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1 Introduction

In this article we discuss several very simple graphs which have fairly small
eigenvalues. Perhaps the most important result is that one of the graphs
is a Cayley graph whose corresponding Cayley hypergraphs has a second
eigenvalue which is essentially as small as a Cayley hypergraph can have.
Also these graphs are very simple to write down, and the eigenvalue calcula-
tion is based on well known results about exponential sums. This could be
interesting for two reasons. First, it is hoped that such simple graphs may
be better analyzed with respect to their expansion properies; in particular,
good expanders are known to exist with much better expansion properties
than can be guarenteed by eigenvalue estimates. Secondly, for a certain class
of applications it is required that the number of vertices (and the degree)
be exponential in n, where n is the parameter of the problem, and we’d
like to carry out the calculations quickly. For some of the constructions,
e.g. that of [LPS86] and [Mar87], it is not clear how to do this quickly. For
Chung’s sum graphs in [Chu] the calculations can be done fairly quickly,
and the eigenvalue estimate is essentially the same; our graphs are some-
what simpler, and the eigenvalue calculation is based on somewhat more
basic facts.

*The author wishes to acknowledge the National Science Foundation for supporting
this research in part under Grant CCR-8858788, and the Office of Naval Research under
Grant N00014-87-K-0467.



Given an undirected graph, G = (V, E), which is d-regular in the sense
that each vertex has degree d, it is easy to see that d is an eigenvalue of G’s
adjacency matrix, A, in fact the largest eigenvalue in absolute value. By the
second largest eigenvalue, Az, of G, we mean the second largest eigenvalue in
absolute value. For directed graphs, G, we define d-regularity by requiring
that both the indegree and outdegree of each vertex be d. We can define the
second eigenvalue as before, though it is somewhat more natural to define
it as being the square root of the second largest eigenvalue of AAT (see, for
example, [FW]). All directed graphs in this paper are Cayley graphs, where
the two notions are equivalent (see [FW]).

In this paper we will consider the following graphs and some variants
and generalizations of them to be described in later sections.

For a prime p, let SUMPROD(p) denote the graph with vertex set
(Z/pZ)x(Z/pZ)*, with each vertex (z,y) having a directed edge to (z+a, ya)
for each a = 1,2,...,p — 1. Thus SUMPROD(p) is a directed graph with
p(p — 1) vertices, with each vertex having indegree and outdegree p — 1.

For an integer k > 2, let POWER(p, k) be the graph with edge vertex
set (Z/pZ)F, with each vertex

(2:1, . e ,:I?k)
having a directed edge to each of
(1 + a,z3 + d?%,...,z; + a*)

for a = 0,1,...,p — 1. Thus POWER(p, k) is a directed graph with p*
vertices and vertex has indegree and outdegree p.

For a group, G, and a subset, H C G, the Cayley graph on G with
generators H to be the directed graph with vertex set GG and directed edges

{(9,9h) |9 € G, h € H}.

Unlike the classical definition, we do not require H to be a set of generators.
Also, if H=! = H then we can view the graph as undirected in the obvious
way.
Finally, let AFFINE(p) denote the group of affine linear transformations
of Z/pZ,
{ax +b|a €(Z/pZ), be Z/pZ}

with the usual group law

(az + b) o (cz + d) = (ac)z + (b + ad).
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Assume that p is a prime = 3(mod 4), and let SQRT(p) be the Cayley graph
on AFFINE(p) with generators

H={r’z+r, —r’z+r|rec(Z/pZ)*}.

Since H~' = H it follows that SQRT(p) is an undirected graph with p(p—1)
vertices and degree 2(p — 1).
For the above graphs we will prove:

Theorem 1.1 The graph SUMPROD(p) has second eigenvalue of absolute
value < \/p.

Theorem 1.2 The graph POWER(p, k) has second eigenvalue of absolute
value < (k — 1),/p.

