DETECTING THE INTERSECTION OF CONVEX OBJECTS
IN THE PLANE

David P. Dobkin
Diane L. Souvaine

CS-TR-231-89

October 1989

Detecting the Intersection of Convex Objects in the Plane*

David P. Dobkin

Department of Computer Science
Princeton University
Princeton, NJ 08544

Diane L. Souvaine

Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

ABSTRACT

Numerous applications require intersection detection. Many algorithms have been
developed for telling whether two polygons intersect. We have extended one such algo-
rithm to allow us to determine in C log n operations whether two convex planar regions
intersect. Our algorithm is significant because it can be presented as a combination of
two ideas. First, there is a revision of previous algorithms for detecting whether two con-
vex polygons intersect. Second, there is a general method for transforming algorithms
which work for polygons to make them work for piecewise curved boundaries. The con-

stant C depends strictly upon the complexity of the piecewise curves. The algorithms
presented here have been implemented and details of their implementation are included.

1. Introduction

The numerical operation at the core of graphics and geometric systems almost
always involves determining the intersection of 2 objects. This is the case in all of the
diverse contexts one might consider within interactive graphics, CAD/CAM, and compu-
tational geometry. For example, when designing a user interface, the central operation
involves hit detection. And, a window manager must manage motion of bitmaps by
determining intersections of rectangles[GY]. Similarly, ray tracers rely upon procedures
for determining the first intersection of a ray with a collection of objects [Wh]. In the

context of solid modeling, intersection operations are pervasive in both the definition of

* This research supported in part by the National Science Foundation under Grants CCR87-00917 and CCR-88-03549, a
Henry Rutgers Research Fellowship and a Guggenheim Fellowship.

23 &

objects (e.g. CSG [Br] or B-rep [Mo]) and in their maintenance. Because of this, inter-

section has been widely studied within the graphics literature.

Unfortunately, the wide variety of situations in which intersection computations are
required have made it difficult for any single algorithm to be deemed good across con-
texts. There does not currently exist a parameterized class of algorithms which span
applications areas based on individual requirements. Our goal here is to fill this need.
We begin with the fundamental observation that such problems seldom require the actual
intersection of objects. Rather what is needed is information about the intersection. For
example, often an application desires merely to know of the existence of an intersection
and perhaps a common point or separation information or a pair of closest points in some

direction. This detection problem is our focus.

In this and a companion paper, we provide a unified approach to the intersection
detection problem. Here, we develop algorithms for intersecting convex regions of the
plane without regard to the elements which compose the boundary. In [DS2], we extend
the work to 3 dimensions. Our main results are algorithms which in a number of opera-
tion logarithmic in the size (ie number of elements of the boundary) of the regions detect
the intersection of two convex planar regions. An operation here is defined as either a
data structure manipulation or a computation involving a boundary element of one or
both regions. This work is an outgrowth of theoretical work previously reported in
[CD1,DK]. We also believe that the approach of expressing algorithms in general terms
by expressing primitive operations as subroutine calls which are capable of computing in
the relevant domains is of interest in its own right. This approach is explored in greater

detail elsewhere[So, DS1].

=y

The algorithms described here have been implemented. We include implementation
details and code fragments as appropriate throughout the text. The figures included in

the text have been generated by these programs whenever possible.

The remainder of the paper is organized as follows. In the next section, we rederive
the intersection algorithm of [DK] for detecting polygonal intersections. This rederiva-
tion is done to make the generalization to curved regions easier. In addition, the process
of rederiving and implementing has uncovered some minor bugs which have been fixed
in this new version. Next, in section 3, we show how to generalize the notion of a
polygon to that of a splinegon. A splinegon here is a polygon which has been enhanced
by replacing its edges by spline curves of a prescribed type. And, we show that our
definitions are such that virtually all of the development of section 2 transfers immedi-
ately to this new model. In section 4, we conclude with a description of extensions and

open problems.

2. Detecting the intersection of two Convex Polygons

For this section, we will let P (resp. Q) be a convex polygon of p (resp. q) vertices
and N =p+q. Now, we rederive the intersection algorithm of [DK] to show how the
intersection of P and Q can be detected in time O (log N). This algorithm consists of 3
steps each of which will be the highlight of one of the following sections.

1. Split P (resp. Q) into left and right polygonal chains P; and Pg (resp. O, and Q)
such that P and Q intersect if and only if both pairs P; and Qp and Q; and Py, inter-

sect.

2. For a left half/right half polygonal chain pair, we show how to do a binary search

like procedure to eliminate half of one chain in constant time.

-4-

3. After step 2. has reduced one polygon to few sides, we show how to complete the

work while reporting either the intersection point or separating line.

