SHIVA:
AN OPERATING SYSTEM TRANSFORMING A HYPERCUBE
INTO A SHARED-MEMORY MACHINE

Kai Li
Richard Schaefer

CS-TR-217-89

April 1989

Shiva: An Operating System

Transforming A Hypercube into a
Shared-Memory Machine*

Kai Li Richard Schaefer
CS-TR-217-89
April 10, 1989

Abstract

The Shiva project at Princeton aims to develop an operating system
supporting both the shared-memory and message-passing models of par-
allel computation for the second-generation message-passing multicom-
puters. Our initial system was designed and implemented for the Intel
iPSC/2 hypercube multicomputer. It provides a large, coherent, shared
virtual memory and a multithread interface—transforming a hypercube
multicomputer into a shared-memory multiprocessor. The Shiva system
also supports message-passing among threads at low cost. Our prelimi-
nary performance measurements indicate that shared virtual memory is
an effective strategy for implementing the next generation operating sys-
tems for hypercube multicomputers.

*This research was supported in part by the National Science Foundation under grants
CCR-8814265 and by the Intel Corporation.

1 Introduction

High-performance message-passing multicomputers with hundreds of processors have become
commercially available over the past few years. There are more than one hundred first-
generation multicomputers in use and during the past two years second-generation multicom-
puters with faster processors and much faster message-passing networks have appeared[Sei85,
AS88]. Although these machines exhibit performance comparable to that of conventional su-
percomputers on many computing problems, their operating systems have not been able to
take full advantage of their massive physical resources to effectively support a large domain of
applications.

The existing systems for the multicomputers have a number of drawbacks:

o Lack of support for the shared-memory model of parallel programming.

We are convinced that no single model of parallelism is appropriate for all applications.
Solely providing the message-passing model restricts the domain of applications. Whether
a large-scale multicomputer can provide a true shared-memory efficiently and effectively
is an open problem.

e Small memory size of each node.

The limit of the memory size on each node is determined by the cost and convenience
of packaging. The second-generation multicomputers typically have 1 to 16 megabytes of
memory per node. Although such a machine may have gigabytes of aggregate memory,
applications whose processes require data spaces larger than a node’s physical memory
are difficult to run. The small amount of memory on each node further restricts the
application domain of multicomputers.

o Difficulty of passing complex data structures between nodes.

Message-passing systems restrict the programmer to passing data by value. There is no
way to share pointers since processors have distinct address spaces. Passing complex
data structures containing pointers requires copying the entire structure. Also both the
sender and receiver processes must keep track of all elements that have ever been sent
and received because pointers in the current data structure may point to data structures
previously passed[HL82]. Furthermore, if multiple read-only copies of shared data are
used to promote concurrency, a coherence strategy must be employed to ensure each node
accesses valid data.

s Large cost of process migration.

When migrating a process, all resources allocated to the process have to be moved to-
gether. This is expensive [PM83]. The inconvenience of process migration reduces the
flexibility of parallel applications.

These drawbacks have seriously limited the application domain of multicomputers. The goal
in the Shiva project is to develop an operating system that effectively utilizes the abundant
physical resources and overcomes these drawbacks.

The most distinctive feature of Shiva is the implementation of a large, coherent, shared vir-
tual memory address space spanning almost the entire physical memory of the multicomputer.
Unlike facilities presented in parallel langauge research, the shared virtual memory supports
the shared-memory model at the lowest system level: instructions and memory references. The
shared virtual memory not only provides the same interface as that of a shared-memory multi-
processor, but also offers paging between physical memories to support applications requiring
massive amounts of data.

Another feature of Shiva is a multithread interface. As in the thread interface in operating
systems for shared-memory multiprocessors [MS87], a Shiva threads can reside on any node
and coherently access any memory location in the shared virtual memory address space at any
time. Unlike threads in existing operating systems, Shiva threads can send messages to each
other. We simply view message-passing between threads as memory copying within the shared
virtual memory address space with thread synchronization.