Theorem 1.3 The graph SQRT(p) has second eigenvalue of absolute value
< 2,/p. The associated t-uniform Cayley hypergraph has second eigenvalue

< 2plt-1)/2,

For the first two graphs one can easily write down the eigenvectors
and eigenvalues. One can estimate their eigenvalues with standard facts
and tricks known for exponential sums; the proofs for SUMPROD(p) and
POWER(p,2) are particularly simple (the latter’s eigenvalues are Gauss
sums). Bounding the eigenvalues of SQRT(p) involves the trace method
and is slightly more complicated, but it is important since its corresponding
Cayley hypergraph has small eigenvalues.

The first two graphs, which are not undirected graphs, have variants
which are undirected graphs of the same degree, with the same eigenvalue
bound holding. This is true of any Cayley graph of a commutative group
(of which the first two graphs are examples), a fact that is implicit in [Chu].
Also, for the directed versions of the graphs, the second eigenvalue is also
the “second eigenvalue” in the stronger sense of, say, [FW]; in this case the
second eigenvalue of a directed, d-regular graph with adjacency matrix A is
the same as the (classical) second eigenvalue of AAT,

The fact that the second eigenvalue of SUMPROD(p) is small can be
interpreted as saying that if we chose m random numbers from (Z/pZ)*,
@i,...,0,, then the two quantities

ay+az+---+a, and aay---ay,



become almost independent very quickly as m — oo. This will be used
to bound the second eigenvalue of SQRT(p). Similarly the statement about
POWER(p, k) says that for random numbers ay,. .., a,, chosen among Z/pZ
the quantities

2 2 k k
a+---+apy, ay+---+a,, ..., aj+---+a,,

become almost independent quickly as m — co.

All the above graphs and theorems have a natural generalization for p
replaced by a prime power, ¢, and the arithmetic being done over the finite
field with ¢ elements.

It is only for POWER(p, k) with & > 3 that we use non-trivial facts about
exponential sums; we will use a corollary to Weil’s Riemann hypothesis
for curves, see [Weid8] (though first realized by Hasse [Has| and Hasse-
Davenport [?]), a special case of which states that for a polynomial f = f(z)
of degree k in Z/pZ, we have

3 oo f(s)

w€Z/pZ

< (k= 1)/p.

His corollary also implies on estimate on the exponential sum we estimate
for SUMPROD graphs, but this estimate is so easy to derive from scratch
that we do it here. In Weil’s article, [Wei48], a reference is made to class field
theory; this reference can easily be dispensed with, as in [Sch76]. The use
of the Riemann hypothesis can also be replaced by weaker estimates which
can be proven by elementary means, without too much work; see [Sch76].

In section 2 we discuss the SUMPROD graphs, over Z/pZ and other
rings. In section 3 we discuss POWER graphs and a variant of them, SYM
graphs, which may be more suitable for computing given large p. In section
4 we discuss SQRT graphs and some generalizations. In section 5 we review
the representations of the affine transformations, and discuss its implications
on the Cayley hypergraphs derived from SQRT and its variants.

The author’s interest in AFFINE was due to his work with Avi Wigder-
son. The author would like to thank him, as well as Nick Pippenger for
useful discussions.

2 SUMPROD Graphs

We begin by proving theorem 1.1. It is well known (and easy to see) that
the Cayley graph of Z/nZ with generators H = {hy,...,hp}, i.e. the graph
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with vertex set Z/nZ and edges
{(z,2+h)|z€Z/nZ, he H},

has eigenvectors which are the real and imaginary parts of

(I,C’ CZ, . nd_l)

with ¢ ranging over all n-th roots of unity, and corresponding eigenvalue

m

S,

J=1
Since (Z/pZ)* is isomorphic to the additive group Z/(p — 1)Z via the map
log, the discrete logarithm with respect to a fixed primitive root (fix one
such root), it follows similarly that the eigenvalues of SUMPROD(p) are

just
p—-1

Z Cn':nlog(:r:)

zr=1
with ¢ and 7 ranging over all p-th and (p— 1)-th roots of unity respectively.
For ( = n = 1 we get the first eigenvalue, p— 1. For n = 1 and { # 1 the
above sum is —1 since any p-th root of unity, ¢ # 1 satisfies

