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ABSTRACT

In this paper we present a series of techniques based on random
walks to perform state exploration in a reachability graph representing a
protocol. Using a set of examples, we show experimental results that
demonstrate the usefulness of the techniques. We also present the theoret-
ical framework to prove why some of the techniques work better than oth-
ers.
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1. INTRODUCTION

The implementation of tools for the validation of computer communication proto-
cols and concurrent processes is a crucial aspect of the design of complex systems today.
Researchers have consequently focused a great deal of attention on the development of

languages and environments for the formal specification and validation of concurrent
processes ([RW83]).

Many of the systems designed for validation of protocols use the idea of reachabil-
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ity analysis, i.e., the generation of the graph of all global states reachable from an initial
state ((BM80],|ABM88],[SC88],[HK89]). Once this graph is generated, questions can be
asked about specific global states and paths. These questions may range from asking
whether a particular undesirable global state (e.g., a deadlock) is reachable, to enquiring

about a sequence of events in the protocol.

Generating the reachability graph amounts to finding all states that can be reached
in one transition from a given state and proceeding in a recursive manner. The states that
can be reached in one transition are computed using the protocol specification and the

rules of composition for the particular model used.

One problem with this approach is that of state explosion, i.e., the size of the reach-
able graph for real protocols becomes unmanageable. Under these conditions, it becomes

impractical to analyze or even to generate the reachability graph.

One way of overcoming these limitations is to generate only a meaningful subset of
the reachable states. This subset can be generated for instance by applying random tech-
niques, e.g., generating a random walk over the graph. This idea has been suggested pre-
viously in the literature. Piatkowski has suggested the use of random components in the
protocol testing strategies [P80]. C. West has reported experiments dealing with the
analysis of the Session Layer of OSI by executing a random walk through the reachable
state space [W87]. The experiments are aimed to count the number of steps the random
walk needs to discover an error in the protocol. No systematic approach of using random

exploration has been used or analyzed so far.

A different approach that does not use random state exploration is taken by Maxem-

chuk and Sabnani in [MS87]. Using a model based in the programming language Com-
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municating Sequential Processes (CSP) [H78], they assign probabilities to the transitions
in the individual Finite State Machines that compose the protocol. Then, they explore
only the most probable section of the protocol according to this assignment. In this way
they are able to bound the probability that a particular state not visited in the exploration
is reachable. Their idea relies of the belief that if a protocol error (or undesirable state)
occurs in a section of the graph that has very low probability, then it might not be worth

to modify the protocol by avoiding such error or by adding a recovery procedure.

In this paper we take a first step in proposing and analyzing techniques that use ran-
dom state exploration, i.e., techniques that proceed to traverse the graph using a random
walk. The approach is aimed to search the space for an specific state (or state type), e.g.
a deadlock. Along with the techniques, we present the theoretical basis to support their
cffectivcness. The use of these methods is illustrated by a series of examples. We also

use the theoretical framework to suggest new alternative schemas for state exploration.

The layout of the paper is as follows. In Section 2 we discuss the various tech-
niques used for random state exploration. In Section 3, we present the basic notions of
the S/R model, used to specify the examples with which we tested the ideas. The random
techniques are not dependent of the specific model used for specifying the protocols. The
choice of this particular model was based on the availability of SPANNER
(IABM87],[ABM88]), a software environment based on the S/R model, which we
modified for our purposes. In section 4 we present the experimental results derived by
using the techniques over the examples. In Section 5 we present the theoretical frame-
work for using random walk techniques for state exploration. Finally, in Section 6 we

offer some lines of future research and conclusions.
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2. RANDOM STATE EXPLORATION

In this section we describe the techniques that we have utilized for random state
exploration. These techniques are independent of the model used to specify the protocol.
We assume that a particular protocol is made of a set of individual machines, each one
represented by a directed graph with labeled transitions. The machines are coupled
together by some set of composition rules. Using the rules, one could obtain the reacha-
bility graph of global states that defines the protocol. We require that given a global
state, we can use the specification to compute the set of next global states to which the
protocol can move, without having to generate the whole reachability graph. (Note that
this set may include the current global state, i.e., the reachability graph may have a self-
loop in this particular state.)

