SHARED VIRTUAL MEMORY
ACCOMMODATING HETERGENEITY

Kai Li
Michael Stumm
David Wortman
Songnian Zhou

CS-TR-210-89

February 1989

Shared Virtual Memory
Accommodating Hetergeneity

Kai Li* Michael Stumm? David Wortman'

Songnian Zhou!
CS-TR-210-89
February 22, 1989

Abstract

Heterogeneity exists in almost every research computing environment.
Most operating systems accommodate heterogeneity by using a coher-
ent file system that allows clients to access source files in a transparent
way. In order to allow heterogeneous computer systems to cooperate, we
have applied the framework of shared virtual memory to a heterogeneous
computing environment and explore in detail how to accommodate hetero-
geneity. We have also designed a shared virtual memory system kernel,
Mermaid, upon which one can build system components, programming
languages, and application software using heterogeneous computers. We
are currently implementing Mermaid on a network of SUN workstations
and DEC Firefly multiprocessors.

*Department of Computer Science, Princeton University, Princeton, New Jersey 08544.
Supported in part by the National Science Foundation under grants CCR-8814265, by the In-
formation Technology Research Center of Ontario, and by the Digital Equipment Corporation
(Systems Research Center and External Research Program).

tComputer Systems Research Institute, University of Toronto, Toronto, Ontario, M5S
1A4, Canada. Supported in part by the Information Technology Research Center of Ontario,
and by the Digital Equipment Corporation (Systems Research Center and External Research
Program).

1 Introduction

Recent advances in VLSI and communication technology have made distributed, concurrent
computation a viable technique for dealing with large problems. How to effectively use resources
such as secondary storage, processors, and memories in this type of computing environment has
become a main focus of many operating system researchers. One of the difficulties involved is
accommodating heterogeneity.

Heterogeneity exists in many computing environments. It is usually unavoidable because
a specific hardware and its software system is often designed for a particular application do-
main. For example, supercomputers are good at computation-intensive applications, but not
economical at doing file accesses, and poor at user interfaces. Personal computers and worksta-
tions usually have very good user interfaces and provide a good cost performance ratio when
manipulating files. In order to obtain short turn-around time, a programming environment
may allow programmers to write programs on their personal computers or workstations but
execute their programs on more powerful computers such as mainframe computers, parallel
computers, or supercomputers. We expect that in the future a typical computing environment
will consists of a network of personal computers, workstations, mainframe computers, and per-
haps supercomputers. These computers may have different hardware and run different software
systems.

The diversity of heterogeneous hardware and software systems has created difficulties in
interconnection, filing, authentication, naming, and user interfaces. Previous research has at-
tacked these problems from many angles (see [NHSS87] for a survey). The early effort in this
area was the NSW project [Gel77] which provided a standard set of tools for a standard file
system on different operating systems. More recent research in this area has concentrated on
providing high-level coherence in a network file system of the same kind of operating system
while permitting the implementation-on different hardware. SUN’s NFS, the Athena project
at MIT [BLP85], and the Andrew project at Carnegie-Mellon Information Technology Cen-
ter [MSC*86] are such examples. The Locus operating system developed at UCLA [WPE*83]
concentrated on building transparent operating system bridges to integrate computational re-
sources with a high degree of transparency. The Mercury project attacked the heterogeneity
problem from the angle of sharing programs in very different languages such as LISP and CLU.

There are also research efforts in doing parallel and distributed computing in a heteroge-
neous computing environment. The Heterogeneous Computer Systems project at the University
of Washington and the Network Computer Systems at Apollo [Apo87] concentrated on hetero-
geneous remote procedure call mechanisms to support distributed and parallel programs based
on the client-server or the message-passing model. Remote procedure call (RPC) [Nel81, BN84]
is a mechanism for the synchronous language-level transfer of control between two programs in
disjoint address spaces where the primary communication medium is a narrow channel [Nel81].
The RPC mechanism allows programmers to worry less about data movement and provides
clients with a fairly transparent interface so that remote procedure calls look much like local

procedure calls.