(+C+ 4P =1,

and similarly for { = 1 and 7 # 1 we get that the eigenvalue is 0. Finally
when neither ¢ nor 7 are not = 1, consider the square of absolute value of
the eigenvalue,

p—1 p-1 p—1 p—1
Z C.'.r:nlog(a:) E C—yn— log(y) — Z Ca:—yn]og(:n/y) - Z C(c—l)ynlog(C] A
r=1 y=1 z,y=1 cy=1

where the substitution ¢ = z/y was used, as well as the fact that @ = a™!

for || = 1). For a fixed ¢ = 2,...,p — 1 we have

p—1
ZC(c—l)ynlog(c) — (C & C2 Hnresedft Cp-—l)nlog(c) — __nlog(c),

y=1

while for ¢ = 1 we have

p—1 p—-1
Zc(c-—l)ynlog(c) = z€0n0 =p—1.
=1 y=1



Thus ;
o
5 CleDvglosld) = p 14 (=p=n* = - = P"2) = p,

cy=1
which completes the proof.

O

We remark that while this graph is not undirected, it has a directed
variant, due to the following observation which, for example, is implicit in
Chung’s paper, [Chu]:

Proposition 2.1 Let the Cayley graph on G with generators H have second
eigenvalue Ay, and let G be commutative. Then its Cayley sum graph, i.e.
the graph with vertex set G and edges {(g,g9~'h)} with g and h ranging over
G and H respectively, has second eigenvalue of absolute value |Ay|.

Proof If u = u(g) is an eigenvector of the Cayley graph with eigenvalue v,
then it is easy to check that v(g) = u(g)+u(g~')v/|v| is an eigenvector with
eigenvalue x|v|; if u is purely real, only one of + really appears, since one of
“+” or “~” yields the zero vector. It is easy to see that these eigenvectors
span the entire space, and therefore give a complete list of the eigenvalues.

O

There are two obvious ways to generalize on this construction. The first
is to take a prime power, ¢, and construct SUMPROD with the sum and
product being taken in GF(g), the finite field with ¢ elements. There the
same theorem and proof goes through word for word with p replaced by q.

The second generalization is to construct SUMPROD over the ring Z/nZ
for an integer n, not necessarily prime, with vertex set (Z/nZ) x (Z/nZ)*
and edges connecting (z,y) to (z + @,ya) where a runs over all elements
of (Z/nZ)*. Here the number of vertices is n¢(n), where ¢(n) is the size
of (Z/nZ)*. In this case the eigenvalue bounds become much worse. In
particular, a similar calculation shows that for n a prime power, n = p', the
eigenvalues have absolute value

(p— 1)pt—1’ pt-—(I/Z), pt—l, 0
with respective multiplicities

L(p-1)(p-2),p-1,(p-1p" 1 =p*+2p-2.



It follows that for general n with prime factorization pi!...pl the eigen-
values have absolute values which are products of those for the graph when
n= pf‘, and in particular the second largest eigenvalue is

1

n max —.

1<i<s \/IT,
3 POWER Graphs

We begin by proving theorem 1.2. Clearly the vector whose value at (z1,...,2%)
is
1 il %y

with the (; being p-th roots of unity, is an eigenvector with eigenvalue
= 2 =
ZC;“C{“ el = E Cf(“) (3.1)
a=0 a=0

where ¢ = e27/? and f () is some polynomial with integer coefficients of
degree k with vanishing constant term. Furthermore these p* eigenvectors
are orthogonal to one another, and therefore comprise a complete list of the
eigenvectors and eigenvalues. For (; = --- = (, = 1, i.e. f being the zero
polynomial, this sum is p, corresponding to the first eigenvector. It is a
standard fact about exponential sums that the sum on the right-hand-side
of equation 3.1 is bounded in absolute value by (k — 1),/p if f is not the
zero polynomial (modulo p); see [Wei74]. For k = 2 the above is a Gauss
sum, and the bound can be proven directly, using the same “squaring the
absolute value” trick used in the previous section.

