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ABSTRACT

We address the problem of logic verification, for both combinational and se-
quential logic. We discuss the Binary Decision Diagram (or BDD) as a means to
represent boolean functions. This representation is canonical with respect to the
variable ordering and is usually compact. We present an Q(n?3") algorithm for
finding the optimal variable ordering for a BDD, and compare it to a brute-force
method and to heuristic approaches. We introduce a data structure called the pro-
jective BDD which is not canonical but can be more compact than the BDD. We
address the problem of verifying multiplier circuits using this structure. Finally, we
present a form of deterministic finite automaton called the nDFA, and apply it to

the problem of sequential logic verification.



Chapter 1: Introduction and Summary of Results

Gaining confidence in the correctness of circuit designs is taking a large and
increasing portion of the total design time. Current practice is to simulate circuits
with a very large amount of test data. Determination of an appropriate set of tests
to exercise a circuit is often a formidable task, hence only partial correctness of the

design is typically established.

The scope of this dissertation is limited to formal design verification, which is

essentially the verification of designs without resorting to exhaustive simulation.

In the special case of purely combinational logic, much work has been done on
formally proving the equivalence of two logic networks. For example, in [SB] the
authors use a “Differential Boolean Analyzer”, in which they heuristically choose
a variable v, and verify the circuit recursively setting v = 0 and setting v = 1.
They are able to accelerate this heuristic by detecting cases that they have already
encountered. In [KN], the authors use an XOR-of-ANDs canonical form for boolean
expressions, and test for satisfiability (or validity) using term-rewriting. Despite
the NP-hardness of even this special case, some of these approaches have achieved
success for a large class of interesting circuits and (especially [SB]) have become

widely used.

Several techniques for verifying sequential designs have been proposed in re-
cent years, but none has yet gained wide acceptance in practice. Some ([Da], [PS])
of these apply techniques developed in software verification, and require the de-
signer to provide assertions as well as the design. Another [Wo] utilizes a resolution
based theorem prover, to which the designer must provide the axioms. Bryant [B1]
symbolically simulates a switch-level design, producing a sequence of boolean ex-
pressions representing the sequence of circuit outputs. Proving the equivalence of
two designs is addressed in [BC], which requires the designer to specify his design
in temporal logic. Also see [Ba], [Ge], [Mc].

In the following chapters, we present, one by one, several graphical represen-
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tations that we have had success with, and we discuss their application to circuit
design verification. In Chapter 2, we discuss the Binary Decision Diagram, or BDD,
of [Ak] and [B2] as a means of representing boolean functions. Briefly, a BDD con-
sists of a compacted tree of decision nodes which is traversed from the root to the
leaves in order to apply the function to a particular bit vector. In Chapter 3, we
present an original algorithm for minimizing the number of nodes in ordered BDDs.
The time-complexity of this algorithm is an exponential improvement over that of

previous efforts (see [NB], [FS)).

In Chapter 4, we introduce the projective BDD, in which we order the decision
nodes according to our expectation of the final form of the data structure. This can
lead to a more compact representation than with the ordered BDD. We develop an

algorithm for combinational logic verification using this data structure.

Finally, in Chapter 5, we present the n-DFA, a more efficient way of representing
certain deterministic finite automata, and which we make use of in the verification
of sequential logic. In this chapter we also introduce the Batman, which is a more
general form of BDD with several roots and several terminals. This structure saves
both time and space when an operation is performed on many BDDs at once. In
addition, it provides a compact way of storing the transition function for an n-DFA.

A much earlier form of this work appeared in [SF].



Chapter 2: The Binary Decision Diagram

2.1 Properties

We begin by describing binary decision trees, binary decision diagrams, and
ordered binary decision diagrams.

A binary decision tree representing the boolean function f(zi,z2,z3,24) =
z123+ 2374 is depicted in Fig. 1. To evaluate the function at a vector b = (b;babsby),
we begin at the root and descend through the tree until hitting a leaf (or terminal).
In particular, when at a node labeled 7, we go to the left son (or 0-link) if b; = 0 and
the right son (or 1-link) otherwise. This process ends at a terminal labeled with the
value f(b). [NOTE: Sometimes we use {0, 1}, and sometimes {FALSE, TRUE},
as the possible values of a boolean function. We will consider the two notations to

be interchangeable.]

Unfortunately, this representation for boolean functions is no more concise than
a complete truth table, since a tree representing a function of n variables has 2"+1 —1
nodes (2" — 1 decision nodes and 2" terminals). However we can collapse the tree
in such a way that the function can still be evaluated in the same manner, yet the
resulting acyclic digraph (called a binary decision diagram) may be much smaller
(see Fig. 2(a)). Binary decision diagrams were introduced in [Le] and further
popularized by [Ak]; much work on binary decision diagrams and their applications
(including logic synthesis, verification and test generation) has been reported (e.g.

[Mo], [AR]).

Note that in the particular decision tree of Fig. 1, regardless of the path that
we take (i.e. regardless of the value of b), we will be evaluating the bits in the
same order (namely, bs,bg,b;,bs). Therefore, at each level of the tree, all nodes
have the same label For example, at level 1 (near the terminals), all nodes are
labeled 2. Call such a tree an ordered decision tree. Then we define (following

[B2]) an ordered binary decision diagram, or ordered BDD, as the binary decision
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diagram resulting from starting with an ordered decision tree and applying the two
collapsing operations described below, until they no longer apply. In this chapter

and the next, any mention of a BDD may be understood to refer to an ordered

BDD, unless otherwise specified.

In order to describe these collapsing operations, we make use of the following

definition. Two nodes of a decision diagram are equivalent if they are either
(1) both terminals with the same value (TRUE or FALSE), or

(2) both internal nodes having the same label and their left sons are

equivalent and their right sons are equivalent.

There are two operations for collapsing (called “reducing” in [B2]):

(i) If the two sons of a node a are equivalent then delete node a and

direct all of its incoming edges to its left son.

(i1) If nodes a and b are equivalent then delete node b and direct all of its

incoming edges to a.

Thus, the first operation avoids the testing of variables on which the function does
not depend; the second gets rid of nodes representing functions already represented

by another node in the diagram.

The diagram may be collapsed even further through the use of Typed Shannon’s
canonical form, described in [MB], in which the two terminals, FALSE and TRUE,
are also considered equivalent for collapsing purposes. The effect is that each node
of the collapsed BDD corresponds to two boolean functions which are complements
of each other. Whether the “positive” function or the “negative” function is desired
is indicated by marking each incoming edge. In this context, a function is positive iff
setting all the variables to TRUE makes the function evaluate to TRUE. Since this
extra collapsing step adds complication to BDD operations, and since it reduces the
size of the BDD by no more than half, we will not consider it further. Fig. 3 shows

an ordered BDD along with its corresponding Typed Shannon’s canonical form.
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As observed in [B2], the diagram that results from collapsing an ordered deci-
sion tree does not depend on which of the nodes (there may be many possibilities)
is eliminated at each step of the collapsing process (thus it is well-defined). In other
words, the ordered binary decision diagram is a canonical representation for a given
boolean function, given an ordering on its variables. However, it is computationally
most efficient to collapse the nodes of a BDD beginning at the terminals, and pro-
ceeding toward the root. This is because of the recursive definition of “equivalent”:
if we collapse from the terminals to the root, we need only check whether the sons
are equal, because the equivalent nodes at that level have been collapsed together

at a previous step.