With this condition we have devised three ways of doing random state exploration.
In all the techniques, a random walk is performed by selecting randomly at each stage
one element from the set of reachable states and making the transition to this state. All
of them start with the protocol in a predefined initial state. These techniques can be used
to search for a particular predefined state, for instance, a deadlock whose presence in the
reachability graph is suspected. In this case the walk stops when the state is reached or
when a predefined number of jumps have been performed. Also, the first two techniques
can be used to perform a random walk without a particular goal, and to observe if an
anomalous behavior occurs. (For instance, the protocol may get stuck in a particular state
after a number of moves, indicating the presence of a deadlock.) In this case, the stopping

rule for the random walk is the execution of a preselected number of jumps.

In what follows, we describe the techniques.
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2)

3)

.

Unrestricted random walk (URW): In each stage of the process with the protocol
being in some current global state, generate the set of next reachable states and ran-
domly select one of them with equal probability. Make the transition to this state to

continue the walk.

Restricted random walk (RRW): Do the same as in 1), but in each stage rule out the

possibility of going back to the current global state.

Metric-aided random walk (MRW): In this technique, a metric is defined in such a
way that we can attach to every global state a positive integer that indicates the
““distance’’ of this state to the particular one we are trying to find. At each state, we
sort the set of reachable global states according to the metric and select one of
them randomly. The probability of choosing a particular state is inversely propor-
tional to its metric. That is, we tend to select states that are ‘‘closer’’ to the one we
are looking for.

The metric used in 3) is defined as follows. Let the system be a set of k£ machines
M,M,,...,M;. Letthe goal state be ak tuple G =<g,21,...,8;>, where each
gi is the local state of the machine M;. The metric is computed for each particular
State X; = <Sj, ,8i, -85, >s where each Si; is a local state in machine M j» as

k
D= ex (d(si;»8)) 2.1)

where d(s;;,£;) is the minimum distance between s;, and g; in the graph of machine
M;. Let the set of reachable states from x; be R; = {x;, ,x;,,....%; }. Let D;; be the
distance to the goal state from state Xij» computed with the metric explained above.

We can assign to each x;; a probability p;; of being selected as next state, computed



pij=—— 2.2)

That is, we are favoring in the random selection those states that are ‘‘closer’’ to the
goal state, according to the metric defined. Notice that this metric is very inexpen-
sive to evaluate, as opossed to a metric that actually computes the distance to the

goal state in the global reachability graph.

Here again at each stage of the walk we can allow the protocol to remain in the
current state or impose the restriction of selecting a state different from the current
one. Thus, we define the unrestricted metric-aided random walk (MRWU) and the
restricted version (MRWR). Equation (2.2) corresponds to the MRWU version,

while in MRWR, the probabilities are defined as follows:

1
r D"
L if i #i;
B et
k=1 Dix
pij={ 1 ifi=ijand forallk #i (x;) € R; (2.3)
0 otherwise

.

In the next section we will show some examples on which the three techniques were
employed. As we shall see in them, RRW outperforms URW and MRWR outperforms

MRWU. In Section 5, we will state the theoretical framework that explains this behavior.



3. THE MODEL AND EXAMPLES

In this section we present the S/R model, used to specify the set of examples with

which the methods were tested. We also present the specification of the examples.

3.1. The Selection/Resolution Model

This section reviews the Selection/Resolution model as described in [AKS83]. The
Selection/Resolution model provides a mathematical precise way of describing coordina-

tion among a set of concurrent abstract modules called processes.

Each module in the system is described as an edge labeled directed graph. The ver-
tices of the graph are stares of the process, and the directed edges describe a state transi-
tion that is possible in one time step. A state may be viewed as the encapsulation of past
history of the process and is private to it. In each state, a process can nondeterministically
choose from a set of selections. The selections are essentially signals available to all

other processes; they describe what the process *‘intents’’ to do in the next move.

After each process has made its selection, the ‘‘resolution’” step is taken. That is,
the global set of selections is “‘multiplied’’ with each edge out of the current state thus
determining whether the edge is enabled or not. This is possible because edges are

labeled by elements of the same Boolean algebra to which the selections belong.