O

As a variant of this graph, we can study the graph SYM(p, k), which has
vertex set (Z/pZ)* and has a directed edge from each vertex

T o)

to

(z1 + a,22 + azq,23 + axa,..., T} + axp_y)
fora =0,...,p— 1. Similar to the POWER graphs, the fact that the SYM
graphs have small second eigenvalue means that the first k& symmetric poly-
nomials of m random numbers in Z/pZ quickly become almost independent
as m — oQ.



Theorem 3.1 The graph SYM(p, k) has second eigenvalue of absolute value
< (k-1)/p.

Proof We will give two proofs. The first proof directly uses the fact that
POWER graphs have small eigenvalues; the same idea will be carried out
in detail for the graphs of the next section. The second, which is more
routine, will explicity give the eigenvectors, showing that the eigenvalues
are exponential sums like those of equation 3.1.

Consider m random numbers, ay,...,d,, drawn independently from
{0,...,p — 1} with uniform distribution, and let

i i
si=a;+---+a,

fori=1,...,k. Since the second eigenvalue of POWER(p, k) is bounded by
(k —1),/p, and since its adjacency matrix is diagonalizable, we have that

Pr{s; =by, -, s, =b}=p*+0 ((%@)m)

for any b;’s in Z/pZ where, for the moment, we identify s; with its repre-
¥ p

sentative in Z/pZ. The symmetric polynomials, oy, ...,0%, of the random
a;’s can be written in terms of the s;’s via the “Newton identities” .
. S
05 = (_1)J+17€ +fj(317"'13j—1)1 (32)

for some polynomials f; whose coefficients are rational numbers whose de-
nominators contain only products of powers of integers < j; the f;’s coef-
ficients (and 1/7) are therefore defined in Z/pZ for k < p — 1. We may
assume k < p — 1, or indeed < 1+ ,/p, for otherwise the theorem is clearly
true. Writing

k
Prioy & by vy 0% = bp}= HPL‘{O‘j“_"bj | O51 = B 1,0 501 = by}
i=1

we find that
Pr{gl:bl’""0k=bk}=P—k+O(((k-;)\/ﬁ) ).

(Here the constant in the O() might, in principle, depend horribly as a
function of p and k, but for fixed p and k it is independent of m.) Hence,



if A is the adjacency matrix of SYM(p, k), then every entry of A™ is of the

form
pF+0(((k - )VB)™),

and therefore the second eigenvalue of A is bounded by (k — 1),/p.

For the second proof, we note that we can actually write out the eigen-
vectors without much trouble. Indeed, the Newton identities allow us to
write .

sj = (=1)"*1jo; + gj(01,.-.,0-1)
for some polynomials, g;, with integer coefficients (and therefore defined in
Z[pZ). 1t is easy to see that the function which takes the value

i Cyz(rl)-i’m Cgk (@150 @1 )+ (=1)FH kg,
1 2 e k

on the vertex (z1,...,z) is an eigenfunction, for p-th roots of unity ¢;, with
eigenvalue

P

B —ak
E:C1'1C2a "‘Cka )
a=0

and therefore the same bounds on the eigenvalues hold for SYM as for

POWER.