Although an RPC mechanism provides syntax and semantics similar to local procedure
calls within the application program’s high-level language, passing complex data structures,
such as lists, requires much overhead and introduces difficulties in maintaining multiple copies
of data. For example, when passing lists, because a list may be circular, a table is needed to
keep track of what elements have been sent and perform a table lookup for every element. The
problem with passing complex data structures becomes more severe when the data structures
are fundamental to a system such as a parallel LISP programming environment [Hal85]. A
heterogeneous RPC mechanism [BCL*87] requires additional overhead for marshalling data
structures in local representations to standard representations and vice versa.

Shared virtual memory [Li86, LH86] can solve these problems in a homogeneous multi-
processor environment efficiently and conveniently. A shared virtual memory system provides
clients with a large, coherent memory address space that is shared by all processors. Each
processor can access any memory location in the shared virtual memory address space at any
time. In fact, a shared virtual memory system transforms a loosely-coupled multiprocessor
into a shared-memory multiprocessor. Therefore, there is no need to pack and unpack the data
structures containing pointers in messages. Passing a list data structure simply requires passing
a pointer. Programmers can program with the shared-memory model in addition to the client-
server model or message-passing model. Shared virtual memory provides more transparency
than the RPC mechanism.

The nice properties of shared virtual memory motivated us to investigate the possibility
of designing a shared virtual memory system for a heterogeneous environment. This paper
explores in detail how to accommodate heterogeneity in a shared virtual memory, designed
for a network of heterogeneous computers, and then describes a kernel design, Mermaid, that
supports higher level software components using heterogeneous machines. We will also describe
how to use Mermaid to implement an object-oriented language and a database system.

We are currently implementing Mermaid on a network of SUN workstations and the DEC
Firefly multiprocessors. Our goal is to let users do their programming on their workstations and
run their programs on multiprocessors in a transparent way. We also would like to demonstrate
how to use such a shared virtual memory system as a base to build system components using
heterogeneous machines.

2 Shared Virtual Memory

A shared virtual memory is a coherent virtual memory address space shared by all processors
in a system [LH86, Li86]. Figure 1 shows the system architecture of a shared virtual memory
system. Each node in the figure represents a processor and memory of a workstation or a
small-scale shared-memory multiprocessor.

...

...

mapping mapping mapping
manager manager manager

node; nodesy node,,

Network Connections

Figure 1: Shared virtual memory architecture.

The shared virtual memory system presents all nodes with a set of coherent shared memory
pages. Any node can make memory references to any location of any page at any time. These
shared pages are coherent at all times, that is, the value returned by a read operation is always
the same as the value written by the most recent write operation to the same address.

The memory mapping manager views its local memory as a large cache for its associated
processors. Pages that are marked “read-only” can have copies residing in the physical memories
of many processors at the same time. But a page currently being written can reside in the
physical memory of only one processor. If a processor wants to write a page that is currently
residing on other processors, it must get an up-to-date copy of the page and then invalidate all
copies on other processors. Like traditional virtual memory [Den80], the shared memory itself
is virtual. A memory reference may cause a page fault when the page containing the memory
location is not in a processor’s current physical memory. When this happens, the memory
mapping manager retrieves the page from either a disk or the memory of another processor.

The hardware Memory Management Unit (MMU) for implementing traditional virtual mem-
ory systems can be used to implement such a system. The protection mechanism of an- MMU
allows single instructions to trigger page faults and trap the faults in appropriate fault handlers.
A program can set the access rights (nil, read-only, writable) in such a way that a memory ac-
cess that could violate memory coherence causes a page fault, and thus the memory coherence
problem can be solved in a modular way in the page fault handlers and their servers. To client

programs, this is completely transparent.

In general, the shared virtual memory system presents clients with the same interface as a
tightly-coupled shared-memory multiprocessor. The shared virtual memory system is like the
traditional virtual memory system in the sense that it can utilize the capacities of both physical
memories and disks in the system.

In order to support programming based on both the shared-memory model and the client-
server model, a shared virtual memory system has an integrating thread manager. Threads
can also send messages to each other. A thread can address any location in the shared virtual
memory address space. Similar to the threads in Topaz [MS87], the cost of a thread context
switch, thread creation, or thread termination, is small. For example, the cost of creating a
thread is a few procedure calls, because threads share the same address space and therefore there
is no need to set up page tables and flush related caches for a context switch. A thread manager
provides clients with a set of thread control primitives and a set of traditional synchronization
primitives. Threads are transparent in such a system, that is, a thread can run on any processor
and can migrate from one node to another at run time, if the destination processor has the
same instruction set as the source processor. For example, a thread can be created on a VAX
processor based workstation, run for a while and then migrated to a Firefly multiprocessor.

