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Abstract

We show that interactive proof systems with 2-way probabilistic finite state verifiers can accept
any recursively enumerable language. The same proof method also shows that the emptiness problem
for 1-way probabilistic finite state machines is undecidable.

1 Introduction

We study the class of Interactive Proof Systems (IPS) introduced by Goldwasser, Micali, and Rackoff
[6] and Babai [1]. Roughly, an IPS for a language L is a 2-party protocol between a “prover” and a
“verifier”. The more powerful prover must convince the verifier that elements in L are actually in L.
We study the case where the prover is unrestricted and the verifier is a probabilistic finite state machine
with the ability to flip “private” coins. Dwork and Stockmeyer [4] and the work of Condon [2], show that
such IPS’s are very powerful: an IPS with a probabilistic finite state machine as a verifier can accept all
languages in E, the class of exponential-time computable languages. In their notation, E C IP(2pfa).
Here IP(2pfa) is the class of languages L such that for each ¢ > 0 there is a 2-party protocol between
an unrestricted prover and a finite state probabilistic verifier. The verifier has a 2-way input tape with
the input z. Then the following must be true:

1. for all x in L, for some prover, the IPS accepts the input with probability at least 1 —e.
2. for all  not in L, for all provers, the IPS rejects with probability at least 1 — e.

We are able to show that IPS’s are very powerful. In particular, we can show that the following
theorem is true:

Theorem 1.1 For any recursively enumerable language L, L is in I1P,(2pfa).

Again in the notation of [4], this is a weaker class of IPS’s. The key is that we do not insist that these
systems always halt. Thus, condition (2) in the above definition is changed to: for all z not in L, for
all provers, the IPS accepts with probability at most . Dwork and Stockmeyer [4] show that pushdown
automata with “private” coins can accept any recursively enumerable language. Condon [3] has observed
that “almost always halting” is a strong restriction:
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Theorem 1.2 If L is in IP(2pfa), then L is a recursive language.

The proof of this last remark is simple: since the system halts all but € of the time, a brute-force search
of all the computations must eventually be able to halt. That is search until “most” of the computations
have either accepted or rejected.

The proof of theorem 1.1 requires us to extend a result of Frievalds [5]. He shows that the emptiness
problem for 2-way probabilistic finite state machines is undecidable. We can use our method to prove:

Theorem 1.3 The emptiness problem for 1-way probabilistic finite state machines is undecidable.

The emptiness problem appears to have first been raised in the late 1960’s. See, for example, Paz [7].
The key insight into this generalization is that it is possible to “simulate” the 2-way input tape by a
1-way input tape. The 1-way tape repeats over and over the contents of the 2-way tape. The critical
point is that the 1-way tape can “lie”, i.e. it need not repeat exactly the same string each time. Thus,
the 1-way machine must be a kind of verifier and check that no cheating occurs. In this way ideas from
IPS’s play an essential role in the proof of theorem 1.3. Since we often measure the importance of a new
area by how well it solves existing problems, theorem 1.3 is evidence for the importance of IPS’s.

A further comment on our main theorem 1.1 is that our proof does not require real interaction
between the prover and the verifier. The prover sends a “proof” to the verifier for checking, but the
prover never needs any information from the verifier. Thus, we can show that even this restricted class
of IPS’s is enough to accept all recursively enumerable languages.

2 Proof of Theorem 1.1

In this section we will prove the main theorem that shows how any recursively enumerable language can
be accepted by some IPS with only a probabilistic finite state machine as a verifier. We first need a
technical lemma about conditional probability.

Lemma 2.1 Let A,B be independent events with
0 < kPr[B] = Pr[A] < 1.

where k > 1. Then, 1
Pr[A|[ABV AB] > 1- i

Proof: Let o = Pr[A] and 8 = Pr[B)]. Then, 0 < k8 = a < 1. Now, since A and B are independent
events,
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Since @ = kB and k > 1 it follows that
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Therefore, Pr{A|ABV AB] > 1— g1 as required. O

We next consider a kind of game that our finite state verifiers will use to check the prover. We assume
that the prover sends a string of the following form to the verifier: a’b’. We further assume that the
finite state verifier receives each character one at a time left-to-right. We also fix a large number p. The
verifier will perform five independent computations:

For each letter a, the verifier flips two fair coins.
For each letter b, the verifier flips two fair coins.
For each letter a and each letter b, the verifier flips one fair coin.

For each letter a and each letter b, the verifier flips one fair coin.

S o

The verifier checks that i = j mod p is true.

Note, these are all independent computations. The outcome of the game is determined as follows: if
step (5) discovers that i and j are not equal modulo p, then the game outcome is not-equal. Therefore,
assume that this is not the case. Let A be true if either step (1) or step (2) gets only heads; let B be
true if either step (3) or step (4) gets only heads. Then say that the outcome of the game is a tie if both
A and B are false or both are true. Say that the outcome is double wins if A is true and B is false; say
that the outcome is sum wins if B is true and A is false. Say that the outcome is a win provided either
double or sum wins.

