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ABSTRACT

It is often desirable to represent in a database entities whose properties
cannot be deterministically classified. We develop a new data model that
includes probabilities associated with the values of the attributes. The notion
of missing probabilities is introduced for partially specified probability distri-
butions. This new model offers a richer descriptive language allowing the
database to more accurately reflect the uncertain real world. Probabilistic

analogs to the basic relational operators are defined and their correctness is
studied.
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1. Probabilistic Model

Entities with stochastic attributes abound in real database applications. For example,
Toyota might have demographic information indicating that customers living in a certain
region are likely to purchase a Corolla with probability 0.7 or a Celica with probability 0.3. An
oil company might have a database of potential Oil Sites with probabilistic projections as to
the Type and Quantity of oil at each site. In a military application, there may be entities such
as Military Bases where hardware at the camp is uncertain or an entity set like Spies whose
Location attribute is the product of guesswork. In a traditional database application, Employ-
ees, the qualitative attributes Work Quality, or Enthusiasm could be introduced. The stock
market features Companies with many attributes that are notoriously non-deterministic.
Finally, Medical Records describing, say, a patient’s Susceptibility to Heart Attack or the
Causes of a Disease could be stochastic in nature.

In this paper we develop the Probabilistic Data Model (PDM), an extension of the rela-
tional model [Dat, Ull] that lets one represent probabilities associated with the values of attri-
butes. In this model, relations have deterministic keys. That is, each tuple represents a
known real entity. The non-key attributes describe the properties of the entities and may be
deterministic or stochastic in nature.

EXAMPLE 1.1. To illustrate, consider the following probabilistic relation:

Key Independent Interdependent Independent
Deterministic Stochastic Stochastic
EMPLOYEE DEPARTMENT QUALITY BONUS SALES
Jon Smith Toy 0.4 [ Great Yes | 0.3[$30,000 ]
0.5[ Good Yes ] 0.7 [ $35,000 ]
0.1 [ Fair No]
Fred Jones Houseware 1.0 [ Good Yes] 0.5 [ $20,000 ]
0.5 [ $25,000]

The relation describes two entities, "Jon Smith" and "Fred Jones." Attribute DEPARTMENT
is deterministic. e.g., it is certain that Jon Smith works in the Toy department. In this
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example, QUALITY and BONUS are probabilistic and jointly distributed. The interpretation
is that QUALITY and BONUS are random variables whose outcome depends on the
EMPLOYEE in consideration. For instance,

Prob[ QUALITY = "Great" AND BONUS = "Yes" | EMPLOYEE = "Jon Smith" ] = 0.4

It makes sense to consider QUALITY and BONUS jointly distributed if, as the example
implies, QUALITY functionally determines BONUS. The last attribute, SALES, describes
the expected sales in the coming year by the employee. It is probabilistic but independent of

the other non-key attributes. For instance,

Prob[ SALES = "$35,000" | EMPLOYEE = "Jon Smith" ] = 0.5.

Note that in Example 1.1 the probabilities for each attribute (in a tuple) add up to 1.0,
i.e., each probability distribution function is valid. This is a requirement if we are to work
with probabilities. However, this requirement could be a problem in practice because it may
be difficult to know the exact probabilities for all possible domain values. For example, say
$30,000 and $35,000 are the two most likely sales estimates for Jon Smith, with probabilities
0.3 and 0.5 respectively. However, suppose that there are many other values that are possible
but unlikely. It would be inconvenient to have to assign probabilities to all the unlikely values.

The most important feature of our model is the inclusion of missing probabilities to
account for such incompletely specified probability distributions. For example, the Jon Smith
tuple of Example 1.1 could instead be:

EXAMPLE 1.2.
EMPLOYEE DEPARTMENT QUALITY BONUS SALES
Jon Smith Toy 0.3 [ Great Yes ] 0.3 $30,000]
0.4 [ Good Yes] 0.5 [ $35,000 ]
0.2 [Fair * ] 02[ * ]
0.1 * *]

Here, 0.2 probability has not been assigned to a particular sales value. It is assumed that this
missing probability is distributed over all domain values, but we make no assumptions as to
how it is distributed. This situation could arise if, for instance, 10 people are polled to esti-
mate Jon Smith’s sales for the upcoming year. Three people have estimated sales of 30,000
(e.g., last years sales); five of 35,000 (e.g., last year plus inflation). Two people have not been
reached and give rise to the 0.2 missing probability. Since the missing probability could or
could not go to the value 30,000, the probability that the sales will be 30,000 next year is actu-
ally between 0.3 and 0.3 + 0.2. In this sense, the probability 0.3 associated with the sales value
$30,000 is a lower bound.

The missing probability for QUALITY, BONUS is interpreted in a similar fashion. A
probability of 0.1 is distributed in an undetermined way over all possible quality, bonus pairs,
while 0.2 is distributed only over pairs that have a "Fair" quality component. Thus, the
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probability that Smith is rated as "Great" and gets a bonus is between 0.3 and 0.3 + 0.1.

We believe that missing probability is a powerful concept. It allows the model to capture
uncertainty in data values as well as in the probabilities. It facilitates inserting data into a pro-
babilistic relation, i.e., it is not necessary to have all information before some tuple can be
entered. It also makes it possible to eliminate uninteresting information when displaying rela-
tions. For example, a user may only be interested in seeing values with probability greater
than 0.5; the rest can be ignored. Finally, as we will see later on, missing probability arises
naturally during relational operations, even when the base relations have no missing probabil-
ity.