Shiva also provides a langauge-independent remote-procedure-call (RPC) mechanism. RPC
allows a procedure to be executed on a specified node. The arguments of the procedure can be
passed by either value or reference. The remote procedure can also access global variables and
outer-scope variables.

This paper describes our design and implementation of a prototype version of Shiva for the
Intel iPSC/2 hypercube multicomputer. Our first version, designed for testing system algo-
rithms, has been implemented on top of the NX/2 operating system [Pie88]. The preliminary
performance results indicate that the overhead of coherent mapping in the Shiva system is
marginal and our future kernel implementation should effectively support the message-passing
model as well as the shared-memory model of parallel computation. We expect Shiva to sig-
nificantly enhance the hypercube multicomputer architecture for a wider range of application
problems.

2 The Shiva System

The current Shiva system is designed for the Intel iPSC/2 hypercube multicomputer and runs
on each node of the machine. Since the iPSC/2 hypercube is primarily used by single users for
large computing problems, its operating system does not need to address protection problems
among users. Such a feature greatly simplies the design of Shiva. The main components of
Shiva are a shared virtual memory mapping mechanism, a thread control and synchronization
module, a message-passing implementation, a language-independent RPC facility, and memory
management.

Intel iPSC/2 Hypercube

An Intel iPSC/2 hypercube system consists of an iPSC/2 hypercube multicomputer and a
system resource manager (a 80386-based workstation) which is directly connected to one node
of the hypercube. As the name indicates, the iPSC/2 is a hypercube connected multicomputer
[Ar]88], the successor to the Intel iPSC Hypercube. The largest configuration is 128 nodes.
Each node consists of an Intel 80386 paired with 64Kbytes of high speed instruction and data
cache for 0-wait state operation, a numeric co-processor (an Intel 80387, SX scalar extension,
or a VX vector unit), and up to 16 Mbytes of memory [Clo88].

Each node of the iPSC/2 also has a routing logic module that implements a variation of
wormhole routing[Nug88] in which transmission is performed after the route has been con-
structed. Messages are handled independently by the routing units without interrupting pro-
cessors on the route. The latency of message passing has been significantly reduced to tens
of microseconds. With such high performance, the current operating system, NX/2, is able to
deliver 350 microsecond latency for short messages between any two nodes in the machine.

The Intel 80386 processor has a Memory Management Unit (MMU) on chip. The page
table entry used by the MMU has protection bits, a reference bit, and an invalid bit. The
page size of the MMU is 4,096 bytes, which is large enough to have a small page table and to
amortize the page fault overhead. These features of the 80386 and the high-performance message
transmission allow us to implement shared virtual memory conveniently and efficiently.

SVM Mapping

Shiva provides a single, flat, shared virtual memory address space. The size of the address
space is the minimum of 1 gigabyte and the sum of all physical memories of the hypercube
minus the space used by the Shiva kernel. A memory mapping manager on each node maps a
virtual address space to the shared virtual memory address space, as shown in Figure 1. The
address space is kept coherent at all times. That is, the value returned by a read operation
is always the same as the value written by the most recent write operation to that particular
address. To client programs, the shared virtual memory address space appears the same as a
shared-memory space on a shared-memory multiprocessor.

The mapping managers implement the coherent mapping by using the existing MMU hard-
ware on the 80386 processor chip. The mapped address space on each node has a corresponding
page table containing one entry for each page. For each virtual address, the address translation
unit of the MMU indexes the page table and uses the corresponding page entry to find the
physical address and current type of access allowed to the page (nil, read-only or writable).
When access right violations occur, the protection mechanism of the MMU triggers page faults
and traps the faults in appropriate fault handlers. Our memory mapping manager manipulates
the access bits in the page table entries of all pages on the hypercube to keep the shared virtual
memory address space coherent. Hence, coherence of the shared virtual memory address space

7/ AN
SVM LY
address
space
user user
space space
/ N
/7 N
______ 4 S SN
system & L system
space space
nodeg node,,

Figure 1: Shared virtual memory mapping.

is solved at the page level with page fault handlers and their servers. To client programs, this
mechanism is completely transparent.

