PRINCETON SYSTEMSFEST PROCEEDINGS
CS-TR-224-89

February 1989

Princeton SystemsFest
Proceedings

February 24, 1989
Scanticon-Princeton

These are the proceedings of the Princeton University Department of Computer Science
SystemsFest, a one day workshop on computer systems. Included are abstracts of the
talks, as well as short writeups of the discussion following each talk. It is our goal that
the workshop develops into an annual event during which researchers can present and
discuss new ideas. Given the growing number of systems researchers within our depart-
ment, and the many ways their work interweave, an event like SystemsFest should
increase the communication and promote the collaboration among them.

There are a few things that we would like to see happen as a result of this workshop:

+ Speakers leaving with a strengthened interest in their new ideas, through feedback
during and after their talk as well as contacts with others who wish to see the work
proceed.

+ Students who do not yet have research topics finding ideas and advisors among the
presentations.

+ Everyone gaining a better understanding of the systems research being undertaken at
Princeton, especially our guests from the Industrial Affiliate program.

A final, perhaps more important goal is that everyone leave with a feeling of a day well
spent.

We wish to stress that this event is not a formal conference. The goal is to have
open discussions about new ideas. If those in the audience have questions, suggestions, or
concerns they should be voiced. Due to time constraints, question periods will have a lim-
ited time. However, if the moderator of a session suggest that the discussion be moved
into another room, view this as encouragement and not admonishment.

These proceedings are provided so that attendees familiarize with the background of
the talks before coming to the workshop, so that speakers will be able to spend most of
their time outlining new ideas.

The organizing committee would like to thank all those involved in making SystemsFest
a reality. First, to all the researchers who submitted ideas and to the ones who will be
presenting them. Second, to all the faculty members that are supporting the event.
Third, to Prof. Rafael Alonso, Prof. Hector Garcia-Molina and Prof. David Hanson for
their advise and encouragement. Finally, to Prof. Robert Sedgewick, Mrs. Charlotte
Ansted-Jameson and the secretarial staff, for their help with the administrative aspects of
organizing an event of this type.

The SystemsFest Organizing Committee

Matt Blaze
Chris Clifton
Luis Cova
Carl Staelin

List of Attendees

From the Princeton University Department of Computer Science

Robert Abbott Sarantos Kapidakis
Rafael Alonso Makoto Kobayashi
Andrew Appel Eleftherios Koutsofios
Daniel Barbara Kriton Kyrimis
Brad Barber Andrea LaPaugh
Youakim Bitar Richard Lipton
Matt Blaze Sally McKee
Matthias Blumrich Jeff Naughton
Alvaro Campos Karin Petersen
Mara Chibnik Jim Plank

Chris Clifton Christos Polyzois
Luis Cova Norman Ramsey
Dimitris Doukas Jonathan Sandberg
Hector Garcia-Molina Dimitrios Serpanos
Michael Golan Patricia Simpson
Mordecai Golin Annemarie Spauster
Mark Greenstreet Carl Staelin

Paul Haahr Andrew Tolmach
David Hanson Jenny Zhao

From Elsewhere at Princeton University
Mark Stewart Applied Math

Industrial Affiliates

Anton Dahbura Bell Labs

Stu Feldman Bell Communications Research
Arding Hsu Siemens Research

Christos Nikolau IBM

Maylee Noah IDA

Stephen North Bell Labs

Andrew Reibman Bell Labs

Norman D. Winarsky SRI Sarnoff Laboratory

2 SystemsFest Proceedings

Princeton University Computer Science Department

SystemsFest

“Our Current Research”

Friday, February 24th, 1989
Scanticon-Princeton

FINAL PROGRAM

8:00-8:45 am
8:45-9:00 am
9:00-10:40 am
Moderator:

Luis Cova
Annemarie Spauster
Carl Staelin

Paul Haahr

10:40-11:00 am
11:00 am - 12:40 pm
Moderator:

Sally McKee

Dave Hanson
Eleftherios Koutsofios
Chris Clifton
12:40-2:00 pm
2:00-3:40 pm
Moderator:

Hector Garcia-Molina
Daniel Barbara

Rob Abbott

Pat Simpson

Rafael Alonso
3:40-4:00 pm
4:00-5:40 pm
Moderator:

Dimitrios Serpanos
Jeff Naughton
Andrew Appel
Richard Lipton

6:00-8:00 pm
8:00-8:15 pm
8:15-9:00 pm
Invited Speaker:

Breakfast
Opening Remarks by Chris Clifton

Distributed and Operating Systems

Dave Hanson

Homogeneity in Very Large Distributed Systems
Reliably Delivering Ordered Multicasts
Dynamic Global File Allocation

New Thoughts on Assemblers and Linkers

Morning Break

Software Tools

Rafael Alonso

Debugging on the Gnot

Tools for Literate Programming

A Graphics Editor for Technical Pictures
SpeedBrowsing

Lunch

Database Management Systems

Luis Cova

A Probabilistic Relational Data Model

Implementing a Knowledge Base System

Scheduling Real-Time Transactions with Disk Resident Data
Characterizing Database Structure

Connecting Heterogeneous Databases

Afternoon Break
Parallel Systems
Matt Blaze

Design of a PRAM System

Shared Single Level Store

Parallel Functional Languages
Programming Arrays of Identical Processors

Dinner
Closing Remarks by Carl Staelin

Evening Session

Stu Feldman, Bell Communication Research
“Real Life”

All sessions will take place in Conference Room K. Room M4 will be available all day for spon-
taneous discussions. Breaks will be in the coffee break area between Rooms K and M4. All meals
(including breakfast) will be in The Copenhagen Restaurant.

SystemsFest Proceedings 3

Distributed and Operating Systems Session

The first session started off with Luis Cova discussing protocol development in very large
heterogeneous distributed systems. The point was made that in such systems, standards
may not exist or be hard to enforce. He introduced ideas on developing protocols “on the
fly”, as opposed to using pre-existing standards. This led to a number of questions, in par-
ticular involving what standards must exist in order for this to work at all. Norman
Ramsey asked what sort of experiments could be tried in the lab in order to test these
ideas. Richard Lipton pointed out that in such an arrangement even alphabets might
differ. Brad Barber suggested that as a bottom level, some sort of standard identification
message might be needed. Mark Greenstreet suggested the problems involved with
unknown machines -- should we trust strangers? Christos Polyzois commented that such
a system could lead to Anarchy, to which Luis responded that what was being provided
was Freedom.

Annemarie Spauster talked on the subject of Ordered Multicast. In her model, trees
of Multicast groups are used to enforce ordering. As all messages to the group must go
through the root, the root can impose an order on the multicasts. Richard Lipton asked
how sparse are typical multicasts -- are they close to broadcast, or often a single message?
Annemarie wasn’t sure, but would like to hear from anyone who has applications which
would use multicast. Rafael Alonso suggested that in networks such as Ethernet, every-
thing is a broadcast anyway. Annemarie noted that much of the cost was involved in pro-
cessing the message, and this could be cut by a multicast. Hector Garcia-Molina noted
that much of the network traffic in an ethernet is between a workstation and file servers,
for which multicast would be useful. Christos Nikolau suggested that installation of
different versions of a long-running distributed application would be a good application
for multicast. Another question was how much is multicast affected by topology.
Annemarie’s answer to this was “a lot”. However, this seemed to be an advantage of mul-
ticast -- it could take advantage of diverse topologies. David Hanson asked about multi-
ple recipients on a processor. This turns out to be a related, but independent problem.
Brad Barber asked if unordered multicasts would be useful, and would the distribution
graphs for ordering be of use. Mark Greenstreet suggested that the cost for ordered mul-
ticast really isn’t that great anyway. Rafael Alonso suggested looking more closely at
topology. Paul Haahr asked how the analysis had been done. Annemarie said that she
had chosen small, random groups. Karin Peterson asked if this would unfairly load the
nodes chosen as the root of the distribution graph. Load shifting trees would be a possi-
ble answer to this. Daniel Barbara asked if this work had application to existing distri-
buted database protocols.

Carl Staelin’s talk looked at shifting “hot” files on disk so as to spread the access
among available devices. Richard Lipton asked if files were moved in whole or in part.
Carl said that this was a decision that would have to be made, depending on the charac-
teristics of the operating system in question. Another question was if replicating, rather
than moving, files would be appropriate. Carl answered with an emphatic yes, noting
that consistency would have to watched -- the replication may have to be ended at the
first write, if the write frequency is high. Christos Nikolau asked about the frequency of
measuring file use. Carl noted that studies have shown that caching (very frequent
measuring of use, with no history) perform better than static file allocation (infrequent
measuring of use), which suggest that frequent measurement is desirable. Rafael Alonso
noted that at least in Unix, files are typically read in full, and static allocation is a well-

SystemsFest Proceedings 4

studied problem. He also pointed out that many writes are to temporary files. Kriton
Kyrimis also asked “how does it play on Unix”. Paul Haahr asked how this applied to
disk striping. Carl said that he was looking into it. Norman Ramsey asked how this
differed from caching. Carl pointed out that this was sophisticated caching. Andrew Tol-
mach pointed out that this related to the question of caching entire files versus blocks.
Brad Barber pointed out that this approach would help with writes as well as reads,
which caching wouldn’t.

