Let the eigenvalues of A restricted to E; be My, . .. Ad?. Then the norm
of the t-linear form associated to the t-regular Cayley hypergraph on G and H is

(=272
(Z) max |Asl.

Corollary 5.2 The second eigenvalue of a t-uniform Cayley hypergraph of degree d
is at least \/d(n — d)/n n(t=2/2,

Proof For simplicity we will first prove this for 3-regular hypergraphs, and then
indicate how to generalize the proof. Let A and 7, by abuse of notation, denote
the adjacency matrix and bilinear form, respectively, associated to the Cayley graph
restricted to the subspace E, corresponding to the d dimensional representation p.
For any basis of C%, we can consider the coefficients of p, {p;;}, with respect to a

given basis for E, wy,...,wy. For any 4,7, k, [, we have
2 pii(@)ora(y) = 3 pis(9)pra(g~'R)
Ty=h gEG

which, using the fact that p is a unitary representation, is

Y 9€G Y pii(9)p1m(9)pmi(h) = bin (g‘) pii(h),

m=1

14



where §; ;. is the Kronecker delta function. It follows that 7 is given by

T (Z ai,jpi,j,z:ﬁk,lpk,f) = Y ;i iBrabipMiy = o ;8 M,
i kil

1,0,k (v
where Mj; is given by the matrix equation
n
= (E) S o(h).
heH

Since H = H™!, it follows that M is a real symmetric matrix, and therefore is
diagonalizable by a set of real eigenvectors in R? with real eigenvalues. Take these
eigenvectors as the basis of C?, wy,...,wg. Then M becomes a diagonal matrix.

Since the norm of each p;; is y/n/d, it follows that for each 1, j, the function p;; is
an eigenvector of the adjacency matrix, with eigenvalue 0 if ¢ # j, and eigenvalue
Aii=4M;;if i =j.

Now let v be the trilinear form associated to the 3-regular hypergraph generated
by G and H. A similar calculation shows that v is given by

n
v (Z QiP5 Z Bk,lpk,la Z ’}’q,qu,r) = Z ai,jﬁk,l"}’q,réi,kaj,q&,rEMU
i, Kl a,r

n

— Zai,jﬁi,l')’j,fdMl,I

It follows that v(p;;, pii, pii) is 5 M;;, and so

n
2[5
vl = /5

for each 1. We claim this hitting the » with p;; is the best that we can do, i.e.

n
Il = max \/g[)\iﬂ-[.

Proof Let az’,j,ﬁk,h'Yq,r be given with

2 _ 2 3. _
25%5= by =dvg =1
ij i,j i

Proposition 5.3 We have

It suffices to obtain the estimate

> @i iBiwvik < 1.

1.,k

15



Letting
aix =Y ;B

we see that applying Cauchy-Schwartz inequality yields
S, <3 (Na,) (D) 1
ak Ik i i
and so
1/2 1/2
D ik < (Z a?.k) (Z’Yﬁk) =L
J.k 5k aik
O

The generalization of theorem 5.1 to t-uniform hypergraphs follows from similar
considerations, and the generalized estimate:

Proposition 5.4 Letaj;,a
1 for each r. Then

] ¥ g, ¥
”, -ya i be s nxn arrays of numbers with 3=, ;(aj ;)* =

1 2 3 4 k-1 k
41,02 Qi i Vinyia Fiasis " Y _gin Vig_1,in <1

Proof Let
r o 1 2 3 4 . r—1 T
Ak = E Qi iz Qg s Mg iy Vin i """ Xy, i ¥ip_q b
for r < k. By induction on r, using Cauchy-Schwartz as before, one can prove that

D (ai)? <1

5k

for all », and therefore prove the proposition, by estimating

1/2 1/2
Zafklai‘k (Z( f,kl ) (Z(af,k)?) <1
ik

ik

6 Random Hypergraphs

First we will prove theorem 1.4, and then theorem 1.5 for arbitrary ¢. In this section,
C, C', Cy, etc. will each denote various absolute positive constants unless otherwise
indicated. Throughtout this section the phrase “with high probability” is short
for there exist constants C,C’ such that the event occurs with probability at least
1 — Cp~C'min(Vadn! /)t \yrhen we prove theorem 1.4, we take £ = 3 in this formula,
but for for theorem 1.5 this is to hold for all ¢+ with C and C' are independent of ¢.
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Proof of theorem 1.4 To avoid issues of the model we work with the probability
space G, 4 of random 3-uniform hypergraphs on n vertices which has dn? directed
edges chosen at random independently and uniformly from all possible n® “edge
slots.” A graph in G, 4 won’t in general be d-regular, but we will estimate its second
eigenvalue with respect to d-regularity. G, graphs are approximately d-regular in
the following two senses:

Lemma 6.1 Let d > plogn with p > Cy. With probability 1 —n®* a7 € G, 4 will
satisfy
> Tiji < Cad|A|| B

i€A,jeB,1<k<n

for every A,B C V, and the same with 7;; replaced by Ti; or Trij.

Proof The probability that 7 does not satisfy the equation is bounded by

i (”) (’;)B(dnz, Cdab, ab/n?),

a,b=1 &

where B(r,s,t) denotes the probability of at least s successes in r Bernoulli trials of
probability ¢. Since B(r,s,t) < r(:)ts < (ert/s)*r, we have

B(dn*,Cdab, ab/n*) < (e/C)°*dn?,

and the right-hand-side of the above is clearly bounded by n=¢'* for some positive
Ci.

Lemma 6.2 With probability 1 — Cn‘o'”m, a7 in G,q will have
|r(T/v/n,u,v)| < Cllogn)V|ul||v]

for all u,v € {I}*, and similarly with the 1/\/n,u,v permuted in any order. The
same holds with u replaced by 1/\/n.

Proof The matrix, A, given by
Ay =) Thij
k=1

is a random graph on n vertices with average degree nd. It would be a standard fact
that with very large probability

”A —di® 1“||2 < CVnd

17



for a slightly different model of random A, e.g. if A’s entries were chosen indepen-
dently from some distribution. This is not the case here, but since we are willing to
settle for a < CV/d logn estimate, it is easiest to note that this follows from the gen-
eralization of theorem 6.3, theorem 6.7, for 2-uniform hypergraphs with d replaced
by dn. (The proof of theorem 6.3 and its generalization does not use lemma 6.2.)
This proves the first part of lemma 6.2. The second part of the lemma is just a direct
calculation— it suffices to show that dn? Bernoulli trials with success probability
1/n have dn + O(V/dn) successes with large probability. This indeed occurs with
probability > 1 — C™ with some C < 1.
To prove theorem 1.4, we estimate A, 4(7) by writing

T(wy,...,u3) = 7(U; + al,... G+ agf)

with #; € {1}t and a; € R, and use multilinearity. By lemma 6.2, we see that
theorem 1.4 follows from:

Theorem 6.3 With probability 1 — n“cfmi“(‘/g'”w), a T in Gnq satisfies
|7 (u, v, w)| < CVd(logn)*|Jull||v]][lw] (6.1)
for all u,v,w € {T}J'

Proof For the proof we use the Kahn-Szemerédi approach of estimating the second
eigenvalue of a random graph, see [FKS89|. Clearly it suffices to prove this for all
u, v, w in some large finite set, M C {1}*; in fact one can take

M = (4\1/Ez)n N {I}* N By(0),

where B;(0) denotes the unit ball, for it is easy to see that any u € {I}* N B;(0) can
be written as

with u; € M, and thus

1% Iy 1\
(Z@) =@ »s @) )
if u;, v, w; € M, assuming that equation 6.1 holds for all u,v,w € M. It is easy to
check, see [FKS89], that | M| < C™.

Fix u,v,w € M, and write u = ¥ w;e;, and similarly for v and w, where e; are
the standard basis. We break the sum

20 0, 0] & S @)3

i=—1

< CVd(log n)*? (

T(u, v, w) = Zuivjwknjk

18



into two sums, by setting
S = {(i,4, k) | luwjwe] < Vd/n}.
S represents the “small tuples” u;v;w,. We now argue first that:

Lemma 6.4 For any C there is a C' such that for a given u,v,w,

< Cd

Z u,-vjwkr,-jk
(1,:k)€S

for T € G, 4 with probability > 1 — C™™.

Since there are |M|* = C®" such tuples, lemma 6.4 holds for all (u,v,w) € M?® with
high probability.