4 Cayley Graphs of AFFINE

We begin by proving theorem 1.3. The proof will work for any prime, p, for
Cayley graph on
{rPz+r, er’z+r|reZ/pZ}

where ¢ is a fixed non-residue. Let A be SQRT(p)’s adjacency matrix. We
will estimate the trace of A™ for a large m. Since the trace of the matrix
representing the directed Cayley graph of {az + b} on AFFINE is p(p — 1)
if a =1 and b = 0 and 0 otherwise, and since

(xa?z + a1) o (+ade + az)o---o(+a z + an) =
t+(ay - am)? +ay xalay -+ add:---d?_a,

we have that the trace of A™ is just p(p — 1) times the number of solutions
to the equations

ajay -l =41, (4.1)
aytalay+---+ala---a%_jan =0. (4.2)



Using the the first equation to eliminate a,, from the second and substituting
b; = a}ad}---a?_,a;, the second equation becomes

by 4 by« & br_q £ byby by -0 =0,

with the b; ranging over all values in (Z/pZ)*.

To count the number of solutions to this equation, recall that SUMPROD(p)
has second eigenvalue < ,/p. Similarly the three natural variants of SUMPROD(p),
namely the graphs that connect each (z,y) to (z + a,ya™!), (z — a,ya), or
(z —a,ya™") respectively as a ranges over (Z/pZ)*, also have second eigen-
value < ,/p (and the same eigenvectors). It follows for any fixing of the
pluses and minuses, the quantities s and ¢ given by

s = bitbyt-tby,
t = bybylbgbyt-- -1

quickly become independent, in the sense that for any a € Z/pZ and 3 €
(Z/pZ)* we have

ro=a 1= = iy +o(G2) )

for randomly chosen b; in (Z/pZ)* (independently and with uniform distri-
bution). It follows that

Trace (A™) = 2™(p — 1)™ + O ((Qﬁ)m)

with the constant in O() independent of m. Since the first eigenvalue of
A is clearly 2(p — 1), taking m — oo gives that the second eigenvalue of
SQRT(p) is bounded by 2,/p.

What distinguishes these graphs from the others is that the associated
Cayley hypergraphs have small second eigenvalue. Let us recall some rep-
resentation theory (Fourier analysis) of finite groups; for proofs see, for
example, [Rob83]. Given a finite group, G, the space of complex valued
functions on G with the inner product

(uav) = Z u(g);(g_),

geG

denoted Ly(G), can be orthogonally decomposed into subspaces

Ly (G) = é E;
i=1
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with the following conditions:

1. Each E; is invariant under the natural action of G on Ls(G), given by
g(u(z)) = u(gz).

2. dim(E;) = d? for some d; corresponding to the dimension of an irre-
ducible representation of G.

3. r is equal to the number of conjugacy classes in G.

It follows that the matrix A of any Cayley graph on GG vanishes outside the
E; x E; blocks. The second eigenvalue of the Cayley t-uniform hypergraph
derived from A, see [FW], turns out to be

(t-2)/2
px(z) s

assuming that Fy corresponds to the trivial representation (i.e. the all 1’s
vector). It follows that any Cayley graph whose #-uniform hypergraphs have
small second eigenvalue must have some d; close to \/n.

The space AFFINE(p) is known to have a particularly simple decompo-
sition, namely as the sum of p subspaces, E;, where for 1 < i < p— 1 they
are the span of the functions

aa:+b i C(i—l)loga

for a fixed primitive (p — 1)-th root of unity and a fixed log function (i.e.
with a fixed generator of (Z/pZ)* as its base); see, for example, [Rob83]. E,
is therefore a (p — 1)* dimensional space. Since the graph SQRT(p) has for
each fixed a two generators of the form az + b, it follows that its adjacency
matrix A vanishes on all the F; x E; blocks for 2 < i < p — 1. Hence the
t-uniform Cayley hypergraph derived from SQRT(p) has second eigenvalue

;2%(_-\/%)(\:—2)/2}“'&" _ (%)(1—2)/22\@’

which is within a constant factor of optimal for fixed ¢ among all Cayley
graphs with that many vertices and edges.
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5 More on AFFINE

Motivated by the discussion, we see that a subset H of AFFINE(p) will
yield Cayley hypergraphs with small eigenvalue only if for each a € (Z/pZ)*,
the number of elements of H of the form az + b is independent of a. To
generalize the construction of the last section, one can try to construct, for
any multiple of p — 1, and subset H of that size in AFFINE(p), such that
the associated Cayley hypergraphs have small second eigenvalue. While
we don’t have an explicit construction for such H’s, we will show that a
randomly constructed H will yield fairly small eigenvalues, and one can give
an algorithm to approximate this construction.