Paul Haahr talked about redefining the tasks of assemblers and linkers, particularly
now that few people write assembly code, and what is really needed is a compiler back-
end. In particular, much of the functionality that is now assigned to assemblers could be
better done by linkers. Rafael Alonso asked how this would affect inter-language linking.
Paul suggested that for dynamic languages it may be too difficult a problem but for static
languages this could be interesting work. Andrew Tolmach noted that incremental link-
ing is another area that could use work. Richard Lipton asked if assembler source needed
to be human readable, and why in fact do assemblers need to work from source files,
preventing “on the fly” assembly of program-generated code. Paul suggested that this is
due to the two-pass nature of current assemblers. However, files may still be necessary
due to the fact that assemblers are typically multi-pass. Stu Feldman noted that linkers
are also multipass. Paul suggested that some of the passes are due to overlays and other
techniques which are no longer necessary with large virtual memories. Mark Greenstreet
asked how much time is spent “asciising” the assembly source. Stu suggested that little
time (10% of total assembly) is spent “parsing” the assembly source, but gains could be
made by storing assembly source in a more machine-friendly form.

5 SystemsFest Proceedings

Homogeneity in Very Large Distributed Systems
Luis Cova

Very Large Distributed Systems (VLDS) are distributed systems consisting of tens of
thousands of computers or even more. The computers may be part of smaller distributed
systems and belong to different administration domains. One important issue to consider
in this type of system is the inherent heterogeneity in hardware, software, and users.

It has long been recognized that network transparency is the fundamental concept
of any type of distributed system. While it is easily achieved for networks under a single
administrative control, through the enforcement of standards and homogeneous com-
ponents (e.g., Cambridge Distributed System [Needham1982], V-kernel [Cheriton1988],
LOCUS [Popek1981]) the concept is less feasible for systems with multiple administra-
tions, each controlling a subset of the computing sites. For the latter type of environ-
ments, network transparency has been achieved at the transportation and session levels
by protocol standardization (e.g., TCP/IP), and usually, some degree of transparency has
been achieved at the presentation level with the use of remote sessions (e.g. telnet),
remote executions (e.g. rsh), and remote procedure calls (RPC).

Since in a VLDS there are potentially tens of thousands of machines, it is difficult to
have complete homogeneity across all the components, neither it is desire in many cases.
What it is require is to establish the role of homogeneity in this type of environment, i.e.,
set the lowest common denominator that allows the components to interact among
themselves. There are others researchers also looking for this common denominator.

Several Researchers have proposed sets of protocols to be used by different vendors
and implementors to develop their distributed applications. Therefore allowing interoper-
ability across machines [Zimmermannl1980], [SUN1988], . Others researchers have pro-
posed homogeneous kernels to support distributed operations [Cheriton1988], [Turn-
bull1987], [Schmidtkel1982]. A third camp represented by the HCS project [Notkin1988]
works on a basic set of network services (mail, filing, printing, naming, authentication
and remote computation) that adapt to the demands of a heterogeneous environment,
mainly through dynamic binding.

My idea is to generalize the above approaches by using a procedure that allows enti-
ties of a VLDS to negotiate the type of interaction they will hold (e.g., decide the
transmission protocol to be used.) I call this procedure a bootstrap negotiation process.
This process must be based on a simple language to express basic operations and ways to
iterate to higher levels of interactions. The common language should be simple, which
means a restrictive type of interaction. This common language should be use to agree on
some higher level of cooperation among entities. Implementation of this language for new
members would not take much effort. Even more, there could be more than one common
language (more that one standard) and nodes that know several standards could help
other nodes to "learn" new common languages.

An example where the bootstrap negotiation process will solve many questions is in
the discussion between state-less and state-full interactions. This is another aspect of an
interaction that should be negotiated. State-less interactions are easier to implement (no
crash recovery mechanism necessary,) but cost more since each message has to be self-
contained. Often using state-full protocols will reduce the costs of communication. Again
the nodes can agree on what style of interaction they are going to use and what type of
state they are going to save. The protocol should also allow each node to check with the

SystemsFest Proceedings 6

other nodes to make sure that they are all in the same state.

Another aspect of VLDS is that it is difficult for an entity of the system to know
what happen when something goes wrong in another entity, e.g., maybe a new operating
system was brought up in another machine or a new RPC protocol is being used. By way
of the bootstrap negotiation process, the interaction between these entities could again be
resumed from the lowest common level, iterating to the appropriate level of cooperation.
Therefore allowing new configurations to take place.

References

Needham1982.
Needham, R. M. and Herbert, A. J., The Cambridge Distributed Computing System,
Addison Wesley (1982).

Cheriton1988.
Cheriton, David R., “The V Distributed System,” Communications of the ACM
31(3) pp. 314-333 Association for Computing Machinery, (March 1988).

Popek1981.
Popek, G., Walker, B., Chow, J., Edwards, D., Kline, C., Rudisin, G., and Thiel, G.,
“LOCUS: A Network Transparent, High Reliability Distributed System,” Proceedings
Eight ACM Symposium on Operating System Principles, pp. 169-177 (December
1981).

Zimmermann1980,
Zimmermann, H., “OSI Reference Model: The ISO Model of Architecture for Open
Systems Interconnection,” IEEE Transactions on Communications COM-28(4) pp.
425-432 (April 1980).

SUN1988.
» "ONC/NFS Protocol Specifications and Service Manual,” Part No. 800-3084-10,
SUN Microsystems, Inc. (Revision A, of 26 August 1988).

Turnbull1987.
Turnbull, Martin, “Support for Heterogeneity in the Global Distributed Operating
System,” Operating System Review 21(2) pp. 11-21 SIGOPS, (April 1987).

Schmidtkel982.
Schmidtke, F. E., “A Communication Oriented Operating System Kernel for a Fully
Distributed Architecture,” Pathways to the Information Society. Proceedings of the
6th International Conference on Computer Communication, pp. 757 - 762 North-
Holland, (1982).

Notkin1988.
Notkin, David, Blank, Andrew P., Lazowska, Edward D., Levy, Henry M., Sanislo,
Jan, and Zahorjan, John, “Interconnecting Heterogeneous Computer Systems,” Com-

munications of the ACM 31(3) pp. 258-273 Association for Computing Machinery,
(March 1988).

7 SystemsFest Proceedings

Reliably Delivering Ordered Multicasts
Annemarie Spauster

This is joint work with Hector Garcia-Molina.

The Problem

In distributed systems a multicast group is a collection of processes that are the desti-
nations of the same sequence of messages. These messages may originate at one or more
source sites and the destination processes may run on one or more sites, not necessarily dis-
tinct. Each source message is addressed to the multicast group (as opposed to individual
sites or processes). The multicast protocol ensures that the messages are delivered to the
appropriate processes.

For some applications, the multicast protocol must provide guarantees regarding the
order in which messages are delivered to the destination processes. The strongest one that
we have considered is the multiple group ordering property.

Multiple group ordering. If messages m, and mg are delivered to two processes,
they are delivered in the same relative order, even if they come from different
sources and are addressed to different but overlapping multicast groups.

Aside from ordering messages consistently, it is often essential that the multicast pro-
tocol exhibit some reliability properties. Various degrees of reliability are possible. For
example, if a site fails, it may be important that the other sites in its multicast groups still
get the group messages according to the required ordering property. It may or may not be
necessary to guarantee that the failed site get missed messages upon recovery. Just as
important as providing reliability is providing it efficiently. Especially during failure-free
operation (by far the most likely situation), it is essential that the overhead of the reliabil-
ity mechanism be minimal.

The Propagation Graph Algorithm

The solution we propose to the multiple group ordering problem attempts to strike a
compromise between previous solutions that are either fully distributed [BJ87] (and require
many messages and long delay) or centralized [CM84] (and suffer from bottlenecks). The
propagation algorithm orders messages using a collection of nodes structured into a mes-
sage propagation graph (in particular, a forest). Each node in the graph represents a com-
puter site. The graph indicates the paths messages should follow to get to all intended des-
tinations. Instead of sending the messages to the destinations and then ordering them, the
messages get propagated via a series of sites that order them along the way by merging
messages destined for different groups. Eventually, all messages end up at their destina-
tions, already ordered. The key idea is to use sites that are in the intersections of multicast
groups as the intermediary nodes.