On the other hand we claim that the sum outside S will, for most hypergraphs, be
a priori bounded by C'v/d, a condition that is only violated when certain “unusually
high edge densities” occur in 7.

Lemma 6.5 With high probability, a T € G, 4 satisfies

< C(logn)**Vd

Zu,-vjwkfijk
s

for all u,v,w.

It remains to prove the above two lemmas. First notice that

Z UV W
5

Zu,-vjw
s

< X
kmﬂy

since

Zui—vjwk
5

Lemma 6.4 is now a standard calculation: we have

1 dn?
E MvjwTiip | 5 z\u,:ijk
E{e s = Z =
S

n

n n
< —= Y vl < —.
w\/‘&; %jwk—\/a

dn?
e (e:lg Zsz\uivjwke;lg ZSO(AuijkF) n _ 6.3.,\ Zsu"vjwke%/\zo(l)
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provided that Au;v;w, = O(1) for all (4,4, k) € S, with an absolute constant in the
O() notation. Taking A = n//d yields €™ in the above, and thus

Pr {Zu;vjwknjk b C\/E} & g On 00}
5
Taking A\ = —n/V/d yields a similar exponential lower bound:
Pr {Z U V;WE Tk S "C\/&} S E—GneO(n)
S

for a positive constant C.
To prove lemma 6.5, we consider for subsets 4, B,C C V,

6(A,B,C) = Z Tijk

it€A,JEB keC

and
g(A,B, C) = Z Tijk-

i€A,j€B,keC,(i,j,k) €S

The standard counting argument and estimates yield:

Lemma 6.6 With probability 1 — € we have that a 7 € G, 4 satisfies for all subsets
A B,CCYV,
(4, B,C) < k(|A,|B],|C])

where k = k(a,b,c) is any function of a,b, c satisfying
LG ()

- <

af \bf \e k -

Proof A standard calculation, using the estimate (‘;) < (ea/b)".

3m|m

for all a, b, c.

The above lemma gives a condition that the hypergraph have no “irregular (overly
large) edge densities.” Now we set for z > 0

A={j|2 <u; <27} C {1,...5m)

and _ _
Ai={j|27" <-uy; <27} C{1,...,n}

and similarly define B; and Cj; note that for m = |log(44/n)|, we have that the
above sets are empty when ¢ > m. We now estimate

Z UV WET 5 _{ Z Z E(AQ,B’B,CF,)HQEJ@EW (62)

i w5, wE >0, 5 a,87=1 SnAdaxBsxCy
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where %, = 27! and similarly for ¥ and w. (Thus %, approximates every u; with
i € A,; we use this notation to be suggestive.) The game becomes to choose an
appropriate k = k(a, b, ¢) in the above lemma to get good estimates in equation 6.2.
Then we do the same for the analogue of equation 6.2 with the sum over all other
sign combinations for a, 3, gamma, and we are done.

To estimate the right-hand-side of equation 6.2, note that we can assume that
|C,| is at least as large as |A,| and |Bg| (and then repeating the argument when |A,|
and then |Bg| are the largest). We may also assume that

05 < VAT, (6.

for each term, for if not then take out such terms and note that since }>, ¢ < 3 e

Cd|Aa||Bsl,

(]
—

IA

> &(Aa, Bs, Co)0aTsWy < Y, CVd|Au|| Bgluls < CV.

It is easy to see that for d < n'/? the choice of

CcVd if ¢ < C\/d
k(a,b,c) = C(logn)*?4 abc if ab > 2(logn)~1/?
(log n)"/?%¢ if ab < 2(logn)~Y? and ¢ > C'Vd

when ¢ = max(a, b, c) satisfies lemma 6.6 with ¢ = n~C"V4 while either of the three
bounds for k (and therefore €) above give an estimate for the sum in equation 6.2:
first of all, where k = C+/d we can estimate the sum in equation 6.2

Y &(Aa, Bp, C)T 05w, < S CVdu,vw, < C'Vd
a,By=1 o,By=1

since each of w, v, and W are geometrically decreasing sequences (i.e. 1,1/2,1/4,...).
Second, where k is C(logn)*/?(d/n)abc we can estimate the sum by

d 52 g
> C(log ﬂ)m; |Aal|Bs||C [waT5w,

< Z C(IOg n)3/2\/3|Aal|B;3”C—Y|E25§t_ﬁi & C"(log n)3/2\/(_{,

the first inequality using that fact that each of the tuples is in S. Finally, where k is
C(logn)'/2¢c we can estimate the sum by

< Y Cllogn)?|C, 5,55, < Y2 Cllogn) 2|C.,| Y775,
o8y b/ o,

where the leftmost sum is over all & and # satisfying equation 6.3. Since the u@’s and
v’s are a geometric sequence, and since the a and 3 range over m = O(log n) values,
we have that for any fixed 7,

Y. W<

TaTp <V diy
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Vdw, (m+%m+é—11m+~-) < Vdw,C' log n.