Consider an H of size 2(p — 1)k, constructed by chosing for each a €
(Z/pZ)*, k numbers by 1,...,b, ) from Z/pZ, and setting

H = {az + baj,', alz - Gba,i}-
We will prove:

Theorem 5.1 If b,; are chosen randomly in Z[pZ, uniformly and inde-
pendently, then the expected value of the second eigenvalue is bounded by
Clogp\/k(p — 1) for some absolute constant C'. More generally we have

E{NF + -+ A7} < (2emb(p - 1))"*(p - 1)?
where n = p(p — 1), the number of vertices in the graph.

Theorem 5.2 For any € there is a polynomial in n time algorithm to chose
bai to yield a graph with second eigenvalue bounded by C(k(p — 1))‘“’2.

Proof If A is the adjacency matrix of the corresponding Cayley graph, then
Trace (A™) = Z Trace ((a12 + bay,iy) 0+ - 0 (a2 + bap i)

Q1 yeeey@imstl yeenyim

(5.1)
where Trace (az + b) is p(p — 1) if @ = 1 and b = 0, and 0 otherwise. So
a summand on the right-hand-side for which a; -+ -a,, # 1 always vanishes;
this happens for a fraction (p — 2)/(p — 1) of the summands. Next consider
a fixed summand where a; ---a,, = 1. There

(alr + bal,fl) Q =45 O (amx + bam,im) =z+ f(b)D

where b is shorthand for the set of all b,;’s, and f is a linear function
depending on the a;’s involved. If f vanishes then the trace of this term
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is always p(p — 1), whereas if f is non-trivial (i.e. does not vanish) then
if the b’s are chosen randomly, then f(b) = 0 exactly 1/p of the time. In
particular, if there is an @ and ¢ such that the product contains exactly one
term from the set

{az + b, i, a” 'z — ab, ;},

then f(b) depends non-trivially on b,;. So letting S be the number of
summands for which a4 ---a,, = 1 and f(b) = 0, we have

S < mm (k(f:q,;gl)) < (2emk(p . 1))m/2

where () < (ae/b)® was used as well as the fact that f = 0 implies that
the number of different b, ;’s appearing is < m/2. On the other hand by
equation 5.1 we get

Bk = D)™ + A7 + -+ + AT} < (-2 (2h(=1))"~8) S p(p-1)+Sp(p-1),
and thus

E{AR 4+ A0} < S(p— 1)? < (2emk(p— 1)™*(p—1)2.  (5.2)

The other part of the lemma is proven by taking m =~ 2logp and even, and
applying Jensen’s inequality.

O

To give a polynomial time algorithm to approximate the randomized con-
struction, simply fix a value for m in equation 5.1, calculate for each sum-
mand on the right-hand-side what f(b) is, and then choose the b,;’s one
by one, each time choosing the value for b,; which makes as many f(b)’s
non-zero as possible, from those f(b)’s which are determined exactly when
that b,i’s value is chosen (along with previously chosen b’s values); the f’s
which are not definitely determined by the present b,;’s value (and that
of previous b’s) we ignore. This procedure will clearly get the number of
non-trivial f(b)’s to have at least as many non-zero values as is expected
by randomly choosing the b, ;’s. Thus we can give a polynomial in n time
algorithm to construct a graph whose second and smaller eigenvalues satisfy
the bound of equation 5.2 (ignoring the E { } in that equation).
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