2.1. Splitting a polygon into 2 parts

By definition, a convex polygon P of N vertices can be split at the points having
maximum and minimum y-coordinate into left and right monotone chains of vertices, Py,
and Pp. Assuming that the vertices of the polygon are already stored in random access
memory, this splitting process requires O (log N) ordinary operations [CD1]. This is
done by identifying the vertices of maximum and minimum y-coordinate. We then build
a clockwise chain of vertices and a counterclockwise chain of vertices, both from bottom
to top. The first (resp. second) chain is Py, (resp. Pg) and consists of those vertices which
would be exposed by a light shining from the line x = —eo (resp. x =—ee). In what fol-
lows, we will always consider Py, and Py to be polygons defining semi-infinite regions of
the plane. This will be achieved by adding horizontal rays towards +ee to the top and bot-
tom vertices of Pp (and towards —ee to P). Itis easy to see that P is contained in P;, and
Py and is equal to their intersection. Figure 1! shows a polygon P and the corresponding
Py and Pp.

To find the vertices of largest and smallest y-coordinate, we first break the polygon
into 2 chains which are unimodal in y. The first chain will holds the top of the polygon
and the second the bottom. We do this split by identifying the four vertices tl, tr, bl and
br representing (t)op/(b)ottom (1)eft/(r)ight points. Next we do a search for the maximum
(or minimum) of the unimodal function which assigns y-coordinates to vertices between

tl and tr (or bl and br). Finally, we create copies of the vertices making up the chains.

1 Most figures in this paper were made from actual executions of the code we describe

the polygon P

Figure 1: A polygon and its shadows

2

This is all achieved in the code fragment given below*.

#define RGHT -1
#define LFT 1
#define MIN 0
#define MAX 1
't*

* shadow divides p into a left half (pl) and a right half (pr)
»/

shadow(p,pl,pr)

struct polygon *p, *pl, *pr;

{

int tl,tr,bl,br,hilo ;

/* first we find the limits to break p into two chains unimodal in'y */
find_Ir_lb_tr_tb(p,&,&tr,&bl,&br);

/* next we find the vertices of maximum and minimum y coordinate */
hi = uni_opt(p,tr,t1, MAX); lo = uni_opt(p,bl,br, MIN);

/* finally we make the two chains */

make_chain(p,lo,hi,pLLFT); make_chain(p,lo,hi,pr RGHT);

}

find_Ir_Ib_tr_tb(p, t, tr, bl, br)

shadow

find_Ir Ib tr tb

2 Code fragments given in this paper depend upon certain data structures having been defined. In particular, a point is a
structure with the two fields x and y which are of type double and a polygon consisting of an integer field nverts giving its
size and an array v of points which contain its vertices. Where structures are not defined it is because they should be obvi-

ous from the context.

struct polygon *p;

int *u, *ir, *bl, *br;

{

double diff1 = p—>v[0]l.y — p—>v[p—>nvens—1ly;
double diff2 = p—>v[1].y — p—>v[0].y ;

if (diff1 > 0.0 && diff2 > 0.0) {
/* vertex 0 is above vertex —1 and below vertex 1 */
*r=0;
*br = p—>nverns—1;
*tl = *bl = find_vertex(p,LFT);
}
else if (diffl < 0.0 && diff2 < 0.0) {
/* vertex (0 is below vertex —1 and above vertex 1 */
*1l = p—>nverts—1;
*bl=0;
*tr = *br = find_vertex(p,RGHT);
}
else if (diff1 >= 0.0 && diff2 <=0.0) {
/* vertex 0 is at least as high as vertex —1
and at least as low as vertex 1 */
*bl=1,
*br = p—>nverts—1;
*l=*ur= ((diff 1==0)?p—>nvents—1:0); /* check for horizontal edge */

}
else If (diff] <= 0.0 && diff2 >=0.0) {

*r=1;

*l = p—>nverts—1;

*bl=*br= ((diff1>-EPS1)?p—>nvers—1:0);
}

}

/* this is the test for other end */
find_vertex(p,orient)

struct polygon *p;

int orient;

{

int bot = 0, top = p—>nvens-1, vertex = 0, mid;
double diff1, diff2, base;

while (Ivertex) {
mid = (top+bot)y2;
base = p—>v[mid].y —p—>v[0].y;
diff1 = p->v[mid].y = p~>v[mid-1].y ;
diff2 = p—>v[mid+1].y — p—>v[mid].y ;
if (diff1 * orient < 0) vertex = mid;
else if (diff2 * orient < 0) vertex = mid+1;
else if (base * orient < 0) top = mid;

else bot = mid;
}
return (vertex);
}

make_chain(p,from,to,pc,orient)
struct polygon *p, *pc;

int from, to, orient ;

{

int i = from — orient, j = 0;

/* find size of chain */

if (orient = LFT)

pc—>nverts = (to—from+p—>nverts)%p—>nvens + 1 ;
else

pc—>nverts = (from—to+p->nverns)%p—>nverts + 1;

find_vertex

make_chain

1* allocate chain */
allocate_polygon(pc);

do {
i= (p—>nverts + i + orient) % p—>nverts ;
copy_venex(&pc—>v([jl.&p->v[i]) ;
s

}

while (i I=10);

}

* find the max of the unimodal function */ ’
uni_opt(p,i,j,maxmin) uni_opt
struct polygon *p;

Int i j,maxmin;

{
int m=i, M=j, curl cur2 extvert ;
double diff1, diff2;

while (M—m) > 2) {
curl = (m+m+M)/3;
cur2 = (m+M+M)/3;
diff1 = p~>v[curl].y = p—>v[cur2].y ;
if (maxmin 1= MAX) diffl *=-1;
if (diff1 <= EPS1)m = curl ;
if (diff1 >=-EPS1) M = cur2 ;
}
}

The shadowing process is justified by the following lemma from [DK].