3 Accommodating Heterogeneity

There are many approaches to accommodating heterogeneity in building a shared virtual mem-
ory system. Our goal is to design a kernel upon which one can build parallel and distributed
systems in a heterogeneous environment efficiently and conveniently. Our approach to the goal
is to keep things as simple as possible and to provide only enough funcationality for building
higher level system components.

3.1 Page Size

Previous research on shared virtual memory [Li86] shows that a shared virtual memory system
can keep its memory space coherent if page-level coherence is maintained.-Since the work was
based on homogeneous loosely-coupled multiple processors, it implies that there is only one
page size. In a heterogeneous system, different machines may have different page sizes for im-
plementing their traditional virtual memory systems. For example, on the SUN-3 workstation,
the MMU page size is 8K whereas on the DEC Firefly, it is 512 bytes. The problem is how
to accommodate the diversity of different MMU page sizes in implementing a shared virtual
memory system.

An obvious solution is to use the largest page size as that of the shared virtual memory
system. Since page sizes of MMUs are always powers of two, the largest page size is always a
multiple of the smaller ones. For example, on the DEC Firefly, we can group 16 MMU pages

together into an 8K byte page as a shared virtual memory page to match the 8K byte page size
on the SUN-3. A page fault detected on a Firefly will cause all 16 512-byte pages to react in
the same way as a page on the SUN. The advantage of this approach is its simplicity.

For some application domains, using large page sizes is good because the average cost of
maintaining memory coherence is low. For other application domains, it may cause more mem-
ory contention than when using smaller page sizes. In a typical loosely-coupled multiprocessor,
the startup cost of sending a packet is relatively high, so that using a large page size can amor-
tize the cost of startups. The cost of the startup consists of software protocols and operating
system overhead. If these overheads are acceptable, relatively large memory units are possible
in a shared virtual memory. On the other hand, the larger the memory unit, the greater the
chance for contention. Although the shared virtual memory storage management may allocate
memory in a smart way to reduce the contention, but it may introduce inefficient use of memory.
So, the possibility of contention indicates the need for relatively small memory units.

To accommodate the contention problem, we can allow for use of different page sizes in
a shared virtual memory system. Using different page sizes requires changing the memory
coherence algorithm in the page fault handlers and their servers on the machines using smaller
page sizes. For convenience in the following discussion, let us call the largest page in a system
an SVM page or simply a page and call the pages on machines with smaller page sizes subpages.
For example, if the largest page in the system is 8K bytes, then the SUN-3’s page is an SVM
page and the Firefly’s page is a subpage of an SVM page. In order to maintain the address
space coherent at all times, memory needs to be coherent at the SVM page level. Hence, we can
manage ownership at the SVM page level, but maintain read-only copies at the subpage level.
For processors with subpage sizes, a read fault can be less expensive since only one subpage
needs to be transfered, as opposed to all subpages that make up an SVM page. More detailed
discussion on different algorithms can be found in [Li88b].

3.2 Code and Data

In a homogeneous environment, all processors execute the same instruction set, so threads in
the same shared virtual memory address space can migrate dynamically from one processor to
another at any time [Li88a]. In a network of heterogeneous machines, the situation is quite
different. - Different hardware executes different instruction sets and the same hardware may
be running different operating systems which will also require different code [Coh81]. Threads
cannot simply migrate from one machine to another.