Henceforth, all binary decision diagrams referred to in Chapters 2 and 3 will be
ordered (unless others specified), and we call them simply BDDs. Thus we define
BDD(f,n) as the BDD representing function f, given ordering 7 on its variables.
As examples, BDD(z1z2 + z324,(2,1,4,3)) and BDD(z122 + 2374, (2,4,1,3)) are
illustrated in Fig. 2(a) and 2(b), respectively. {

Bryant [B2] discusses the advantages of constraining binary decision diagrams
to the ordered variety, arguing essentially as follows. This representation facilitates
many of the most useful operations on functions (such as AND, OR, NOT, testing
for equivalence, and testing for satisfiability), and is canonical. The disadvantage of
this constraint is that there exist functions whose smallest — measured by number
of nodes — ordered diagram is strictly larger than its smallest (unordered) diagram.
However, the difference is usually slight for most functions arising in circuit design;

indeed, most useful circuits seem to have small (say, of size polynomial in n) BDDs.

BDD algorithms are impractical for those functions for which any collapsed
decision tree is exponential in size, such as multiplication (see [B2]). However, we

may still be able to achieve compression by allowing decisions to be repeated along

t We denote the ith value of an ordering (that is, permutation) 7 by «[i]; thus if
7w = (2,1,4,3) then n[1] =2, 7[2] = 1 and so forth.
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some paths. This idea is somewhat counterintuitive, but it works because the tree

does not need to “remember” as much intermediate computation. We handle this

case in Chapter 4.

Also, we will find it efficient to collapse a large number of BDDs into one data
structure with many roots and many terminals, using the same collapsing operations
as for a single BDD. We call this structure a Batman because a schematic outline
of it resembles the logo on the Batsignal (see Figure 13). This structure saves both
time and space when an operation is performed on many BDDs at once. In addition,
it provides a compact way of storing the transition function for an n-DFA, as will

be discussed in Chapter 5.
2.2 Operations on BDDs

Although we defined a BDD as the result of the collapsing process started on
an entire decision tree, it can usually be computed more quickly (given a particular
ordering) by starting with a concise boolean expression for the function and building

up the diagram in pieces, as follows (following [B2]):

The BDD representation for a single variable v is a single node labelled v with

a 0-link to FALSE and a 1-link to TRUE.

The BDD representation for =B, where B is a boolean expression, is obtained
by recursively computing the BDD representation for B, and then swapping the
two terminals TRUE and FALSE.

The BDD representation for By ® B3, where ® is any binary operation, is
obtained by recursively computing the BDD representations for B; and B, and

then applying the following algorithm to the roots of the two resulting BDDs:

(1) Call the two nodes n; and na. If they are both terminals, then return
the terminal labelled ny ® ns.

(2) If n; and ng are both labelled with the same variable v, then return
a node labelled v with the i-link (for : = 0,1) pointing to the node
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that results from recursively applying this algorithm to the ¢-link of
ni and the i-link of no.

(3) Otherwise, assume without loss of generality that the label of ny pre-
cedes the label of n; in the variable ordering (that is, ny is nearer
to the terminals, and its variable evaluated later, than n;). Then,
return a node labelled with n;’s variable, and with the i-link (for
i = 0,1) pointing to the node that results from recursively applying
this algorithm to the ¢-link of n;, and the node n,.

Note that in steps (2) and (3), we save computation time by maintaining a table
of (n1, n2) pairs already encountered, along with the BDD node that resulted. With
this table, the algorithm runs in time proportional to the product of the sizes of the

two BDDs.

Finally, apply the two collapsing operations given above, starting with the ter-
minals, and proceeding upward to the root. This is only done after the operator

has been applied to the entire BDDs, and not at each level of recursion.

Since the BDD representation is canonical with regard to a given ordering,
testing the equivalence of two BDDs can be done, using (for example) depth-first
search, in time proportional to the number of nodes they contain. In particular,
testing satisfiability of a BDD merely involves checking whether its root is the
terminal FALSE.



Chapter 3: Minimizing Ordered Binary Decision Diagrams

3.1 Overview

Although ordered BDDs can be quite compact, the size of the BDD for a given
function is extremely sensitive to the choice of an ordering on the variables; for

example, a circuit representing the carry-out of an adder has size O(n) under some

orderings and O(2"/?) under others. This sensitivity can be understood by thinking
of the BDD as a state machine performing a computation, in which the only infor-
mation at each step is the identity of the current state. If, say, ten bits are input

before any useful computation can be done with them, then the machine needs 1024

states to store the ten bits (compare Figures 2(a) and 2(b)).

Thus we are left with the question of how to find the best variable ordering
(i.e. leading to the smallest BDD) for a given function. Bryant [B2] leaves this task
to the human user; however for many applications such intervention may not be

practical.

Certain heuristics for finding a good, but not necessarily optimal, ordering are
presented in [NB]. They present a class of algorithms of time complexity O(n2"),
O(n?2"™), O(n32"), and so forth, with progressively better approximations to the
optimum.

In [FS], we developed an algorithm for finding an optimal ordering which runs
in O(n?3") time, an exponential improvement over the (essentially brute-force)
O(n!2") optimizing algorithm reported in [NB]. Although the function n%3" grows
very quickly with n, it does so dramatically more slowly than does n!2". For ex-

ample, compare them for the following values of n:



n nign n!2"
8 419,904 ~ 10,000, 000
10 ~ 5,900,000 ~ 3,700, 000,000

12 ~ 76,000,000 ~ 2,000, 000,000, 000

Thus for a certain range of n (say 5 through 8) our algorithm is much faster
than the brute-force, and for the next few values (say 9 through 13) our algorithm
is feasible whereas the brute-force is not.

One application for our algorithm relates to the synthesis of Differential Cascode
Voltage Switch (DCVS) trees (see [HG], [YH], [NB]). These are essentially hardware
embodiments of ordered BDDs, and the task of minimizing the number of transistors
in their implementation turns out to be essentially one of finding the best ordering

for a BDD. Our algorithm is particularly well-suited for this application, for two

reasons:

(1) Since BDDs are directly realized as hardware, minimizing the number

of nodes of a BDD corresponds roughly to minimizing the layout area

of a DCVS tree.

(2) Functions of about 11 or fewer variables are typical in this application;
hence our algorithm would enable one to actually find the optimum

rather than resorting to heuristics.

Another application for finding exactly optimal BDDs arises in designing heuris-
tics for finding good BDDs. In particular, we might wish to evaluate these heuris-
tics by comparing their performance (relative to the optimum) on various test data.

Therefore, a more efficient optimizing algorithm permits larger test cases.