Lemma 1. Let P and Q be convex polygons which have been divided into
P;, Pg, Q;, and Qg as described above. Then P and Q intersect if and only if the

polygon pairs P, and Qp and Py and Qy intersect.

2.2. Binary search on polygonal chains

Let L be a polygonal chain open infinitely to the left and R a chain open infinitely to
the right. Furthermore, let A be an edge of L which is supported by line A and let y be an
edge of R which is supported by line ¥. (See Figure 2).

We observe that L (resp. R) lies strictly to the left (resp. right) of the line A (resp. ‘F).
And, the lines A and ¥ divide the plane into 4 regions. We refer to these are the L-
region, the R-region, the LR-region (where L- and R-regions intersect) and the J-region

(where nothing exists)>. If an intersection occurs, it must occur in the LR-region. We

3 Actually, if A and ¥ are parallel, then only 3 regions will result. In this case, we observe that one of two subcases
results depending upon which of A and W is leftmost. If A is leftmost, the LR —region doesn't exist and there can be

LR-region
L-region

R-region

empty region
Figure 2: The 4 regions determined by L and R
use the development above to state a series of lemmas and corollaries from which the

inner loop of our algorithm follows.

In the lemmas that follow, we will assume that we have confirmed that there is
overlap between the vertical extents of L and R, so that an intersection is possible. Each
lemma after the first, which produces a witness to the intersection of L and R will be of

the form:

Lemma. If <certain conditions are met>, then the problem of intersecting L and R is

reduced to the problem of intersecting <two chains named here>.

The two chains named will consist of one of the original chains along with a second
chain derived from the other original chain by removing all vertices above or below a

given one in a manner to be made precise below. In this statement, the phrase ‘‘the

no intersection. Otherwise, there is an intersection iff the vertical extents of L and R overlap which can be determined in
constant time. Therefore, we can assume that A and Y are not parallel.

Wl

(&3]

problem of intersecting L and R is reduced to the problem of intersecting L” and R
means that L and R intersect if and only if L’ and R’ intersect. Furthermore, the horizon-
tal separation of L and R is precisely that of L" and R”. The lemmas we state here follow
the development given in [DK]. However, we have made significant changes to correct
for degeneracies we observed from our implementation and to allow the generalization to

curved regions which follows in the next section.

In these statements, we define above, below and separation with respect to y-
coordinates: For vertices p,q and r, and edge e, p lies above (resp. below) g if the y-
coordinate of p is larger (resp. smaller) than that of g, r separates p and q if its y-
coordinate lies between the other two y-coordinates; and, p lies below (resp. above) e if it
lies below (resp. above) both endpoints of e. In addition, we assume that the LR-region
lies above the D-region. Should the converse hold, symmetric results can be easily
stated. We also state results in terms of R and its vertices but symmetric results can be

stated for L and its vertices.

Finally, we let e (resp. e~) represent the upper (resp. lower) vertex of edge e. For
L a polygonal chain and v a vertex, the part of L above (resp. below) v will comprise the
intersection of L with the closed halfplane above (resp. below) the horizontal line through

V.

Lemma 2. If A* and y* both border the LR-region and " separates the vertices of A,
then " is a witness to the intersection of L and R.

Proof. Since y* separates the vertices of A and borders the LR-region, it must lie to the

left of some point of A. By definition, L contains all points to the left of each of its

points. Hence, L contains the separating vertex. [

-10 -

Lemma 3. If y~ lies below A, then the problem of intersecting L and R is reduced to the
problem of intersecting L and the part of R above y~.
Proof. If y~ borders the @-region, then the portion of R lying below y~ is all within the

R-region and so cannot intersect L. So, we may assume that y~ borders the LR-region.

If L and R intersect below y~ (See Figure 3a), the segment joining their intersection
point to A~ must intersect the horizontal ray to the right from y~. By convexity, this

point belongs to L. By construction, it belongs to the part of R above .

Figure 3a: L and R intersect below and above

So, it only remains to show that if L and R do not intersect their minimum horizon-
tal distance involves a point of R above y~. We assume the reverse and prove a contrad-
iction. Let weL and ze R which lie below y~ delimit the minimum horizontal distance
between L and R. Now, we define the points a,b,c such that a is the intersection point of

wz with ¥, b is the intersection point of the horizontal line through W~ with wA™ and c is

= Ll

s
the intersection point of the line wA™ with ¥ (Figure 3b). Note that w, b and ¢ are col-

linear as are a, Y~ and c. Furthermore, c lies above the other points and the lines wa,
o

by~ are parallel, and convexity dictates that beL. By similar triangles,

length (wz)>length (wa)>length (W) yielding our contradiction. [

Figurelb Defining a.b.c

As long as both L and R consist of more than 2 edges, this lemma is sufficient to elim-
inate almost half of one of the chains. In the next subsection, we handle the case where
one chain has only 1 or 2 edges. Before doing so, we state two other results which can be
used to reduce the complexity of one of the chains. The proofs of these results arc simi-

lar to the one just given and are not included.