Our page coherence strategies are based on invalidation techniques [Li86]. Since the shared
virtual memory address space is organized in pages, the memory mapping manager on each
node views its local memory as a large cache of pages for its associated processor. Pages that
are marked read-only can have copies residing in the physical memories of many processors at
the same time. A page currently being written can reside in the physical memory of only one
processor. When a processor writes a page that is currently residing on other processors, it must
get an up-to-date copy and then invalidate all copies on other processors. A memory reference
causes a page fault when the page containing the memory location is not in a processor’s current
physical memory. When the fault occurs, the memory mapping manager retrieves the page from
the memory of another processor.

In general, when a request is made for a page, three roles are involved in a coherence
strategy: the requester, the owner and the manager. The requester is the node whose memory
reference violated the access rights specified in its corresponding page table entry causing a page
fault. The owner of the page is the current or last node to have write access to the page. The
manager node of the page maintains the coherence information regarding the page including
the current owner, access type, copyset (for read access) and a list of requesting threads. We
compact most data structures in the page table to minimize the space required for the system.

Our prototype uses a fixed distributed manager strategy which statically assigns pages to
managers by a function of the number of nodes and pages. Upon receiving a page fault, the
requester uses this function to identify the manager of the faulting page and sends a request to
that node. The manager refers to the ownership information and asks the owner of the page
to deliver the page or a copy to the requester. The requester receives the page from the owner

and notifies the manager if necessary. The manager updates the information regarding the
page by adding the requester to the copyset of the page, for a read fault, or recording it as the
new owner for a write fault. The manager locks the ownership information during the entire
protocol to ensure that the messages servicing successive requests for a page do not overlap and
corrupt the coherence information.

Of course, if any of the roles involved are performed by the same node, then the protocol
can be simplified to minimize the number of messages. In the case where a page fault occurs
on the managing node of the page, the requester (and manager) asks the owner for the page
directly. When the manager and owner are the same node, the requester again asks the owner
directly for the page.

The request bit in the page table entry provides a flag which prevents other unnecessary
messages. When a thread has a page fault, the request bit is checked to determine whether the
node has already sent a request, yet to be fulfilled, for this page. If so, no message is sent. The
bit is cleared upon receipt of the page. Another optimization can reduce the message traffic if
a distinction is made between local and remote threads’ requests for a page. Upon receiving a
page, the manager first allows all requesting local threads to access the page before responding
to any remote requests. This strategy avoids extra messages and helps prevent thrashing.

The dynamic distributed manager algorithm [Li86] can further reduce message traffic for
maintaining coherency. This algorithm is being implemented in the next version of our proto-
type system.

Page Replacement

When a page fault occurs, the fault handler sends out a request to the manager of the page
and then prepares to receive a copy of the page from the current owner. If all page frames
are in use, a page replacement mechanism will be invoked to select one and save it elsewhere
to make space for the new page. At present, Shiva only considers page replacements between
physical memories since most iPSC/2 configurations do not have secondary storage yet. This
is why the size of the shared virtual memory address space is bounded by the total physical
memories minus the system space. It is well understood that there is no ideal solution for page
replacement because an ideal algorithm requires data about future memory references which
are impossible to predict. Therefore, in Shiva, we have designed a page replacement priority
mechanism whose parameters can be adjusted during future experiments.

The Least-Recently-Used (LRU) algorithm has been the most popular page replacement
method in traditional virtual memory implementations. For shared virtual memory implemen-
tations, LRU is not applicable since a recently referenced page may have nil access due to the
memory coherence protocol and it should be replaced before a writable page. Our method of
calculating the replacement priority of a page is by its page-type and its last reference time:

priop, = typeya + (1 — a)

where prio is the replacement priority of page p, type, is the page-type value of page p assigned
by the system designers, ¢ is calculated by the current time minus the last reference time, and
« is a weight parameter to be adjusted through experimentation.

The Least-Recently-Used (LRU) page replacement policy can be viewed as a special case
of the page replacement priority, when « is 0. Such a page replacement priority calculation
ensures that LRU is used for each page type while the priorities are preserved among different
page types for a range of last reference time.