In Figure 1 we show a propagation graph for the following set of multicast groups.
There are nine sites: a, b, ¢, d, e, f, g, h and j and eight destination groups:

{c.d}, ag = {a,bc}, az = {bc,de}, agy = {def}, as = {ef},
{b.gl, a7 = {c,h} and ag = {dyj}.

ay
Qg
The originator of a message for a multicast group (the source) sends it to the member of the
group that is of least depth in the tree (the primary destination). A site that receives a
message propagates it down any subtree that contains members of the message’s destina-
tion group. In Figure 1, if a source wants to send a message to group ag, it sends the mes-

sage to a3’s primary destination, d, d sends it to ¢ and e, and c sends it to b. Along its
journey, the a3 message is merged with messages for the other groups on its path by their

SystemsFest Proceedings

primary destinations. Note that messages do not necessarily flow down to the bottom of the
tree. For instance, g only receives ag messages. More details on the propagation graph
algorithm can be found in [GS88].

-
-

Figure 1

The Talk

With the solution to the ordering problem in hand, we will address the question of
reliability.

References

[BJ87] K.P. Birman, T.A. Joseph, "Reliable Communication in the Presence of
Failures,” ACM Transactions on Computer Systems, Vol. 5, No. 1, February
1987, pp. 47-76.

[CMB4] J. Chang, N.F. Maxemchuk, "Reliable Broadcast Protocols,” ACM Transac-
tions on Computer Systems, Vol. 2, No. 3, August 1984, pp. 251-273.

[GS88] H. Garcia-Molina, A. Spauster, "Message Ordering in a Multicast Environ-
ment," Technical Report CS-TR-161-88, Princeton University, June 1988. To
appear in Proceedings of the IEEE Ninth International Conference on Distri-
buted Computing Systems, June 1989.

SystemsFest Proceedings

Dynamic Global File Allocation
Carl Staelin

The problem is to automatically lay out files within a disk farm so that the overall perfor-
mance of the system is globally optimal. The environment is a complicated one, with a
variety of hooks available to the system to determine optimal policies. In addition, the
process will be dynamic, in order to adapt to changing requirements.

Essentially, the system consists of a set of devices, with possibly varying operating
characteristics, on which it can distribute data from a set of files. The probabilities of
accessing any given file are strongly skewed, so that some files are dramatically hotter
than other files.

The problem consists of three major sub-problems, some of which have been solved by
other researchers. The first problem is to describe the I/O system so that the program is
able to minimize contention, and to maximize performance. The second problem is to
detect which files are heavily accessed, and to detect patterns of use for frequently
accessed files. The third problem is to dynamically manage the storage space so that per-
formance is maximized.

The first problem has been largely solved by work at IBM, and this area is interest-
ing merely because of the wide variety of new devices which have become available
recently, such as the jukebox and the electronic disk. With the advent of both massive
online storage similar to the automated tape systems, massive storage systems with rea-
sonable performance become feasible. However, the truly interesting development comes
from the electronic disk, which may be used to provide fast reliable updates.

The second problem has not really been addressed, and it implies that some data col-
lecting capability is built into the file system. The problem is to determine which data is
most helpful for predicting future file use. Some work has been done in this area, but
these results are preliminary, and more detailed data collection should be done.

The last problem is the truly interesting problem - how to dynamically manage data
in a complex environment. Given the data collected in problem two, how can the system
globally layout files to maximize performance (and reliability?). First of all, there has
been substantial work at IBM on solving the static version of this problem, in a greatly
restricted environment which precludes interesting solutions such as striping and which
primarily focuses on load balancing. Some initial strategies are described below, and
their use depends on how the data is accessed, and on the size of the file.

For (large) files which are always accessed in a linear fashion, bit striping the data
so that each disk has one bit of each word is an attractive solution. First of all, the
throughput is multiplied by the number of bits in the word (the extent of the striping).
Secondly, reliable operation in the face of catastrophic (independent) disk failure can be
accomplished simply by adding an extra disk which stores some checksum information.

For small files, the best solution might simply to hope that the truly hot files will
stay in a cache most of the time, and then to allocate the files near the center of each disk
in order to minimize seek times. In addition, the system should probably consider these
files as being relatively mobile, since they are easily moved and since the hot files will
have a dramatic effect on load balancing. In other words, the system might initially focus
on balancing the load simply by moving the small hot files around.

SystemsFest Proceedings 10

For large files which are sometimes accessed randomly and sometimes scanned in a
linear fashion, block striping might be an attractive solution. In this case one disk might
have blocks 0, 8, 16, ... and another disk might have blocks 1, 9, 17, ... for a given file.
For the random search the delay is similar to the delay for a normal file, while for the
sequential scan the throughput is similar to the bit striped case.

References

1. Carl Staelin, File Access Patterns, CS-TR-179-88, Department of Computer Science,
Princeton University, Princeton, N.J. 08540.

2. Joel Wolf, The Placement Optimization Program: A Practical Solution to the DASD
File Assignment Problem, IBM Thomas J. Watson Research Center, P.O. Box 704,
Yorktown Heights, N.Y. 10598.

11 SystemsFest Proceedings

New Thoughts on Assemblers and Linkers
Paul Haahr

Assemblers and linkers are among the oldest and most frequently used of system programs. They
are also among the most forgotten. While compiler technology has progressed significantly in the
past decade, linkers and assemblers have changed little if at all. The few changes which are occur-
ring in the design of these programs are generally being made to support dynamic linking and
shared libraries, rather than altering the traditional breakdown of tasks. I am suggesting changes
to the design of programming systems which would shift some tasks from compilers and assemblers
to linkers, because it is more natural to handle those tasks late in the process of program creation.

My comments are meant to be taken in the context of the UNIX' operating system on large
(at least 32-bit) linear address space machines, though many apply to a wider set of programming
environments. Other environments, however, place different requirements on linkers. For exam-
ple, on machines without virtual memory or not enough physical memory (i.e., PCs running MS-
DOS) linkers normally handle overlays. Segmented memory architectures also change the function
of linkers and assemblers.

The changes in design I am suggesting involve moving some tasks from compilers and assem-
blers to linkers. In doing so, the form of assembler output (and linker input) would change from
relocatable object modules to little more than tokenized versions of assembler input. Also, it may
be useful to add an optimization flag to linker invocation similar to the -O option commonly used to
request compiler optimization.

Doing Compiler Post-Processing at Link Time

Address displacements are usually calculated by an assembler. Typically, an assembler must com-
pute at least the size of both operand and branch displacements, and, quite commonly, must calcu-
late the numerical value of these displacements, at least for branches within one function. How-
ever, for inter-module references, it is impossible to guess correctly the size of displacements, lead-
ing to assemblers that make the most pessimistic assumptions—i.e., all procedure calls use 32-bit
jumps, all operands are specified as 32-bit addresses. In many cases, these assumptions introduce
poor code.

Assemblers may synthesize complex instructions from simpler ones, but often a better job
could be done by a loader. For example, on the MIPS R2000 architecture[8] loads from 32-bit
addresses or with 32-bit offsets are done in several machine instructions, but the assembler pro-
vides one load instruction that, depending on context, will generate the appropriate machine
instructions. To optimize the case of fetching from global and static variables (the most common
case of 32-bit references in load and store instructions), the MIPS compiler set provides for a global
data area which contains “small” static objects, so that they can be referenced in one instruction
using a 16-bit offset. However, the compiler must know whether to place objects in this region,
and it does so based on a user supplied hint—place objects of n or fewer bytes in the small data
region—and changing the size requires recompiling all modules in a program. The compiler will
tell the user if too many objects (more than 64K bytes worth) have been allocated to the small data
region, or give a good hint size to maximally use the region[11]. If the linker constructed address-
ing modes and allocated this data region itself, this awkward communication between linker and
compiler could be avoided. A similar technique to what I am proposing is used by Ken Thompson
in the 2c compiler for the Motorola 68020, and by David Wall in the Mahler compiler series for the
Titan[13, 12].

In the current generation of processor architectures, code has often has to be reorganized after
code generation, to improve pipeline performance; for example, instructions may have to be moved

t UNIX is a registered trademark of AT&T.

SystemsFest Proceedings 12

into branch or load delay slots[10, 7]. Conventionally, reorganization is done by the compiler or the
assembler. However, linkers may have more information useful in code reorganization, i.e. target
addresses or their contents.

Moving Work from Compilers to Linkers

Procedure call can be an expensive operation. One factor which influenced the design of current
RISC processors is the time-consuming call instructions on the VAX architecture[4, 9]. Much of the
cost of procedure call is saving registers. Often, register windows or an on-chip top of stack
cache[5] are used to make calling inexpensive. On machines with conventional simple register
organizations, interprocedural optimization can make up for the lack of such hardware support,
and sometimes perform better[14]. Some approaches to interprocedural optimization have been
done in a separate post-compiler, pre-linker stage[3] while others have shifted more work to the
linker{12]. Problems with making such optimizations outside the linker arise because the post-
processor may not have information for all modules. Moreover, this extra stage will normally com-
pile exactly the same information as a linker would, but do so independently of the linker, hence
the same job is being done twice. (This result is not a necessary consequence of separate organiza-
tion, though it is likely in practice.)