More formally, let L be a Boolean algebra. An L—process is a 5-tuple

P=(,S,0,M,1I)

where
V is the set of states of P

S is the set of selections of P



o is the selector function, G : V=25
M is the transition matrix, M:V X V=L
I is the initial state of P, T € V

The selector function associates with each state s the set of possible selections o(s)
that can be made from that state. The transition matrix can be viewed as an adjacency
matrix of a directed graph with vertices V where the nonzero entries are labels describing
the conditions for a transition to be enabled. Given an edge label I = M (v,w) from state v
to state w, if the selection of the process in state v is @, then a./ # 0 means that the transi-

tion to w is possible.

3.2. SPANNER

SPANNER is an environment consisting of a set of software modules (see Figure
3.1) for specifying and analyzing protocols. A user formally specifies a protocol using the
specification language. The parser module checks for syntactic correctness and produces
an intermediate description used by other modules. The user can generate the reachabil-
ity graph by using the reachability module. The module produces a database consisting
of all global states and transitions. The analysis module allows the user to analyze the

graph by querying the database.

We have modified the reachability module of SPANNER to generate random walks
instead of the whole reachability graph. For this, in each stage, the module generates all
the states that can be reached from the current one, and then selects one of them ran-
domly. We have implemented the three techniques described in Section 2, allowing this
selection to be unrestricted (URW), not allowing the return to the current state (RRW)

and altering the probabilities with the metric (MRW).
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Figure 3.1. The SPANNER Environment
3.3. Examples

3.3.1. The Dining Philosophers.

Our first example is the classical problem proposed by E.-W. Dijkstra. Our version
of the problem is taken from [H85]. The modeling of this problem with the S/R model is
also illustrated in [K85]. Consider a college in which there are n eminent philosophers.
They spend most of their time thinking, but when they want to eat, they eat in a common
dining room. The dining room has a circular table with n chairs, one for each philoso-
pher. There are also » forks, one to the left of each chair. In the center of the table there is
a bowl of spaghetti. In order to eat, a philosopher must use both forks, at her/his left of
right. Thus, the behavior of a philosopher is to think, sit down, pick up the left or right
fork, pick up the complementary fork, eat, put down the forks, and then stand up and
think again. A problem arises if a fork is not available when required by a philosopher.

In this case, the philosopher simply waits until it becomes available.
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Our model consists of two process types called AFORK and APHIL. The process
type AFORK has three states: ontable, inuseleft, and inuseright. The behavior of the fork
is as viewed from the fork’s position, and depends on the philosopher to the left and to
the right. Both of these processes are of type APHIL. A philosopher is modeled as in the
description above. This version of the dining philosophers contains two deadlocks. If all
the philosophers sit down and pick the right (left) fork, the system is deadlocked, since

none of them will surrender the fork and all will wait for the other to be free. Figure 3.2

shows the specification of this example.

typedef process AFORK ( APHIL Iphil; APHIL rphil)

states 0..2 valnm[ ontable:0, inuseleft:1, inuseright:2]

selections = states

init ontable
trans
ontable
>inuseleft  :(Iphil:rup) & “(rphil:lup);
>inuseright  :(rphil:lup) & “(Iphil:rup);
>ontable :otherwise;
inuseleft
>ontable :(Iphil:rdown);
>$ :otherwise;
inuseright
>ontable :(rphil:ldown);
>$ :otherwise;
end

typedef process APHIL ( AFORK Ifork; AFORK rfork; APHIL Iphil; APHIL rphil)
states 0..7 valnm [ think:0, sitsdown:1, holdlfork:2, holdrfork:3, eat:4,

Iforkdown:5, rforkdown:6, standsup:7 ]
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selections 0..7 valnm [thinking:0, sit:1, idle:2, lup:3, rap:4, eating:5,
ldown:6, rdown:7 ]
init think

trans

think {thinking,sit}
>sitsdown :(APHIL:sit);