Other applications utilizing BDDs are reported in [B1], and we make extensive

use of BDDs here.
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3.2 Preliminaries

In the following definitions and in the Lemma, f denotes a boolean function over

variables z1,z2,...,Zn.
(1) Ifb € {0,1} and 1 < ¢ < n, then f|;;=3 denotes the boolean function of n
variables such that for all z;,z9,...,z,,

flxi=b($1,$2, e 1'7:11) - f(mls- . -axl'-—lab,mH-l:' .. axn)'

Extend this concept of the restriction of f as follows: if by,bs,...,b, € {0,1} and

i1,12,...,1, are distinct members of {1,2,...,n} then inductively define
flzl'1=b1, ey Tip=by = (flzl'l..—.bl, ey 5i,-_1=br—1)|-'5£r=br

In other words, an expression for f ':r:,-1=b1, =b, can be derived from an expres-

oy

sion for f by replacing each occurrence of z;; by the constant b; for each 1 < j <r.

(2) If IC{1,2,...,n} then define II(I) as the set of orderings on {1,2,...,n}

whose first |I| members constitute I, that is
II(I) = {w : 7 is an ordering on {1,2,...,n} and {x[1],7[2],...,n[|I|]} =TI}

(3) f v € {1,2,...,n} and =« is an ordering on {1,2,...,n} then costy(f,n)
denotes the number of nodes labelled v in the diagram BDD(f, 7). Thus, our

problem is to find a = that minimizes
n
3" costy(f, ) .
v=1

Our algorithm depends heavily on the following result:

Lemma: Let I C{1,2,...,n}, k = |I|, and v € I. Then there is a constant ¢ such

that for each = € II([) satisfying n[k] = v we have

costy(f,7) = c.

= 11 =



Proof: Let 7 € II(I) be such that n[k] = v. Let J = {i1,12,...,%p—k} =
{1,2,...,n} — I. Then for each b = (b1, b2, ...,ba—k) € {0,1}" % a node represent-
=b,_, must appear in BDD(f, =).

ing the restricted function f; = f lx,-lzbl, s B p

Note that the set S = {f; : b € {0,1}" ¥} remains constant over all = € II(I),
since J depends only on I. Furthermore, there is exactly one node of BDD(f, =)
corresponding to each member of S, because of collapsing operation (ii) (see section
2.1). Now, the node corresponding to a given fj is the root of BDD( f;, 7'), where
7' = (n[1],7[2],...,n[k]). Clearly, if a node labelled v appears in this diagram, it
must be at the root. In particular, the only nodes labelled v correspond to those
functions in S that depend on z,, because of collapsing operation (i). Thus, for any
7 € II(I), the number of nodes labelled v is equal to the number of functions in S
that depend on z,, which is determined only by I and v. This number then is the
constant ¢ required by the Lemma. W

This lemma will allow us to avoid testing most of the n! permutations. For

example, if we know that

T(1.2,3) = (2,3,1)

T(1,24) = (4,1,2)

Ti134) = (1,4,3)

m234) = (4,3,2)
(77, defined formally below, is an ordering of the variables on the |I| levels nearest
the terminals), then 7534} must be either (2,3,1,4), (4,1,2,3), (1,4,3,2), or
(4,3,2,1). That is, the knowledge of the optimal ordering for the various sets of
three indices allows us to restrict our search to only four (rather than 4! = 24)

candidates for the optimal ordering of this set of four indices. Furthermore, the

value of (say) m(; 2 3} contributes to the computation of 7(; 5 3 ;} for any i. Thus we

use this lemma to develop a dynamic programming algorithm, below.

= 19 =



3.3 The algorithm

Our algorithm is shown in Fig. 4. We process each subset of the variables’ in-
dices I C{1,2,...,n} in ascending order of their cardinalities k¥ = |I|. In particular,

we compute the following three values for each I:

(1) MinCost;, which is the minimum of ¥, costy(f,7) over all 7 € II(I).
Initially, we set MinCosty = 0.

(2) 71, which is a member of II(I) achieving the minimum described above. The
key fact (a consequence of the Lemma) on which the algorithm is built is that the
cost of the variables on the first k levels depends only on their ordering, i.e. it does
not depend on the ordering of the remaining n — k variables. In particular, each
ordering « such that =[f] = n7[i] for all 1 < ¢ < k satisfies

> costy(f,7) = MinCost; .
vel

Initially, 7y = (), the empty sequence. Thus, our problem is to find T(1,..,n}» Which

yields a BDD having MinCost(; __,) internal nodes.

(3) TABLE], which is the truth table for a mapping from {0,1}"* to those
nodes of BDD(f, 7) that either are terminals (the nodes TRUE or FALSE) or are
internal nodes labelled with members of I. Note that there are MinCost; such
internal nodes, and hence precisely MinCost; +2 distinct values in the table; we
identify the internal nodes with integers between 1 and MinCost;. The interpre-
tation of the mapping is as follows: each element b = (by,bs,...,b,_1) of the do-
main represents a truth assignment to the variables with indices i1,42,...i,_x € I,
and it is mapped to the node of BDD(f,n) that corresponds to the function
f [xe1=b1. o Tiy_ b+ Thus initially, TABLEy is the full truth table for f, map-

ping {0,1}" to {TRUE, FALSE}.

To compute MinCost;, 7y and TABLE], we look at each v € I and compute

costy(f, m) for some 7w € II(I) such that n[k] = v, i.e. some ordering with v at

- 13 -



position k and the other members of I at the lower positions. As a consequence of

the Lemma, it does not matter which such = we use; cost,(f, ) will be the same.
Therefore for convenience, we use the ordering (v, 7;_(,}) as this 7, since we have

already computed TABLE}_y,3.

In particular, to compute costy(f, (v, T_{»})) we do a folding operation on the
truth table TABLEj_,}. We call it “folding” because it involves comparing the cor-
responding elements of two. halves of the truth table to arrive at another truth table
(stored as TempTable) with half the number of lines. In particular, if ¢1,%2,...,%p—%

are the elements of {1,2,...,n} — I, then for each length n — k binary vector b we

compare TABLE;_(,\(zi; = b1, ..., @i, , = by_g, 2, = 0) (which we store as
tg) to
TABLE;_(,)(@iy = b1, ..., %i,_, = by_g, T, =1) (which we store as ¢;). By this

notation, we mean the value of TABLE]_(,} obtained by assigning b; to variable
z;; for j =1,2,...,n — k and assign 0 to variable z,. In other words, this gives us

an identifier for the restricted function
fl::.'l:bl, o x;"_k=bn_k, Ty=0 -

For each such pair (#o,?;) we determine whether we need a new node labelled v in

BDD(f, (v, T;_{4})), using the following three criteria:

(1) If tg = t; then we do not create a new node since its left son and right
son links would point to the same node (see collapsing operation (i)

in section 2.1).

(2) If id(to,t1) is non-nil then it holds some node m labelled v and having
the same left and right sons that the new node would have; thus we do
not create a new node since it would be equivalent to m (see collapsing
operation (ii) in section 2.1).

o T



(3) If id(to,t1) = nil then we create a new node named with the next
available node number; this is achieved by incrementing count and

assigning its value to id(to,t).