Procedure inlining can also be done inside linkers. In this way, a compiler would not have to
pay attention to inlining, other than to possibly flag certain procedures as appropriate to inline.

Bringing these ideas to their logical conclusion leads to the idea of doing code generation at
link time based on intermediary code generated by the compiler. Some work in this area has
already been done[13,1]. More investigation is needed in this idea, especially as to whether it

introduces too much complexity in the linker or makes link-time a bottleneck in program develop-
ment.

Shared Libraries and Dynamic Linking

Shared libraries and dynamic linking are often discussed in one breath. However, they are best
thought of as two concepts that have a synergistic relationship: the most useful application of
dynamic linking may be shared libraries, and shared libraries may be best used when they are
dynamically linked. However, the combination of dynamic linking and shared libraries can also
create performance problems in a demand paging environment[6].

Dynamic linking simply requires that a program have some access to its own symbol table—
either on disk or in RAM—as well as that of the code to be linked in. Support code to do this in C
on UNIX requires only about 200 lines of C code that invokes the linker as a separate process.
Doing it efficiently, so that one function at a time may be linked in, rather than dynamically load-
ing an entire library at once, may require writing a linker subset as a library that can be loaded
with normal applications. In principle, the idea is straightforward.

Shared libraries can be easy or hard to implement depending on how dynamic they are. A
library that is always loaded at the same location and makes no references to variables or pro-
cedures local to the program loading it can be used with no dynamic linking. Libraries that are
mapped at arbitrary addresses and make use of symbols defined in a non-dynamic module require
extensive dynamic linking, which may touch many or all pages in an address space and lead to
thrashing.

Support for New Tasks

Many programming languages allow a programmer to specify initialization code for particular
modules or data structures; for example, module bodies in Modula or Oberon, and constructors in
C+ +. Implementing this with a conventional linker requires special post-linker processing, or
invoking a tool which then invokes a linker, in addition to startup code in the language’s run time
system. If a linker provides a primitive that creates a list collected from various object modules,
initialization can be done easily with little or no post-processing and trivial run time library

13 SystemsFest Proceedings

support.

Linkers transmit symbol table and type information from compilers to debuggers. In a con-

ventional linker, this support is grafted on, and requires contortions from both compilers and
debuggers[2]. With better linker and assembler support, compiler information and data structures
could be stored directly in an image.

Compatibility

If the changes suggested here are implemented, many existing object files would be made obsolete,
even if target image formats do not change. In order to maintain compatibility, wrapping pro-
grams which would take old object files and translate them to new linker (or assembler) input
would be possible. Depending on which of the above ideas were implemented, there would be more
or less work in the wrapper program.

References

1.

10.

11.
12.

13.

14.

Manuel E. Benitez and Jack W. Davidson, "A Portable Global Optimizer and Linker,’
Proceedings of the SIGPLAN ’88 Conference on Programming Language Design and Imple-
mentation, pp. 329-338 (June 22-24, 1988).

Tom Cargill, "Pi: A Case Study in Object-Oriented Programming,” Proceedings of the Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, pp. 350-360
(August 1986).

Fred C. Chow, "Minimizing Register Usage Penalty at Procedure Calls,” Proceedings of the
SIGPLAN '88 Conference on Programming Language Design and Implementation, pp. 85-94
(June 22-24, 1988).

Digital Equipment Corporation, Vax Architecture Handbook. 1981.

David R. Ditzel, Hubert R. McLellan, and Alan D. Berenbaum, "Design Tradeoffs to Support
the C Programming Language in the CRISP Microprocessor,” Proceedings of the Second
Conference on Architectural Support for Programming Languages and Operating Systems,
(October 5-8, 1987).

Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mary S. Weeks, "Shared Libraries in
SunOS,” Proceedings of the Summer USENIX Conference, pp. 131-146 (June 1987).

John L. Hennessy and Thomas R. Gross, "Code Generation and Reorganization in the Pres-
ence of Pipeline Constraints,” Proceeding of the Ninth Conference on Principles of Program-
ming Languages, pp. 120-127 (January 1982).

Gerry Kane, MIPS R2000 RISC Processor Architecture, Prentice-Hall (1987).

David A. Patterson and David R. Ditzel, “The Case for the Reduced Instruction Set Com-
puter,” Computer Architecture News 8(6) pp. 25-33 (October 1980).

David A. Patterson, "Reduced Instruction Set Computers,” Communications of the ACM
28(1) pp. 8-21 (January 1985).

MIPS Computer Systems, MIPS Language Programmer’s Guide. 1986.

David W. Wall, “Global Register Allocation at Link Time,” Proceedings of the SIGPLAN ’88
Conference on Compiler Construction, pp. 264-275 (July 1986).

David W. Wall and Michael L. Powell, "The Mahler Experience: Using an Intermediate
Language as the Machine Description,” Proceedings of the Second Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 100-104 (October 5-8, 1987).

David W. Wall, “Register Windows vs. Register Allocation,” Proceedings of the SIGPLAN ’88

Conference on Programming Language Design and Implementation, pp. 67-78 (June 22-24,
1988).

SystemsFest Proceedings 14

Software Tools Session

Sally McKee started off this session with a discussion of a debugger for Plan 9 which she
has built; in particular stressing some of the special features of Plan 9 and how they can
be exploited in designing a debugger. Christos Nikolau suggested maintaining computa-
tional history for debugging. Rafael Alonso suggested that this system is natural for dis-
tributed debugging

Dave Hanson discussed tools for combining documentation and programs (“literate” pro-
gramming.) The comment was made that such systems are good for large production sys-
tems. Hector Garcia-Molina asked what web does, and this was explained. Dick Lipton
said that after the fact annotation is harder - documentation systems should make it easy
to use them from the start. Paul Haahr asked why these systems only work with monol-
ithic programs. Mark Greenstreet asked why programs need to be read in a fixed order.
It was pointed out that coding is only a small part of software life cycle. Norman noted
that Hanson’s system seems to work on 25k line programs.

Eleftherios Koutsofios discussed a tool for building structured pictures (such as trees)
based on a combination of a markup language to specify constraints, and a WYSIWYG
display of the result. Carl Staelin suggested having WYSIWYG tools to modify con-
straints Mark Greenstreet said that similar problems occur in VLSI CAD systems

Chris Clifton introduced ideas for combining Hypertext-style browsing with database-style
queries. Luis Cova suggested that people like two-dimensional spaces and that the user
should be able to specify how to navigate. Karin Petersen suggested introducing a “meta
node” for navigational information. Dick Lipton identified two modes for lookup; either
you know what you want and look in index (easy), or you browse through lots of text
quickly (harder). It was suggested that books are much better for this latter type of
browsing than text stored on computers. Mordecai Golin suggested keeping track of pre-
vious indexes. Stu Feldman suggested looking at work done by Kim Fairchild at MCC.
Rafael Alonso said that he thinks people can handle three-dimensional views of the data-
base with practice. Pat Simpson suggested looking at spacial data management systems
for information on three-dimensional data browsing. Stu said that keyword searches are
more successful at locating data than spacial metaphors.

15 SystemsFest Proceedings

Debugging on the Gnot
Sally McKee

Plan 9 is a new computing environment under development at Bell Labs.! The environ-
ment is expected to accommodate small or large numbers of users, and the goal of the pro-
ject is to provide a system to encompass all of AT&T’s research and development. Rather
than trying to build a big system by patching together a lot of small UNIX’s, they are
building one big UNIX from a lot of smaller systems: clusters of file and execute servers
are connected by high speed networks, with lower speed distribution networks connecting
the user interfaces to the servers.

The present user interface is a Motorola 68020-based, grey-scale bitmap terminal
with mouse and network connections (most people would call it a diskless workstation)
called a Gnot.2 One of the Gnot’s interesting features is a hardware instruction counter (it
actually counts instruction pre-fetches) intended for research into hardware assists for
program debugging.

As in 9th Edition Unix, Plan 9 supports a file system, /proc, that allows one to obtain
information about and interact with living processes.® /proc contains a directory for each

active pid; so, for example, information about the process with pid 12345 is found in direc-
tory /proc/12345. Each of these directories contains 5 files:

ctl a write-only file for control messages (signals don’t exist)

tac a file corresponding to the hardware instruction counter

mem the process’s virtual address space (some parts of which are
read-only), along with appropriate parts of kernel memory

text a read-only link to the executable file that created the process

proc a read-only copy of the kernel’s proc structure for this process.