A simple way of accommodating different instruction sets is to let thread management
module understand machine types. A thread created on a particular type of machine can be
restricted to only migrate to machines of the same type. With this approach, either clients
will need to plan well where threads should be created, or the system will need to supply
an “intelligent” thread creation routine that can decide where threads should be created. In
either case, if the machine type of a thread is determined at run time, then the image of

the program must include machine instructions for every machine type. This replication of
executable programs is unavoidable if the program is to execute efficiently on different hardware.
Thus, the executable image should have multiple code segments as shown in Figure 2.

related info

p1’s code segment

p2’s code segment

Pr’s code segment

shared data segment

Figure 2: An object code layout

Machines of different types may have different data representations for atomic elements like
integers, reals and characters and for composite objects like arrays and records. Conversion
of a block of data from its representation on one machine to an equivalent representation on
another machine requires complete knowledge of the types used to create the block of data.
This knowledge must either be encoded with the data or provided in some auxilliary tables. The
information necessary to describe the data objects used in a program could be easily generated
during the compilation of the program. Usually the conversion for atomic elements is straight
forward and can be efficiently implemented by small utility functions that are optimized for
speed. Conversion of composite objects can be accomplished by repeatedly applying the atomic
element conversion routines to the contents of composite objects. With efficient conversion
routines for atomic data types among all the machines in the environment, a compiler can
generate the conversion code for a composite object for all machines during one compilation.

In order to provide clients with a more transparent interface, the system may need to convert
shared data into appropriate representations on demand. The basic idea for doing such data
conversions is to separate data pages from code pages and allow each page to have different
representations for different machines when it has multiple read copies. Conversion of data
representation is an unavoidable cost of using a heterogeneous computing environment. An
attempt is made to organize the data such that each page contains data items of one type
only. The system, if it understands this type, can then convert the page when it migrates, if
necessary. We call this method convert-on-reference.

This method requires data type information about each page. One way is to let the page

table of the shared virtual memory address space include a new field type for each entry. This
field indicates the data representation type of the page. According to the page type and the
current machine type, an appropriate data conversion routine will be invoked when a read or
write page fault occurs. If the value of the field type is nil, no conversion will be performed.
The shared virtual memory system has a number of built-in conversion routines for most data

types.

The main advantage of this method is that it avoids data conversions when a page moves
among machines of the same type. The main disadvantage is that the convertion mechanism has
to know the data types of each page. This is not a problem in many language implementations,
such as LISPs, functional languages, and object-oriented languages, that have sophisticated
storage managements in which each storage allocation unit has an associated data type. The
storage allocator usually puts data items of the same type on the same page for the convenience
of garbage collection and for saving space for tag bits. It is easy to use the same data type
information for the conversion mechanism.

3.3 Thread Migration

In order to allow threads to migrate among heterogeneous machines, we can define migratable
points in threads. A migratable point of a thread is the point in the program where it is safe
to migrate the thread to a machine of another type. For the convenience in implementation,
one can treat different migratable points with different implementations. The very beginning
of a program is always a migratable point that allows creation of the program on any machine.
The shared virtual memory system is not required to do any work because there are multiple
code segments in the executable image.

The existance of other migratable points in a program depends on its structure, the language
used, and its implementation on the different machines. Two desirable properties for migratable
points are that the program’s state is not changing asynchronously (i.e. no input/output is in
progress) and that the amount of program state at the migration point is relatively small. As
a specific instance, a server program usually has migratable points at the beginning of each
service. For example, the server program structure shown in Figure 3 will have a migratable
point at the beginning of each iteration. We call such a migratable point iterative migratable
point and there is one such a point for each thread.

- To migrate a server program at its iterative migratable point among machines of k types,
the system needs to initialize states, including global data structures and stacks, such that the
program can migrate immediately at its iterative migratable point without any complicated
state conversion and transfer. An easy way to achieve such a task is to start up k instances
of the program, one on a machine of each type. One of the instances will continue running
while the other k£ — 1 instances will be suspended at the iterative migratable point, waiting
for future migration operations. When migrating, if the destination processor has an instance
of the program suspended at the migratable point, the migration operation entails simply a

main()

{
while (1) {
IterativeMigrateCheck(); /* migratable point */
T /* actual code */
}
}

Figure 3: A server program structure.

resume operation on that instance of the program. If the destination processor does not have
a suspended instance of the program at the migratable point, the system finds a suspended
instance on a machine of the same type as the destination processor, resumes that instance on
such a machine, and then migrates it to the desitination processor.

Another kind of migratable point is called procedural migratable point. Every procedure call
in a program can be specified (or identified) as a procedural migratable point. To describe the
implementation of procedural migratable points, we can divide them into three classes. The first
class is the set of procedures (callees of migratable points) that reference only local variables
and global variables. The second class is the set of procedures that reference lexically scoped
variables including arguments, local variables, outer-scope variables, and global variables. The
third class is the most general kind that references not only lexically-scoped variables but also
dynamically-scoped variables.