Thus, in the first case, we assign to TempTable(x;, = b1, ..., i, _, = by_i) the

value to; in either of the other two cases we assign it id(to,t1).

After the folding operation (i.e. after examining each ), we have

count = Y costy(f, (vymrqu))) -
vel

If this is less than the current minimum then we save count as MinCostr, (7_{y},?)

as w7, and TempTable as TABLE].

Thus, after examining each v in this way, we set

MinCost; « min(cost, + MinCosts_(,}) .
vel

We let ny be the ordering (v,m;_(,}) that achieves this minimum, and we let

TABLE] be the truth table corresponding to BDD(f, 7).
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FOR k~1TOnDO
FOR each k-element subset I C{1,2,...,n}

[[ Compute 77, TABLE; and MinCost; ||

BEGIN
MinCosty « o0 ;
FOR each v € I DO
BEGIN
[[ Evaluate cost; with the ordering (m7_(,},v) ]
(%) id(to,t1) « nil, for each pair (¢o,%;) ;

count « MinCosts_g,y ;
Let 71,%2,...,1,_; denote the elements of {1,...,n} —I;

FOR each b € {0,1}"* DO

BEGIN
to «— TABLEI_{U}(:C,'I = B o vig Ti,_p = by 2y =0)7
t1 « TABLE;_o)(%iy = b1, «.oy Tip_y =bup, To=1);
IFty=1
THEN TempTable(zi, = by, ..., zi,_, = bnk) « to
ELSE BEGIN
IF id(tp,t;) = nil
THEN BEGIN

[[ the pair (tp,t1) is new ]
count « count + 1
id(to,t1) « count ;

END ;
TempTable(z;, = by,...,%i,_, = by_i) « id(to,11)
END
END [[ for each b ]] ;
IF count < MinCost; THEN BEGIN

MinCost; + count ;
T — (v, T1_(0}) 5
TABLE; + TempTable

END
END ([ for each v ]]
END ([ for each I ]] ;
Return m(; 5 .y -
Figure 4
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3.4 Complexity analyses

We first analyze the time required by the algorithm. For each k from 1 to n, we

process each of the (:) sets I of cardinality k. For each of the k indices v in each

such I, we do a folding operation on TABLE;_(,}. Processing each of the gk
table entries requires two lookups in TABLE]_{,} and one lookup in id. Lookups
in TABLE]_(,} are easily performed in O(n — k + 1) time. We could implement
id as a balanced tree (such as an AVL tree [AH]) and do insertions and lookups
in time proportional to the logarithm of its maximum number of entries. Thus,
instead of initializing id to nil explicitly for each pair (9,%;) as is suggested in line
(*), we simply initialize id to the empty set. Since at most one entry is made into
id for each b € {0,1}" ¥, the insertions and lookups in id also can be performed
in O(log(2"~**1)) = O(n — k + 1) time. Thus the total time complexity of the

algorithm is of order
n
Y (’:) k2" k(n — k +1)
k=1

which is O(n?3"). We show this as follows:

g (’;) Bk k1) = 3 (:) k2"*(n — k) +

o
gl
/“_'-\
> 3
S——
?g-c
(W]
2
|
o

k=1 bt
Lo (e @ S () O
@)

- 17 -



1 n—2 1 n—1
= n(n — 1)2""! (1 + E) + non! (1 + 5)

= 2(n? — n)3"% 4 n3""! = O(n?3")

To analyze the space complexity, first note that at iteration k of the main loop
the only TABLE lookups are in TABLFEs computed at the previous (i.e. the
(k — 1)st) iteration. Hence, at any time, we need only store the TABLESs from
two consecutive iterations (actually, since we employ the order notation, we need

consider only the storage required at one iteration). The storage required then, is

max (n)f‘_k .
0<k<n \ k

We now show that the maximum is attained at k¥ = |n/3], yielding an O(3"/y/n)
bound.

Letting f(k) = (2) 2"k the function to be maximized, we first show that for

alll1 <k <n -1, we have:

flk+1) _f(R)
) S k-1

= f(k+1)f(k—1) < f(k)f(k)

n! 21;»-!:—1 n! 2n—k+1
(k+D)!n—k—-1)! (k=1)!(n—k+1)

—

nl2n—k nl2n-k
SHm_k E(n-Fk)!

& k!(n — k) k! (n - k)!

<+ (n=—k—=1)(k=1)(n—k+1)!
= (n-k)-k<(k+1)-(n—k+1)
—0<n+1
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which is true. That is, as k increases, the ratio between consecutive f(k) decreases.
Furthermore, we have f(1)/f(0) = 2, while f(n)/f(n—1) = 5; so as k goes from 1

to n, f(k)/f(k—1) starts out greater than 1, is strictly decreasing, and ends up less
than 1. That is, f(k) increases, attains a maximum when 7 kfl S ], fk}:l , and

finally decreases. Thus, we are looking for the greatest k such that f(k) > f(k—1),

that is:
n!2n—k nl 2n—k+1
H(n—Fk)! (k=1)i(n—FE+1)!

i
S
|
Eol
+
—

ie
or simply n >3k .
Thus, the maximum is at k = |5 ].

Finally, we compute f(|%§]). We assume, for simplicity, that n is a multiple of

three; otherwise, we may easily add one or two dummy variables without increasing

the asymptotic complexity. Thus,

)= (3

n! 2211/3

= (n/3)!(2n/3)!

( M(n/e)“ 92n/3
(y2rn/3(£)m/3) ((f4mn/3(32)™/3)

( \/E.nn.(l/e)n.22n/3 )

) (using Stirling’s formula)

I

0

Va3 (3yn/3 (1 )n/3) (\/Hn2n/3(%)2n/3 (%)211./3221;/3)

I
o

n nn (1/6)" 22n/3 )
n-n®-(1/3)" . (1/e)" . 220/3

0 (3"/v/n)
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3.5 Remarks

Perhaps the most practical way to implement the set id is by storing its distinct
values in a hash table. The time required would then be O(n3") (expected case)
and space requirements would be less but asymptotically the same. Furthermore,

this would be far easier to implement than a balanced tree scheme.

Multi-valued logic can be represented by decision diagrams whose terminals
have values from {0,1,...,k} where k may be an arbitrary integer. Our algorithm

generalizes in a very straightforward way to handle this case.
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Chapter 4: Combinational Logic Verification
4.1 The Projective Binary Decision Diagram (pBDD)

Using ordered BDDs, we are able to compactly represent, and quickly perform
operations upon, a broad class of boolean functions in common use. In this chapter,
our goal is to relax our notion of variable ordering in such a way as to broaden the
class of boolean functions that can be represented compactly. However, an essential
property of ordered BDDs is that unary operations take time proportional to the
size of the graph, and binary operations take time proportional to the product of the

sizes. In our new structure we wish to preserve this property as much as possible.

The paradigm of previous chapters was: given a single variable ordering, each
path between root and terminal in each BDD must conform to that ordering. In
our new paradigm, we allow a different variable ordering along each path, but
require that a given path have the same variable ordering in all BDDs. This idea is

formalized below.