Lemma 4. If y* lies above A and A* borders the LR-region, then the problem of inter-

secting L and R is reduced to the problem of intersecting L and the part of R lying below

+

v

] D

Lemma 5. If A* borders the LR-region, and and A~ and vy all border the &-region, then
the problem of intersecting L and R is reduced to the problem of intersecting L and the
part of R lying above y".

Lemmas 2-5 contribute to the following result:

Lemma 6. If L is a polygonal chain opening infinitely to the left and R is a polygonal
chain opening infinitely to the right. Then, O (log n) iterations suffice either to find a
witness to their intersection or to reduce the problem to detecting the intersection (or
finding minimum horizontal separation) between two chains one of which has at most 2

edges.

Proof. The proof is by a binary search. At each iteration, we let A be the middle edge of
L and y the middle edge of R. We observe that either the first lemma above provides a
witness to the intersection of L and R or the second removes all edges above (or below) A

ory. [

The code embodied by lemma 6 is:

/* implements the inner loop operation */ ,
find_int(p, g, L1, R, r, pret, rval) ﬁnd_mr
struct polygon *p, *q ;
int*L*L. "1, *R;
struct point2 *pret;
double *rval;
{
int lc = (*1+*L)y2;
int rc = (*r+*R)2, state ;
struct point2 *p = &p->v[Ic], *nlp = &p->v[lc+1]; /* lambda*/
struct point2 *up = &g—>v[rc], *nrp = &g->v[rc+1]; /* psi */
double m1 = (Up->x = nlp->x)Y/(Up->y-nlp->y),
double bl = tlp—>x — m1*Up—>y;
double m2 = (rp->x — nrp—>x)/ (Up—->y-n1p->y);
double b2 = up->x = m2*trp->y;

/* determine relative position of SLR$~region and
test edge endpoinis accordingly */
if (AEQ(m1,m2))
if (AEQ(b1,b2) || b1 > b2) {
pret[0].y = MINF(Up->y, p—>y) - I}
state = LR _is_up(p, g, tp, nlp, trp, nrp,
Ic, rc, pret);

report_intersection(pd,pu,qu,in,porq) report intersection
struct point2 *pd, *pu, *qu, *in; -

int porg;

{

F

* this is a function which computes intersection poinis
* and reports that the ieration is completed
*/
return (DONE);
}

2.3. The finishing touches

Using the lemma above, we will assume that L has been reduced to no more than 3
vertices. We now consider each edge of L separately. The edge of L will be A in what
follows. Now, it remains to resolve the situation when comparing A to edge y of the
chain R would only want to subdivide L. Otherwise, we have made progress and can

proceed.

This situation arises precisely when A~ lies below y~. Further, At must lie on the
@-region since otherwise A* would have to lie above y* (by Lemma 4) and y* would
have to border the LR-region (by Lemma 5) and lie above A~ in which case Lemma 2
asserts that " is a witness to the intersection of A and R. First, we show that reduction is
possible in the case where y* lies above A (Lemma 8). This leaves only the case where
the vertices of \ separate those of A (Lemma 9).

Lemma 7. If y* lies above A*, then the problem of intersecting A and R reduces to that
of intersecting A and the part of R lying below y*.

Proof. The portion of R above y* can have no horizontal overlap with . Hence, none of
its points can participate in an intersection and the horizontal distance between any of its
points and a point of A is infinite. O

Lemma 8. If the vertices of separate the vertices of A, then the problem of intersecting

4 and R reduces to that of intersecting A and the part of R above y™.

-14-

report_intersection(pd,pu,quin,porg) report_intersection
struct point2 *pd, *pu, *qu, *in;
int porg;
{
Jli
* this is a function which computes intersection points
* and reports that the iteration is completed
b/ |
return (DONE);
}

2.3. The finishing touches

Using the lemma above, we will assume that L has been reduced to no more than 3
vertices. We now consider each edge of L separately. The edge of L will be A in what
follows. Now, it remains to resolve the situation when comparing A to edge y of the
chain R would only want to subdivide L. Otherwise, we have made progress and can

proceed.

This situation arises precisely when A~ lies below y~. Further, A* must lie on the
@-region since otherwise A* would have to lie above y* (by Lemma 4) and y* would
have to border the LR-region (by Lemma 5) and lie above A~ in which case Lemma 2
asserts that " is a witness to the intersection of A and R. First, we show that reduction is
possible in the case where y* lies above A (Lemma 8). This leaves only the case where

the vertices of separate those of A (Lemma 9).

Lemma 7. If y* lies above A*, then the problem of intersecting A and R reduces to that
of intersecting A and the part of R lying below y*.

