DECREASING CHANNEL WIDTH LOWER BOUNDS
BY CHANNEL LENGTHENING

Fook-Luen Heng
William W. Lin
Andrea S. LaPaugh
Ron Y. Pinter

CS-TR-218-89

May 1989



Decreasing Channel Width Lower Bounds
by Channel Lengthening

Fook-Luen Heng'
William W. Lin*
Andrea S. LaPaugh

Department of Computer Science
Princeton University
Princeton, New Jersey 08544

Ron Y. Pinter

IBM Scientific Center
Technion City
Haifa 32000, Israel

ABSTRACT

Under the 2-layer Manhattan model for channel routing, the problem of minimiz-
ing the channel width, i.e., finding the smallest possible number of tracks required, is
NP-complete [Szy]. So, when a quick estimate of the width is needed (during place-
ment, for example), one often uses a lower bound metric. Density is a commonly used
metric, but another interesting metric is flux [BBL]. When allowed to move some of the
terminals in order to minimize the width, one usually tries to minimize a lower bound
metric, hopefully thereby lowering the width.

We consider the problem of decreasing a given metric to a target value by adding
empty columns. The empty columns add spaces in the corresponding positions on the
top and bottom rows, so there are no changes in either the relative terminal orderings or
the vertical alignments. This addition of columns does not affect the channel’s density,
but it can decrease the flux. Unfortunately, flux is not monotonically non-increasing as
columns are added, so we derive from flux a new measure, smooth-flux. We consider
the problem of adding a minimum number of columns to achieve a given target value
for smooth-flux. We show that this problem is equivalent to the Weighted Clique Cover
problem on interval graphs, and we present a polynomial-time algorithm for the prob-
lem.
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Section 1: Introduction

Channel routing is a method for the detailed routing of VLSI circuits [Bur]. The input to a channel
routing problem consists of two rows, called the fop and the bottom, whose terminals must be connected
across an intervening channel using a wiring model. Optionally, there may be specified sets of nets that
must enter the channel from the left or leave the channel from the right. The objective is to connect all
terminals that belong to a common net (for each net), using as few horizontal tracks as possible overall.
The smallest number of tracks that can possibly be used is called the channel’s width.

How well one can route depends on the routing model one uses. A model specifies the number of
layers one may use to route signals, and it specifies in what ways (if any) wire segments may cross or
overlap. Among the various options are knock-knee routing, which allows wires on different layers to
share a comer, e.g., in [RBM], [PrLi], and [MPS]; unit-vertical-overlap routing, which allows wires on
different layers to overlap in the vertical direction for a single unit segment, e.g., in [GaHa]; and unres-
tricted routing, in which wires may overlap arbitrarily, e.g., in [Ham] and [BrBr].

In this paper, we shall consider only the 2-layer Manhattan model, which is commonly used. This
model allows only 2 layers for routing, with one layer reserved for vertical wire segments and the other
layer reserved for horizontal wire segments; and all segments must be wholly vertical or horizontal. Wire
segments that intersect may cross (not affecting one another), or they may be connected electrically via
contact cuts.

In general, channel routing under the 2-layer Manhattan model is known to be NP-complete [Szy].
Interestingly, some heuristics route most instances using a number of tracks very close to the density (the
maximum, over all horizontal positions along the channel, of the number of nets crossing that position) of
the instance [RiFi] [YoKu]. It has been noted, however, that some instances require many more tracks to
route than would be indicated by the density [BrRi]. This has led to a new lower bound called flux, which
was introduced by Baker, Bhatt, and Leighton [BBL]. They showed that the channel’s width is bounded
from above by a function that is linear in both density and flux.

In classical channel routing problems, the terminals on the top and bottom rows are considered to be
at fixed positions. It is interesting to consider the problems that arise when we allow the terminals to
move. One of the principal difficulties in tackling these problems is that it is hard to judge the ‘‘good-
ness’’ of a terminal configuration, since it is an NP-complete problem to determine a configuration’s
width. One solution is, instead of trying to minimize the channel’s width directly, to minimize some
lower bound metric for the width, hopefully lowering the width simultancously. For instance, these
papers use density as their channel width metric: Gopal, Coppersmith, and Wong [GCW] showed how to
achieve the density bound if the relative ordering of terminals on each of the top and bottom are fixed, but
the combined ordering can be arbitrarily changed; Atallah and Hambrusch [AtHa] looked at the problem
of minimizing the density when the top terminals are fixed, but the bottom terminals are free to be placed
in any position among a set of fixed positions; Kobayashi and Drozd [KoDr] studied the problem of
minimizing the density when terminals within the same cell may be interchanged, but no mixing of cells
is allowed; Johnson, LaPaugh and Pinter [JLP, LaPi] examined the problem of minimizing the density in
the lateral placement of components located along the top and bottom of a channel.