The /proc interface makes it easy for one program to access the address space of another;
this is especially important in interactive debugging, where the debugger and the object
being debugged are separate processes. This talk discusses the implementation of the
/proc file system on the Gnot and how a debugger might make use of these files.

References

1. David L. Presotto, “Plan 9 from Bell Labs -- The Network,” EUUG conference
proceedings, (April 1988).

2. Bart N. Locanthi, “This is Gnot Hardware,” Technical Memorandum #11276-
870629-04TM, AT&T Bell Laboratories (October 1988).

3. T.J. Killian, “Processes as Files,” USENIX conference proceedings, (summer 1984).

SystemsFest Proceedings 16

Tools for Literate Programming
David Hanson

Until recently, programs were not “read”. That is, programs were prepared with the tacit
assumption that their primary “reader” was the computer. Recently, several researchers
have been looking at programs as a form of literature that is intended for human con-
sumption first and computer consumption second. Not surprisingly, current programming
languages and programming environments support this new view poorly.

I am currently investigating tools and techniques for integrating program fragments
and explanatory text into a new form of “program”. For the present, this work is using
current high-level languages, such as C, and document formatting systems, such as TeX
and troff. In addition, I am investigating tools, such as editors, that facilitate this
integration. The goal of this work is to drastically reduce the effort required to write and
document programs while at the same time greatly increasing their literate value. In the
long term, a more interesting research direction---and a more important one---is to inves-
tigate the effects of the new literate view of programs on programming languages and
environments. Such investigations may lead to the design and implementation of
languages and environments that alter dramatically the way software is produced.

17 SystemsFest Proceedings

A Graphics Editor for Technical Pictures
Eleftherios Koutsofios

I am currently working on an editor for technical pictures.

Technical pictures (for example the picture of a graph, a tree, or a network layout),
tend to be both very precise and very complex. Drawing a 100 node tree is impossible to
do in a WYSIWYG system, both because drawing by mouse isn’t very precise and because
drawing and connecting 100 nodes is a lot of work. On the other hand, describing such a
tree using a program is very simple. After all, in many cases the tree would represent
some state of an algorithm so it should be trivial to change the program that implements
the algorithm to also generate the tree as output. Once the user has generated a draft
version of a picture using a program, it is generally desirable to use a WYSIWYG editor
to make small changes to it.

The editor I'm working on will present two views of a picture to the user: the pro-
gram view and the WYSIWYG view. It will allow the user to make changes to either view
and will take care of keeping the two views up to date.

The language of the editor will be object oriented. Each object will specify constraints
between it and other objects. Constraints are very appropriate for describing such pic-
tures, since technical pictures have structure and symmetry that can be easily expressed
by constraints.

The design of this system presents several interesting problems. From the user
interface point of view, the main problems are how to use the mouse, and how to make it
clear to the user which part of the program corresponds to which part of the picture.

References

1. Brian W. Kernighan, PIC - A Graphics Language for Typesetting, Revised User
Manual.

2. Greg Nelson, “"Juno, a constraint-based graphics system,” SIGGRAPH, pp. 235-243
(1985).

3. Ivan Sutherland, “Sketchpad, A Man-Machine Graphical Communication System,”
PhD thesis, MIT (Jan 1963).

4. Christopher J. Van Wyk, “A high-level language for specifying pictures,” Transac-
tions on Graphics 1(2)(April 1982).

SystemsFest Proceedings 18

Speed Browsing
Chris Clifton

Hypermedia systems[1, 2,4-7] are growing in popularity. Typically access to data in such
systems is through a browsing interface, in which users follow pointers between docu-
ments at their leisure. In large document bases this leads to the problem of being “lost in

hyperspace”, in which the user has no idea of where to start to find the desired informa-
tion.

We are working on a document database which encourages non-navigational queries
while still allowing the pointer-chasing approach of browsing{3]. However, we have done
little on a user interface to such a system. In this talk I will present some ideas for a
window and menu based approach to querying a hypermedia database that allows the
user to specify properties of the desired documents and quickly find them, skipping the
intermediate browsing steps.

First thoughts suggest that there are two separate parts to each query; the properties
of the desired documents, and the scope of the query. Document properties can be
specified using a "Query By Example”[8] style of interface. In particular, a menu-driven
interface can be built which relies on the database catalog/schema to provide “hints” to
the user in constructing queries. Scope can be handled in many ways, either through a
visual approach based on a displayed “database graph” showing the structure of the data,
or through some type of written specification of the type of links to follow.

Applications we have envisioned include on-line libraries, multiple authoring sys-
tems, and technical manual browsers. In the talk I will present ideas for this interface,
and look for feedback on how you would use such a system.

References

1. Robert M. Akscyn, Donald L. McCracken, and Elise A. Yoder, "KMS: A Distributed

Hypermedia System for Managing Knowledge in Organizations,” Communications
31(7)ACM, (July 1988).

2. 8. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, and A. Pathria, “Multimedia
Document Presentation, Information Extraction, and Document Formation in
MINOS: A Model and System,” Transactions on Office Information Systems 4(4) pp.
345-383 ACM, (October 1986).

3. Chris Clifton, Hector Garcia-Molina, and Robert Hagmann, “The Design of a Docu-
ment Database,” pp. 125-134 in Proceedings of the Conference on Document Process-
ing Systems, ACM, Santa Fe, New Mexico (December 5-9, 1988).

4. L. N. Garrett, K. Smith, and N. Meyrowitz, “Intermedia: Issues, Strategies, and Tac-
tics in the Design of a Hypermedia Document System,” pp. 163-174 in Computer-
Supported Cooperative Work Conference Proceedings, , Austin, TX (December 1986).

5. Danny Goodman, “The Two Faces of Hypercard,” MacWorld, pp. 123-129 (October
1987).

6. Frank G. Halasz, Thomas P. Moran, and Randall H. Trigg, “NoteCards in a Nut-

shell,” in Proceedings of the CHI+GI '87 Conference, ACM, Toronto, Canada (April
5-9, 1987).

7. Randall H. Trigg and Mark Weiser, “TEXTNET: A Network-Based Approach to Text
Handling,” Transactions on Office Information Systems 4(1) pp. 1-23 ACM, (January

19 SystemsFest Proceedings

8.

1986).

Moshé M. Zloof, “Query by Example,” in Proceedings of the 1975 National Computer
Conference, AFIPS Press, Anaheim, CA (May 19-22, 1975).

SystemsFest Proceedings 20

21

Database Management Systems Session

SystemsFest Proceedings

A Probabilistic Relational Data Model
Hector Garcia-Molina

It is often desirable to represent in a database entities whose properties cannot be deter-
ministically classified. We develop a new data model that includes probabilities associated
with the values of the attributes. The notion of missing probabilities is introduced for
partially specified probability distributions. This new model offers a richer descriptive
language allowing the database to more accurately reflect the uncertain real world. The
basic relational-like operators for the model are defined and their correctness is studied.

SystemsFest Proceedings 22

23

IMPLEMENTING A KNOWLEGE BASE SYSTEM
Daniel Barbard

Department of Computer Science
Princeton University
Princeton, N.J. 08544

Abstract

In the past years, a lot of attention has been devoted to the use of tech-
niques from artificial intelligence to construct programs with a limited capa-
city of reasoning in a particular realm of knowledge. Such expert systems
require the treatment of information as knowledge and use the Al techiques
for reasoning, problem solving and question-answering. When these sys-
tems are intended to be used in practical situations, the realization is made
that a lot of progress is needed in the use of implementation techiques com-
monly adressed in Database technology. From these realization, researchers
have become interested in the integration of the two technologies, giving
way to the concept of Knowledge Base Management Systems (see [BM85].)
Here the database consists of production or inference rules, and it must be
queried for the next rule to apply.

Many systems must deal with estimates of uncertainty of knowledge
provided perhaps by the expert itself. For instance, rules can be of the form:
“If ‘a’ then ‘b’,”, possibly with a numerical or linguistic qualifier that indi-
cates the belief of the expert in the rule. The system must be also able to
arrive to conclusions and to justify them even when the evidence is in
conflict. New instances of data might be conflicting and increase the degree
of uncertanty. This is unavoidable, since the domain of interest is likely to
evolve with time. (New roads are built, new facts are discovered about the
patient symptoms, troops are moved, communication links are repaired.)
Systems that do not manage uncertainty have a serious problem dealing
with conflicting data. Even when the conflict is detected (which is in itself a
costly operation), it is difficult to decide where the error resides.

Several techniques have been used to deal with uncertainty in expert
systems, ranging from non-numerical ones to the use of probability theory.
(See [S86] for a survey.) This work plans to investigate the use of the proba-
bilistic relational data model (PDM) described in [BGP89], as a tool to build
knowledge bases that deal with uncertainty.