Proof. The portion of R above y* can have no horizontal overlap with A. Hence, none of
its points can participate in an intersection and the horizontal distance between any of its
points and a point of A is infinite. [J

Lemma 8. If the vertices of \ separate the vertices of A, then the problem of intersecting

A and R reduces to that of intersecting A and the part of R above y~.

-15-

Proof. The portion of R below y~ is curving away from A and hence all of its points

have greater horizontal distance from A than does y~. We know there can be no intersec-

tion by the conditions of the lemma which cause all vertices to lie on the @-region. [

These lemmas clearly make it possible to complete the effort of this section and provide

an alternative proof to the following theorem Using the code fragments from above, we

now define a variable FOCUS which keeps track of whether we are in the situation of

this subsection or the previous and incorporate the previous code to yield the final imple-

mentation. In what follows, we have removed the code which computes minimum hor-

izontal distance in the interest of clarity.

int FOCUS;

detect_intersection(p,q,ws,m,d)
struct polygon *p, *q;
struct point2 ws(], *m ;

double *d;

{

struct polygon pl,pr,glar;
struct point2 pint1 (2], pini2[2] ;
double left_right();

shadow(p, &pl, &pr);
shadow(g, &ql, &qr);

If (thoriz_overlap(&pl, 0, pLnverns—1,
&qr, 0, qr.nvents = 1, d, m))
return(0);

FOCUS = BOTH;
*d = left_right(&pl, &qr, pintl, 0, pl.nvens — 1,0,
graverns=1,m),

if (*d == 0.0) { /* found an intersection of pl and gr */
FOCUS = BOTH;
*d = lefi_right(&gl, &pr, pint2, 0, qLnverts — 1, 0,
pr.nvens = 1, m);
w(*d=00){
seg_int(&pint1[0], &pint2[1],
&pint1[1], &pint2[0], ws);
return (1);
}
}
else copy_seg(ws,pint1); /* separating line */
return(0);

detect_intersection

216

* returns O if there is an intersection or min distance otherwise */
double
left_right(leftright,ptemp L.L,r,R,m)
struct polygon *left, *right;
struct point2 *ptemp, *m;
intlLrR;
{
int Ic1,Jc2,rcl,rc2, lend, It, 1, 1b, 1b;
struct point2 sep[2], mp;
double dis1,dis2,rval,do_int();

/* until one side has been reduced 1o 2 edges, FOCUS is BOTH */
while ((((L-1) > 2 || FOCUS = RGHT) &&
((R-r) > 2 || FOCUS == LFT)))
if (find_int(left, right, &L, &1,
&R, &1, ptemp, &rval))
return(rval);

if (FOCUS = BOTH) {
lend = ((L-1)<=2)? TRUE : FALSE;
It=lend?7141:L;
n=lend?R:r+l;
FOCUS = lend ? RGHT : LFT;

dis1 = lefi_righi(left, right, ptemp, 1, It, r, rt, m);
if ((dis1>0.0) && ((lend && (1+1<L)) ||
((llend) && (r+1<R))) {
dis2 = left_right(left, right, sep,
1+lend, L, r+1-lend, R, m);
}
}

else {
* here we re reduced 1o only considering lefi or right */

1b=(FOCUS =RGHT) 71:1+1;
I = (FOCUS =RGHT)?71+1:L;
b= (FOCUS =RGHT) 7r+l :r;
n=(FOCUS =RGHT) 7R : r+1;

dis1 = do_int(left, Ib, It, right, b, rt,
ptemp, m, &lcl, &rcl);
if ((dis1 > 0.0) &&
((FOCUS = LFT) && (+1 <L) ||
(((FOCUS =RGHT) && (r+1 <RI {
dis2 =do_int(left, 1+1, It, right, b, 1,
sep, &mp, &lc2, &rc2);
* code is eliminated here which decides which distance to use */
}
}
)

left_right

Theorem 1 [DK]. If L is a polygonal chain opening infinitely to the left and R is a polyg-

onal chain opening infinitely to the right. Then, O (log n) operations suffice to either find

a witness to their intersection or to find their minimum horizontal separation.

We note that while this result is not new, the proof is. Not only has the proof been

reorganized to a simpler form, but we’ve also stated all lemmas in such a fashion that

w [T

they can be easily extended to a broader class of problems as we shall see in the remain-
ing sections. This has involved stating lemmas at less than full power in some cases to

ease generalization.

3. The generalization to arbitrary convex curves

In this section, we show that the results of the previous section actually hold for a
wider of class of objects. In particular, we show that by making small changes to the
code presented above, an algorithm for detecting the intersection of convex planar
regions results. To do so, it is necessary to subdivide the regional boundaries into curves
which serve the role of the polygonal edges above. Then, intersection is detected in a
number of operations which grows as the logarithm of the number of curves which com-
pose the boundary. An operation now becomes a computation on curves. In what fol-
lows, we assume that the user supplies the decomposition of the boundary into curves

along with software to perform certain basic operations upon these curves.