There are five kinds of page frames: writable, owned read-only, read-only, nil access, and
unused. A writable page is obviously owned by the processor. An owned read-only page is also
owned by the processor but it is read-only. A read-only page is not owned by the processor, but
the processor knows who owns the page. A nil access page is a memory page invalidated by the
memory coherence protocol. An unused page is a free page frame. Table 1 shows a page type
priority assignment for the five page types in Shiva. The value of « is to be adjusted through
experimentation.

Page Type value
writable 10
owned read-only 20
read-only 30
nil access max —1
unused max

Table 1: A page-type priority assignment

With such an assignment, unused pages have the highest priority for page replacement and
nil access (or invalidated) pages have the second highest priority. Read-only copy pages have
the next highest priority because replacing the page frame of a read-only page needs only a
single message to inform the owner of the page. Owned read-only pages have higher priority
than writable pages because replacing the page frame of a owned read-only page requires a only
transfer of the ownership to a page copy holder. Replacing a writable page frame requires a
transfer of both the ownership and the content of the page.

Shiva uses a clock hand and the reference bits in the MMU page table to approximate the
value of last reference time for page replacement priority calculation. In order to reduce the
latency of a page fault, Shiva uses watermarks on the unused pages. When the number of
unused pages is below the low watermark, the system does active page replacements while the
CPU is idle. When the number of unused pages is greater or equal to the high watermark, the
active page replacement is stopped.

Thread and Synchronization

Similarly to the threads in other systems [MS87], Shiva threads can address any location in the
shared virtual memory address space and their execution can be overlapped with page fault
servicing to maximize processor utilization. Since threads share the same address space, there
is no need to set up page tables or flush caches for a thread context switch; thread context
switches can be very fast. Unlike other thread implementations, threads in Shiva support both
the shared-memory model and the message-passing model.

Thread scheduling is driven by page faults and the sending and receiving of messages. Each
node of the hypercube has its own ready queue. When a thread migrates from one machine
to another, its thread control block is deleted from the ready queue of the source node and
inserted into the ready queue of the destination node.

Shiva provides binary P/V operations as the basic primitives for thread synchronization.
Unlike the thread management in IVY [Li88] in which thread synchronization primitives are
implemented based on shared virtual memory, all synchronization primitives for the Shiva
system are implemented using simple messages. This design decision is based on the low latency
of short message transmission and the large page size (4,096 bytes) on the iPSC/2.

There are two strategies for managing semaphores which achieve global access, the static
distributed and dynamic, distributed approaches [Li86]. These approaches are analogous to
the page coherence strategies. Semaphores can be statically assigned to the node from whose
pool they were initialized or they can migrate from node to node. The former strategy is
simpler. When a thread accesses a remote semaphore, it must send a message to perform a P
operation and receive one acknowledging that it has possession of the semaphore. To perform
a remote V operation, the thread sends another message. The alternative approach migrates
a semaphore to the node where the thread resides upon the success of its remote P operation.
This mechanism guarantees that the V operation is local. It also takes advantage of locality
of reference to semaphores. If several threads on a single node need access to the semaphore
at nearly the same time, then the semaphore operations are all local after migration. Qur
prototype system has employed the dynamic, distributed strategy.

The semaphore structure contains a lock bit, an awaiter bit and a location field. A test
and set instruction is used on the lock bit during the P operation. The awaiter bit indicates
whether there are threads blocked on the semaphore. The location field contains the number
of the node where the semaphore is located. Each node has a data structure for the same
semaphore. There is only one holder of the semaphore at any time. The holder maintains a
queue of threads waiting on the semaphore. Initially, the lock bit of the holder is cleared and
the lock bits on other nodes are set so that any P operations on non-holder node will fail to
test-and-set the lock bit. The fast path of P and V need only three or four instructions?. When
a P operation fails to test-and-set the lock bit, it looks for the semaphore holder, according to
the location field, to put itself onto the queue. Just as in the dynamic, distributed manager

2This method was due to a discussion with John R. Ellis in July 1988.

algorithm for page coherence [Li86], the location field is a hint indicating the possible semaphore
holder.