Hence the sum in equation 6.2 can be bounded by

Y C(logn)¥*Vd|C, [@? < C(logn)**Vd.
=

To finish the proof of theorem 1.4, we must alter slightly our choice of k for
d > n'/3. For this case we can chose k as before except replacing each Vd by a n'/6,

giving us an € of n=C"n'’*  This completes the proof of theorem 1.4.

O

Proof of theorem 1.5 We indicate what needs to be changed in the previous proof.
To prove theorem 1.5 for t-uniform hypergraphs, we estimate A, 4(7) by writing

T(uy,...,u) = 7(U; + anl,... 0 —I—atf)

with @; € {1}* and a; € R, and use multilinearity. As before, it suffices to prove a
generalization of theorem 6.3 for a random #-linear form, where we prove the estimate

7w, . ue)| £ VA(Clogn)[lus] - [l

with high probability. To do so, first, in lemma 6.1 we replace “d > plogn” by
“d > ptlogn,” and “probability 1 — n?“1” with “high probability;” the proof is the
same. In lemma 6.5 we replace 3/2 by t/2. The proof of the lemma is almost identical,
except that we choose k slightly differently, namely

cVd if a, < C'\/d
k(ay,-..,a;) =< C(log n)‘/zg ay---ay ifay---a,_y > E(log n)-1)/2

(logn)W-4/2q, if ay -+ a-y < 2(logn)?~9/? and o, > C'Vd
for d < n2/(t+3) (assuming a; = max(ay,...,a:)), and for larger d we replace the Vd's

by n'/(t+3)s. The only difference in the estimates from this point on is that the old
estimate

Z Ustg = \/c_i“tb"],Clogn

TaTg<Vdwy

must be replaced by the analogous sum being estimated by
Vdw,C(logn)t—2.

In lemma 6.4 we replace C'v/d by C't\/d, and prove the inequality with probability
1 — C~™. We need this because we are counting over M?, whose size is C"*. Thus
we can establish the generalization of theorem 6.3:
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Theorem 6.7 With high probability, a 7 in G, 4, satisfies
(w5 up)| < CVd(logn)?||ua] - - - [lue]

for all uy, ..., u, € {I}L.

Here G, 4. is the space of random t-uniform hypergraphs with n vertices and with
dn'~1 edges chosen at random from all n' possible “edge slots.”
The analog of lemma 1.2 is that with high probability, a 7 in G, 4 satisfies

|7 (us, .., us)| < CVd(logn)t=1/2

for all uq, ..., u; with at least one of the u;’s = T/\/'E, and with each other u;’s either
= 1/y/norin {1}*NB;(0). As before, this follows from theorem 6.7. Since each of the
< 2! ways of fixing a subset of u’s to 1/,/n satisfies the desired inequality with high
probability, all < 2! inequalities are satisfied simultaneously with high probability
(note the definition of high probability has a 1/t factor in the exponent). To finish,
we use multilinearity, as described in the beginning of the proof of theorem 1.5.

0

We remark that our choice of k is more relaxed that the choice of k in [FKS89],
and consequently the analysis is easier at the cost of possibly forsaking a logn factor.
If we replaced, say, the first & in the proof of theorem 1.4 by

cvd  ifc<C'Vd
k(a,b,c) =< CLabc if ab> Z(logn)
r(a,b,c) if ab < Z(logn) and ¢ > c'Vd

where r = r(a, b, ¢) satisfies for some large enough C

r

abed/n

rlog :Cclogg,
(&

one could perhaps perform a more careful analysis to recover a logn factor (see
[FKS89]). Perhaps one could also replace the (C log n)? entirely by a small constant,
but we don’t see how to do this at this point.
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