In our generalization of the algorithm above, we need to do three computations

upon these curves. These computations are as follows:

A. Find the extreme point of the curve in some direction.
B. Evaluate the curve at a point along its trajectory.

C. Intersect two curves of the given type.

For example, algorithms having the flavor given in [SP] would be able to perform any of
these computations. With these tools in place, the programs presented in the previous
section require only minimal changes in order to detect intersections of convex regions.

This has been achieved by carefully modifying the previous presentations of these

-18 -

results. In particular, many of the lemmas given above could be strengthened if we were
only detecting polygonal intersections. In their current form, which only reduces the
algorithmic running time by a lower order term, they work for all convex objects. The
typical situations we have had to account for are those situations where a curve behaves

differently than a polygonal straight edge.

While a curve behaves drastically different from a straight edge locally, their
behaviors are quite similar when viewed from a distance. We will refer to a curved
boundary as a splinegon (in analogy to the term polygon) and will refer to its curved ele-
ments as spline segments (rather than line segments). For each spline segment, we con-
sider the line segment connecting its endpoints. This segment intersects the spline seg-
ment at the endpoints and nowhere else. From the collection of all such segments, we
build a polygon called the carrier polygon of the splinegon. The carrier polygon gives a

rough description of the splinegon.

Before proceeding, we will set some notation to be used in what follows. We will
be working at intersecting the splinegons S (P) and S(Q) which have carrier polygons
L(P) and L (Q). Corresponding to the spline edge S (A) of a splinegon will be the edge
L (1) of the corresponding carrier polygon. As above, Edges will be represented by lower
case Greek letters with their lines of support represented by the corresponding capital
letter. For example, A will be the line of support of L (A). When the context allows, we
will abuse this notation using P to represent S(P) or L(P) as the case may be, A to

represent S (A) or L (L), etc.

In this environment, convexity is used slightly differently. We observe that if S(A)

is a spline of S (P), then A divides the plane into 2 parts, one of which contains exactly

-19 -

the portion of S (P) bounded by A and S (A). Furthermore, if ¢,7,0 are adjacent edges of
L (P), we can form a triangle &\)811: which limits S (rt). We do so, by defining c'f) (resp. 8) to
be the portion of @ (resp. X) lying between its intersections with IT and X (resp. © and
IT).

These observations give a clue to the changes which will occur in generalizing the
algorithm of the previous section. Informally, we can reconsider the three steps of the
detection algorithm given at the beginning of the previous section: finding left and right
shadows; recursing on a left and a right half until one chain is reduced to 2 edges; and
finally finishing the work by considering the intersection of a 1 edge polygon with a
chain. In our development for splinegons, step 1 must change to account for the possibil-
ity that the maximum and minimum y-values might occur along splines rather than at
vertices. Indeed, this will typically be the case. The second step remains virtually
unchanged. As before, given two edges S (A) and S (y), we can subdivide the plane into
L-, the R-, the LR- and the J-regions. We do this by using the lines of support A and P’
However, we are no longer assured that the regions behave according to their names. In
particular, the splinegons bounded by S(A) and L (A) and by S () and L () lie in inap-
propriate regions. However, we accounted for this difficulty when stating the lemmas of
the previous section, so that the proofs do not change. Finally, new details must be added

to the third step.

To make the first step work for the splinegon case, we must first modify the code of
section 2.1 to find the points on a splinegon of maximum and minimum y-coordinate. To
find the maximum y-coordinate, we observe that this point occurs on one of the two

splines entering the vertex of maximum y-coordinate. This vertex is found by our current

-20-

procedure. We then apply procedure A from above twice to find the maximum point.
Similarly, the minimum point is found from the vertex of minimum y-coordinate. Note
that finding left and right half splinegons requires actually breaking splines at these max-
imum and minimum points and adding these two points as vertices of the splinegon.
That is, we replace the splinegon by one with new vertices at the points of maximum and
minimum y-coordinate and then proceed as we did in the linear case. With this change,

Lemma 1 remains true.

The development of section 2.2 changes only slightly. Suppose we have selected
the edge A as a ‘‘middle edge’’ of L. Then, we can think of L as being composed of 3
parts, those edges (be they lines or splines) below A, those above and A (actually S (A)).
In this case, S(the edges below A) behaves as does L(the edges below A). Similarly for
S(the edges above A). This means that as long as we do not consider S (A) and S (y), our
definitions of the L—, R—, LR — and empty regions in section 2.2 apply here also. This

being the case, we have now proved the following:
Lemma 9. Lemmas 2 through 5 hold for splinegons as well as for polygons.
We can apply this lemma to prove the following variant of Lemma 6

Lemma 10. If S(L) is a splinegon chain opening infinitely to the left and S(R) is a spline-
gon chain opening infinitely to the right, then O (log n) iterations sufﬁc'e either to find a
witness to their intersection or to reduce the problem to detecting the intersection (or
finding minimum horizontal separation) between two chains one of which has at most 2

edges.

Indeed the code given in section 2.2 works in this case with no changes.