The V operation checks the awaiter bit. if there are threads waiting when a V is performed,
the first thread in the waiting queue is started and the semaphore is migrated to the node where
the waiting thread resides without clearing the semaphore. This method preserves fairness and
prevents a newly migrated semaphore from being remigrated before the restarted thread gets
a chance to lock the semaphore.

Message Passing

Since the message-passing model of parallel computation fits many applications, Shiva allows
message passing between threads. The basic primitives provided for message passing are similar
to those in the standard C library for the iPSC/2 [Pie88]. Existing application programs can
run under Shiva with very few modifications.

There are three simple blocking calls for message passing:

e csend(type, tid, buf, length)

It assigns a type and destination to a message, then sends it. The call does not return
until the message has entered the communications network and the send buffer is no
longer needed.

e crecv(typesel, buf, length)

It selects an incoming message by type and receives it into a buffer. It does not return
until the message arrives in the buffer.

e cprobe(typesel)

It waits for a selected type of message to arrive at the node.
When cprobe() returns, crecv() can be used to receive the message into a buffer.
There are five non-blocking primitives for sending and receiving messages asynchronously:

e mid = isend(type, tid, buf, length)
It initiates transmission of a message and immediately returns a message id.
e irecv(typesel, buf, length)

It sets up a buffer for receiving an incoming message of the selected type, and returns
immediately.

e iprobe(typesel)
It determines whether a message is ready to be received.
e msgwait(mid)

It waits until either an isend() or irecv() operation on message mid completes.

e msgdone(mid)

It returns the status of isend() or irecv() operation on message mid immediately.

Unlike the standard routines for the iPSC/2 which use node and process identifiers to
specify a destination, the corresponding primitives in Shiva use thread identifiers instead. This
approach frees the programmer from keeping track of the location of threads and allows the use
of system provided load balancing mechanisms. Also, the use of thread identifiers offers more
flexibility in the implementation of thread migration.

Since all nodes have access to the shared virtual memory address space on the hypercube,
sending and receiving messages are viewed as copying from one buffer to another within the
shared virtual memory address space and synchronizing the sending and receiving threads. We
could implement the message passing primitives with the shared virtual memory coherence
mapping. We did not choose this approach because sending a short message would lead to
copying an entire, fairly large (4,096 bytes) page of virtual memory. Instead, we implement
send and receive using short hypercube messages with a much shorter latency time.

RPC Mechanism

Shiva supports a simple, language-independent RPC mechanism. There is only one primitive:
rpc(node, proc, args);

where proc is the procedure to be executed on node node and args are the arguments of the
procedure. The RPC mechanism has exactly the same semantics as local procedure calls except
that the execution is performed on another node.

The primitive is implemented as two thread migrations. The thread first migrates to the
remote node, executes the procedure, and then migrates back to the original node. Since the
shared virtual memory address space is coherent on all nodes, there is no need to do data
structure marshalling or copying for argument passing.

Such a mechanism provides more powerful semantics than the traditional RPC mechanism
[Nel81, BN84]. Shiva’s RPC can pass arguments by reference in addition to by value. The body
of the procedure can reference global and outer scope variables. The traditional RPC mechanism
limits the remote procedure to passing arguments by value and the remote procedure cannot
access global or outer scope variables since the procedure will be executed in another address
space.

The send and receive primitives and the RPC mechanism enable the shared virtual memory
system to support the message-passing model of parallel programming in addition to the shared-
memory model. Parallel programming languages based on either model or a combination of
both can be implemented on this system conveniently and efficiently.

10

3 Performance

We’ve performed some preliminary measurements on an 128-node hypercube to determine the
cost of various basic operations of the Shiva system. We were primarily interested in the
performance of the page coherence and context switching mechanisms and the potential for
improvement obtained by moving Shiva facilities into the kernel. Timings were also taken of
various primitive operations of the NX/2 operating system which are relevant to the analysis of
Shiva. facilities. The mclock system call of NX/2 was used to obtain results with 1 millisecond
precision. Each test performed 10,000 iterations of the operation being measured to give us
microsecond accuracy.