There are some circumstances where density may not be the right metric to use. If the vertical
alignment of terminals in a channel is fixed — i.e., the ordering of the terminals within the rows is fixed
and we may not place an empty space in the top row without placing an empty space in the corresponding



i

position on the bottom row (or vice versa) — then we cannot change the density, which can only be
changed by altering the order or alignment of terminals. If we want to lower the width in this case, our
only allowed action is to add an empty column (place empty spaces in corresponding positions on both
the top and the bottom), thereby reducing some metric other than density. Flux is an interesting metric to
use because it captures the idea that routing space may be reduced by maneuvering signals in empty
columns; adding empty columns can decrease flux. In this paper, we consider the problem of adding the
minimum number of columns to a channel to decrease flux by a desired amount.

In Section 2, we distill the essential properties of flux to describe a general class of channel width
metrics; then we give an example of a well-behaved metric, smooth-flux, that belongs to this class.
Smooth-flux is derived from flux but has desirable properties not held by flux. In Section 3, we present
the problem of decreasing a channel width metric to some target value, using as few extra columns as
possible. We show that, for our class of metrics, this problem is equivalent to the weighted clique cover
problem on interval graphs. In Section 4, we present an algorithm that solves the problem. In Section 5,
we consider the computational complexity of the lower bound metric smooth-flux. We conclude with
some extensions of our problem and some suggestions for future research.

Section 2: Smooth-Flux

We consider a two-dimensional grid model for placement and routing. All terminals lie at intersec-
tion points in the grid, and all wire segments run along the grid lines. Initially, the grid lines are marked
with integers, as in a Cartesian coordinate system. Each vertical grid line corresponds to a column in the
layout, so adding a column in the layout is equivalent to moving terminals and either shifting or stretch-
ing wire segments. In our grid model, we add columns by inserting new grid lines between those already
present. A new grid line added between the lines numbered i and i +1 is given a real number coordinate
xsuchthati <x <i+1.

The channel width metric flux is affected by the horizontal extent of nets and the vertical alignment
of terminals. To define flux, Baker, Bhatt, and Leighton [BBL] consider horizontal cuts within the chan-
nel, where a horizontal cut isolates from all other terminals those terminals placed on a given row
between two given points. Horizontal cuts may either be on the top or bottom row. Flux bounds the
number of tracks needed to connect (to each other and to terminals outside the cut) the terminals in a hor-
izontal cut. This is in contrast to a vertical cut, used in calculating density, which isolates all the termi-
nals to the left of some point from those to the right of that point.

We formally define flux as follows. A trivial net is one comprising exactly two terminals, both of
which lie in the same column — a trivial column. The flux fis the largest integer for which some hor-
izontal cut spanning 22 nontrivial columns splits at least 2f 2 — f nontrivial nets. A net is unsplit by a
cut if all of this net’s terminals lie either inside the cut or outside the cut; otherwise, the net is split. (See
Figure 1.)

Unfortunately, flux is somewhat anomalous, making it inappropriate as a measure to be minimized.
Specifically, flux is is not monotonic; that is, we may add an empty column and actually increase the
value of the flux (see Figure 2). This anomalous behavior occurs due to the coarse granularity between
allowed cut sizes in calculating flux — all cuts are of size 2i2, for some integer i .

For our purposes, we want a metric that is well-defined and fairly easily computed for any given
window, where a window is a cut that isolates a set of contiguous horizontal positions from all other posi-
tions. Notice that a horizontal cut is a window that contains only positions on the top of the channel or on
the bottom of the channel. In general, a window may contain positions from both the top and bottom of
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Figure 1. Flux terminology.

the channel. For a window w, define /(w) to be the coordinate of the leftmost terminal or empty space
(column) in w and r (w) to be the rightmost such coordinate. When we speak of decreasing the metric for
a window w by adding empty columns, we consider the total number of columns spanned by w to be
variable; but /(w) and r (w) are fixed. The following conditions must be satisfied by our metric:

(M1) No sub-window of w may have its metric value increased by the addition of empty columns; that
is, we require the metric to be monotonically non-increasing as columns are added.

(M2) We must be able efficiently to calculate how many extra columns must be added to a given win-
dow in order to lower the metric value for that window to a given target value.

(M3) We must be able to compute the region within the window in which the extra columns must be
added in order to achieve the target value. We call this the window’s critical extent.

The above conditions do not rule out the possibility of a window whose extent is not contiguous,
but we do not know of any channel width metric that bounds the width for non-contiguous windows.

There may be a number of metrics that satisfy our above conditions. However, the following
metric, derived from flux, is the only one we know of that satisfies the conditions, can be decreased by
adding empty columns, and provides a useful lower bound for channel width. We define a revised flux
metric, smooth-flux, that may be calculated for any horizontal cut.

Define:
C =the horizontal cut (window ) under consideration.
n. = the number of nontrivial columns in C.
e = number of empty spaces (positions not containing a terminal) within C.
S = number of split nets within C (does not include trivial nets).
U = number of unsplit (one-sided) nets in C.
R = number of redundant terminals in C =n, —e—-S-U

Note that R counts the repeated terminals for the nets in S and U.