A procedural migratable point of the first class is semantically much like a remote procedure
call in the sense that a transfer of control is specified explicitly and the callee procedure does
not require any initial stack states since it does not reference any outer-scope variables. The
implementation of such procedural migratable points is easy in the shared virtual memory
system. It can simply suspend the current thread (caller), start the execution of the procedure
(callee) on the desitination processor, and resume the caller thread when the execution of the
procedure is complete. It is more or less like coroutine except that the execution of the procedure
is on another processor. It is more convenient than an RPC for writing many parallel programs
because thread migration allows the thread to reference global variables at will without any
marshalling,.

The second class of procedural migratable points allows references to outer-scope variables
that are statically defined. For languages that are lexically scoped, all procedures belong to
this class. The implementation for such procedual migratable points is more complicated since
data conversion on stack is not trivial. For simplicity, one might consider restricting this class
to allow references to outer-scope variables that appear only in the procedure arguments, in
addition to local variables and global variables. Such a restricted class is still stronger than the

remote procedure call mechanism because it allows passing arguments by reference in addition
to passing arguments by value and allows references to global variables; whereas a remote
procedure call mechanism allows passing arugments only by value and disallow any references
to global variables. Like the remote procedure call mechanism, for the restricted class, the
implementation of passing arugments between the caller and callee requires compiler assistance
such that “in” arguments will be put onto the stack of the destination processor properly and
“out” arguments will update corresponding variables in the caller’s scope. In addition, the
implementation needs to convert argument data on the fly.

The implementation of unrestricted second class of procedural migratable points is difficult,
because its implementation requires complete knowledge of the data conversion of the stacks of
between any two machines. How to implement efficiently is still an open research problem.

Althought the third class of procedual migratable points is the most general class, its im-
plementation is very difficult. The system has to understand not only how to convert data on
stack among machines, but also how to convert data in dynamic scopes. One may argue that
dynamic scoping has become less important in programming languages since most programming
languages are moving towards static scoping. How to implement the third class of procedual
migrable points is still an interesting problem.

The discussions above have always assumed that migratable points are specified explicitly
in programs. It is a challenge how to automatically identify migratable points for programs
for each kind, in particular, how to automatically distinguish different classes of procedual
migratable points. Also, it would be interesting to find other kinds of migratable points. These
are our future research topics.

3.4 Communication and I/0

The implementation of a shared virtual memory system requires a common communication
protocol to implement its remote operations and page transfers. To design a module that
implements such a protocol, we need a common underlying protocol to accommodate the di-
versity of machines. Such an underlying protocol always exists since we assume the target
heterogeneous machines are already connected.

If more than one common protocol is available; we should choose the one that is simple
to use, yet efficient. For example, in most research environments, the Internet Transmission
Control Protocol (TCP) is commonly used. This protocol provides for reliable, stream-oriented
inter-process communication between pairs of processes in host computers attached to distinct
but interconnected computer networks. It appears to be easy to use, but its performance will
probably be inadequate. On the other hand, the User Datagram Protocol (UDP) is common and
has low overhead. Such a protocol uses the Internet Protocol (IP) as the underlying protocol and
does not provide for reliable communication. For efficiency purpose, one would probably want
to implement the remote operation module for the shared virtual memory system with such

10

a protocol. Sharing I/O resources is very important. Most machines have their own displays,
disks, and tape drives. To allow clients to use the shared virtual memory in a transparent
way, we should allow a thread to accept input from the keyboard of a workstation, to execute
programs on a powerful machine, and then display results on the display of the workstation
again.

It is necessary for a shared virtual memory system to use secondary storage such as disks
and tape drives in a transparent way. When implementing a database system on top of a shared
virtual memory system, for example, one can view disks as concurrent secondary storage or a
massive and high-performance storage system. Most operating systems nowadays use files to
access secondary storage such as disks and tape drives. A basic requirement of file sharing in a
shared virtual memory system is to have a consistent view of all files on different file systems.
This is much more difficult than implementing an FTP program which simply transfers and
translates files. In fact, translating typed files can be rather complex itself. To simplify the
design while providing efficient sharing, one may consider using files of only one type and
maintaining consistency via the coherent shared virtual memory system.