Consider the binary decision tree of Fig. 5 (top), which is identical to Fig. 1
except that there are no truth values at the leaves. By filling in the leaves with truth
values, we can represent any boolean function. If we are performing a sequence of
BDD operations using the variable ordering (2, 1, 4,3), each BDD we compute will
be a collapsed version of this tree with appropriate truth values. Thus we may say
that this tree is the template for BDDs with the variable ordering (2,1,4,3). A
template, then, is merely a binary tree with decision variables at the interior nodes,
but without truth values at the leaves. If we fill in the leaves of a template with truth
values, it becomes a (not necessarily ordered) BDD representation of a particular

boolean function.

In Chapter 2, we dealt with a highly restricted class of templates: those with
the same variable ordering along each path from the root, and no decision variable
repeated along any path. In this chapter, we will deal with a broader class of

templates, the only restriction being that each variable much appear at least once
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on each path from the root. Again, the idea is that we will use a single template
throughout a sequence of BDD operations, thus giving us a framework for efficient

operations on boolean functions.

Because a template (as defined) is bigger than a truth table, we shall instead
use a “collapsed” version of the template, which we define to be any DAG labelled
analogously to the tree, for which any truth assignment to the variables will involve
traversing nodes in the DAG in the same order as in the tree. This DAG will, we
hope, be much smaller than the full tree. Figure 5 (bottom) shows an uncollapsed,
unordered template, and Fig. 10(a) shows the corresponding collapsed template

(which will be called simply “template” from now on).

The purpose of a template is to define, for a class of BDDs, the ordering of
decision variables along the paths from the root to the terminals. In a logic verifi-
cation application, one typically deals with a known subset of the possible boolean
functions. Thus, one would choose a template such that the particular boolean

functions used would have compact representations.

When we represent a boolean function using a BDD whose variable ordering
along each path conforms to a given template, we say that the boolean function

is projected onto the template, resulting in a projective binary decision diagram, or

pBDD.
4.2 The Multiplier Template

In Chapter 2, we noted that any ordered BDD representation for the nth bit
of the output of an m x m multipler must be of size exponential in n. In this

section, we present a class of templates which lead to a pBDD representation of size

proportional to n3.

Assume we are trying to multiply vectors (am—1am-2...ap) and (bp—1bpm—2...bo)
(the method easily generalizes to mj X ma multipliers, for m; # m2). We consider

ap and by to be the least significant bits of the multiplicands. Also, for 0 <i < 2m,
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let ¢; be defined as follows:
n
e z azbi_;
3=0

where we define az,by = 0if £ < 0 or ¥ > n. To compute the nth bit of the
multiplication (again, bit 0 is the least significant bit) for n > 1, we could compute
c1, divide by two and truncate, add ¢q, divide by two and truncate, add c3, and so
forth up to ¢,. From the result of this computation we would then take the least
significant bit for the final answer.

Following this method, we build the template in n stages. At stage:,1 <1i < n,
we build a tally diagram to count the number of product terms in ¢; that are ones,
then we pair up the links on the bottom to feed into the next stage. Implementing
this tally-and-halve computation in a BDD is illustrated in Figure 6. The bottom
stage, instead of counting, need only compute parity (XOR). At this point, the

template appears as in Figure 6a.

Finally, we expand each decision node a;b; into a pair of nodes that performs
the AND computation. It is easy to do this in such a way as to satisfy the constraint

that all variables must appear on each path from the root to a terminal (see Fig.
i

Since the final template has O(n?) rows, with O(n) nodes per row, the space
complexity of the template is indeed O(n3).

Note that in this particular template, all the nodes at a level are labelled with

the same variable. Thus, this template is suitable for implementation as a DCVS

tree (as described in Section 3.1 and [NB] et al). This also means that we can get
away with one node per level, and a space complexity of O(n?) for the template (see
Fig. 8). However, representing a multiplier bit with this template still requires space
proportional to n®. We prefer the O(n%) template because it will make verification

of a multiplier circuit easier, as will be explained in section 4.4.
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4.3 Operations on pBDDs

Most operations on pBDDs correspond quite closely to operations on ordered
BDDs. In fact, if we drop collapsing rule (i) from the definition of an ordered BDD,
we can consider it to be a pBDD with the template consisting of one node for each
variable, with both links pointing to the next node in the variable ordering. The

analogy is illustrated in Fig. 9.

This correspondence implies that a pBDD can be exponentially larger than
its template (since an ordered BDD can have size exponential in the number of
variables). This will not happen in practice, however, if a template is chosen that is
appropriate to the function, if the boolean expression (or circuit) is not much larger
than it needs to be (i.e. there is little wasted computation), and if we collapse the

nodes intelligently. We will address this last point later in the chapter.

In general, the projection of a boolean expression onto a template will have a
many-to-one mapping of all its nodes onto nodes of the template that is a homomor-
phism under the functions label, 0-link, and 1-link. It will generally be bigger than
the template, because each node in the template can be reached by many paths
from the root, and just as with ordered BDDs, each node of a pBDD corresponds

to a unique boolean function.

To project a template onto the boolean expression v, for any variable v in the

template, do this (Figure 10 shows an example):

1. Make two copies of the template. Label all the terminals of the first

copy 0 (the 0-copy), and label all the terminals of the other copy 1
(the I-copy).

2. For each node with decision variable v, direct its 0-link in the 1-copy
to the corresponding node in the 0-copy, and its 1-link in the 0-copy

to the corresponding node in the 1-copy.

3. Discard any nodes not reachable from the root of the 0-copy (say).
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Applying a binary operator to two pBDDs requires a bit more bookkeeping than
for ordered BDDs. Since the pBDD representation generally is not canonical, if we
are careless we may end up with pBDDs that are not merely exponential in the

number of variables, but (using the multiplier template as an example) exponential

in the square of the number of variables (the “depth” of the template).

Specifically, we need to be careful how we deal with nodes for which all paths
from the root are inconsistent, by which we mean that each path from the root
to such a node requires traversal of a 0-link and a 1-link from two nodes with the
same label. Nodes of this type, which we shall call don’t-cares, are generated when
applying an operator to two pBDDs. We need to identify don’t-cares when we make
the composite decision diagram, and we need to decide which nodes the don’t-cares

will be collapsed with, so as to minimize the size of the final diagram.

So, given two pBDDs B; and B;, and a binary operator ®, we compute B; ©® B>
by applying the following recursive algorithm to their roots. Throughout, we keep
track of whether the current path from the root is consistent. Also, we maintain a

table of already-reached node pairs as we did in the algorithm for combining ordered

BDDs.

(1) If the current path from the root is inconsistent, we return a don’t-care

node.

(2) Otherwise, call the two nodes n; and ny. Note that n; and ny corre-
spond to the same node in the template, and so they are either both
terminals, or both internal nodes with the same label. If they are

terminals, return a terminal labelled n; ® no.