We have chosen the no assumptions interpretation for missing probabilities for two main
reasons. One, we believe it is very natural and powerful. Second, manipulating such missing
probabilities as relations are projected, joined, and so on, is surprisingly easy (see Section 2).
Other interpretations of missing probabilities are possible, for example, one may wish to con-
sider the missing probabilities to distributed over domain values not explicitly listed in the
relation. Another possibility is to consider probabilities not listed in the relation to be uni-
formly distributed. In this case, the probability distribution is known but not enumerated in
the relation. We do not want to rule out other interpretations, but due to space limitations,
we will only study the no assumptions interpretation. The full system we envision, however,
will allow multiple interpretations.

A central premise of our model is that keys are deterministic. This is not the only
choice, but we feel that deterministic keys are very natural and lead to simple relational
operators. Furthermore, it is still possible to represent stochastic entities with our model.
For instance, suppose that we are not certain whether Jon Smith and Fred Jones are employ-
ees in company Acme of Example 1.1. Say the probability that Jon Smith "exists," i.e., works
for Acme, is at least 0.7. To represent this, we can include an attribute COMPANY in our
relation, making its distribution for Jon Smith assign 0.7 probability to "Acme," the rest miss-
ing.

Before continuing it will be useful to briefly discuss where the "probabilistic data" for our
relations come from. There are actually many possibilities. One is to have users assign the
probabilities according to their "confidence" or "belief" in the values [Pea]. Thus a user, after
reading recommendation letters for a job candidate, may say that he is 80% confident that this
is a good candidate.

A second option is to compute the probabilities from an underlying sample. For exam-
ple, a conventional deterministic relation may contain the evaluations of Fred Jones made by
100 people. Say 15 people find Jones "Very Good", 85 find him "Good". The relative frequen-
cies can lead to probabilities of 15/100 for "Very Good," 85/100 for "Good". Our extended
model includes a new operator (Stochastic) that will automatically generate a probabilistic
relation out of an underlying deterministic relation containing samples (see Section 6).
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Probabilities can also be assigned to data according to their timeliness. For instance,
suppose that at 9:00am the position of a ship is reported as X. As time progresses, the likeli-
hood that the ship is still at X decreases, so the user may provide a time decreasing function to
generate the probabilities attached to positions. (Note that missing probability is useful once
again to cover the unknown locations of the ship.)

Incidentally, in this paper we will focus exclusively on discrete probability distribution
functions. Although we do not discuss it here, it may be possible to extend our model to con-
tinuous probabilities, and this opens the door to other sources of probabilistic data. For
example, we may know that a given radar has a normally distributed error with standard devi-
ation of one mile. Thus, the position of an airplane will be given by a normal distribution.

The basic relational operators for probabilistic data are introduced via examples in Sec-
tion 2. Section 3 contains a formalization of our model, plus a precise definition of the opera-
tors. Section 4 looks at the "correctness" of the operators on missing probability. In Section 5
we explain the differences between the PDM and previous ideas. Finally, Section 6 briefly
summarizes PDM components that are not covered in detail in this paper.

2. Examples

In this section we present illustrative examples for the three basic operators in the PDM.
The formal definitions are covered in the next section. Let us begin with the project operator.
For the project examples we use the following relation.
PROJECT EXAMPLE Relationrq

KEY A B C
k1 03[albl] | 04[c]
04[a2b1] | 0.6[c2]
0.2 [a2 b2]
0.1[* b2]
k2 10[a2b2] | 05[c2]
0.5 [c3]

EXAMPLE 2.1 PROJECT r; ONTO KEY, B.
This amounts to computing the marginal probability distribution for B. The result is:

KEY B

k1 0.7 [b1]
0.3 [b2]

k2 1.0 [b2]

EXAMPLE 2.2 PROJECT r; ONTO KEY, A, C.
The result is:



KEY A C
k1 03[al] | 0.4[cl]
0.6[a2] | 0.6][c2]

0.1[*] 0.6 [c2]

k2 1.0®b2] | 05[c2]
0.5 [c3]

Note that operationally the wildcard value * is treated as if it were simply another A attribute
value. Intuitively, this appears to be correct: In the resulting tuple for k1, 0.1 probability is
distributed over all possible A values because that was the amount spread over [*, b2] values
inry. In Section 4 we will prove that treating * as another domain value is the correct way to
perform projects.

The next operator is select. The select condition can refer to the attribute values, their
probabilities, or both. A condition refers to a single attribute group, but several conditions
can be joined together. Each individual condition is of the form

group_name: value condition, probability condition
A condition can be of two types. In a certainty condition we require that the condition hold
with absolute certainty in order for a tuple to appear in the result relation. In a possibility
condition we request that the condition hold at least under one interpretation of the missing
probabilities. We use V, P to refer to the value and probability components of a certainty con-
dition, and v, p to the components of a possibility condition.

For our examples we use the following relation:
SELECT EXAMPLE Relationr,

KEY ABC D
k1 03[alblcl] | 0.4 [dl]
02[a2blcl] | 0.6[d2]
0.4 [a2 b2 c1]
K2 0.5[a2b2cl] | 05[d2]
03[a3b2c2] | 05[d3]
02[* b2 *]

EXAMPLE 2.3 SELECTr, WHEREA B C:V = [a2, * *], P > 0.5.

This query selects all tuples that certainly have a value of a2 in their A component with proba-
bility greater than 0.5. Tuple k1 satisfies this condition. That is, if we project out the "do not
care" attributes in the group (B, C), we see that in k1, A = a2 occurs with probability 0.2 +
0.4, which is greater than 0.5. For tuple k2, we cannot be certain that a2 occurs with probabil-
ity larger than 0.5; this may or may not be the case, depending on how the missing probability
is distributed. Thus, the result is:



KEY ABC D
k1 03[alblcl] | 0.4[dl]
0.5[a2blcl] | 0.6[d2]

0.2 [a2 b2 c1]

EXAMPLE 24. SELECT r, WHERE A B C:v = [a2, *, *],p > 0.5.