4 Mermaid System

To bring the ideas of accommodating heterogeneity into reality, we have designed a system,
called Mermaid, for a network of SUN-3 workstations, and DEC Firefly multiprocessors. Mer-
maid is a shared virtual memory kernel that can support system components, using both kinds
of machines.

A user can edit a program on her SUN workstation, compile her programs there, and run
her program under a Unix shell. All or part of her program may execute transparently on the
Firefly multiprocessors. During the execution, the SUN workstation can be used to input to
and output from the program running on the Firefly multiprocessors. The program can use
both the Unix/Ultrix NFS files and the Topaz RFS files.

The first prototype Mermaid we are currently implementing is a user-mode implementation
designed for experimentation. The structure of the system is the same on both target machines
as shown in Figure 4. The implementations are quite different, because the operating system
interfaces are different.

The ‘memory mapping module implements the shared virtual memory mapping, and its
coherence algorithm in particular. The thread management provides clients with a set of primi-
tives for thread control and thread synchronization. The storage management is responsible for
shared virtual memory allocation and garbage collection. The file package provides clients with
a transparent view of the heterogeneous file systems. The remote operation module provides a
mechanism for all remote operations of other four modules. These five modules will eventually
move into the kernel.

11

Client programs

Thread Storage File
management management package
Remote Memory
Operation mapping

A 4 Y

0OS low-level support

Figure 4: System Structure.
4.1 Heterogeneous Environment

A SUN-3 workstation [Sun86] is a Motorola 68020 based machine with usually 4M bytes or more
memory. The SUN wokstations run the SUN Unix operating system with the Unix Network
File System (NFS). Most SUNs do not have local disks and instead access file servers over the
Ethernet.

The DEC Firefly [TS87] is an experimental shared-memory multiprocessor developed at the
DEC Systems Research Center. Each Firefly consists of up to seven MicroVAX 78032 or CVAX
processors, each with a floating point unit and a 16 KByte cache. The caches are coherent, so
that all processors see a consistent view of up to 32 megabytes of shared memory. The operating
system on the Firefly is called Topaz whose file system currently is Remote File System (RFS).
The only user-level communication mechanism is the remote procedure call (RPC) embeded in
Modula-2+4 programming language.

The main reason for selecting these two kinds of machines is that their architectures are
substantially different. The main differences are:

e Different processors that execute different machine code.

o Different MMU page sizes. The SUN-3’s MMU has a page size of 8K bytes; whereas the
Firefly uses the standard VAX MMU which supports 512-byte pages.

12

e Different byte order. The byte order of a word and a long word on the two systems are
completely different.

e Different floating point representation. The SUN-3 uses the IEEE standard; whereas the
Firefly uses the DEC representation.

The only common data representation is character or byte stream. Both machines use the
ASCII representation for characters and have the same byte stream representation in memory.

The SUN workstations and the Fireflies are connected by an Ethernet. They all implement
the same UDP/IP protocol which gives us a simple way to accommodate the heterogeneity of
interconnection.

4.2 Shared Virtual Memory Mapping

A memory mapping manager implements the mapping between a local memory and the shared
virtual memory address space. Other than mapping, their chief responsibility is to keep the
address space coherent at all times; that is, the value returned by a read operation is always
the same as the value written by the most recent write operation to the same address.

Each user address space is divided into two portions. The shared virtual memory address
space is in the high portion and the private memory is in the low portion. For simplicity, the
data structure of the page table is a vector of records and each record is a table entry. The whole
table is stored in the private memory. Since our initial implementation is in user space, the
page table is used only by the page fault handlers and their servers. This table is a mirror data
structure of the page table used by the MMUs. Clearly, when the memory mapping manager
moves into kernel mode, this table will be merged with the MMU page table.

The memory mapping manager uses the access protection faulting mechanism provided by
the MMU hardware to keep the shared virtual memory address space coherent. For simplicity,
we decide to use a uniform page size of 8K bytes for both the SUNs and the Fireflies in our
first implementation. Such a prototype will serve as a base for implementing the coherence
algorithms with subpages.