The first step in this direction will be the implementation of a database
management system based on PDM and residing on main memory on the
GigaSun. The reason for these last requirement has been adressed repeat-
edly [BM85]: there are thus far no succesful means of taking advantage of
large databases for knowledge purposes. The problem with storing such
knowledge bases in disks is that access to the objects is essentially random.
Thus, massive main memory is likely to improve the acess time and the
practical usage of these systems.

SystemsFest Proceedings

Another topic we would like to address in this work is the cooperation
among a collection of knowledge based systems which exchange information.
Here again the PDM can serve as the framework to integrate estimates
about knowledge coming from different sources in a network of knowledge
systems.

References

[BGP89] D. Barbard, H. Garcia-Molina, and D. Porter, “A Probabilistic
Relational Data Model,” submitted to the 15th VLDB.

[BM85] M. Brodie, and J. Mylopoulos, Editors, “On Knowledge Base
Management Systems,” Springer-Verlag 1985.

[S86] D.J. Spiegelhalter, “A Statistical View of Uncertainty in Expert Sys-
tems,” in “Artificial Intelligence & Statistics” W. Gale, editor, Addison-
Wesley 1986.

SystemsFest Proceedings

24

Scheduling Real-Time Transactions with Disk Resident Data
Robert Abbott
Hector Garcia-Molina

A real-time database system (RTDBS) processes transactions with timing constraints such
as deadlines. The system guarantees serializable executions while at the same time
minimizing the number of transactions that miss their deadlines. Conventional database
systems differ from RTDB ones in that the former do not take into account individual
transaction timing constraints in making scheduling decisions. Conventional real-time
systems, on the other hand, differ from RTDB systems in that they assume advance
knowledge of the data requirements of programs and their goal is to guarantee no missed
deadlines[2]. However, they do not guarantee data consistency. Such systems are called
hard real-time. RTDB systems can be useful in many applications, one of which is air
traffic control. The system that directly controls aircraft (e.g., to avoid collisions) is a
hard real-time system. However, there are a lot of additional data that must be handled
by a RTDB, including weather reports, flight schedules, traffic patterns, and so on. Tran-
sactions on this data have deadlines. For example, a pilot may want to compute fuel
requirements taking into account current winds and flight routes. The deadline of such a
transaction would be the scheduled flight departure time. If on route the plane
approaches a storm, the pilot may request a revised flight plan, taking into account
current weather, remaining fuel, and the status of the destination airport. The deadline
would reflect how close the plane is to the storm. Missing these deadlines in very
undesirable but not an immediate disaster (the plane can leave late or can circle in the
air waiting for information). More important than missing a few deadlines is guarantee-
ing that the database is consistent. For instance, getting the wrong flight plan is worse
than getting the right one a bit late. Other applications for RTDB include threat analysis
in military systems and program trading in financial systems.

There are many new and challenging problems in designing a RTDB. Two of these
problems were studied in [1]: transaction scheduling and concurrency control. In particu-
lar, that paper presented several algorithms for resolving lock conflicts and for determin-
ing in what order to execute available transactions. The algorithms were studied via
detailed simulations. Two major assumptions were made in that work: (a) the database
was memory resident, and (b) only exclusive locks were available.

In this paper we continue our investigations of real-time scheduling and concurrency
control. Assumptions (a) and (b) have been dropped, a new set of algorithms has been
developed, and some additional issues and measures have been considered. The new
results, we believe, provide substantial additional insights into the operation of RTDB
systems.

Allowing the database to reside on disk, with a portion residing in a main memory
buffer pool, introduces more interesting questions that one might initially imagine. For
instance, the disk is now a resource that transactions must compete for. How are the disk
requests to be scheduled? Do the same real-time priorities that worked for CPU schedul-
ing work for disk scheduling? Some disk controllers do scheduling on their own (trying to
minimize head movement). Does this interfere with the real-time scheduling? Since
transactions now are suspended more frequently (lock waits and 10 waits), there are more
opportunities for CPU scheduling. How do the CPU scheduling algorithms respond?
Finally, transaction commit must be considered. That is, transactions must flush their
dirty pages to disk and write log records. What priorities should these operations receive?

25 SystemsFest Proceedings

Should the log be placed on a separate disk?

Shared locks also introduce a new set of challenging questions. With exclusive locks
only, conflicts always involve a pair of transactions, the holder and the requester. The
conflict can be resolved by comparing the priorities (e.g., earliest deadline) of each. With
shared locks, the holder can actually be a set of concurrently reading transactions, each
with different deadlines. If the requester needs an exclusive lock, what is to be done?
What priority does the group have? If the requester needs a shared lock, it could be
granted immediately, but there may be other transactions already waiting for exclusive
locks. How are the priorities of the waiting transactions compared against that of the
new requester? Should the new requester be granted the shared lock or not?

We have extended the algorithms of [1] to cope with disk data and shared locks. In
addition, we have studied concurrency control algorithms not considered initially, includ-
ing one that promotes transactions that are blocking higher priority transactions.
Finally, we have also considered two supplementary measures (in addition to mean
number of missed deadlines). One is the mean tardiness of transactions, i.e., average
time by which transactions miss their deadlines. The second is the response of the system
to a batch of transactions that arrive at once. Such an “input step function” emulates a
severe overload situation. Such overloads may not be frequent, but having algorithms
that can cope with them gracefully is important.

References
1. Abbott, Robert and Hector Garcia-Molina, “Scheduling Real-time Transactions: a

Performance Evaluation,” Proceedings of the Conference on Very Large Database Sys-
tems, pp. 1-12 VLDB, (August 1988).

2. Zhao, W., K. Ramamritham, and J. A. Stankovic, “Preemptive Scheduling Under
Time and Resource Constraints,” Transactions on Computers C-36 pp. 949-960 IEEE,
(August 1987).

SystemsFest Proceedings 26

Characterizing Database Structure
Pat Simpson

It goes without saying that the structure, or schema, of a database can be expressed
without regard to the actual data contained in it at any particular time. Given a schema,
many instantiations are possible. Likewise, given a data model many schemas are possi-
ble, all of which can be expressed in the common data definition language of that model.
Let us take this idea one step further. Suppose we have many independent databases
whose schemas instantiate different data models. Is it possible to express (in a data
definition definition language, perhaps) all of the data models in existence? Or, alter-
nately, is it possible to express any schema, regardless of model, in some common and
universally understandable form? If so, such descriptions could constitute a basis for
interoperability among heterogeneous database systems.

We will make the distinction between interoperability of separate DBMSs and the
construction of a heterogeneous DBMS. The latter entails the construction of a global
schema which in turn requires resolution of conflicts in both schemas and data. We are
concerned here with characterizing databases, not necessarily for the purpose of integrat-
ing them, but simply for the purpose of representing them to outsiders. As a concrete
example of an application requiring general database characterization, consider the fol-
lowing implementation of remote browsing:

Let us assume that there exists a universally accessible communications network
(such as the Integrated Services Digital Network being constructed over the next several
years) and a large number (thousands or millions) of independent computer systems,
many of which have information to share. In previous work[1] we've discussed mechan-
isms for direct retrieval of remotely held information via explicit queries, based only on a
knowledge of the topics or subject areas to which the host’s information is relevant. This
kind of retrieval can be done in a black-box fashion — the querier need not establish an
interactive connection with the host, and no knowledge of database structure is needed.
On the other hand browsing activity, while not requiring a priori knowledge of subject
area, is closely involved with the structure of the data being browsed — the links, attri-
butes, and other relationships connecting elementary data items.

A few points should be made with regard to remote browsing. First, a global schema
among such a large number of databases is almost certainly not constructible. (The
unconvinced are referred to Kent[2] for exhaustive evidence against the existence of a sin-
gle consistent world view.) Second, if each host were to be browsed individually, browsers
would potentially need to learn a different browsing interface for each host. In a large
network this is not practical. Since the browsed data must be transmitted anyway before
it can be viewed by the browser, it may be desirable to implement the actual browsing
function locally (i.e. on the browser’s system) after the data has been transmitted rather
than at the host site.

We propose to implement remote browsing locally, in the following manner. Each
would-be browser defines, on his/her own system, a single self-customized browsing inter-
face. (This may be the same interface as is used to view local data). A host transmits,
not only the data to be viewed, but also structural information about that data (its
schema) in a universally understood format. A remote browsing application running
locally accepts both schema and data as input and permits the browser to view the data
via the interface to which s/he is accustomed.

27 SystemsFest Proceedings

The diversity of data models to be represented may be extreme, including (for exam-
ple) the standard database models — relational, hierarchical, network, and entity-
relationship — in their various incarnations; logic databases, consisting of facts and rules;
hypertext systems with arbitrarily named links; indexed full text retrieval systems; his-
torical (time- or version-based) databases; unstructured sets of files with simple search
and retrieval mechanisms like “grep” and “awk”; and specialized data structures such as
the patricia trees used to store the Oxford English Dictionary. Is there a single “univer-
sal data model” that is sufficiently general to incorporate many existing models? Or can
we identify a few well-characterized schema types which cover most of the possible sche-
mas? In this discussion we’ll take a long hard look at the basic elements and characteris-
tics of data and data relationships in an effort to extract some unifying concepts.