This is similar to example 2.3, except that we now select tuples where it is possible that A
takes on a2 with probability greater than 0.5. Here, both tuples satisfy the condition and the
result is the entire relation. (In tuple k2 we cannot rule out the possibility that a2 occurs with
probability greater than 0.5.)

EXAMPLE 2.5. SELECT r, WHERE A B C:v = [a3, %, *],p > 0.

This selects tuples where we cannot rule out that A might take on the value a3. The results is
the k2 tuple of r,. This example illustrates Lipski’s upper bound select (see [Lip],[Lip2]).
EXAMPLE 2.6. SELECTr, WHERE A B C:V = [* * c1], P = 1.0.

This finds all tuples where it is absolutely certain that C = c1. The result contains only tuple
k1. This query implements Lipski’s lower bound select ([Lip], [Lip2]). Note that we do not
require any additional operators for Lipski’s upper and lower bounds. Our probabilistic
model is general enough so that these particular conditions can be expressed very naturally.

Let us continue with the join operator. Consider the following two relations:

SHIPS DESCR
NAME TYPE TYPE MAX-SPEED
Maria 0.6 [Frigate] Frigate 0.7 [20-knots]

0.3 [30-knots]
0.4 [Tugboat]

Tugboat 1.0 [15-knots]

We are 40% sure the Maria is a Tugboat. We know that Tugboats have a maximum speed of
15 knots, so it makes sense to say that we are 40% sure the Maria’s maximum speed is 15
knots. Similarly, we are 60% sure she is a Frigate, and Frigates have a maximum speed of 20
knots with probability 0.7, so it is reasonable to expect the Maria to have a maximum speed of
20 knots with probability 0.6 times 0.7. This motivates the natural join operator.

EXAMPLE 2.7. JOIN SHIPS, DESCR.
There must be a common attribute, in this case TYPE. That attribute must be the key of one
of the relations. The resulting relation is:



NAME TYPE MAX-SPEED

Maria 0.6x0.7 [Frigate 20-knots]
0.6x0.3 [Frigate 30-knots]
0.4x1.0 [Tugboat 15-knots]

EXAMPLE 2.8.

Natural join can generate missing probabilities, even where the initial relations have none.
Suppose that the DESCR relation given earlier does not contain a tuple for Tugboat. The
result of the join in this case would be:

NAME TYPE MAX-SPEED

Maria 0.6x0.7 [Frigate 20-knots)
0.6x0.3 [Frigate 30-knots]
0.4 [Tugboat  *]

The resulting relation has 0.4 missing probability. The interpretation is quite natural. With
probability 0.4 the TYPE MAX-SPEED attribute takes on a value [Tugboat *], where "*" is
some speed value. The distribution of this probability over all possible [Tugboat *] values is
unknown.

3. Probabilistic Relational Algebra

In this section we formalize our probabilistic model and relational operators. Our goal
is to specify what constitutes a probabilistic relation and exactly how the operators function.

We start by defining relations with a single group of jointly distributed attributes, and
their operators. At the end of this section we then show how multi-group relations (what we
will call multi-relations) can be viewed simply as a collection of single-group relations.

Definition 3.1. Probabilistic Relation. Let K be a set of attributes K;,K,, . ..,K, and 4 be a
set of attributes 4,45, ... ,A,. The domains are given by dom (K;) and dom (A4;). A proba-
bilistic relation r (on K, A) is a function (many to one) from dom (K;) x - - - x dom (K,,) into
PF. The set PF is a set of probability functions for 4. Each g € PF is a function (many to
one) from dom (A1) U {*} x - - - xdom (A,) U {*} into the real number interval [0,1]. The
symbol * ¢ dom (A;) for 1<i <m, represents instances in which the value of the attribute 4;
is unknown, i.e., acts as a wildcard. Every 8 must satisfy the following property:

Yh@)=10

Probabilistic relations are displayed in table form in the obvious way. Note that the
mappings of probability functions into 0 are not displayed in the table. For example, the table



KEY A B
k1 0.6 [al bl]
0.2 [al b2]
0.1 [al *]
0.1 [* #
k2 1.0 [al b2]

is equivalent to the relationr (k1) = 8, r(k2) = B,, where 8, and 3, are defined as follows:
Bi(fal b1])=0.6
Bi(lal b2])=0.2
Ai(fa1 *])=0.1

Ai([* *])=0.1
Br(fal b2])=1.0

and all other values are mapped by 8; and 8, to 0. We refer to the probabilistic functions of a
relation as rows since they correspond to tuples in the table representation. For instance, we
callr(k1) (= ;) andr(k2) (= B;) rows.

Definition 3.2 Cover We say thata ™ = (a{,a3,...,a,) coversa = (ay,a,, ...,a,) if for all
i,1<i<m,eithera; =a;ora; =* O

3.1 Semantics of Probabilistic Relations

A probabilistic relation  on K, 4 defines the probabilities of certain events. One can
think of the K and A4 attributes as random variables. If there are no missing probabilities

r(k)(@) = Prob[A =a | K =k]

where k = <ky,...,k,>,a = <ay,...,a,>, k; edom(K;) and a; € dom (A4;) Note that the
expression A = a above is shorthand for the event "4, =a; and A, =a, and ... and
A = ay." The event K = k has similar meaning.

With missing probabilities, and a containing no wildcards,

r(k)@)<Prob[A =a |K=k]< % r(k)a’)

a’ coversa

That is, the function r(k)(a) gives a lower bound of the probability assigned to a. The upper
bound is found by adding probabilities assigned to all a “s that cover a.