Sthink :(APHIL:hinking);
sitsdown {idle,Jup,rup}

>holdlfork  :(APHIL:lup) & (Ifork: ontable) & “(Iphil:rup);
>holdrfork  :(APHIL:rup) & (rfork: ontable) & ~(rphil:lup);

>$ :otherwise;
holdlfork {idle,rup}
>eat :(APHIL:rup) & (rfork:ontable) & ~(rphil:lup);
>$ :otherwise;
holdrfork {idle,lup}
>eat :(APHIL:lup) & (Ifork:ontable) & ~(Iphil:rup);
>$ :otherwise;
eat { eating Jdown,rdown )
>lforkdown :(APHIL:ldown);
>rforkdown :(APHIL:rdown);
>eat :(APHIL:eating);
Iforkdown {rdown]
>standsup «(APHIL:rdown);
rforkdown {ldown}
>standsup {(APHIL:1down);
standsup {thinking }

>think :(APHIL:thinking);
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end
process (i = 0..n; philosopher(i]: APHIL ( fork[i], fork[(i+1)%N],

philosopher| (N+i-1)%N], philosopher](i+1)%N]))

process (i = 0..n; fork[i]: AFORK ( philosopher[(N+i-1)%N], philosopheri]})

Figure 3.2. The Dining Philosophers

3.3.2. The Elevators.

In this example, we have n elevators that coordinate their movements through a
building with m floors. The protocol is designed in such a way that when all the elevators
are in the top floor, there is no other transition possible but to remain in that state (a
deadlock). The initial state finds all the elevators in the ground floor. This example is
interesting in the sense that it provides a way of testing extreme conditions for our tech-
niques. First, by varying the coordination rules among the elevators, one could make it
progress very slowly or very fast towards the deadlock. Secondly, since every conceiv-
able state is reachable, one could make the size of the protocol grow very fast by increas-
ing the number of floors in the building. Figure 3.3 shows the first version of the exam-
ple, called elevud(n,m). In this version, the rules are such that the system has upward
drift. In any middle floor, an elevator can only go down if one of its neighbors selects to
go up. In the next version, elevdd(n,m), shown in Figure 3.4, the system has downward
drift, since for an elevator to go up, its neighbors should remain in their current state or
go down. The example elevdd (n,m) has been created to test our techniques with a proto-
col where the ‘‘progress” towards the deadlocked state is slow. In this sense it plays a
role of an extreme example for which is very difficult to find the deadlock. As we will
see this characteristic will play a role in determining a very fast growth on the absorption

time (number of steps needed to find the deadlock state) for this protocol as the size of



the protocol increases with m.
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typedef process ELEVATOR ( ELEVATOR lelev; ELEVATOR relev )

states 0..N selections 0..2 valnm [ stay: 0 ,up:1,down:2]

init 0

trans

>N-1

>N

end

>1

{stayup}
(ELEVATOR:stay);
:(ELEVATOR:up);

(stay,down)

:(ELEVATOR :down)&((lelev:up)|(relev:up));

:otherwise;

{stay,up,down}

(ELEVATOR:down)&((lelev:up)|(relev-up)):

:(ELEVATOR :up);

:otherwise;

process (i = 0..n; elevator{i]: ELEVATOR ( elevator[(M+i-1)%M] ,

elevator(i+1)%M] ))

Figure 3.3. The example elevud(n,m)

typedef process ELEVATOR ( ELEVATOR lelev ; ELEVATOR relev)

states 0.N

selections 0..2 valnm [ stay: 0,up:1,down:2]

init 0

trans

>1

{stay,up}
:(ELEVATOR :stay);
«(ELEVATOR up);
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N {stay,down}
5>N-1  :(ELEVATOR:down)&((elevzup)(relevaup));

>N :otherwise;
S {stayup,down}
>$+1  (ELEVATOR:up)&(({lelev:down)(relev:down))
I(Qelev:stay)&(relev:stay)));
>$-1 :(ELEVATOR:down);
>3 :otherwise;

end

process (i = 0..n; elevatorfi]: ELEVATOR ( elevator[(M+i-1)%M] , elevator{(i+1)%M] ))

Figure 3.4. The example elevdd(n,m)