221 -

It remains to rederive the results of section 2.3. We observe that Lemma 7 as stated
actually works for the splinegon case. However, a more complex proof of Lemma 8 is

needed. In the original proof, we remark

The portion of R below Y~ is curving away from A and hence all of its points have
greater horizontal distance from A than does y~. We know there can be no intersec-

tion by the conditions of the lemma which cause all vertices to lie on the &-region.

However, neither of these statements need hold for splinegons. Therefore, we must sub-
stitute a more complicated lemma and then prove it, using techniques similar to those

used in the proof of Lemma 3:

Lemma 11. If A~ < ¥~ < y* < A*, then let A" represent a point on A where a line paral-
lel to W supports L. If A" lies above W~ (resp. below y*), then the problem of intersecting
A and R reduces to that of intersecting A with the part of R lying above Yy~ (resp. below
V.

Proof. Suppose that S (L) intersects S (R) at a point z lying below y~ (resp. above y*).
Then z € R-region. But no point of (L) can belong to the R-region unless A" also
belongs to the R-region. Consequently, by convexity, both the R-region and S (L) contain
the line segment A"z Butas A" lies above W~ (resp. below y*) and z lies below Y~ (resp.
above y*), A"z must intersect the ray originating at ' (resp. y*) and extending infinitely
to the right, a ray contained within R. We conclude that the portion of R lying strictly
below Yy~ (resp. above y*) cannot completely contain the intersection of A and R, and

thus the portion of R strictly below Wy~ (resp. above y*) can be deleted.

Now suppose that S(L) and S (R) do not intersect and that A" lies above Y~ (resp.

below y*). As in the proof of Lemma 3, let the points we S (L) and ze S (R) delimit the

w)D) =

minimum horizontal distance between S (L) and S (R). Suppose that w and z lies below

V™ (resp. above y*). By convexity, WA CA, and thus if w were to lie to the right of ¥, A
and R would intersect. So z lies to the right of ¥ and w lies to the left, and we define the

following points:

a is the intersection point of wz with ¥

b is the intersection point of the horizontal line through Wy~ (resp. y*) with WA

*
c is the intersection point of wA~ with V.

Then, we observe that ¢ must lie above Y~ (resp. below y*) since A" lies above V™ and is
the extreme point of S (L) in the direction orthogonal to the line . Thus, the points w,c
and a define a triangle, which contains a similar triangle Abcy~ (resp. Abcy*). Thus
length (wz)>length (wa)>length (IF) (resp. length(wz)>length (v—vE)>length(lF),
which means that y~ (resp. ¥*) is closer to S (L) than z is. Contradiction. [J
Unfortunately, lemma 11 depends upon the calculation of the point A" lying on a curved
edge. Nonetheless, it leads directly to the final lemma and our main result. We assume
here that A operations are required to intersect two spline curves, B operations are
required to evaluate a spline at a point along its trajectory and C operations are required
to find the maximum of a spline in a given direction.

Lemma 12. O (A+ C log N) operations suffice to detect the intersection of a right and a
left convex semi-infinite splinegon of at most N vertices each: in the case of intersection,
a witness point is reported; in the case of no intersection, a pair of parallel supporting

lines is reported which delimits the minimum horizontal distance between the splinegons.

Theorem 2. The intersection of two convex splinegons of at most N vertices can be

-23-

detected in O (A+ B+ Clog N) operations.

An example of the algorithm described here is given in Figure 4. The figure is to be read
from left to right and down the page. Captions tell which part of which splinegon can be
eliminated at each step. The initial squares show the shadowing process. After shadows
have been computed, the intersection of Py and Qg is considered until it is observed that

there is no such intersection.

It is interesting to consider this algorithm relative to published algorithms for inter-
secting curved regions. Our algorithm benefits from considering only convex regions
and so is less general. A simple polygon, however, can be decomposed into convex
pieces using a number of standard decomposition algorithms (see e.g.
[CD2,FP,Gr,Ke,Sc]). Decomposing a simple splinegon into convex pieces is not so
straightforward; a simple splinegon with a single concave curve, for example, can never
be decomposed into the union of a finite number of convex pieces. In [DSV], a number
of alternate strategies are presented. The algorithm presented here could be applied itera-
tively to the product of applying an appropriate decompostion scheme to more general
regions. Our first step, the shadowing, requires the knowledge of the splinegon only
twice, at the top and bottom to find extremal points. Finding these extrema could be
done by any technique since this is not an inner loop operation. Our second step has the
potential of achieving significant gains in comparison with standard algorithms. It con-
sists of an inner loop which needs no specific knowledge of the splinegon (other than that
it is convex). Because of this, no recursion or subdivision of individual curves is neces-
sary as is standard in algorithms for this problem. Finally, our third step could require

O (log N) steps at which curve operations may be performed. However, theoretical

-24 -

QO JCC D)

start p and q Pl and Qr Pr and Ql PBOT

PTOP \\ Last 2 Edges of P QBOT QBOT
X . Qror e

A

QBOT no intersection Figure 4 -- Steps in detecting splinegon intersection

results suggest and empirical results confirm that this is seldom the case. The Clog N
term in Theorem 2 is actually a loose bound. It should be Clog d where d represents the

maximum number of edges of one splinegon which may lie within the vertical span of a

-25-

single spline on the other splinegon. Although it is possible that d = @(V®) for some

£>0, in practice, d seems to grow far less quickly.