Start
1 2 3 4 5 6 7 8 9 10
Column #: } f i f } } i f f i
Top row: 1 1 2 ’— 3 4 - 5 6 6
Place empty columns here
Bottom row: 2 5 = - 3 4
Starting flux = 1, since there is no cut spanning 8 = 2% 22
nontrivial columns that splits at least 6 = 2% 22— 2 nets.
(And there are no cuts that span = 2* 32 = 18 columns.)
End
Top row: 1 1 2 3 - 5 6 6
Bottom row: 2 5 3 4
""" This horizontal cut spans 8 columns and splits 6 nets, -
so the ending flux = 2.
Figure 2. An example where adding empty columns
increases the flux.
Definition:

Smooth-flux of the cut (window) C, smooth—flux(C), equals the smallest possible integer f that satisfies
the following equation:

fe+f(F+D)+(F-DU+R)=S (D
The smooth-flux of a channel is the maximum of all the smooth-flux values of the windows within the

channel. Note that equation (1) is basically identical to the equation defining flux, except for the inclu-
sion of the term (f —=1)(U+R ). Solving the quadratic inequality above, we find the smooth-flux to be

F = | (eAU+R+1) + We+U+R +1Y + 4(U+R+S) )
2



Or, since S+e+U+R =n,,

P —(ne=S+1) + V(=S +1)* + 4(n.—e)
- 2

Lemma 1:

For any cut C, smooth—flux (C) bounds from below the number of tracks needed to route all the
split nets in C.

Proof:

The following analysis holds for either a horizontal cut on the top or a horizontal cut on the
bottom. The argument, similar to that in [BrRi] and [BBL], bounds the number of split nets that
may be routed into the correct column by using a particular track.

track 1 :

Two split nets may connect via track 1 to points outside the cut, adding 2
more columns available for routing (see nets 7 and 6 in Figure 3). Also,
e split nets may be routed into the e columns under the free spaces in C
(see net 7 in Figure 3). Finally, we might connect all unsplit nets and all
redundant terminals. This would add U + R more columns available for
routing split nets on all remaining tracks (see nets / and 2 in Figure 3).

(to 7)

6 free columns after track 1 routing

Figure 3. Utilization of track 1.

track 2 :

For each available column, we may possibly connect together the termi-
nals of a split net. There are (from step 1 above) at most ¢ +2+ U + R
columns available. In addition, 2 more split nets may be connected to
points outside the cut, thus freeing up two more columns.

etc.

In general, on track i, we may connect at most e +2i + U + R split nets, except on the first
track, on which we may connect at most e + 2 split nets. Thus, the maximum number of split
nets connected on f tracks is:
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ferfurfwn-
= i= i=
fe+f(F+D)+(F-1)U+R)
Since all split nets must be connected, this number must be greater than or equal to the total
number of split nets, S, hence smooth-flux constitutes a lower bound.
O

Now, we shall show that the smooth-flux metric satisfies our aforementioned conditions for a metric
to be appropriate.

Lemma 2:
Smooth-flux satisfies conditions (M1), (M2), and (M3) above.

Proof:

We may compute the number of extra columns needed to lower the smooth-flux value from
f to t by simply using the definition. That is, we may substitute ¢ for f and re-write equation (1)
above to find the total number of free columns needed:

e’ > S —t(t+]) — (-1 U+R)
=" t

The number of columns we must add is simply e — e. This proves that smooth-flux satisfies con-
dition (M2).

Since the smooth-flux value for a window v does not depend on the positions but rather on
the number of split nets, free columns, unsplit nets, and redundant terminals, we may place the
extra empty columns anywhere strictly between /(v) and r(v). Thus, we have shown that
smooth-flux satisfies condition (M3).

As to the question of whether or not adding an empty column to a window v can raise the
smooth-flux, the answer is no. To see that this is the case, consider any new window v’ created
by the addition of empty columns. Clearly, v’ is equivalent to an original window v, plus some
empty space(s). From equation (2), the change in smooth-flux with respect to e is:

%[_= 1] 14+ (e+U+R+1)
e 2 V(e+U+R+1)? + 4(U+R+S)

Since (e+U+R+1)< ‘\/(e +U+R+1)? + 4(U+R+S), %g <0; so if we increase e, f decreases.

Therefore, smooth-flux(v )<smooth-flux(v ).

Therefore, we may ignore the new windows if we wish to lower the value for smooth-flux;
and smooth-flux satisfies condition (M1).

Section 3: The Problem of Reducing a Channel Width Metric

We consider the following problem: Given an instance of a channel with top and bottom terminals,
an appropriate channel width metric, and an integer T, how many empty columns must we add to reduce
the channel width metric to T, and where do we place the empty columns? We consider only channel
width metrics that satisfy conditions (M1)-(M3) and for which all critical extents are intervals. In Section
3.1, we formally define this problem; in Section 3.2 we show that this problem is equivalent to Weighted



Clique Cover.

Section 3.1: Formal Problem Definition
We begin by restating the problem we wish to solve in the following, equivalent terms.