The cost of Shiva’s page fault and coherence mechanism was tested by slightly modifying the
code. Access to a page received over the network after a fault is only granted on the 10,000th
iteration. Hence, the mechanism works exactly as usual except it counts faults and sets the page
access to nil rather than read or write until the final iteration. The general and special cases
described above were tested for both read and write faults. The special case when a page fault
occurs on the manager neighboring the owner represents the best case. The worst case occurs
when the three entities are distinct nodes, the faulter and owner are as far apart as possible (7
hops) and the manager is a neighbor of the owner. A full page must travel across the width of
the network and two of the three short messages must travel almost that far (6 hops). The cost
of context switches was measured by creating two threads that simply take turns suspending
themselves. The first thread keeps a count of the number of iterations performed and exits
upon completion of the test.

Page fault Faulting Manager Costs
Node Node (ms)

Read fault on manager 1 1 3.828

127 1 4.097
Read fault on nonmanager 1 0 4.035
(manager = owner) 127 0 4.286
Read fault on nonmanager 2 1 4.467
(manager # owner) 127 1 4.779
Write fault on manager 1 1 3.828
(manager = 127 1 4.084
Write fault on nonmanager 1 0 4.059
(manager = owner) 127 0 4.296
Write fault on nonmanager 2 1 4.487
(manager # owner) 127 1 4.760

Figure 2: Shiva system page fault costs.

Figure 2 shows the page fault costs in our prototype system. The memory coherence map-
ping uses the fixed distributed algorithm. For each type of page fault, we tested two cases:

11

manager adjacent to the faulting node and manager far away from the faulting node. In all
cases, the worst possible situation on 128 nodes takes less than 4.8 milliseconds to service the
fault. The performance of this relatively unoptimized, user mode implementation is consider-
ably better than the raw access time of disks used to support traditional virtual memory.

Two improvements to the current implementation are in progress. The first is to implement
a dynamic distributed coherence algorithm. The second is to move Shiva into the kernel. To
predict the effect of moving the current implementation into the kernel, we tested the costs of
related operation in the kernel. Figure 3 shows the time spent at each stage when there is a
read page fault on the manager and the predicted improvement when the coherence mapping
is moved into the kernel.

Current Kernel

(ms) (ms)
Reinstall fault handlers 0.363 0.000
Communication with manager 0.661 0.516
Copy page to send buffer 0.134 0.042
Send and receive the page 2.585 2.440
Copy page from receive buffer 0.201 0.042
Set accesses 0.130 0.080
Other cost 0.023 0.023
Total cost 4.097 3.143

Figure 3: Analysis of a read page fault on manager.

For the current coherence mapping algorithm, (fixed distributed manager), our conservative
analysis shows that a kernel implementation can provide at least a 23% improvement. The
current prototype runs in user mode requiring the reinstallation of trap handlers after each
page fault. A kernel mode would install trap handlers only once at the initialization stage.
Although the current prototype implements page copying to buffers by flipping page table
entries, it is not done in the most efficient way due to system call constraints. We have been
informed that further improvement in the latency of short messages can be gained by disabling
the flow control mechanism®. This may give us another 5 to 7 % improvement.

4 Related Work

The concept of shared virtual memory was originally proposed in [Li86]. Experience with the
first prototype, IVY, on a network of workstations indicates that shared virtual memory has
the potential for a large scale multicomputer [Li88]. Another paper [LH86], provides a detailed

®Private communication with Paul Pierce in March 1989

12

analysis of the memory coherence strategies for shared virtual memory. The Shiva system is
the first design and implementation for a large-scale multicomputer.

Research on traditional virtual memory management for uniprocessor architecture [Den70,
DD68, BBMT72] has had significant impact on the ideas underlying shared virtual memory. An
important observation was the locality of reference exhibited by sequential programs [Den72].

Spector proposed a remote reference/remote operation model [Spe82] in which a master
process on one processor performs remote references and a slave process on another performs
remote operations. This model allows a loosely coupled multicomputer to behave in a way
similar to CM* [FOR*78, JCD*79] or BBN Butterfly [BBN85] in which a shared memory is
built from local physical memories in a static manner.