(3) Otherwise, n; and ny are internal nodes. We look them up in the
table. If they do not appear (the pair has never before been reached
by a consistent path), make a new node nj, add it to the table, and
go to Step (5).
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(4) The pair (n1,n2) has been located in the table, and n; ® ny = n3. If

n3 is marked “complete”, just return n3. Otherwise, go to Step (5).

(5) Recursively apply the algorithm to the 0-links of n; and ng, and to
the 1-links of n; and ny. If both sons of n3 are now either terminals

or nodes marked “complete”, then mark n3 “complete”. Return ns.

Intuitively, marking a node “complete” means that some consistent path has
been found to each of that node’s descendants, and so it is no longer necessary to

recurse below that node in order to fill in don’t-cares.

After the algorithm is applied, we are left (as with the ordered BDD algorithm)
with an uncollapsed decision diagram whose size is proportional to the product of
the sizes of the two pBDDs B; and B;. Furthermore, all the don’t-cares are marked.

It remains to collapse the diagram into a pBDD.

For this purpose, we use a slightly different definition of “equivalent” from the
one we used in Chapter 2. In order for nodes n; and ns to be equivalent, the

following must be true:

(1) Nodes n; and nz must correspond to the same node in the template,

and

(2) Either n; or ny is a don’t-care, or their 0-links are equivalent and .

their 1-links are equivalent.

Since, by this definition, there are several ways to form equivalence classes from
each set of nodes satisfying (1), it is clear that collapsing must proceed from the
terminals to the root. Of course, we may apply an arbitrary amount of lookahead
(analogous to the heuristics in [NB], see section 3.1) to improve our final result at

the expense of increased running time.

Fortunately, there is no real need to find the exact optimum. Unlike the prob-
lem addressed in Chapter 3, the collapsed pBDD will typically be an intermediate

representation to which other pBDD operations will be applied. Furthermore, we
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have presumably chosen a template such that the final pBDD will necessarily be

compact.

We will use a greedy heuristic, which is to say that at each step we will collapse
in such a way as to build nodes with the highest indegree possible. The intuition
is that this will increase the likelihood of being able to collapse nodes closer to the
root. An analogy: If you roll two dice, each with three red sides and three white

sides, the probability of rolling the same color on both dice is % However, if the

dice each have five red sides and one white side, the probability rises to i

on'w

So, given an uncollapsed pBDD, for each node of the template proceeding from
the terminals to the root, we collapse the pBDD nodes corresponding to that tem-

plate node as follows.
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1. If the template node is a terminal, we collapse all the TRUEs into one node and

all the FALSEs into one node. The don’t-cares will be collapsed later. Stop.

2. Otherwise, the template node is an internal node. We divide the set of corre-

sponding pBDD nodes into four types.
2.1. Don’t-cares. These will be collapsed when their parents are collapsed.

2.2. Nodes whose 0-links are don’t-cares. Collapse together all sets of
nodes with identical 1-links, and sort the sets by indegree.

2.3. Nodes whose 1-links are don’t-cares. Collapse together all sets of

nodes with identical 0-links, and sort the sets by indegree.

2.4. Nodes for which neither link is a don’t-care. Collapse together all sets
of nodes with identical 0-links and identical 1-links. Sort the sets by
their indegree, plus the indegree of the corresponding set in 2.2, plus

the indegree of the corresponding set in 2.3.

3. Now repeat 3.1 and 3.2 until all don’t-care links are gone.

3.1. If the sum of the largest keys in 2.2 and 2.3 is greater than the largest
key in 2.4, then collapse the first node in 2.2 with the first node in
2.3, and subtract their indegrees from the keys in 2.4 to which they

contribute.

3.2. Otherwise, collapse the first node in 2.4 with the corresponding nodes
in 2.2 and 2.3 and subtract the indegrees of the nodes in 2.2 and 2.3
from other keys in 2.4 to which they contribute.

4. If there are nodes of type 2.2 or 2.3 left (there cannot be both), replace all their
don’t-care links with links to the node of greatest indegree that corresponds to the

same template node as the don’t-care.
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We illustrate Step 3 of the collapsing heuristic in Figure 11. Assume that after
Step 2, the nodes corresponding to node a of a template have been broken up into
the five sets shown above the line. We can collapse a; with a3, for a total indegree
of 12, or we can collapse a3, a3 and as for a total indegree of 13, or a4 and a5 for a
total indegree of 12. Since the second option yields the largest indegree, we collapse
as, a3, and aj together to become . This leaves a; and a4. Since their 0-links are

different, no further collapsing is possible.

Actually, the performance of this heuristic may be improved by performing step
2 on each node of a level of the template, and then performing step three on all the

nodes (of the level) together.
4.4 Combinational Logic Verification

To compare two pBDDs for equivalence, compute the exclusive-or of the pBDDs

and test the result for satisfiability.

A pBDD (if it has been collapsed as above) is satisfiable iff some of its terminals
are TRUE.

To test that a gate-level description of a combinational circuit correctly performs
multiplication, do the following for each bit of the output. Make a template for the
bit as per section 4.2. Project the input lines onto the template. Build up a pBDD
for the output bit by computing a pBDD for each gate from the inputs to the output,
by applying the gate operation to the pBDDs of the gate’s operands. Verify that
the nodes of the final pBDD are in one-to-one correspondence with the nodes of
the template (it is for this step that we chose the O(n?) template), and that the

terminals have the correct values.
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Chapter 5: Sequential Logic Verification

5.1 Overview

The problem that we address is the following: given are two single-output cir-
cuits constructed from logic gates and latches, each having no race conditions, i.e.
all loops contain at least one latch. The given circuits need not have the same num-
ber of latches (in fact, one may be purely combinational and the other sequential).
We are also given an integer n indicating the number of “conceptual” inputs for the
two circuits. Often, the two circuits each have n “real” inputs; but it may be that
one or the other or both of the circuits has fewer than n real inputs because it is
regarded as a serial implementation of some function. Furthermore, for each of the
circuits we are given a number indicating the number of clock cycles between the
arrival of its new inputs; these two numbers need not be equal. The problem is to
decide whether the two circuits are functionally equivalent and, if they are not, to

produce a sequence of inputs for which their outputs differ.
This problem arises in several ways, among them:

(1) a design may be replaced by a newer design which perhaps is faster, cheaper
or which utilizes a different technology or parts library. In this case one would like

to verify that the new design is indeed functionally equivalent to the old,

(2) one can construct a verification system that checks whether a given higher
(say, register-transfer) level description of a circuit is equivalent to a given logic level
description, as follows: first synthesize a simple (unoptimized) logic level description
from the behavioral descriptions, and then check it for equivalence with the given

logic level description.

Our solution to this problem consists of deriving from each circuit an nDFA
(which will be described in section 5.3). We then check whether these two nDFAs
accept the same language, which happens if and only if the two circuits are func-

tionally equivalent.
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One drawback of our method is that its space and time complexity are both
polynomial in the number of states, and hence exponential in the number of latches.
Note, however, that this is also characteristic of the temporal logic approach to this
problem [BC]. On the other hand, our algorithm is typically polynomial in the
number of circuit inputs for typical circuits (this claim is supported by the claims
of [B2] and by our limited computational experience thus far). Hence we regard
our method as useful for circuits with a rather small amount of memory, and any

reasonable number of inputs.