4. Conclusions

This paper provides the theory and software necessary to determine whether two
curved convex planar regions have a common point. In the case they do, a common
point is determined. And, in the case that they do not, two points of minimum horizontal
distance are reported. The algorithm requires a number of operations which grows
asymptotically as the logarithm of the input size. The constant of proportionality here is
dependent on the difficulty of computing with the basic curves which make up the pieces

of the region boundary.

In addition to this specific result, this paper makes two other contributions. First,
we give actual code for the implementation of an algorithm of computational geometry
rather than merely asymptotic arguments about complexity. Second, we give an applica-
tion of a general technique for making algorithms which work on polygons also apply to

curved boundaries. We believe that each of these contributions is significant.

Numerous further extensions of our approach are possible. In [DS1, So], the spline-
gon approach is discussed in far greater detail and techniques are described for generaliz-
ing a wide class of algorithms from the linear to the curved case. Included in this class is
the extension of the algorithm of Shamos [Sh] for actually computing the intersection of
two polygons. Using the results of this paper, first determine if the splinegons intersect.
In the case that they do, we have a point interior to their intersection. This point can then
be used to order the vertices of each splinegon which allows us to trace the boundary of

the intersection in a manner analogous to that of [Sh]. The nature of this algorithm is

=26 -

such that optimized versions of it are likely to perform as well as or better than the stan-

dard algorithms for this problem [SP]. And, the class of algorithms to which our

approach applies can certainly be enhanced even further.

The implementation described here required the implementation of a number of

geometric primitive operations. In addition, portions of a computing environment for

geometry had to be created as a debugging tool. Indeed, the code fragments presented

here represent less than 20% of the total code written!! So, the existence of libraries of

geometric primitives and a good programming environment in which to use them would

be of invaluable assistance in future implementations.

5. References

[Br]

[CD1]

[CD2]

[DK]

[DS1]

[DS2]

Brown, C., PADL-2: a technical survey, IEEE CG&A, 2, 69-84, 1982
Chazelle, Bernard M. and Dobkin, David P., Intersection of convex objects,
JACM, 34,1, 1-27, 1987.

Chazelle, B., and Dobkin, D., Optimal convex decompositions, Machine
Intelligence and Pattern Recognition 2: Computational Geometry, G.T.
Toussaint, ed., Elsevier Science Publishers, North Holland, 1985, pp. 63-
133.

Dobkin, David P. and Kirkpatrick, David G., Fast detection of polyhedral
intersections, TCS, 27, 241-253, 1983.

Dobkin, David P. and Souvaine, Diane L. , Computational geometry in a

curved world, Algorithmica, to appear.

Dobkin, David P. and Souvaine, Diane L. , Detecting the Intersection of

[DSV]

[FP]

[Gr]

[GY]

[Ke]

[KS2]

[Mo]

[Sc]

[SP]

[So]

o0

Convex Objects in the 3 dimensions, in preparation.
Dobkin, D., Souvaine, D., and Van Wyk, C., Decomposition and intersection

of simple splinegons, Algorithmica 3, 1988, 473-486.

Feng, H. and Pavlidis, T., Decomposition of polygons into simpler com-
ponents: feature generation for syntactic pattern recognition, /[EEE Transac-

tions on Computing C-24, 1975, pp.636-50.

Greene, D. H., The decomposition of polygons into convex parts, Advances
in Computing Research, F. Preparata, ed., JAI Press, 1984, pp.235-59.
Guibas, L. and Yao, F., On translating a set of rectangles, Proceedings of
Twelfth ACM STOC, Los Angeles, CA, 1980, 154-160.

Keil, J. M., Decomposing a polygon into simpler components, SIAM Journal
of Computing, 14, 1985, pp. 799-817.

Keil, J. M. and Sack, J. R., Minimum decompositions of polygonal objects,
Machine Intelligence and Pattern Recognition 2: Computational Geometry,
G. T. Toussaint, ed., Elsevier Science Publishers, North Holland, 1985, pp.

197-216.
Mortenson, M. Geometric Modeling, John Wiley & Sons, 1985.

Schacter, B. Decomposition of polygons into convex sets, IEEE Transac-

tions on Computers, C-27, 1978, pp. 1078-82.

Sederberg, TW and Parry, SR, Comparison of three curve intersection algo-

rithms, Computer Aided Design. 18, 1, 58-63,1986.

Souvaine, Diane L., Computational geometry in a curved world, Ph.D.

=28 -

dissertation, Princeton University, 1986.

[Sh] Shamos, Michael 1., Geometric complexity, Proceedings of Seventh ACM
STOC, Albuquerque, New Mexico, 1975.

[Wh] Whitted, T., An improved illumination model for shaded displays, CACM,

23, 6, June, 1980, 343-349.