In the rest of this section, we will continue to refer to tuples £ and a as we have just
defined. We will also use the shorthand 4 = a for events as described above.

Whenever a probabilistic relation is defined, there is an implict independence assumption. In
other words, we assume that the probabilities given in r are independent of any other possible
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database attributes. So, the existence of r in the database indirectly implies that
Prob[A =a | K=k and B =b] = Prob[A =a | K =k]
for any set of attributes B appearing in other relations such that BNK = Bn4 = @.

3.2 Project

Before discussing the project operator, we need to make the following definition:
Definition 3.3. Restriction of a tuple. Let a be a tuple over a set of attributes 4, and let B be a
subset of these attributes. Then a[B] is the sub-tuple that contains the corresponding B ele-
ments. For example, if 4 = 4,,4,,45 and B = 4,,4,, then <aq, a;, a3>[B] = <a,, a3>.
O

Consider r° = PROJECT r ONTO o, where r is a probabilistic relation over K, 4, and o
is a set of attributes oy, o, ... . Let A" = A N q, the non-key attributes that remain inr”.

With no missing probabilities, the interpretation of r” is that r'(k)(@a”) =
Prob[A “=a” | K = k]. From basic probability theory, we know that this probability can be
computed as follows:

Prob[A "=a”

K=k]= Y  Prob[Ad =a |K =k]

allastafd’]=a”

This equation tells us immediately how to define r”, at least for the case with no missing pro-
babilities. In Section 2 we argued that with missing probabilities, * can be treated simply as
another attribute value. This is what the next definition does, but we leave the formal proof
that this is correct for Section 4.

Definition 3.4. Project. The project of r over a is the following probabilistic relation r“ (over
KA 7). Ifr(k) is not defined, then r " (k) is not defined either. If r(k) is defined, then r (k)
is the function 8 defined by

pla’) = b3 r)a) O

allastald’]=a’

To check that the function g given in Definition 3.4 is valid, we compute

S=%pa)=3x 2 k)@

a” alastald’]=a’

Consider an arbitrary tuple z = <zy,...,z,, > (where z; € dom (A4;) U {*}). It will be included
in the S sum whena” = z[4 "] and a = z (and in no other case). So, since all z tuples are
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being considered once in the sum,

S=%rk)a)=1

Hence, the B functions of Definition 3.4 are valid.

3.3 Select

We now turn our attention to selects. A select condition C (k,r) evaluates to true if row
k of r satisfies the selection. In this paper we consider a simplified syntax for these conditions.
(It could be extended in several useful ways. The extensions are straightforward and are not
discussed here.) We assume that conditions are of the formV = a, Pop p (orv = a, p op p),
where a is a tuple with possible *’s, op is an operator like =, <, etc., and p is an real number
in [0, 1]. Recall that V, P are used for certainty conditions, v, p for possibility conditions. As
we saw in Example 2.3, the "do not care" fields in a have to be projected out in order to select
the appropriate rows. This implicit project is included in the following definitions.
Definition 3.5. The conditions C(k,r): V =a,Pop pwhenopis >,>, =;and C(k,r): v = a,
p op p when op is <, < are evaluated as follows. Let4 ~ be the attributes of r where a has no
*s, and let a” =a[4"]. Let r; = PROJECT r OVER A". Then C(kr) is true if
ri(k)@a”)op pis true. O
Definition 3.6. The conditions C(k,r): v = a,pop p whenop is >,>, =;and C(k,r): V = a,
P op p when op is <, < are evaluated as follows. Again, let 4 * be the attributes of r where a
has no *’s, and let a” =a[4”]. Letr; = PROJECT r OVER A ". Then C(k,r) is true if

» ri(k)(x) oppistrue. O

allx s.t.x coversa”

Definition 3.7 Select. Let r” = SELECT r WHERE C be the target relation obtained by the
operation select over the probabilistic relation r defined on K, A. Probabilistic relation r * is
also defined on K, A. If r(k) is undefined or if C(k,r) is false, then r “ (k) is undefined. Oth-
erwise, r (k) = r(k). O

3.4 Join

Definition 3.8. Natural Join. Consider two relations, r on K, 4, and s on 4, B. Letr” be the
natural join of r and s. Relation r” is over K, AB. If r(k) is not defined, then r”(k) is not
defined. Otherwise the function is defined as follows:
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if 5 (@) is defined then
r* (k)(ab) = r(k)(@) x s (a)(b)
else if s (@) is not defined then
r* (k)@*) = r(k)(a)
r’(k)(ab) = 0 for all b other than *.
Note that if a = <a,,.,4,> and b = <by,.,b,>, then ab is the tuple
Sl Busl iy v onslla > The tuple a® represents <@g @ v * > O
If no missing probabilities are present, this definition is justified by basic probability
theory. The value r”(k)(ab) should be equal to Prob[AB =ab | K =k]. Using Bayes’
theorem, we get:

Prob[AB =ab | K =k] = Prob[B =b | K =k and A =a] Prob[A =a | K =k]

Because of our independence assumption, the probability of B =b only depends on A4, not on
K. Thus we can simplify:

Prob[AB =ab | K =k] = Prob[B =b | A =a] Prob[A =a | K =k

This is the formula that is used in Definition 3.8. We discuss the correctness of Definition 3.8
under missing probabilities in Section 4.

It is straightforward to check that the probability functions given in Definition 3.8 are
valid. We omit the proof here.

3.5 Multi-Relations

Definition 3.9. Multi-Relation. A table with multiple groups is represented by a multi-relation.
A multi-relation R on attributes K, A+, ..., A, is a tuple <ry...,r,> where each r; is a proba-
bilistic relation on K, 4;. There is one condition (we call it the "same keys" constraint) that
must be satisfied by the relations: if r;(k) is defined, then for all j, 1<j<g, r;(k) must also be
defined. O

A multi-relation is displayed in table form by concatenating the individual relations.
However, the key attribute column is only displayed once, on the left. The condition in
Definition 3.9 ensures that in every row of the table, the probability function will be defined.