3.3.3. Distributed Locking

This example differs from the rest in that there is no deadlock state in the protocol.
The example models a protocol for locking all the sites in a network. The node interested
in doing the locking initiates the request by sending messages to all the other nodes in the
network. Then, the other sites can acknowledge the request positively if no previous lock
over the node is in effect. When the requesting node gets all the acknowledgements, it
proceeds to enter a critical region. When the critical section is finished, the node sends
release messages. Notice that if two sites initiate their requests at times that are
sufficiently close from each other, each might get some of the acknowledgments but not
all of them. Such potential deadlock is broken by timing out the acknowledgements. The
delay in the links is modeled by a set of channel processes (one per site), that choose at

each interval whether to deliver the message or to retain it for another interval. The



number of intervals in which this can happen is limited to be D, a predefined constant.
(That is, after D intervals, the channel is forced to deliver the message.) We are
interested here in finding a state in which one of the sites has reached its critical section
while the others are locked. Figure 3.5 shows the specification of this example, called

dlock(n,N,D), where n is the number of sites, N the number of units for timeout, and D

the maximum delay in the channels.
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typedef process APROCESSOR (ATIMER mytimer; predicate request ;

predicate allacks; predicate release)

states0..4 valnm [idle:0, active:1, locked:2, cs:3, relx: 4]

selections 0.3 valnm [initreq:0, stay:1, ack:2, rel:3 ]

init idle
trans
idle
active
locked
cs
relx

> active
> locked
> idle

>cs
> relx

> active

>idle
> locked

>idle

{stay, initreq)
: (APROCESSOR initreq);

: (APROCESSOR:stay)& ($request);

: otherwise;

{stay)
: ($allacks);
: (mytimer:timeout);

: otherwise;

{ack}
: ($release);

: otherwise;
{stay, rel}
: (APROCESSOR:stay);

: (APROCESSOR:rel);

{rel)
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>idle : (APROCESSOR :rel);

end

typedef process ATIMER (APROCESSOR myproc ; predicate allacks)

states 0.N

selections 0..1 valnm[ go: 0, timeout : 1]

init 0
trans
0 {go)
>1 :(myproc:initreq);
>0 : otherwise;
N {timeout)
>0 : (ATIMER :timeout);
$ {go)
>0 : (Sallacks);
>§$+1 : otherwise;
end

typedef process ACHANNEL (APROCESSOR myproc ; predicate release )
states 0..D valnm[ idle : 0 ,pre: D-1, deliver: D]

selections 0..3 valnm[no : 0, deliv: 1, delay : 2, ackr: 3]

init idle
trans
idle {no})
>1 :(myproc:ack);
>idle : otherwise;
deliver {ackr)

> idle :(Srelease);
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> deliver : otherwise;

pre {deliv delay}
>deliver :(ACHANNEL:deliv){(ACHANNEL:delay);

s | {deliv,delay)
> deliver :(ACHANNEL:deliv);
>§+1 {(ACHANNEL:delay);

end

process (i = 0..n; P[i]: APROCESSOR( Tli],
(; j= 0.n; (P[j]:initreq) & (j I=1)),
(&; j = 0..n; (Clj]:ackn)ij = 1)),
(0 = 0.n; (P[jl:rel)&( j=1))))
process (i=0..n; T[i]: ATIMER (P[],
(&; j = 0.n; (C[j]:ackr)i( = 1))))
process (i = 0..n; C[i]: ACHANNEL ( Pfi,
(; j=0.n; (P[jlreD& (j I=1))))
Figure 3.5. dlock(n,N,D)

4. THE RESULTS

In this section we present the results of applying the techniques described in Section

2 to the examples of Section 3.

We begin with the results of applying the techniques to the example of the dining

philosophers (dinephil [4].)
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Technique | Absorption time
URW 91.25
RRW 64.75

MRWU 15.70
MRWR 13.95
Table 4.1 dinephil[4]

The results reported correspond to the average absorption time that our program took to
find the deadlock. The number of runs in each case was 20. Two points are worth notic-
ing. First, there is a notable reduction on the absorption time from URW to RRW and
from RRW to to cases when the metric is used. Secondly, in all cases the absorption time

is a small fraction of the total number of states in the protocol (1022).