Section 5.2 contains a more formal statement of the problem, including a precise
definition of functional equivalence. Section 5.3 contains a defintion of the n-ary
Deterministic Finite Automaton, or nDFA, which we make use of in our algorithm.
Our algorithm is presented in Section 5.4, along with certain key implementation

details in Section 5.5. )

5.2 The problem

Each circuit C considered here is constructed from D-flipflops (latches) and
logic gates such as ANDs, ORs and NOTs, and is subject to the following design
'

constraints:

(i) C has exactly one output, which is also the output of a latch.

1

(ii) Each feedback loop in C contains a latch — that is, there can be no race
conditions.
(iii) Logic gates are assumed to have no delay, and latches to have unit delay

(i.e. one clock cycle).

(iv) All primary inputs arrive over A(C) cycles, for some integer A(C). In other
words, the computation being performed by the circuit may change only at time

kA(C) for k =1,2,... Thus the circuit is when-determinate [Ul].

Our verification problem is as follows: we are given circuits C; and C, and

a start state (i.e. an initial assignment to the latches) ¢; and g3 for C; and C»,
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respectively. We also given an integer n which is the number of primary inputs of

both C; and Cj.

Now if C is an n-input circuit, w an (infinite) binary sequence, z an integer, and
qgo a state of C, then C(w, z,qo) denotes the output of C after z A cycles, starting
from state go, where the first n bits of w are input to C initially, followed by the
second n bits of w, and in general bits (r — 1)n + 1 through rn of w constitute the
rth set of inputs to C. Our task is to decide whether Cy and C» are equivalent, by
which we mean that for all infinite binary sequences w, for all integers r > 1,

Cl(wa L ‘Il) = C?(w} r, QZ)

Conceptually, for : = 1,2, C; is regarded as implementing an n-input function, and
is fed these inputs in a well-defined manner, requiring a total of A(Cj) clock cycles.
Thus the equation above means that C; and C; have the same output after each

has processed the same (arbitrarily long) sequence of sets of conceptual input.

As an example, C; may be a purely combinational 16-bit adder (where the
output represents the high order bit of the sum), and Cy may be a serial implemen-
tation of the same circuit, which accepts 2 bits (one from each operand) at a time.

Then n = 32, A(Cy) =1 and A(C?) would most likely equal 16.
5.3 The n-ary Deterministic Finite Automaton (n-DFA)

We now present a compact way to represent the state diagram of a single- output

sequential circuit.

We define an n-ary DFA to be a 5-tuple (V, E, s, 8, F') where (V, E) is a directed
graph, s € V and FCV are distinguished vertices (s may be thought of as the start
vertex and F' as the final vertices), and # is a function labelling each e € E with
a boolean expression over the variables Xp, = {z1,z2,...,2m}. Furthermore, 3 is
subject to the constraint that for each v € V, if €1, €2, ..., €, are the edges originating
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at v, then

-
Ble)AP(ej)=0Vi#j, and ) fle)=1.
i=1
In other words, each assignment to the variables in X, satisfies exactly one

expression in {fA(e;):1 <7 <r}.

The n-ary DFA may be regarded as a concise notation for the traditional DFA
(see [HU]) in the case in which ¥ (the input symbols) is the set of binary strings
of length n. The n-ary DFA is potentially more concise in that the members of the
alphabet are not enumerated and the transition function is not explicitly tabulated
for each state-input pair. Thus, if the expression $(e) happens to be a full minterm
expansion for each e € E, then the description of the n-ary DFA is just as long as

that of its corresponding traditional DFA.

The language L(A) accepted by an n-ary DFA A is simply the language accepted
by its corresponding traditional DFA.

5.4 Our solution

Our strategy is as follows: First, for each circuit, we construct an equivalent
circuit that performs its entire computation at every clock cycle. In this way, we
make the circuits more directly comparable. Then, we transform these new circuits
into nDFAs. Finally, we check whether the automaton for circuit C) accepts the

same language as that for Cs.

-~ 93 -



5.4.1 Constructing C’

The circuit C contains the following information:
I': set of conceptual inputs (the I' for both circuits must be identical)
A: positive integer, speed of circuit
I: set of input lines

L: set of latches
G: set of gates

function OP: G — {and, or, not, xor, nand, etc. }

function GSIG: G — 2(CYLVD [signals entering a gate]

function LSIG: L — G U L U I [signal entering a latch]

function F: I x {1,2,...,A} — I' [mapping input lines to conceptual inputs]

out: (out.latch,out.tick) for out.latch € L,1 < out.tick < A [the output]

From these data, we construct C' as follows:
Al=1
L' = LU {out}
G' =G x {1,2,..., A} [new gate identifiers are ordered pairs]
OP'({g,n)) = OP(g) for all g,n [we make A copies of each gate]
function cascade: (GULUI) x {1,2,...,A} = G'UL'UI'. Defined as follows:
cascade(g,n) = (g,n) forg € G,1 <n <A
cascade(t,n) =F(i,n)fori € [,L1<n <A
cascade(l,1)=1lfor l € L
cascade(l,n) = cascade(LSIG(l),n — 1) forl€e L,2<n < A
GSIG": GSIG(g) = {s1,..-,8;} = GSIG'(g) = {cascade(s;),... , cascade(s;)}
LSIG": LSIG'(I) = cascade(LSIG(I),A) for I € L

LSIG'(out) = cascade(out.latch, out.tick)

This transformation is analogous to flattening out a loop in a program, and
is illustrated in Figure 12. The circuit is a 4 x 4 multiplier which performs its
computation in four clock cycles. The bits of one multiplicand persist throughout
the computation, and the other multiplicand is fed in one bit per clock cycle. One

output bit and four carry bits are generated at each clock cycle, and the carry bits
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are fed back into the circuit. After the transformation, there is a copy of the circuit
for each of the four clock cycles, and the latched signals from one copy feed into the

next.

5.4.2 Constructing Al®)

Given an n-input circuit C' with start state gy, we construct the nDFA A(")(C") =
(V,E, B, s, F) such that:

(1) the members of V are in one-to-one correspondence with the (up to) 2*

states (i.e. assignments to the k latches) of C' which can be reached from gy via

some sequence of inputs. Hereafter we shall refer to members of V' as states, in

implicit reference to this correspondence.
(2) s is the member of V corresponding to gq.
(3) F is the set of states in which the output latch has value “1”.

(4) There is an edge (v,w) € E whenever state w is reachable from state v in
the circuit C' in exactly one clock cycle. In this case, the boolean expression 3(v,w)

is satisfied by precisely those input sets to C' causing this transition.