Lemma 2.2 For any fized p, the outcome of a game can be computed by a probabilistic finite state
machine.

Proof: Clearly, each of the five subcomputations can be done with a finite number of states. Each
computation need only remember one bit about the sequence of coin flips, i.e. were all the coins heads.
Since the decision on what the game’s outcome is clearly finite state, the claim follows. O

The critical lemma is the following:

Lemma 2.3 Consider the action of the game on the string a’b! with number p and i = j mod p.
1. If i = j, then Pr[double wins|win] = Pr[sum wins|win].
2. If i # j, then Pr[double wins|win] > 1 — 5=

3. Ifi # j, then Pr[sum wins|win] < 5;,-:11_*_—1



Proof: First, suppose that i = j. Then each of the computations flips exactly the same number of
independent coins, i.e. 2i = 2j = i+ j. Thus, by symmetry it follows that (1) is true. Now assume that
i < j. Now let A denote the event that double wins; also let B denote the event that sum wins. Then,

Pr[A] > Pr[2i heads in a row] = 1/2%.

Also,
Pr[B)] < 2Pr[i + j heads in a row] = 1/2¢+ -1,

Thus, Pr[A] > kPr[B] where k is 2/=*~1, Since i is congruent to j modulo p, j —i > p. So k > 2°~1.
Lemma 2.1 then shows that Pr[A|ABV AB] is at least 1— 5;=—7. Now assume that ¢ > j. The argument
follows in exactly the same manner replacing ¢ by j. This proves (2). Finally, (3) follows directly from
(2) since either double or sum must win each game that has a winner. O

It is convenient to have one more definition concerning games. Say that a game is fair if the string
is a'b’ where i = j; say it is unfair otherwise. Thus, lemma 2.3 states: in any fair game, double or sum
are equally likely to win; in any unfair game, double is much more likely to win than sum. This game is
based on the method used by Frievalds in [5]. The critical difference is that in his game one flips i coins
and one flips j coins. If i = j, then both are equally likely to win. If ¢ # j, then one is much more likely
to win. However, he cannot predict who is going to be more likely to win, ¢ or j. This is a key problem
that our more complex game avoids. We know, if the game is unfair, which outcome is more likely, not
just that some outcome is much more likely.

Let L be a recursively enumerable language. Then there is a counter machine that accepts exactly
L. Our counter machines are standard; they have two counters and a read-only two-way input tape. At
each step the machine operates as follows: it reads the contents of the input tape and tests whether or
not each of its counters is zero or not. Then based on its current control state it may move the read-only
tape left or right, increment a counter, decrement a counter provided it is nonzero, and finally enter its
next state. As usual the counter machine starts in a fixed state, and it accepts by entering a fixed final
state. It is well known that such machines are powerful enough to accept any recursively enumerable
language. We encode the instantaneous descriptions (ID’s) of such a machine as follows: #ucd'# here
u is a symbol that encodes the control state, k is the value of the first counter, ! is the value of the
second counter.

‘We now are ready to prove theorem 1.1.

Proof: Let L be any recursively enumerable language and let € > 0 be selected. Fix a counter
machine that accepts this language. We will show that there is a probabilistic finite state verifier that
accepts exactly this language, i.e.,

1. If z is in L, then the verifier will accept with probability at least 1 — e.
2. If z is not in L, then the verifier will accept with probability at most .

The plan is that the prover will repeatedly send to the verifier the sequence of ID’s that correspond

to the accepting computation. The verifier will check the ID’s for correctness. More precisely, suppose
that z is in the language L. Then, the prover will send the accepting computation to the verifier:

HucFrd . Fuctrd

We will call this string the “computation” and denote it by C. Without loss of generality we can assume
that ¢ is even since the counter machine can be modified so it only accepts after an even number of steps.
The prover will send this string repeatedly to the verifier. (Of course the prover can “cheat” and send



illegal strings or different ones each time.) The verifier will then check the computation C as follows.
First, the verifier will check that it is “locally” correct. This includes: (i) checking that the initial and
final states are correct; (ii) checking that the correct state transitions are taken. The latter requires
that the verifier use its input read-only to simulate the input tape of the counter machine. That is the
verifier moves the input tape according to the motions encoded in each ID. It constantly checks to see
whether or not the ID’s claim to read the wrong symbol from the input tape. It also requires that the
verifier check that all zero tests are correct. Clearly, all these checks can be done with a deterministic
finite state control. If any of these fail, then the verifier rejects.