SATISFACTION OF WINDOW DEMANDS [SWD]
Input: Problem instance P consisting of

o asetof windows W = {w wa, ..., Wy}

e Each window w e W has an extent (I(w),r(w)), where I(w) and r(w) are positive
integers, /(w) < r(w). Of the two endpoints, I (w) is the start of the extent and r (w) is the end
of the extent.

e Each window w € W has a demand 5(w).
Conditions:
e We are allowed to place columns at positions within the windows’ extents. We may place a
column at any non-integer position. No two columns may be placed in the same position.
e If at least 8(w) columns are placed within the extent of w, we say that the demand of w is
satisfied.
Question:
e Where do we place columns so that the demand of every window in W is satisfied and so that
we use as few columns as possible?

For an instance of SWD, we will refer to any placement of columns that satisfies all the window
demands as a feasible solution and to any placement which, in addition, uses the minimum number of
columns as an optimal solution.

The correspondence between SWD and the problem of decreasing a channel width metric by adding
columns is readily seen. Let Wepanner be a window derived from an instance of the problem of decreasing
the channel metric to a certain value by adding empty columns; Wejanme; is a horizontal cut on either the
top row or the bottom row. Then, wgyp is the window corresponding t0 Wejanse; in the instance of the
SWD problem:

window wswp <> Window Wepannel
extent (Wgwp ) <> critical extent of Wepannel
demand d(wswp) <> number of columns needed by W panner

We note that the size of an instance may expand in going from the channel context to the SWD context,
since the windows are not explicitly given in the former problem. In Section 5, we show that for
smooth-flux this expansion is at most quadratic.

We now present some definitions and properties of solutions to SWD that will be useful in our study
of the problem.



Definitions:
e atomic interval I :

for integers j and &k, with j < k, an interval (j, k) such that there are endpoints of windows at
both j and &, but there are no window endpoints at any position between j and k. We
denote [(I)=j,r(I)=k.

e critical interval :
an atomic interval / such that /(I)=1(u) for some u €¢ W and r(I)=r(v) forsome v € W,
Windows u# and v may possibly be identical.

e p(I):
where / is an atomic interval. This is the set of windows whose extents contain the extent of
interval /,i.e., w € p()if Iw)<I{I)and r(w) 2 r(I).

Lemma 3 presents three properties of feasible solutions that we use implicitly in our proofs.
Lemma 3:

For any instance of the Satisfaction of Window Demands problem, the following three properties
hold:

(1) A solution exists if all window demands are finite.
(2) We only need to specify in which atomic interval to place a column; the actual numerical
position is unimportant.
(3) Given 3 consecutive atomic intervals Iy, I, and I3, if w € p(/1) and w € p(/3), then
w e p(l2).
Proof:

Property (1) is added for completeness, to show that a solution to our problem exists. We
may simply place exactly 8(w ) columns in the extent of all windows w € W. This may be done
since there are an infinite number of positions within any window.

Property (2) comes from the fact that we do not restrict where we may place a column.
Placing a column at a particular position will only affect one atomic interval; and for a given
atomic interval, any two columns placed within the interval will affect exactly the same set of
windows, namely p(/). So, from now on, we shall only specify the atomic interval in which we
are placing a column.

Property (3) ensures that a window is contiguous and thus may not *‘skip over’’ the extent
of an atomic interval. By hypothesis, I (/1) <I(I2) and r(I3) 2r(I3). Since by definition of p,
Iw)sldyp<sldy)andr(w)2r(d3)2r(l),w € p(la).

Section 3.2 Equivalence of Weighted Clique Cover

We now present a graph covering problem which also models our problem of reducing a channel
metric. The problem is Weighted Clique Cover. We define the problem for a general graph, but we will
only be interested in interval graphs for this application.
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WEIGHTED CLIQUE COVER (WCC)
Input: Problem instance P consisting of

e agraph G =(V,E).
e Each node v has a weight we(v) which is a positive integer.
Question:

e Assign non-negative weights to the cliques of G so that for a given node v e V, the sum of the
weights on all cliques containing v is greater than or equal to wt(v). Minimize the sum of the
clique weights over all cliques.

An interval graph is defined by a set of intervals on the line. Each node represents an interval and there is
an edge between two nodes if the corresponding intervals intersect. Thus for any interval graph there is a
corresponding set of windows and vice versa. (Note that the mapping from sets of intervals to interval
graphs is many-to-one. Furthermore, it suffices to consider only open intervals [Gol].) Let W be a set of
windows and G=(W, E) be the corresponding interval graph, where we use W to denote both the set of
windows (i.e. intervals) and the set of nodes. Then for any w € W, 8(w )=wt(w). Note that each position
on the line defines a clique of G consisting of exactly those windows which contain the position. We say
that the position induces the clique. Similarly, any atomic interval / induces a clique in G, with node set
p(I). We first establish the correspondence between the critical intervals of a set of windows and the
maximal cliques of the corresponding interval graph.

Lemma 4:
For any set of windows W defining interval graph G = (W, E) the set of critical intervals is in
one-to-one correspondence with the set of maximal cliques.