As an example, consider mutli-relation r; used for the project examples of Section 2.
(It was called a relation then since we had not introduced multi-relations.) It is composed of a
relation on K, AB and another on K, C. Attributes A and B are jointly distributed, but
because of our independence assumption (Section 3.1), C and A, as well as C and B, are
independent.

Relational operators on such a multi-relation can now be defined in terms of the opera-

tors on the component relations. Let R = <ry,...,r,> be a multi-relation on K, 4, ..., 4,.
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o Project.
PROJECT R ONTO @ = <ry,...,rq > wherer; = PROJECT r; ONTO a.
o Select.
The select condition ¢ for R has g +1 components, c¢,cy, ..., ¢;. The condition ¢; is intended
to select within relation ;. Condition ¢ selects keys. If no selection is desired for r;, then ¢; is
set to "true."
SELECT R WHERE c,c;,...,¢; = <r{,...,rq’ > where r; = SELECT r; WHERE d. Condi-
tion d (k,r;) is true if and only if co(k) and ¢ (k,r1) and ... and ¢, (k,r,). (Note that implements
a logical AND of the conditions. More general multi-relation selects could be defined in a
similar fashion.)
e Natural Join.
LetS = <s4,...,5,> be a second multi-relation on 4;, B4, ..., B,.
JOINR, S = <ri,...,liali+1s+++s13:51,--+,8 >, Whererj =r; (j#), ands; = JOINr,
8.
For each of the above definitions, it is relatively simple to show that result is a valid multi-
relation, i.e., that the same-keys constraint holds.

Finally, in Section 1 we introduced deterministic attributes. Deterministic attributes are
just like probabilistic ones except that the probability functions always assign probability 1.0 to
a single value. When such attributes are displayed in table form, the probabilities are stripped

away.

4. Lossy Operations

The project and join operators generate new probability distribution functions in the
result. In Section 3 we showed that these new functions were correct when no missing proba-
bilities were involved. In this section we address the issue of whether the new functions are
still meaningful when missing probabilities are involved.

We start by showing that in certain cases join yields functions that are "unexpected."
Consider the following join of relations r and s:
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EXAMPLE 4.1.
r s Joinr, s
K A A B K AB
k | 04[a1 al | 07 b1 k | 028[a1b1]
0.6[*] 03 [b2] 0.12 [a1 b2]
0.6 [* *]

In the resulting join, the probability of tuple [al b1] ranges from 0.28 to 0.88. (This last value
is obtained when all the missing probability of 0.6 is assumed to fall on [al b1].) However, if
we look at the original relations, there is no way we can obtain a probability of 0.88 for [al
bi]. Even if in r we assume all of the 0.6 missing probability is given to [al], when we join we
obtain at most 1.0x0.7 for [al bl]. Thus, the result we have shown does not accurately
represent the join.

Another way of looking at this problem is that the missing probability of 0.6 [* *] in the
result is not correct. It is not the case that we know nothing about the distribution of this 0.6
probability over all possible A, B tuples. In particular, if the first component happens to be
al, then the missing probability should be assigned according to the a1 distribution shown in s.
Hence, the most of the 0.6 probability that could be assigned to [al b1] is 0.6x0.7. However,
all of the 0.6 can be assigned to say [a2 bl]. Our PDM is not rich enough to capture this
subtlety in the missing probabilities.

It would be possible to extend the model for missing probabilities to represent "partially
unknown" distributions, but this would lead to a cumbersome model and language. Instead we
have stayed with the simple interpretation of missing probabilities. There are several good
reasons for this. First, the problem illustrated in this example only occurs with joins when the
first relation has missing probabilities. It never occurs with projects or selects. (We will for-
mally prove this in this section.) So a system implementing our model could simply refuse to
perform joins that have the problem.

Second, the "problem" is not necessarily bad. The data in the resulting relation can still
be useful. It provides a simplified but "diffused" view of the join. The probability ranges
implied by the result are larger than should be, but the minimum value is still correct. (We
will prove this later.) For example, as we indicated above, the range for [al b1] is given as
0.28 to 0.88, but it should be 0.28 to 0.7. The range for [al b2] is shown as 0.12 to 0.72, but
should be 0.12 to 0.3.

In a sense, the problem illustrated here causes "information loss." The resulting relation
has less information about the probabilities involved that what could be inferred form the ori-
ginal relations. If a user does not want to loose information, then he or she should not per-
form joins when the first relation has missing probabilities. An analogy can be drawn to lossy
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joins in conventional relational algebra [UIl]. There too information is lost in certain joins.
The loss is different from what we have illustrated, but the point is the same: If one does not
wish to have less information in the resulting relation, then the operation in question should
not be performed. But it is up to one to decide in each particular case.

In the rest of this section we formalize the notion of probabilistic information loss. We
only consider single attribute relations; the generalization to multi-relations is straightforward.

Definition 4.1 Potential Set. Given a tuple with key k in a probabilistic relation r, the potential
set of r(k), or simply PSET (r(k)), is defined as the set of all functions (without missing pro-
babilities) that can be obtained from r(k), each one by assuming a particular distribution of
the missing probabilities. More formally, PSET (r (k)) is the set of all valid probabilistic func-
tions 4 such that

(i) for all tuples a with *’s, B(a) = 0;

(i) for all tuples a withno *’s, r(k)(@)<pl@)< % rk)a’) O

To illustrate, consider relation r of Example 4.1. The function that maps [al] to a proba-
bility of 0.5 and [a2] to 0.5 is in PSET (r(k)). No function that maps [al] to 0.2 could be in
PSET (r (k).