The edges E and the labels § are computed as follows. Number the latches 1 to k.
Express the next value of the ith latch, for 1 <i < k,as NEXT;(z1,...,Zn,Y1,---,Y&)
where z1,...,2y are the primary inputs and yi,...,y; are the current latch values.
A boolean expression for NEXT; is computed directly from the circuit using the
methods of Chapters 2 and 4 — this of course is made possible by the absence of

combinational loops. Now a way to compute E and f3 is to do the following for each

pair of states v,w € V (using some form of linear search from gg): Let vy, vs,..., vk
(w1,ws,...,wi) be the values of the latches corresponding to state v (resp. w).
Then set

B(v,w) « H NEXTy(z1,...,Zm,v1,...,05) A [ NEXTi(21,...,Zm,v1,...,0k)
ielt iel-
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where IT = {i : w;=1}and I" = {1 : w; = 0}.
After some simplification of the (v, w), we check whether it is satisfiable; we

include the edge (v,w) in E if and only if it is.
5.4.3 Checking the equivalence of C; and C>

Now given circuits C; and C5 along with A(C1), A(C2), q1, g2 and n as described
in Section 2 above, we compute 4; = A(™)(C;) and A2 = A™)(C,) and then decide
whether L(A;) = L(Aj). We can do this in a way which is a generalization of
a method used to test traditional DFA’s for equivalence [HU]. In particular, if
Ay = (W, E1, 81, b1, F1) and Az = (Va, Bz, 52, (2, F2), then we construct the n-ary
DFA

A'=(VixW, E, [s1,8], #, F),
where

(i) for all v1,w; € V1, v2, w2 € V3,
B'([v1, v2), [w1, wa]) = Bi(v1, wi) A Ba(va, w2) ,

(ii) E' is, as usual, the set of pairs (v,w) € (V4 x V2)? such that f'(v,w) is

satisfiable, and
(iii) F' is (F] X (Vz - Fg)) U ((Vi - Fl) b3 Fz) ) ;

Thus A’ accepts the language

(L(M1) N L(Mz)) U (L(M1) N L(Mz)) .

We then check whether this language is empty by determining whether there is a
directed path in the graph (V; x V2, E') from the start vertex of A’ to one of its
final vertices. A simple inductive proof shows that indeed C; and C3 are equivalent

if and only if L(A™(C})) = L(AM(CY)).

Incidentally, a minor modification can be made to this method that would allow

the designer to specify Don’t-Care conditions on the input sequences. One way to
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handle this is to allow the designer to enter a third sequential circuit C3 accepting
precisely those input sequences for which it doesn’t matter whether the circuits
C, and C; are functionally equivalent. In particular, C; and C; are equivalent —

relative to the don’t-care condition — if

L(A™)(C3))n L(A")
is empty.
5.5 Some implementation notes

Throughout the implementation, boolean functions are represented as binary
decision diagrams (BDD’s) as in [B2] (see also [Ak], [BF]). As discussed perviously,
this representation is canonical and has been found to be compact and quickly
manipulable on a wide variety of boolean expressions derived from circuits. In
particular, using this representation, checking a boolean expression for satisfiability
(a key step in our algorithm) is usually quite fast for functions arising from real-

world circuits [B2].

When constructing A(®), we first derive expressions for NEXT, for each latch
1. We represent these as BDD’s where the nodes are labelled with latch and input
identifiers. Figure 13 schematically shows the NEXT; in Batman form.

To compute the transitions out of a state w, we need only restrict the latch
decision nodes to the latch values of w, and then take the cross-product of the
NEXT;. This will result in a BDD where the terminals are latch states instead of
zero and one. We define the cross-product f X g of two functions f and ¢ as follows:

for all z; in the domain of f and x in the domain of g, (f X g)(z1, z2) is the ordered

pair (z1,z2).
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So, beginning with a queue containing only the start-state pair, we:
(1) If the queue is empty, return success and halt.

(2) Otherwise, pop a state pair off the queue, and compute all transitions

out of the state pair as per the above paragraph.

(3) Test that all reachable state pairs’ outputs match. If some don’t

match, return failure.

(4) Otherwise, push all reachable (but as yet unreached) state pairs on
the queue, and go back to (1).
Again, this is more efficient than brute-force enumeration of cubes, because we

keep track of sets of BDD nodes that have already been visited throughout the

algorithm, and we don’t go past them again.

5.6 Conclusions and Future Work

The BDD is a powerful data structure. Here, we have extended its usefulness in
several ways. We have presented an algorithm for minimizing ordered BDDs which
reduces the time-complexity of this operation from factorial to exponential. We
have generalized the notion of variable ordering in BDDs so that multipliers may be
represented in polynomial space, and we have shown how to perform combinational
logic verification using this more general structure. Also, we have adapted the DFA

for use in sequential logic verification.

The combinational logic verification algorithm was tested on a 4 x 4-bit multi-
plier, and the sequential logic verification algorithm was tested on a 4-bit presettable
up/down binary counter (with four latches). Both ran reasonably quickly. A logi-
cal next step would be to determine the largest inputs for which the algorithms are
practical.

Another area for future work would be to determine whether the state mini-
mization algorithm of [Ho] could be adapted for use on n-DFAs. This would improve

the performance of the sequential logic verification algorithm.

e 3



Finally, it may be possible, through more careful bookkeeping, to bring the
complexity of binary operations on pBDDs down to that of binary operations on

ordered BDDs.
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Figure 1: Decision tree representation of x1x2 + x3x4
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(b)

Figure 2: Two possible ordered BDD representations of x1x2 + x3x4
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[T] ]

Figure 3: An ordered BDD and its corresponding typed Shannon'’s

canonical form: The dotted arrows point to “negative” functions.

Compression results from collapsing together the nodes labelled x
and the nodes labelled y.
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Figure 5: A template
corresponding to an ordered BDD,
and one with different decision
orderings along some paths
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Figure 6: Generalized BDD implementation of a tally,
and division by two between stages.
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Figure 6a: Template for
pBDD operations involving
the sixth-least-significant
bit of a 4 x 4-bit multiplier




stage 1,i=0,

orstagen, b otherwise... o
i>0... ;

\

Figure 7: Expanding product decisions into single-variable decisions
while preserving the property of all variables on each path.
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Figure 8: O(n2) multiplier template vs. O(n3) template.
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Figure 9: "Ordered BDD" template, and pBDD representing
x1x2 + x3x4. Compare with Figure 2(a).
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Figure 10: Projecting x1 onto the template at left. Dotted lines

indicate nodes that are unreachable from the root of the 0-copy.
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Indegree= || 10

Figure 11: Example of the collapsing heuristic for pBDD nodes.
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Lout

I ={ao, a1, a2, a3, b}
A=4
I"'={Ap, A1, Az, Az,
Bo, B1, B2, 333}
F(aj, j)=A; for i=0,1,2,3,
j=1234
ap,a1,a2,a3 F(b,]) - Bj-1 for j= 1,2,3,4
b out=<lgyt, 2>
Ap,A1,
Az,A3
Bo
[ 2
Bi
B2
B3

Figure 12: Cascading a 4x4 parallel-serial multiplier so that its entire
computation is performed at every clock cycle.
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Figure 13: Batman representations
for the sequential circuit verification
problem.
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