Proof:

We shall use ““window’’ to mean both the interval of the line and the node corresponding to
that interval.

Given a maximal clique K, let g be the rightmost start of a window in K and rg be the
leftmost end of a window in K. We know Ig<rg and all the windows in K contain (lg,rg). We
claim (lg,rg) is atomic, and thus a critical interval. Suppose another window w starts or ends
within (Ig,rg). Then w intersects all the windows in K and thus K U{w } is a clique of G, con-
tradicting that K is maximal.

Given a critical interval (! (u),r (v)), it induces a clique K in G. We claim this clique is
maximal. Suppose not. Then there is a window w which intersects all the windows in K but is
not in p(({(u),r (v))). But then r(v)<l/(w) and (v,w) is not in E, or r (w)<I(u) and (u,w) is not
in E. Ineither case K w{w} is not a clique, a contradiction.

O

Lemma 5:
Any solution to an instance of Weighted Clique Cover on an interval graph can be transformed to
a solution that assigns non-zero weights only to maximal cliques.

Proof:

Given a solution to WCC, transform the solution by transferring any non-zero weight of a
clique to the weight of a maximal clique that contains it. Then only maximal cliques have non-
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zero weight, the total weight over all cliques is unchanged, and for any node w, the sum of
weights over all cliques containing w is at least as large as before.

a

Theorem 1:
Weighted Clique Cover on interval graphs is equivalent to Satisfaction of Window Demands.

Proof:

Let W be a set of windows and G = (W ,E) be the corresponding interval graph. We may
start with either W or G and derive the other, but if we start with G, W is not unique. We must
show that there is a solution to the instance of SWD defined by W and & which places ¢ columns
if and only if there is a solution to the instance of WCC defined by G and wt with total clique
weight ¢.

First consider a solution to SWD. Assign to each clique a weight equal to the number of
columns added at positions within the atomic interval that induces the clique. The sum of the
weights over all cliques is the number of added columns. Also, the sum of weights over all
cliques containing a node w equals the number of columns added to the window w .

We now consider a solution to WCC. Unfortunately, not all cliques of G are induced by a
position on the line. Using Lemma 5, transform the solution to a solution in which only maximal
cliques have non-zero weight. From the new solution to WCC construct a solution to SWD as
follows: for each maximal clique K of weight wt(K), add wt (K') columns to the critical interval
corresponding to K. By Lemma 4, this critical interval is unique for K, and each critical interval
corresponds to some K. Then the total number of columns added is the total clique weight and
the number of columns added to any window is the sum of the weights of all cliques containing
that window.

a

Corollary to Theorem 1:

For any instance of the Satisfaction of Window Demands problem, there is an optimal solution for
which columns are placed only in critical intervals.

We know of no previous work on the general Weighted Clique Cover problem; however, the case
where every node’s weight equals 1 is simply the problem of Partition into Cliques, or finding a
minimal-sized set of cliques that covers the set of nodes. (Partition into Cliques requires a set of disjoint
cliques, but any set of cliques which cover a graph can be transformed into a disjoint set by removing
redundant nodes.) The problem Partition into Cliques is known to NP-complete for general graphs
[GaJo]. It is solvable in polynomial time for several classes of graphs [GaJo] including chordal graphs,
which is a superclass of interval graphs. Our contribution is a solution of the Weighted Clique Cover
problem with arbitrary node weights for interval graphs.

Section 4: An Algorithm for Adding Columns

In this section, we present an algorithm which solves Satisfaction of Window Demands. In Section
4.1 we describe the algorithm; in Section 4.2 we give an example of its use. Section 4.3 contains the
proof that the algorithm finds an optimal solution.
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Section 4.1: The Algorithm

Our algorithm to solve SWD is based on the observation (Corollary to Theorem 1) that all extra
columns can be placed in the critical intervals, The algorithm starts with the leftmost critical interval and
proceeds with each critical interval in turn. As it considers a critical interval, it places enough columns in
it so that the window demand is satisfied for any window whose extent includes the present critical inter-
val, but whose extent does not include any critical intervals yet to be considered. Thus, it postpones as
long as possible the addition of columns,

Before presenting the algorithm, we present some notation:

e N(x):
where x is either an interval or a window, is the number of columns placed within x ’s extent,
for some assignment of columns.

® Column Assignment:

a possible solution to a problem instance. It tells how many columns are placed in each criti-
cal interval. An assignment is given as a sequence of numbers
A={MT),NU2),..., NIy}, where I, 1s,. .., Iy are all the critical intervals, from left to
right.

e (Total) Cost:
The (total) cost of a column assignment A is c (A ), the total number of columns used by A ’s

constituents, namely c(A) = in([k ).
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One-pass Algorithm:
Let W ={wy,..., wy]} be the set of windows, where w; = (I (w;), r (w;));
{8(w;)|1<i <m} is the set of window demands.