It is clear from Definition 4.1 that for any row with key & in which there are no missing
probabilities PSET (r(k)) = {r(k)}. By extension, the PSET of a relation r is simply

PSET(r) = {r" |r"(k) € PSET (r (k)) for all k }

Definition 4.2 Probabilistically Lossless Operations. Let @ be an operation over relations
r1,r2, . - . Iy such thatr = @(rq,ry, . . . ,1,). The operation is probabilistically lossless if for all
k such that r (k) is defined either

(i) r (k) = ri(k) for some i, 1<i<n; or

(ii) PSET(r(k)) = U PSET[®(r1,...,m)k)] O
allry €PSET(r)

An operation that is not lossless is called lossy. Definition 4.2 states that for an opera-
tion to be lossless the probability function assigned to every tuple in the result must be mean-
ingful. This occurs if the function was in the original set of functions, or if it has a potential
set that can be reproduced by the potential sets of tuples in the operand relations. In part (ii)
of the definition, notice that even though r{, .., r, have no missing probabilities,
@(r1,...,r, )(k) may have missing probabilities (in particular if @ is a join, see Definition
3.8). This makes necessary the application of the PSET function to ®(ry, . . . , 1, )(k).

We now show that project and select always compute correct probability functions.
Lemma 4.1 Project is a probabilistically lossless operation.

Proof: See Appendix.
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Lemma 4.2 Select is a probabilistically lossless operation.
Proof: See Appendix.

As was shown in Example 4.1, join can be lossy in some cases. To determine in what
cases it is not, we introduce the following definition:

Definition 4.1. A relation r has property NMP (no missing probability) if no row in r is a func-

tion with missing probabilities.

Lemma 43 If a relation r has property NMP, then JOIN r, s is probabilistically lossless, for

any relation s.
Proof: See Appendix.

In the cases where r* = JOIN 7, s is lossy, the result is still of partial use because the
lower bounds for probabilities are correct.

Lemma 44. Letr” = JOINr, s, where r is over K, A, and s is over 4, B. Sayr”(k)(ab) = p,
where ab has no *’s. Then Prob [AB =ab | K =k] is indeed greater than or equal to p.

Proof: See Appendix.

In closing this section, notice that we have focused on possible information loss at the
level of probability distribution functions. It is also possible to study information loss at the
relation level. For instance, suppose we compute ¢ = JOIN r, 5. Is it possible to recover the
original relations r and s from ¢? If it were, then the join would be lossless in the conventional
sense. Clearly, if the join is probabilistically lossy, then it is impossible to recover the original
relations. However, when the join is probabilistically lossless, then it is possible to recover r
and s, i.e., the join is also lossless in the conventional sense. For instance, r can be recovered
by projecting ¢ over the attributes of . To recover s we need a new operator that extracts con-
ditional probabilities. Due to space limitations we cannot cover this new operator nor the
proof that a probabilistically lossless join is also conventionally lossless.

5. Related Work

The PDM we are proposing here was inspired by many of the prior ideas relating to
uncertain information [Cav, Gel, Imi, Imi2, Imi3, Lip, Lip2, Liu, Men, Mor, Raj, Rei, Vas].
However, our model is distinguished by two critical aspects: (a) the use of probabilities to
describe uncertainty, as opposed to other mechanisms such as fuzzy sets, possibilities, sets of
alternatives, null values, and so on; and (b) the introduction of missing probabilities.

To understand aspect (a), let us briefly compare the PDM to Fuzzy Relations [Raj].
Both models may look similar on the surface, but there are important differences. A fuzzy
relation is viewed as a fuzzy set, with tuples that may or may not be in a relation r. A Possibil-
ity Distribution Function, u, is defined to map each tuple ¢ to a value over [0,1]. Additionally,
the domain of an attribute can also be expressed as a fuzzy set, defining a possibility distribu-
tion function for it.
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EXAMPLE 5.1 Consider the following fuzzy relation.

EMPLOYEE SALES p
Jon Smith $30,000 /03 | 0.70
$40,000 / 0.6
$50,000 / 0.4
Jim Jones $10,000 /0.8 | 0.8

The numbers next to the sales figures indicate the values of the possibility function for the
sales attribute. For instance, Possibility(Sales of Jon Smith = $30,000 ) = 0.3. The value of
p = 0.7, associated with the tuple of Jon Smith, indicates that the possibility that this tuple
belongs to the relation is 0.7. Note that the values of a possibility function do not have to sum
to 1.0.

Possibilities and probabilities are obviously different concepts. One major difference is
that it is hard to represent with possibilities attributes like SALES that have a single outcome.
In other words, the example above implies that SALES for Jon Smith can take on several
values at once (i.e, it is a fuzzy set). This is not the case for SALES (and for a large number
of common database attributes, we think). A probabilistic function, on the other hand, cap-
tures this exactly: SALES can take on a single value out of the listed ones, and each probabil-
ity gives the likelihood that it happens. In addition to being able to represent single outcome
attributes, the PDM can still model fuzzy sets if necessary. (See the example of the employee
working at Acme in Section 1.) Although possibilities and fuzzy sets have been carefully stu-
died, probabilities are much more widely known (e.g., by every engineer and scientist) and
have strong intuitive appeal. Thus, they seem like a good basis for building a general purpose
incomplete information model.