References

1. Patricia Simpson and Rafael Alonso, “Querying a Network of Autonomous Data-
bases,” Technical Report CS-TR-202-89, Princeton University (January 1989).

2. William Kent, Data and Reality: Basic Assumptions in Data Processing Reconsidered,
North-Holland Publishing Company, New York (1978).

SystemsFest Proceedings 28

Connecting Heterogeneous Databases
Rafael Alonso

When cooperating organizations decide to share the information in their databases, it is
not uncommon for them to find that the data stored in their respective computer systems
are kept in incompatible database management systems. To allow users to query the
combined database in a straightforward manner, a mechanism is needed that will mask
the details of each particular systems and present a homogeneous interface to the collec-
tion of database systems. A heterogeneous database system enables users to transparently
access the data contained in a multiplicity of differing databases. During my talk I will
discuss some of the issues involved in the design and implementation of a heterogeneous
DBMS. I will also describe briefly the previous solutions proposed for this problem, most
of which are algorithmic in nature. Finally, I will sketch a possible new approach to this
problem, which involves the use of an expert system to encode schema information in
order to perform query translation.

29 SystemsFest Proceedings

Parallel Systems Session

This session opened with Jeff Naughton discussing work he is doing with Kai Li on
Shared Single Level Store, which combines virtual memory and persistent storage ideas
on a multiprocessor system. Rafael Alonso asked if it was appropriate to make every-
thing transactional and persistent. Jeff suggested that certain portions of the memory
could be so designated. Rafael also asked how this differed from the approach in Linda.
Jeff suggested that the concept was similar, but the programming paradigm encouraged
by the system is different. Mark Greenstreet suggested that this system would ease con-
text switches. Chris Clifton asked how this would ease the writing of parallel applica-
tions. Jeff noted that lightweight processes (threads) are a natural programming para-
digm for this system, and that /O is also eased. Richard Lipton noted that this was a
nice model, but if it was significantly slower than approaching the machine directly it
would probably gain little acceptance. Given the problems highly parallel machines are
used for, performance is more of an issue than ease of use. Andrew Appel suggested that
this model would make it easy to move processes which are communicating closer
together, thus possibly gaining performance over a static process allocation. Stu Feldman
noted that this was a tempting paradigm for a wide class of problems. Mark Greenstreet
suggested that it would be useful for simulating cellular automata.

Dimitrios Serpanos followed this talk with a hardware talk: an implementation of a
parallel architecture using Pipelined RAM. This system scales well to both a large
number of processors and a large distance. Rafael Alonso asked what applications would
be appropriate for this system. Dimitrios noted that this really provided shared memory,
and any shared memory application would run on PRAM. Rafael also asked if this would
be best for systems which only synchronized occasionally. Richard Lipton responded yes.
Paul Haahr asked what the eventual scale of such a system would be. Dimitrios said that
there was no physical limit.

Andrew Appel talked about ideas in parallelizing functional languages. He pointed
to a number of problems and solutions in this area. It was generally concluded that we
are much farther along in automatic parallelization of functional languages than in
imperative languages. Brad Barber asked if user specification of side effects (or the lack
thereof) was necessary, or if this could be inferred from the type system. Andrew
responded that this was an extremely difficult, and occasionally impossible, problem.
Norman Ramsey suggested that side effects are rare, and could possibly be treated as spe-
cial cases. Andrew noted that this might be reasonable, depending on the cost of han-
dling the side effects. Chris Clifton expressed concern that these systems often required a
small amount of user input in order to function properly, and that there was room for the
user to “shoot themself in the foot”. Andrew said that in some of the systems, the com-
piler could “check” the users assertions. Mark Greenstreet asked if it might be desirable
to allow the user to specify where parallelism is appropriate.

The final talk in the session was Richard Lipton on programming arrays of proces-
sors. The talk was based on the Xilinx chip, which is composed of many simple processors
which can be individually customized and connected. This gives many of the advantages
of custom chips at a much lower cost. He suggested that a spreadsheet-style program
could be used to program this chip, with each processor representing a location in the
spreadsheet, and the formula for that cell the program for the processor. He ended the
day with a demo of such a spreadsheet, and showed how a simple counter could be quickly
and easily developed.

SystemsFest Proceedings 30

The Design of a Distributed Shared Memory

R.J. Lipton and D.N. Serpanos *
Computer Science Department
Princeton University

1 Introduction

PRAM ! is a new shared memory model which offers high performance and
scalability. The main novelty of PRAM is that it does not enforce coherence at
the hardware level. This allows PRAM systems to overcome the main limita-
tions of conventional shared memory systems: low scalability both in distances
between processors and in numbers of processors. Following a RISC-like phi-
losophy [Hen81], the burden of synchronization and mutual exclusion has been
moved to software, while the hardware is tuned for fast data transfers. A de-
tailed description of PRAM is in [LS88].

The current PRAM system connects two IBM PC/AT’s through PRAM
boards installed on their busses. The two boards implement pipelined com-
munication over fiber links (hence the name PRAM) achieving data transfer
rates up to 2.5 MBytes/sec. The system is fault tolerant since error detec-
tion/correction mechanisms are used at both the hardware and the software
level.

In order to demonstrate the ability of PRAM systems to share memory
among many processors we are building a switch that allows more than two
processors to be connected simultaneously. The specifications and the design
of such a switch is presented in this paper. The switch does not place any
restrictions on the types of the connected processors, however the messages sent
through the switches must conform to our given format. No delay bounds are
assumed.

*This research was supported by the Defense Advanced Research Projects Agency of the
Department of Defense and by the Office of Naval Research under Contracts Nos. N00014-85-
C-0456 and N00014-85-K-0465, and by the National Science Foundation under Cooperative
Agreement No. DCR-8420948. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

IPipelined RAM

31 SystemsFest Proceedings

2 Specification of the Switch

Before we can specify the design of our switch we need to review how PRAM
operates. Suppose that two processors P; and P use PRAM to share memory.
Then each keeps a local copy of the shared memory. In order to read, each
processor just reads its own local copy. In order to write, each processor just
writes its own local copy and at the same time writes over the link to the
other local memory. It does not wait nor does it synchronize in any way its
actions with the other processor as other conventional shared memory systems
do [AB84] [Kat85]. The advantage of this approach is high performance: the
current prototypes can transfer 2.5 MBytes/sec. Note, this does not depend on
large block sizes: this performance is achieved even for single writes of one word.
The disadvantage is that the shared memory can become incoherent. The key
point is that [LS88] shows that compiler technology can be used to shield this
incoherence from the programmer. Performance is not affected by incoherence,
since in most common parallel programs write contention is a small fraction of
the total memory requests [EK88].

Clearly, there is nothing fundamental about two processors, i.e. the PRAM
method can be used to share memory among more than two processors. How-
ever, in order to do this without modifying the current PRAM implementation
we require a special switch box. Such a box is connected to n processors each
with a PRAM memory card. When a processor writes to the shared memory its
card will send the switch a message. The switch will then pass this message on
to all the other processors. Thus, rather than sending out n — 1 messages each
card only sends out one message: the switch box automatically broadcasts the
messages to the other boxes.

There are four practical issues that make this box interesting: First, it must
be fault-tolerant. Thus, the switch must be able to handle transmission link
errors and other kinds of errors. Second, the switch must be able to handle
“flow-control”. Any implementation of the box will contain a variety of internal
queues. Since in a real implementation these queues are finite, the box must be
able to start and stop links without overflowing the internal queues. Note, both
these issues arise in the current two processor implementation but are greatly
simplified since only two processors are involved.

Third, the box must be programmable. Consider the case of four processors:
suppose that P, and P, wish to share memory and P; and Ps wish to share
memory. Then each time Py, for example, writes to its shared memory not only
will P» get a message but P; and Py will also. This is clearly a potential waste
of the link bandwidth. Thus, it is critical that the switch allow the programmer
to selectively decide which memory is shared and by whom. We consider this
kind of memory mapping critical.

Finally, the box must be able to be used not only with processors but also
with other boxes. Clearly, the key advantage of this ability is that we can build
very large shared memory systems if boxes can be used in this recursive manner.

SystemsFest Proceedings

32

It turns out to be possible to achieve this provided one is very careful in exactly
how the switches are implemented. The principal problem is one of potential
deadlock. Without careful design it is possible for sets of boxes to signal each
other in such a way that all stop forever.