Calculate

I={I,..., Iy} set of critical intervals, where I; =(I;, r;) and [; < l;41.
Initialization:

Wo=W

U=

M1/ o) =0, where /¢ is a dummy variable

Sow)=08(w) ,forallw e W

fori=1toM do
Vi={veW]|vepl)and ve p(;)forj >i}
Ui=pUi)-V;
Initialize M1 (7;) =0
end
for i =1 toM and while W;_; is nonempty do
(1) Update window demands,

Oi—1(w) LJif w ¢ U
%) =1max {0, Oiw)-mi-D } ,if we Uiy

(2) Compute 1;(/;), the number of columns to be placed in I;,
m) = vnéa’f/l. {6;(v) }

(3) Update the current set of windows,
Wi=W;,-V;

end

We shall denote the column assignment produced by the One-pass Algorithm as
Ay={md),...,mUu) }.

Theorem 2:

The One-pass Algorithm finds an optimal solution to the Satisfaction of Window Demands Prob-
lem in running time O (m?), where m is the number of windows.

Proof:
We postpone the proof that the One-pass Algorithm correctly finds an optimal solution. It
is the proof of Lemma 8 in Section 4.3. Here we analyze the running time.
(A) The initialization:
Sort the endpoints of windows in W and scan the sorted endpoints from left to right in
order to compute /. This takes O(m logm) time.

M,
Let P denote the total size of all p(/;)’s, i.e., P = Zi lp()|-
=
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It takes O(P) time to compute V;, U;, and p([;), fori =1to M.
(B) The main loop:

Steps (1), (2), and (3) together take O(P ) time.

Thus, the complexity of the One-pass Algorithm is O(P +m logm) time. Clearly, P is
bounded above by M * m, where M is the number of critical intervals. This gives a bound on the

running time of
O (Mm +m logm) 3)

Since the number of critical intervals is not greater than the number of windows, M <m; so

P =0 (m?. Therefore, the running time of the algorithm is O(m?), i.e., quadratic in the number
of windows.

a

Section 4.2: Example Usage of the One-pass Algorithm
Below is an example of the usage of the One-pass Algorithm (see Figure 4). We show the input and
the running of the algorithm for an example where the number of critical intervals is three.
Input:

W= [le W2, W3, W4}

. Extent
Window Demand
Start End
w1 1 3 3
Wwa 2 4 6
W3 3 7 8
Wy 5 8 4
1 2 3 4 ] 6 7 8
Positions: b } } } ; } : |
: l w1 | w3 |
Windows:
Lo %e ] I d
Critical Intervals: T I T B T T fs T

Figure 4. Sample input to the One-pass Algorithm.

The critical intervals are [ =(2,3), I, =(3,4), and I3 =(5,7).
Iteration 1: (i =1)

Wo={w1, wa, w3, wy}

Demands are 8;(w) =3, 8;(w3) =6, 8;(w3) =8, d;(wy) =4
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We find that V= {w,}, Uy = {w>} and so (/1) =3. We place 3 columns within /4,
then we continue with the algorithm.

Iteration 2: (i =2)

W= {wa, w3, w4}
Demands are 8y(w3) = 3, 8x(w3) =8, §p(wy) =4

We find that V= {w;}, U= {w3} and so (/) =3. We place 3 columns within 7,
then we continue with the algorithm.

Iteration 3: (i =3)
Wa = {ws3, w4}
Demands are 83(w3) =5, 83(wy) =4

We find that V3= {w3, ws}, Us=0 and so ny(/3) =5. We place 5 columns within 73,
then we are finished since i =M.

Totally, we have used 11 columns (which is optimal), and the assignment A; = {3,3,5}.

Section 4.3: Proof of Correctness of the One-pass Algorithm

We want to prove that our One-pass Algorithm finds an optimal solution to SWD. We begin by
proving a lemma that allows us to take two feasible solutions — one with lower cost and one which post-
pones the addition of columns longer — and produce a feasible solution which has both the lower cost
and the postponed addition of columns. We shall use the lemma later to derive the solution produced by
the One-pass Algorithm from an arbitrary optimal solution.

Lemma 6:
Let

H = {nUD,...nUn) }
H = (n{1),.nUy) }

be two feasible solutions to an instance of the Satisfaction of Window Demands problem such that
there is a t <M with n(/;)=n'(;) for 1 <j <t and n(I;) <N'(,) (i.e., H and H" agree for the
first £—1 intervals, and H has more columns at the ¢ interval). Then we can find another solu-

tion,
H ={n{)...nUxn))
such that
N =n'Up)=nd;y, forj <t,
n ¢;)=nd,),
cost(H™) = cost(H").
Proof:

Intuitively, we may take solution H and ship the extra number of columns, n'(/,) — n({,), in
interval /, to interval /,,; without changing the cost and validity of the solution. We can show this
by constructing H" as follows:

N'Uj)=nU;) ,forj <t
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N =nd,)
N Ur) =N U) +0A) -Uy)
N =n'Uy) , fork > t+1