Probabilities have been used in one database model we know of [Cav]. In it, each tuple
is assigned a probability, representing the likelihood that the tuple appears in the relation.
EXAMPLE 5.2. The following is a relation in the [Cav] model. A,B € {0, 1}

A B p(Tuple = .)
0 0 035

0 1 0.25

1 0 0.01

1 1 0.39

For instance, the probability that tuple <0,0> exists is 0.35. The PDM we propose provides a
richer structure than this, allowing probabilities to be assigned to individual attributes. As
described in the introduction, we think deterministic keys (which do not exist in [Cav]) are
very useful, especially in applications where the entities in question clearly exist (e.g., a patient
in a hospital, a military base). Finally, and most importantly, the PDM provides for missing
probabilities. As we have argued, this provides for substantial flexibility in modeling real
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applications.

In closing this section, we briefly discuss two research areas that are also related to our
work. One is statistical databases. For example, in [Won], Wong views queries as statistical
experiments in which information was incomplete because, for example, it was old. His
method centered around computing the query response as those tuples which minimized the
two types of statistical errors. In another paper [Gho], Ghosh discusses statistical relational
tables. Although there are similarities (see for instance the operator Stochastic in Section 6),
our main interest in this paper is on uncertain, not statistical information.

Our work is also related to the current efforts with non-first normal form relations [Dad,
Rot, Rot2]. As a matter of fact, our probabilistic relations are simply nested relations with
depth two. Each attribute in the top level relation can be a relation that gives the probability
distribution function for the attribute. Our focus in this paper will be on the probabilistic
operators and not on the non-first normal form issues.

6. Conclusions

We have presented a probabilistic relational data model where tuples have deterministic
keys and both probabilistic and deterministic attribute groups. We believe that the major
strengths of our model are its generality and naturalness. Most existing incomplete informa-
tion models can be encompassed by ours. For example, a null value can be represented by a
1.0 [ * ] distribution. A list of alternate values [Lip] can be represented by a distribution that
assigns each value an equal probability. As discussed in Section 5, fuzzy sets can also be
represented in our model. At the same time, these other models cannot represent the full
range of probabilities we can.

Another important strength, in our opinion, is the concept of missing probability. Not
only does this concept make it easier to input probabilistic data, but it also makes joins feasi-
ble when join attribute values are missing (Example 2.8).

In this paper we have focused on the three basic operators project, select, and join.
However, the model can naturally support many other useful operators. Here we provide a
brief summary. (Some of these are described in more detail in [Gar].)

Conventional Operators Applied to Probabilistic Relations. The basic set operators INTER-
SECT, UNION, MINUS work as in a conventional system. The only complication is that
UNION may produce a relation containing two rows with the same key but different func-
tions. The COMBINE operator, discussed below, can be used to produce a single probability
function. In addition, INSERT, DELETE, and UPDATE operators can be introduced to
modify existing relations.

Operators for Multi-Relations. Our system provides operators for manipulating multi-
relations. For example, GLUE can produce a multi-relation out of a collection of simple
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relations. CUT is used to break a multi-relation into its components. The GROUP operator
combines two groups into a single one, computing the joint probability distribution.

New Operators. The following operators do not have a counterpart in relational databases:

(a)

(b)

(©)

(d)

(e)

(®

STOCHASTIC : This operator takes as input a deterministic relation containing sam-
ples and a probabilistic schema, returning a probabilistic relation based on that schema.
(The probabilistic schema describes what attributes comprise the KEY, and which of the
dependent attributes are jointly distributed or independent.) The probabilities are com-
puted as relative frequencies of the samples.

DISCRETE. The DISCRETE operator transforms a probabilistic relation into a deter-
ministic one. Each probability distribution is replaced by the expected value of the attri-
butes. If the domains are not numeric, a conversion function must be provided. For
example, if student "Fred" is expected to get "A" with probability 0.7 and "B" with proba-
bility 0.3, then the DISCRETE relation would show "Fred" with a grade of 0.7x4 + 0.3x3
= 3.7, assuming "A" is mapped to a numeric grade of 4 and "B" to 3.

COMBINE : This operator can be used to combine two probability distributions. For
example, suppose that two independent observers keep track of the distance of objects to
a given site. Each observer generates a probabilistic relation for his data. If two such
relations are available, it may be desirable to perform a union to combine the informa-
tion. In the union there may be two distributions for the same object. The two distribu-
tions can be combined into a single one, possibly giving a different weight to each
observer.

CONDITIONAL. Say we have a relation r with key K and attributes AB. CONDI-
TIONAL can convert r into r“ with key K4 and attribute B. The value r“ (ka)(b) will
then equal Prob [B =b | K =k and A =a).

e-JOIN : This operator acts like the natural join, except the attributes for which the
tables are joined are both probabilistic. The corresponding tuples are joined if the two
distributions are less than e apart according to a predetermined distance function.

e-SELECT : This operator selects tuples for which the distribution function is less than
epsilon apart from a given distribution, again according to a pre-defined distance func-
tion.

Finally, it is possible to allow other interpretations for missing probabilities, or to pre-

define common probability distribution functions. For example, the notation 0.4 U[a2 ... a5]
can be used in a relation instead of assigning 0.1 probability to each of a2, a3, a4, a5. Wild-
cards can also be used. For instance, 0.3 U[ * ] distributes 0.3 probability among all possible
domain values. This is simply shorthand notation: the relational operators should manipulate

a relation with uniform distributions simply as if they had been expanded.
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Appendix
This appendix contains the proofs for the Lemmas of Section 4.
Lemma 4.1 Project is a probabilistically lossless operation.