3 Design of the Switch

The switch, currently under implementation, has 8 inputs and 8 outputs and
operates in 2 modes:

1. Propagation Mode: where messages are being selectively broadcasted
to the rest of the processors and

2. Programming Mode: where messages are used to program the switch.

Since all incoming messages have the same format: 16 address bits and 16
data bits (see fig.2), the Programming Mode is selected by the use of a specific
address. So the Programming Mode is mapped into shared memory.

The data and control flow path of the switch is shown in fig.1. The path
is replicated for the 8 input/ output pairs, except the bus and the Prior-
ity-Resolution Module which are unique in the switch.

Messages come into the receivers (RCVR/[I]) asynchronously at a maximum
rate R and they are forwarded to the input queues (IN_Queue[I]). Then they get
in the IN modules which in turn assert their request (REQ[I]) lines. The Pri-
ority-Resolution module selects one of the requests and by sending a GRANT
signal it instructs the selected module to put its message on the bus. All the
OUT modules latch the bus signals simultaneously and depending on the mode
of operation they either read their memory to find whether they are going to send
the message to their output queue (Propagate Mode) or they check whether they
have to update their memory by writting into it (Programming Mode). Note
that only one memory is updated with one Programming Message and the rest
of the modules disregard the message. If the mode is Propagate and the memory
lookup shows that the message has to be transmitted, they forward the mes-
sage to their output queue (OUT-Queuel[l]) and from there to the transmitter
(XMTR[I]).

Except for the above messages, which are generated by the processors con-
nected to the switch (or to a network of switches), there are other messages too,
which are generated by the switch boxes themselves. These are the Excep-
tion messages. They are of 3 types: Error, STOP and START. The Error
message is generated whenever a transmission link failure occurs. The receiver
which is connected to the link ”senses” the failure and generates a message with
an address identifying the link. The message is immediately transmitted to the
system (switch or processor) which transmits over that link and it also pushes
the message to its input queue to be broadcasted to the rest of the connected

33 SystemsFest Proceedings

systems. In the meantime special circuitry turns the receiver off for as long as
the link is failed, so that no disturbed data are received.

The STOP message is generated by an input module whenever its associ-
ated input queue gets Half-Full, because there is potential danger of overflow
(Data Overrun). The STOP message is immediately sent to the system that is
connected to the specific input module (the sender), so that it can temporarily
suspend its transmission. When the input queue goes Under-Half-Full again,
the input module sends a START message to the sender in the same way as
before, so that it can resume transmission.

The output queues are in danger of overflowing too. This problem is solved
by having the Priority_-Resolution module stop granting input requests, when-
ever a number of output queues get Half-Full. The Priority_Resolution Algo-
rithm implemented is fair and efficient as it keeps servicing incoming requests
at the highest possible rate. It also plays an important role in the avoidance of
a deadlock when 2 switches communicate through a 2-way connection (fig.3).

As far as performance is concerned, the cycle of the switch box is less than
1/R, which guarantees that at least one request of each of the 8 inputs is ser-
viced.

4 Conclusions

The design for the presented switch box supports memory sharing among het-
erogeneous processors which can be geographically separated, since it does not
enforce (or assume) any delay bounds. The most important characteristic is
scalability as it supports connections to other switch boxes.

When designing an interconnection of switches, one should be very careful
about the topology of the resulting network. We can easily prove that cycles
in the network can result in unrecoverable deadlocks. One can easily build
recursive structures that do not contain cycles and operate correctly, as for
example the tree structure in fig.4.

References

[AB84] J. Archibald and J.L. Baer. An Economical Solution to the Cache Co-
herence Problem. In 11th Annual International Symposium on Com-
puier Architecture Conference Proceedings, 1984.

[EK88] S.J. Eggers and R.H. Katz. A Characterization of Sharing in Parallel
Programs and its Application to Coherency Protocol Evaluations. In
15th Annual International Symposium on Compuler Architecture Con-
ference Proceedings, 1988.

SystemsFest Proceedings

34

35

[Hen81] Hennessy J.L. et al. MIPS: A VLSI Processor Architecture. Technical
Report TR-223, Stanford University, November 1981.

[Kat85] Katz R.H. et al. Implementing a Cache Consistency Protocol. In 12th
Annual International Symposium on Computer Architecture Confer-
ence Proceedings, 1985.

[LS88] R.J. Lipton and J.S. Sandberg. PRAM: A Scalable Shared Mem-
ory. Technical Report CS-TR-180-88, Princeton University, September
1988.

SystemsFest Proceedings

BUS MEMITI]
:
IN
RCVRI M queugm] NI OUTI H oyimuem [XMTRI
GRANTII]
| PRIORITY |
REQ[I] RESOLUTION | grg ADY/I]
Fig.1: Block Diagram of the Switch
31 30 1615 0
A15 A14 A0 D15 DO
Fig.2: Message Format
P1[0] [
s.1 [. et PLIGS
P1[N-2]] S_2
—P2[N-2]
Fig.3: 2-Switch Connection
:] P4[0]
S_2 S_4
’ —IP4[N-2]
P1[0] fe 5 ¥
S_1 i S_3 ¥
P2(1]
P1[N-3)[7
Fig.4: Tree Structured Network
SystemsFest Proceedings 36

SSLS: Shared Single Level Store
Kai Li and Jeff Naughton

A Shared Single Level Store (SSLS) provides message-passing multiprocessors with a glo-
bal, persistent memory space. The address space is shared in that a reference to a given
memory address means the same thing regardless of which processor in the multiproces-
sor makes the reference, and it is single level in that there is no notion of secondary or
disk storage.

The SSLS simplifies the programming of multiprocessors in two main ways:

« The programmer need not program explicit data allocation and transfer among proces-
sors, and

* The programmer need not program explicit 1/0.

With a properly implemented SSLS, to the programmer the multiprocessor appears to
have a large, global memory that persists between program invocations and even machine
crashes,

We currently in the process of the design and implementation of a SSLS for two tar-
get multiprocessors: a network of DEC Firefly multiprocessrs, and an Intel iPSC-2 hyper-
cube.

37 SystemsFest Proceedings

Parallel Functional Languages
Andrew Appel

Because side-effects are rare or absent in functional programming languages, order of
evaluation of program fragments is much freer. For this reason, it is natural to use func-
tional languages as a basis for parallel programming,.

Functional programming languages come in two styles: “pure” functional languages,
in which no side effects (assignments, etc.) are permitted, and “impure” functional
languages, in which side effects are permitted but rarely used. SASL and the new
language Haskell are examples of pure languages, and Scheme, ML, and FX are examples
of impure languages.

Both kinds of languages can be parallelized, but in much different ways. The pure
languages pose no restrictions on order of evaluation, so that nonstandard orders or con-
current execution is possible without direction from the programmer. Thus, it may be
possible to parallelize programs completely automatically. The impure languages may
require explicit programmer specification, e.g. using the “futures” concept of MultiLisp,
the “effects” specifications of FX-87, or the CCS-like structures of PFL.

The Standard ML of New Jersey compiler, developed at Princeton and Bell Labs, will
be an ideal base for research into both kinds of parallelism. It is efficient, robust, and has
a clean compiler and run-time system with few obstacles that might stand in the way of
shared-memory parallelism[1-7].

References
1. Andrew W. Appel and Trevor Jim, “Continuation-passing, Closure-passing Style,” in

Proc. 16th Symp. on Principles of Prog. Languages, (Jan. 1989). (also Princeton CS-
TR-183-88).

2. Andrew W. Appel, “Allocation without Locking,” Software -- Practice & Experience,
(to appear). (also Princeton CS-TR-182-88).

3. David K. Gifford, Pierre Jouvelot, John M. Lucassen, and Mark A. Sheldon, “FX-87
Reference Manual,” MIT/LCS/TR-407, MIT (Sept. 1987).

4. Robert Harper, David MacQueen, and Robin Milner, “Standard ML,” ECS-LFCS-82-
2, Univ. of Edinburgh (1986).

5. Suren Holmstrom, “PFL -- A functional language for parallel programming, and its
implementation,” Report #7, Univ. of Goteborg (Sweden) (Sept. 1983).

6. Simon L. Peyton Jones, The Implementation of Functional Programming Languages,
Prentice-Hall (1987).

7. David A. Kranz, Robert H. Halstead, and Eric Mohr, “Mul-T: A High-Performance
Parallel Lisp,” in SIGPLAN ’89 Conf. on Prog. Lang. Design & Implementation, (to
appear).

SystemsFest Proceedings 38

Programming Arrays of Identical Processors
Richard J. Lipton

It is now possible to build large arrays of simple boolean processors. We will soon have
such a machine at Princeton with over 10,000 such processors. Its potential performance
is in excess of 40,000 MIPS. The central problem is: how can we program such an array?
This talk will focus a number of open problems concerning the programming of such
arrays. These include practical issues as well as open theoretical questions.

39 SystemsFest Proceedings