There is no change in cost:

cost(H") = g‘,n"(l.-)
=;gn'(lj) 4 n(ll) +n’(]l+l) + 1’]'(]‘) i Tl(lt) i kizn'(lk)
M, '
= 2N U= cost(H)

Validity of H:

We must show that for any window w, '(w)=8(w). Recall that n(w)=8w) and
N'(w) = 8w), since H and H  are both solutions. Let arbitrary window w contain all critical
intervals from /, to /,, p < g, and no other critical intervals. Any window which lies completely
to the left of /, (¢ <t) must have its demand satisfied since 1"(w )=n'(w); any window which lies
completely to the right of 7,41 (p >t+1) must also have its demand satisfied since n"(w )=n'(w).
We must check that the demand is met for windows of the following three types:

(1) g=t
Window w contains 7, but not /, ;.
2) p=t+l

Window w contains 7, but not /,.

(3) pst<t+l<gq
Window w contains intervals /; and [,,,.

We now show that n"(w) = 8(w) for each type of window.
Type 1 window:
Nw)=n"Gp)+ - +n"Uy)
=NUp)+ -+ +N U=+ ()
=NWp)+ -+ +n)=nw) 2dw) ,since N'(/;)=n(;) forj <t
Type 2 window:
N =n"Us)+ -+ +0°U,)
=) +NU) =MD+ MU + -+ +0'Uy)
=1'(w) + (positive value) >n'(w) 2 dw)
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Type 3 window:
N ="+ - +0 U+ Ua) + -+ +17Uy)
=N+ -+ +NU) +0U) -U) + -+ +0U,)
=N(Ww)28w)

To complete the proof of Theorem 2, we first show that the column assignment produced by the
One-pass Algorithm satisfies all window demands. We then apply Lemma 6 to show that the solution is
in fact optimal.

Lemma 7:
For any instance of the Satisfaction of Window Demands problem, the assignment
Ap={mU),...,mUm) } constructed by the One-pass Algorithm is a feasible solution.

Proof:

Consider a window w whose extent includes critical intervals I, through I, i.e.
rsaSIw)<ly <r, <r(w)<l4. (SeeFigure 5)

Critical Intervals: ... LIy L oy

window w

Figure 5. Window extending from /; to /.

Observe the following:
(i)  From the initialization, we V,, since w € p(I;) butw ¢ p(l;41).

(ii) The number of columns placed in w is
t
nw)=m)+ --- +m)= ;nl(lk)-
=5

(iii) From step (1) of the One-pass Algorithm,
s (W) =8y 1(w),
since w € p(ly—1) 2 Ug-y.
Similarly,
Op(w)=08;_1(w),for1<k <s.
Therefore,
B (W) =81 (w)= - -+ =8p(w)=d(w). “)
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From (i) above, w ¢ V; ,fork #¢t. So from step (1) of the One-pass Algorithm, the win-
dow demand for w from the s+1% to the ¢** iteration is

Se+1w)=max { 0, S (w) — M) },

since we p(ly)—-Vy=Uy, fors <k <t

iz,

Oeni(w) 2 & (w) —ny(ly), fors <k <t. ()
Combining equations (4) and (5) gives

S w)+ M)+ -+ +Mills) 2 8 (w) = 8(w). (6)
But from step (2) in the One-pass Algorithm,

md) =, (8:) )28 W), Q)

Therefore, (ii), (6), and (7) give

nw) = k}_’__:smak)z 3(w) ,forall w e W,

Hence, all window demands are satisfied.

O

Lemma 8:
For any instance of the Satisfaction of Window Demands problem, the column assignment
A= {MmU1)...Mm{py) } constructed by the One-pass Algorithm is an optimal solution.

Proof:

By Lemma 7, the assignment A is a feasible solution. Assume, for the sake of contradic-
tion, that A is not optimal. Let # = { n(/y),....,n(/y7) } be the optimal solution that matches A,
for as long as possible. Then

cost(H) = iZM na;) < iZM Mili) =cost(Ay)
= i=
and there is a =1 such that
ndj)=md;) .forj <t
and
nd,) <md) .

n{;) <mi{l,) follows since if N(/;) > ni(l;) , then for t <M we could apply Lemma 6 to H
and A1 to obtain a feasible solution H' with cost (H") = cost (H) and n'(;) =n(I;) forj <t,ie.
an optimal solution which matches A; longer than H, and, for =M we would have
cost(A)<cost(H).

Consider the column assignment for critical interval 7, (step (2) of One-pass Algorithm):
Mily) = wITéa)%/’ {8:(w)}
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Let v € V, be a window that achieved the maximum, i.e. 1y (/;)=,(v). Let the intervals inter-
sected by v be I, ..., I, for some x <¢. Then, by reasoning analogous to that in the proof of
Lemma 7, '

8(v) =8, (v) =;§= M) =me)
Then,
ne) =,§ na;)
=J>_;m(1j) + ()~ M)
<ME)=8(y) ,since n(I,)—md,) <0.

But this means that v ’s demand is not satisfied by H, which contradicts that H is a feasible solu-
tion. Our assumption that A; is not optimal has led to a contradiction; thus, we conclude that A
is an optimal solution.