The next table presents the resuts obtained for elevud (2,3) and elevdd (2.3), in each

case the average absorption time reported. The number of runs in each case was again 20.

Technique | elevud(2,3) | elevdd(2.3)
URW 6.35 16.75
RRW 57 16

MRWU 3 6.35
MRWR 2.55 6.25

Table 4.2 elevud(2,3) and elevdd(2.3)
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In this table we also see the reduction in the absorption time when we use RRW and
specially when the metric is introduced. Also notable is the fact that while in the case of
elevud (2,3) the absorption time is always less than the total number of states in the pro-
tocol (8), that is not the case for elevdd (2.3) (which also has 8 states.) As it was men-
tioned in Section 3, elevdd was built on purpose to make the ‘‘progress’” towards the
deadlock very slow. This characteristic influences strongly the behavior of our tech-
niques.

To see how the absorption time into the deadlock grows with the size of the proto-

col in the example elevdd, we present the following table.

Technique | elevdd(2.3) | elevdd (2.4) | elevdd (2.5) | elevdd(2.10)
|
RRW 10.79 38.65 114.5 7414.95
MRWR 6.25 20.45 55.65 1945.05
Table 4.3

A close look at the results presented in Table 4.3 reveals that the growth of the absorp-
tion time in this example is exponential with the number of floors. According to this, an
estimated number of 10%% steps would be necessary to reach the deadlock in the case of
elevdd (3.1000) (an example with one billion states.) Although it is clear that our tech-
niques are not likely to find the deadlock in such an example for any practical number of
steps that the program is let to take, it is also true that if such a protocol were imple-

mented in reality, it would fall into a deadlock very infrequently.

Conversely, applying MRWR to elevud (3.1000) (again a protocol with one billion

states ), results in an average absorption time of 4740.75. In this case the system



-20-

progresses rapidly towards the deadlock and our technique is able to find it very quickly.

The last set of results correspond to applying the metric aided techniques to the
example dlock(4,3,5). Notice that the timeout (3) is less than the maximum delay. This
situation leads to the nodes timing out and retrying to acquire the locks. (As opposed to a
situation in which the maximum delay were less than the timeout.) This protocol has
33,100 states. Table 4.4 contains the results. For this case, the techniques were helpful in
finding the state with a number of jumps representing a small fraction of the total number

of states.

Technique | dlock(4.3.5)

MRWU 1383.00

MRWR 987.75

Table 4.4

5. THEORETICAL BACKGROUND.

In this section we present the theory that backs up our techniques. After formaliz-
ing the random walks techniques as Markov chains, we present a way of finding bounds
for the absorption time. Although these bounds are not easily generalizable, they help us
understand why some methods work extremely well for particular protocols. Finally, we
prove that the restricted versions of the techniques, i.e., those which do not allow the

transition to the current state, always outperform their unrestricted counterparts.
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As seen before, a protocol can be summarized as an edge labeled directed graph,
i.e., a set of vertices G and a set of ordered pairs (x;,x;) of elements of G, E(G), called
the edges of G. In the problem under consideration G is the set of all global states and
(xi,xj)€ E (G) iff the system can evolve, given a set of decisions, from the global state x;

to the global state x;.

From the probabilistic viewpoint, the URW model is a finite time-homogeneous
Markov chain X (n) whose state space is the set of all global states reachable from the

initial global state and whose transition probabilities are given by

76D if (x;,x;) € E(G)

p.))=P X (n+1)=x; |X (n)=x;) = 0 otherwise

where v (x;) is the outdegree of x;.