The second, is to check that the computation C is “globally” correct. This means that each of the

two counters is modelled correctly. Thus, it must be the case that, foreachi=1,...,t -1,
kiy1 = k4 (1)
iyn = Li+s; (2)

where r; (resp. s;) is the action performed on the first (resp. second) counter, i.e. r; (resp. s;) is —1,0,1
provided the first (resp. second) counter is decremented, left alone, or incremented at the ith step of the
computation. Clearly, these global conditions are not checkable by a deterministic finite state verifier.
Thus, we must use the probabilistic nature of the verifier to check them.

Fix a large number p and another large constant ¢. It is convenient to select their exact values later
on. The verifier will have two “counters” D and S: each is initially 0 and can take values from 0 to gq.

Now the verifier performs four computations as it receives the computation C from the prover. Let
us denote these by A; and B; where i is 0 or 1. We will first describe Ag. This computation performs a
finite state transduction on the computation C mapping it to

akz-l"‘zbka, akatra bks’ _— akam-2+ram-2pkam-1

where m = t/2. The key point is that r; is easy to compute given the ID’s. Thus, this transduction is
computable with only a finite state control. Now the verifier will consider each of the pairs a*2i+72ipFai+s
as a game. It will play these games in the order as they appear. The critical point is that the verifier
needs this string only one bit at a time to play all the games. If some game’s outcome is not-equal, then
it will immediately reject. Otherwise, it will return the following information: whether or not all the
games were won by double or whether or not all were won by sum. Clearly, it can do this with it’s finite
state control.

Essentially, Ap is checking (1) for even i’s. In the same way A; checks (1) for odd i’s, Bo checks
(2) for even i’s, and B; checks (2) for odd #’s. Thus, A;, Bo, and B; map the computation C to the
following strings:

ak1+flbk2,ak:+"sbh’ . akam-1+ram-1 pram
and
alatez bis, gletea bl.s’ e al2m=3tsam—aplam—1
and
ah'hlbh, als+ssbh, _ alzm-1+sam-1 b’nm

They play the games exactly as Ag does. If any game’s outcome is not-equal, they immediately reject;
otherwise, they return whether or not the games were all won by double or by sum.

Now the verifier updates its two counters D and S as follows. If double (resp. sum) won all the
games played by Ag, A;, Bo, By, then increase D (resp. S) by 1. The verifier then considers the values
of the counters D and S:



1. If D and S are both less than ¢, then it gets another computation C from the prover and repeats
the four computations Ag, A, Bo, By as before.

2. If D equals g, then accept if S is non-zero and reject if it is 0.
3. If S equals ¢, then accept.

It remains to show that this protocol is correct. There are two cases. First, suppose that the input
x is in the language L. Then there is an accepting computation; hence, we can assume that the prover
always sends this accepting computation to the verifier. Since the computation is correct every game
played by the Ag, Ay, Bg, By is fair. Thus, the probability that all are won by double is exactly the same
as the probability that all are won by sum. Now the only way that the verifier can reject is for D to
equal ¢ while S is still 0. But, if ¢ is large enough the probability of this can be made very small, i.e.
for ¢ large enough, it is much smaller than ¢. (Note, ¢ must be large but it does not depend on p.)
Therefore, in this case the verifier accepts with probability at least 1 —e.

Second, assume that  is not in the language L. Then, there is no accepting computation and each
“computation” C that the prover sends to the verifier must be incorrect. Clearly, if the prover ever
sends a computation C that violates any condition except (1) and (2), the verifier will always discover
it. Thus, we can assume that only (1) or (2) is violated. We can also assume that no game played ever
ends in the outcome, not-equal. Otherwise, the verifier will immediately reject. The key insight is that
for each computation C, at least one game played by Ag, A;, Bg, B; on must be unfair. Therefore, the
probability that double wins all these games is always much higher than the probability that sum wins
all these games: this follows directly from lemma 2.3. Now assume that the verifier eventually makes a
decision to accept or reject. For it to accept, S must be non-zero before D is larger than ¢. But, if p is
large enough compared with ¢, the probability of this happening is much smaller than e. This completes
the proof of the theorem. O

3 Proof of Theorem 1.3

The emptiness problem for a 1-way probabilistic finite state machine is the problem of determining
whether or not there is some input that the machine accepts with probability at least 1 — .

We will now prove theorem 1.3.

Proof: Suppose that the emptiness problem is decidable. We will show that the halting problem is
decidable for counter machines with no input. Since this is impossible, this will complete the proof. Let
M be a counter machine. We can construct a verifier as in the proof of theorem 1.1. Since the prover
constructed in this proof never gets information from the verifier, we can consider the 1-way input tape
as the “prover”. If the verifier needs the next bit from the prover, it just reads the next bit from the
tape. As before if there is an accepting computation, then the verifier accepts with probability at least
1 — ¢. If on the other hand, there is no accepting computation, then the verifier can only be “fooled”
into accepting with probability less than e. O
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