Section 5: Notes on the smooth-flux metric

There are a couple of observations that help reduce the time complexity to lower the smooth-flux to
a given target value. One simple point, which applies to any other appropriate metric, is that we only
have to consider a window if its metric value is greater than the target value. If the value is less than or
equal to the target value, we may just leave that window alone.

An important point in lowering the smooth-flux is that we may disregard any window w that con-
tains an empty space in either its leftmost or its rightmost column. To see why this is so, consider the
largest subwindow w’ of w such that:

e w contains all the terminals contained in w
e w’contains terminals in both its leftmost and rightmost columns (see Figure 6).

From w to w’, the values for U, R, and § remain unchanged, but the value for e has decreased. As
we did in arguing that condition (M1) holds (Section 2), we conclude that if we decrease e, f increases.
In other words, the smooth-flux value for w’ is greater than or equal to the value for w. And since any
empty column we place within w” will also lie within w, we may decrease the smooth-flux of w by
decreasing the smooth-flux of w’,

Now, we shall compute the time complexity of calculating the starting value of smooth-flux for a
problem instance. Let N be the maximum of the number of top row terminals and the number of bottom
row terminals. As a preliminary step we order each row of terminals by position; this takes O(N log N)
time. Since we only need to consider the windows that begin and end with terminals (but we need to con-
sider both top windows and bottom windows), there are at most 2 * ( 12V ) =N (N-1) relevant windows.

We scan through the relevant windows by continuously fixing the left endpoint (at some terminal’s posi-
tion) and varying the right endpoint (at another terminal’s position). While doing this, determine the
values n.,S,U,and R [e = n.—~(S+U+R)] for each window. The update time for each window is con-
stant, since the smooth-flux for a window with only one terminal is immediate, and all other windows
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Positions: ( i f f t i i i

Terminals: 3 4 1

Window w": largest subwindow Window w: Starts and ends
of window w that starts and ends with spaces

with terminals

Figure 6. Important subwindow.

only have to increment or decrement each value by at most 1 from the values for the previous window.
With these values, we can compute the smooth-flux for each window. Totally, this takes O(N2) time.

Finally, we note that the number of critical windows is bounded by the number of possible left end-
points for critical windows. This is simply N — 1. Thus, using equation (3) from Section 4.1, we have:

Corollary to Theorem 2:
The total time required to reduce the smooth-flux of a channel to a target value T is O(N3).

Section 6: Extensions and future work
Noting that we know of only one example of an appropriate, non-trivial metric for our algorithm, it
would be interesting to find other useful metrics that belong to the same class. Also, there are a number
of possible extensions and modifications for our problem of reducing a given cost metric. Here are two
very closely related problems:
(1) The extra columns may be constrained to be placed within a set of allowable line segments.
This situation might arise if the terminals are divided into components that are rigid. In such a
case, we may expand or contract the amount of space only between components.

(2) We may be given a fixed number of extra columns, with the task of placing these columns in
order to reduce the cost metric as much as possible.

Problem (1) above can be solved by our One-pass Algorithm, with the modification that instead of
considering only the critical intervals, we consider placing columns only in the maximal intervals among
atomic intervals intersecting some allowable segment, where atomic intervals are partially ordered by the
inclusion order of their induced cliques.

Problem (2) can be solved by applying our One-pass Algorithm and using a binary search on the tar-
get value for the cost metric. Since the value for smooth-flux, like the value for flux, is bounded by
O(Vn ), where n is the total number of nets, we only need to consider at most O(log n) target values. The
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total running time of this algorithm is O (N3 log n). It is not clear that this is the optimal method for solv-
ing (2), though. More research might yield a better algorithm. It may also be possible to decrease the
running time of the One-pass Algorithm by finding a better data structure for the p(7)’s.

The One-pass algorithm adds the minimum number of columns when the critical extent of each
window is a single interval. If the critical extent of a window is not a single interval, but rather a set of
intervals, the technique of postponing the addition of columns as long as possible will still find a feasible
solution, but it does not give an optimal solution. This is because Property 3 of Lemma 3 does not hold;
a window can skip over intervals. It still suffices to consider only maximal atomic intervals, but now a
window may have several left and right boundary points defining atomic intervals. Even if all window
demands equal 1, this extension of SWD is NP-complete, by transformation from Minimum (Set) Cover
[GaJo]. Since we know of no channel width metric that can yield a critical extent containing several
intervals, the problem is principally of theoretical interest.

A very interesting extension of our problem that is of practical significance is the following open
problem:

Arbitrary Channel Lengthening

Instead of adding columns, we may add arbitrary spaces on the top or bottom row, as long as the
total number of columns does not exceed a given limit. This situation might represent a channel
where the terminal ordering is fixed, but the terminals are otherwise flexible.

This is similar in flavor to the problems examined in [GCW] and [JLP]. This extension adds sub-
stantial complexity when smooth-flux is considered because trivial nets can be created.
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