Likewise the RRW model consists of another Markov chain with the same state

space and transition probabilities

F—— if ) € E(G)and(x) ¢ E(G)
v (x;)

1 :
Gt If o)) € EGandtx) € E(G)

P'GD={ 1  ifi=jandforallk#i (x;x) € E(G)

0 otherwise

As we said before, we are interested in applying the procedures to finding a particu-
lar state in the protocols. In particular, we applied them in finding deadlock states. The

following definitions characterize precisely the types of states we are looking for.
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Definition 5.1 Absorbing state. A state x; € G is absorbing if

o 0 ifij
p (l,,] ) = 1 ifi= j
The relationship between the URW and RRW models is given in the following

lemma whose proof is a simple verification.
Lemma 5.1 If x; is not an absorbing state then

p(.J)

p'G.j)= 19 G.D)

otherwise
0 ifi#j
p'(i,f)=p<i,f)={1 ifiz

The MRWU and MRWR models are yet other Markov chains on the same space
with transition probabilities given by

p”(.))=pij,
where p;; was defined in equations 2.2 and 2.3.

In all three models a deadlock state corresponds to an absorbing state. By basic
Markov chain theory we know that if there is a path from the initial state to a set of
deadlock states then eventually the chain will be absorbed with probability 1 into one of
the deadlocks. This fact by itself does not provide too much information and it is of
interest, of course, to know the expected time of eventual absorption, because we want to
be assured not only that sooner or later we will find the deadlock but also that this ran-
dom search will not take so long as to make preferable an exhaustive search of all the
states. What follows is a brief summary of basic Markov chain theory concerning

expected absorption times.
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We may assume

(i) The chain is not irreducible and i is an absorbing state (= deadlock) or,
(ii) The chain is irreducible without absorbing states.

In either case we can apply the same principles corresponding to what Seneta [S81]
calls ‘‘absorbing chain techniques’’: if we denote G = {xy,x3,...,Xy/}, we can relabel

the states so that our interest can be expressed as finding
(i) The expected absorption time from any state x; into the fixed absorbing state xy, or

(ii) The expected hitting time from any state x; to the fixed nonabsorbing state xy.

Since the idea is the same regardless of the nature of the state xy, we will denote in
both instances by e (x;,xy) the expected absorption (hitting) time to state xy starting from
X, 1SiSN-1.

From the transition probability matrix

P=(p(@j) 1<i,j<N
we delete the N-th row and N-th column to get the N—1 x N—1 matrix Q. Now the “‘fun-
damental matrix”’ (/—Q)! (I is the identity) gives us all the needed information: its (i, f)
entry, (/ —Q),le, gives the expected number of visits starting from state x; to state x;
before absorption into (resp. hitting) the state xy. Also, the expected time to absorption
into (resp. to hit) the state xy starting from the state x; is given by the sum:

N-1
e (X, xN) = El 7-Q)i 6.1

Taking the maximum of (5.1) over all possible initial states turns out to be the inf-
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norm of the fundamental matrix:

max e (x;,xy) = maxljgl1 I-9)7 =10-0)" . (5.2)
so in order to get a general bound on absorption times it would be convenient to be able
to compute this norm. Of course, this computation is equivalent in difficulty to the
exhaustive listing of all global states, and in general we will try to get bounds instead of

exact values. For example we know that since all norm matrices are equivalent, if || || is

another norm for which ||Q]|<1, the following inequalities hold:

-1 -1 K
NI-Q) " ll. <KNIT-Q)" Il = 2101

and we can obtain bounds for the absorption time, provided we can identify K and have

(5.3)

some estimate for ||Q||. In any case, ||/ —Q) |l provides us with a tool to justify why
some methods work better than others. In particular, when we apply the above discus-

sion to the elevator problem elevdd (2.3) we find that the matrix Q for URW is

© © © ®|malm © Ui
© © O o|=n|= © =i~
© O H|=o|= © W=~ O
© © O o|=u= © LA
O W= © ||| | ==

sl © Bl O W~ © ©
Blw|= © o|=n|~ o o o
A=A ||~ 0o © © ©

for which we get ||/ Q) |l = 17.16.
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Likewise we can find the matrices Q and the values ||(/—Q)!|l.. for all the tech-
niques in elevdd(2.3) reported in Té.ble 5.1 that shows the theoretical values and those

obtained in section 4.

technique | ||/—Q Y l. | Simulation
URW 17.16 16.75
RRW 13.12 16
MRWU 75185 6.35
MRWR 5.8889 6.25
Table 5.1

Similar computations can be carried out for elevud(2.3), yielding Table 5.2, where we

can compare the theoretical values to those obtained in section 4.

technique | ||U—Q) 'l | Simulation
URW 6.7778 6.35
RRW 4.9444 57
MRWU 2.7778 3
MRWR 2.0909 2.55
Table 5.2

These computations with the inf-norm of the fundamental matrices show why we
should expect MRWU to outperform RRW and this in turn to outperform URW, but they
are specific to the elevator examples. At least something we can say in full generality is
the following:

Theorem 5.1 RRW ouperforms URW.