Among the distributed operating systems for loosely coupled multicomputers, Apollo Aegis
[Apo81, LLD*83] and Accent and Mach [RR81, FR86, RTY*87] have had strong impact on
the integration of virtual memory and interprocess communication. These systems permit
mapped access to data objects that can be located anywhere in a distributed system. They
view physical memory as a cache of virtual storage. Aegis uses mapped read and write memory
as its fundamental communication paradigm. Accent and Mach has a similar facility called
copy-on-write and a mechanism that allows processes to pass data by value.

Another approach has been to have processes use a set of primitives to access a global space
containing shared data structures [CS86, CG86]. Process synchronizations are done also with
the primitives. Passing complex data structures and process migration are as difficult as in
message passing systems because clients cannot pass data structures by address reference.

A remote procedure call (RPC) mechanism [Nel81, BN84] allows synchronous, language-
level transfer of control between two programs in disjoint address spaces. Although an RPC
mechanism provides syntax and semantics similar to local procedure calls in the application
program’s high-level language, it requires clients to pass data by value.

The VMP project at Stanford implements a software virtual addressed cache [Che88] to
provide multicomputers with a coherent shared memory space. Their initial experience shows
that a cache line size can be as large as 128 or 256 bytes without performance degradation. The
cache consistency protocol is similar to the dynamic distributed manager algorithm for shared
virtual memory.

5 Conclusions

We have described the design and implementation of Shiva for the Intel iPSC/2 hypercube
multicomputer. The Shiva system provides clients with a large, coherent, shared virtual memory
and a multithread interface. Threads operating within the same shared virtual memory address
space can send messages to each other and migrate from one node to another at low cost.

13

These facilities enable Shiva to support both the shared-memory and message-passing models
of parallel programming.

The cost of maintaining memory coherence while servicing page faults in this preliminary
version of the system is encouraging. The delay incurred including operating system overhead
is nearly an order of magnitude smaller than the typical disk page transfer time. We think
remote physical memory can and should be used to support virtual memory on the nodes of a
hypercube even when disks are present.

The ability to use the shared memory model is a major attraction of Shiva. This model
fits many applications better than message passing and broadens the spectrum of problems
which can be solved on the hypercube. Since shared virtual memory systems can easily support
the message passing model, algorithms which already run efficiently are not hampered by the
system.

Transparency has been the focus of the Shiva system. It provides clients with an address
space almost as large as the sum of all physical memories of the entire hypercube. The large
address space enables the iPSC/2 to run many applications that require massive data.

We are currently adjusting parameters of page replacement, and implementing a dynamic
distributed algorithm for memory coherence. We are doing more experiments on the prototype
and in the progress of moving our implementation into the kernel.

Acknowledgements

We would like to thank Mojy Mirashrafi and Paul Pierce for their help with the NX/2 operating
system, and Justin Rattner for his support.

References

[Apo81] Apollo. Apollo DOMAIN Architecture. Apollo Computer Inc., Chelmsford, Mass., 1981.

[Arl88] Ramune Arlauskas. iPSC/2 System: A Second Generation Hypercube, pages 9-13. Intel
Corporation, 1988.

[AS88] W.C. Athas and C.L. Seitz. Multicomputers: Message-Passing Concurrent Computers.
IEEFE Computer, 21(8):9-24, August 1988.

[BBMT72] D.G. Bobrow, J.D. Burchfiel, D.L. Murphy, and R.S. Tomlinson. TENEX, a paged time-
shaing system for the PDP-10. Commaunications of the ACM, 15(3):135-143, March 1972.

[BBN85] BBN. Butterfly Parallel Processor Quverview. Bolt Beranek and Newman Adv. Computers
Inc., Cambridge, Mass., 1985.

[BN84] A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Transactions
on Computer Systems, 2(1):39-59, February 1984.

[CG86] N. Carriero and D. Gelernter. The S/Net’s Linda Kernel. ACM Transactions on Computer
Systems, 4(2):110-129, May 1986.