Proof: Let ry be a relation over K, A,. Let r = PROJECT r; OVER e« and say 4 = 4 1Mo,
the non-key attributes that remain in r. Let k be any key such that r(k) is defined. To show
that the set equality of Definition 4.2 (part (ii)) holds, we proceed in two parts:

(1) Take any B € PSET(r(k)). We want to show that this g is also in some
PSET[(PROJECT r{ OVER a)(k)] where r{ is in PSET(r,). Since r; has no missing proba-
bilities, it is enough to find 8 in a project of some r;. Say f(a)=p, + p, for some tuple a over

A. This can only happen if r(k)(a)=p, and ¥ r(k)(x) >p;+p,, where X is the set of all
xeX

tuples (over A) that cover a. Since r was computed through a project of ry, it must be the case

that 3 ry(k)(y) = p1 where Y ={y over A, |y[4]=a}. Similarly, it must be the case that
YEY,

Y ri(k)(y)>p1+p2, where Y, ={y over A, |y [A4]=x for some x€X}. We can now create a
YEY;

particular r{ in PSET (r{) that assigns a combined probability p;+p, to the tuples that are

covered by tuples in Y, and Y,. That is, we chose r{ so that ¥} r{ (k)(z)=p;+p,, where
e

Z ={z over A |y covers z for some yeY or yeY,}. Note that for each tuple z € Z, z[4 ] =a.
Hence, when r{ is projected, all the tuples in Z collapse into tuple a and this tuple receives
exactly p1 +p, probability. Thus we have shown that the probability function 8 in PSET (r (k))
can be found by projecting a relation r{ in PSET (r).

(2) Take a probability function 8 obtained with some key k from the project of r{, a relation in
PSET (r1). We now want to show that this same function exists in PSET (r(k)). To do this,

we simply reverse the steps of part (1). If f(a) = p;+p,, then Y r{ (k)(z) = p1+p2, where
zeZ
Z contains tuples z such that z [4 ]=a. Continuing, the sum of r, (k) over tuples in Y; =Z must

equal p;. The sum of ry(k) over Y, tuples must be greater than p +p,, where Y, contains all
tuples covered by one in Z. This implies that (k)(a)=p; and the sum of r (k) over X tuples is
greater than p +p,, where X is the set of tuples Y, projects to. Since all the tuples in X cover
a, we can find a function in PSET (r) that maps a to probability p, +p,. This is the function
we were looking for. O

Lemma 4.2 Select is a probabilistically lossless operation.

Proof: A select does not modify the probability functions. Any r (k) that exists in SELECT r;
WHERE C must appear inr;. Thus, select is lossless by case (i) of Definition 4.2. O

Lemma 4.3 If a relation r has property NMP, then JOIN r, s is probabilistically lossless, for
any relation s.
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Proof: Let r{ be a relation over K, 4, and r, a relation over 4, B. Letr = JOINry, r;. Letk
be a key such that r (k) is defined.

(1) Take any g € PSET (r(k)), and consider a tuple ab over AB with no wildcards. As a first
sub-case, assume that r(a) is defined. Then f(ab) must equal p,(p, + p3), where p; =

ri(k)(a), p2 =ra(a)(b),and ¥ ri(k)(@)xry(a)(y) >pi1(p2 + p3), where Y is the set of all
yey

B tuples that cover b. Now, in PSET (r;) there is only one relation, r;{ = ry (r; has NMP pro-
perty). From PSET (r,) we take the relation r; that assigns to row a, value b probability p, +
p3. Lett = JOINr{,r;. Clearly, t(k)(ab) = p1(p2+p3). This is the same function 8 that we
started with.

For the second sub-case, assume that r,(a) is undefined. Then B(ab) = p <r(k)(a*)
= ry(k)(a). We again taker{ = rq and let r; be any member of PSET (r;). Lett = JOINry,
ry. Since r; (a) is undefined, ¢ (k)(a*) > p. When we take the PSET of ¢ (k) we assign proba-
bility p to tuple ab, obtaining the same function as 3.

(2) Take any relation r; €PSET (r;). Again, PSET(r{) =ry =r{. Lett = JOINr{, r;. For
the first sub-case, say (k) has missing probabilities. Then there is some a such that r; (a) is
undefined and 4 (k)(a) #0. By definition, ¢ (k)(a*)=ri(k)(a). When we perform PSET (¢ (k))
we can assign to a particular ab tuple some value between 0 and ry(k)(a), say p. Now we
show that this same assignment can be obtained through PSET (r (k)). If r; (a) is not defined,
then r,(a) is also undefined. Hence, r(k)(a*)=ri(k)(a) >p. When we do a PSET of r(k),
we can assign probability p to tuple ab, arriving at the same function we had.

For the second sub-case, say ¢ (k) has NMP or r; (a) is defined. Say t(k)(ab)=p1(p2+p3).

Thus, ri(k)(@)=p1, r2(a)(b)=p,, and ZE}Y ri(k)(a) xra(a)(y) >pi(p2 + p3), where Y'is the
y

set of all B tuples that cover b. When we join ry and r, we get r(k)(ab)=p,p, and the sum of
r(k)(ax) over tuples x that cover b is at most p;(p,+p3). When we perform PSET (r (k)), we
assign probability p1(p, +p3) tor”(k)(ab), obtaining the same function as ¢ (k). O

Lemma 44. Letr” = JOINr, s, where r is over K, 4, and s is over 4, B. Say r”(k)(ab) = p,
where ab has no *’s. Then Prob [AB =ab | K =k] is indeed greater than or equal to p.

Proof: If p =0, the lemma is trivially true. If p #0, it must have been computed as p = r(k)(a)
x s(a)(b) (Definition 3.8). From Section 3.4, we know that Prob[4B =ab |K =k] =
Prob[A =a | K =k]x Prob[B =b | A =a]. We know that Prob[4 =a | K =k]>r(k)(a) and
Prob[B =b | A =a]>s(a)(b) (Section 3.1). Thus

Prob[AB =ab | K =k]>r(k)(a@)xs@)®)=p O