Proof: Let X (n) be the original URW with transition probability matrix P = ((p (i,/)) and
let T(0),T(1),T (2),... with T (0) =0, be the times when the random walk jumps to a state
different from the previous one (for example, if X (0)=3, X(1)=3, X(2)=3, X(3)=1,

X4)=1,X(5)=3,X(6)=7, --- thenT(0)=0,T(1)=3,T(2)=5,T(3)=6, --*).
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If we define a new Markov chain Y (n) by Y (n) =X (T (n)) (i.e., look at the original
URW only when it jumps to a new state) it turns out that this new Y (n) is precisely the

RRW with transition matrix P’ = (p”(i,)) related to the previous P by Lemma 5.1:

p(@.))
1-p (i)

takes into account the exponential time spent in state X;

p'Gp=
1
Roughly, —
(Roughly, the term 1 G.D)
before jumping into state x;).
Now it is clear why Y (n)’s absorption times are smaller than those of X (n): simply
by looking path-by-path: if m is the first time such that X (m) =D where D is a deadlock

state, then the number of different states visited prior to time m are less than or equal to

mand hence min{ j: Y(j)=D }<m. O

Theorem 5.2 MRWR ouperforms MRWU.

Proof: Similar to the one for Theorem 5.1. O

Finally, let us address the issue of the distinction between a protocol that does not
have a deadlock and one in which the deadlock is ‘‘hard to find”’, i.e., the absorption
time is very large. In principle, if somebody uses our techniques on a large size protocol,
setting a priori a limit in the maximum number of steps of the random walk, and does
not find a deadlock, he or she cannot be sure that there is no such state. (Unless the ran-
dom walk had visited all the reachable states of the protocol.) Thus, in principle, we can-
not distinguish between a large protocol without deadlock and a protocol that takes a
long time to reach its deadlock. However, if after running our techniques for a large

number of steps N, no deadlock is found, one has strong evidence that if the deadlock is
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reachable, the absorption time for the protocol is bigger than N. Therefore, if the protocol

is to be implemented, it is likely to take a long time to deadlock.

6. CONCLUSIONS

We have presented here a series of techniques that use random walks and help the
designer of protocols in the task of finding particular states. These techniques have pro-
ven successful in finding deadlocks in a series of examples, although as we have seen,
they cannot guarantee that if a deadlock is not found in a series of runs, it does not exist.
Unless more characteristics of the protocol are known a-priori (that allowed us to use
equation 5.3), we cannot give a bound on the absorption times either. Thus, if for a given
protocol, after running the techniques for a fixed number of steps, we cannot find a
deadlock, then our only conclusion can be that there is strong empirical evidence that the
absorption time should be greater than the number of steps used. This was particularly
exemplified by our custom made version of the elevator problem in which the down drift
made the deadlock very hard to reach. We also have seen that for protocols that progress
somewhat rapidly into deadlocks, our techniques behave very well, so as to find the state
quickly.

We have proven in Section 5 that in general not letting the random walk return to
the current state helps to reduce the absorption times. We also have seen that adding the

metric to the search helps in general to speed up the process.

There are some other variants that we are trying to incorporate to this schema of
random walk exploration. The first one exploits the idea of reducing dynamically the pro-
babilities of the states that have been already visited, hopefully speeding up the progress

towards the desired state. A difficulty with this approach is that the process thus created
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is non-markovian, hence not amenable to be studied with standard Markov Chain theory.

A second idea combines the full reachability approach with the random walk tech-
niques. It consists of stopping the random walk every so often to perform a full search of
reachable states up to the N-th order neighbors of the current state. In this way we hope

again to reduce the time needed to find the designated state.
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