14

[Ches8]
[Clo8s]
[CS86]

[DDGS]
[Den70]
[Den72]

[FOR*78]

[FR86]

[HL82]

[ICD*79]

[LH86]

[Li86]
[Li88]

[LLD*83]

[MS87]

[Nel81]
[Nug8g]

[Pie8§]
[PM83]

David R. Cheriton. The VMP Multiprocessor: Initial Experience, Refinements and Perfor-
mance Evaluation. In Proceedings of the 14th Annual Symposium on Computer Architecture,
1988.

Paul Close. The iPSC/2 Node Architecture, pages 43-50. Intel Corporation, 1988.

D.R. Cheriton and M. Stumm. The Multi-Satellite Star: Structuring Parallel Computations
for A Workstation Cluster. Journal of Distributed Computing, 1986.

R.C. Daley and J.B. Dennis. Virtual Memory, Processes, and Sharing in MULTICS. Com-
municalions of the ACM, 11(5):306-312, May 1968.

Peter J. Denning. Virtual Memory. ACM Computing Surveys, 2(3):153-189, September
1970.

Peter J. Denning. On Modeling Program Behavior. In Proceedings of Spring Joint Computer
Conference, pages 937-944. AFIPS Press, 1972.

S. Fuller, J. Ousterhout, L. Raskin, P. Rubinfeld, P. Sindhu, and R. Swan. Multi-
microprocessors: an overview and working example. Proceeding of the IEEE, 66(2):216-228,
February 1978.

R. Fitzgerald and R.F. Rashid. The Integration of Virtual Memory Management and Inter-
process communication in Accent. ACM Transactions on Computer Systems, 4(2):147-177,
May 1986.

M. Herlihy and B. Liskov. A Value Transmission Method for Abstract Data Types. ACM
Transactions on Programming Languages and Systems, 4(4):527-551, October 1982.

A K. Jones, R.J. Chansler, LE. Durham, K. Schwans, and S. Vegdahl. StarOS, a Multi-
processor Operating System for the Support of Task Forces. In Proceedings of the Seventh
Symposium on Operating Systems Principles, pages 117-127, 1979.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. In Pro-
ceedings of the 5th Annual ACM Symposium on Principles of Distributed Computing, pages
229-239, August 1986.

Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis, Yale Uni-
versity, October 1986. Tech Report YALEU-RR-492.

Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedings of
the 1988 International Conference on Parallel Processing, pages 94-101, August 1988.

P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton, D.L. Nelson, and B.L. Stumpf. The
Architecture of an Integrated Local Network. IEEE Journal on Selected Areas in Commu-
nications, 1983.

P.R. McJones and G.F. Swart. Evolving the UNIX System Interface to Support Multi-
threaded Programs. Tech Report 21, DEC Systems Research Center, September 1987.

Bruce J. Nelson. Remote Procedure Call. PhD thesis, Carnegie-Mellon University, May 1981.

Steven F. Nugent. The iPSC/2 Direct-Connect Communications Technology, pages 59-68.
Intel Corporation, 1988.

Paul Pierce. The NX/2 Operating System, pages 51-57. Intel Corporation, 1988.

M.L. Powell and B.P. Miller. Process Migration in DEMOS/MP. In Proceedings of the ninth
Symposium on Operating Systems Principles, pages 110-119, 1983.

15

[RR81]

[RTY™87]

[Sei85)]

[Spe&2)

R.F. Rashid and G.G. Robertson. Accent: A Communication Oriented Network Operating
System Kernel. In Proceedings of the Eighth Symposium on Operating Systems Principles,
pages 64-75, December 1981.

R.F. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, and
J. Chew. Machine-independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architecture. In Second International Conference on Architectural Support
for Programming Lanugages and Operating Systems, pages 31-41, October 1987.

Charles L. Seitz. The Cosmic Cube. Communications of the ACM, 28(1):22-33, January
1985.

Alfred Z. Spector. Performing Remote Operations Efficiently on a Local Computer Network.
Communications of the ACM, 25(4):260-273, April 1982.

16