The system interface on the Firefly is sufficient to support a user-mode shared virtual
memory implementation. Unfortunately, there is no system call on the SUN Unix that allows a
client program to set the access mode (nil, read-only, or writable) for each page. We have added
in such a call to the kernel. SUN Unix also does not return a faulting address to the user address
space when there is a protection fault. This has also been fixed. Unlike the VAX architecture,
the Motorola 68020 does not provide information about whether an instruction will modify
memory when a protection fault occurs. For example, instruction addl x, (y) may cause a
read fault on reading location (y), even though the instruction actually wants to write to (y).
in contrast, the VAX architecture indicates to the fault handler that an instruction will write
to a page. Therefore, on the SUN, this may lead to a read page fault followed immediately by

13

a write fault. In order to avoid this situation, we decided to analyze the faulting instruction on
the SUN to determine whether an instruction with a read page fault will lead to a write fault.

Initially, all processors set the protection of all pages in the shared virtual memory address
space portion to nil. Allocated memory pages will change their protections to writable. The
memory mapping manager uses the protection fault handlers to maintain the shared virtual
memory address space coherent.

To keep the Sun space coherent, we are implementing the dynamic distributed manager
algorithm [LH86]. Briefly, it keeps track of the ownership of all pages in each processor’s local
page table, using a field called probOwner in each page entry. The value of this field can be
either the true owner or the “probable” owner of the page. The information that it contains
is just a hint; it is not necessarily correct at all times, but if incorrect it will at least provide
the beginning of a sequence of processors in which the true owner can be found. Initially, the
probQuwner field of every entry on all processors is set to some default processor that can be
considered the initial owner of all pages. As the system runs, each processor uses the probOuwner
field to keep track of the last change of the ownership of a page. This field is updated whenever
a processor receives an invalidation request, relinquishes ownership of the page, or forwards a
page fault request. The atomicity of each update is guaranteed by using a lock field in each
entry of the page table.

The shared virtual memory mapping contains the implementation for convert-on-reference.
To identify the data type of each page, a data type field is included in each entry of the page
table. When a page fault occurs, the shared virtual memory mapping mechanism will check
the data type against the current machine to decide what data conversion should be done. The
first implementation contains only the conversion routines for 16-bit and 32-bit integers.

4.3 Thread Management

The basic requirement of the thread management module is to provide clients with a uniform
interface such that clients view their threads and their shared virtual memory address space as
if they were provided by a tightly-coupled shared-memory multiprocessor. Thread management
provides basic primitives for thread creation, termination, migration, and synchronization.

Our first concern is how to integrate the thread control mechanism on SUN Unix and Firefly
Topaz. Since there is no thread implementation on the SUN Unix, we have two design choices.
The first is to build a thread mechanism in the kernel as Mach did [RTY*87]. The second
is to build a thread scheduling mechanism inside a Unix process. Such a thread scheduling
mechanism can be either preemptive or nonpreemptive. We decide to do the latter and postpone
the former to when we move the code into the kernel. One may worry about the lack of I/O
overlaps in such a scheme. In other words, a thread doing a sysnchronous I/O will block all
other threads on the same processor. To overcome this drawback, we decided to implement
our own file interface supported by the remote operation module. Such an interface allows the

14

system to run another thread while the current thread is blocked on a file operation. This
scheme still has the drawback, however, that a local VM page fault will block all the SVM
threads in the same address space.

The Firefly Topaz provides clients with a thread interface. Threads in different address
spaces are scheduled by the same scheduler. We also have two design choices to implement
shared virtual memory threads. One is to have another level of scheduling and use a fixed
number of Topaz threads. We then bind a SVM thread to a Topaz thread when the SVM
thread is scheduled to run. In this case, Topaz threads can be viewed as virtual processors.
Another design choice is to use a Topaz thread for each SVM thread. The latter method is
more difficult than the former, but we choose it because this approach allows thread scheduling
on all I/O operations.

The second concern is what the synchronization primitives should be. Thread synchroniza-
tion primitives must use atomic instructions in their implementation. In order to accommodate
the diversity of atomic instructions on different machines, we need to select a set of primi-
tives that can be implemented efficiently on all machines. For example, binary P/V operations,
wait/signal, or eventcounts can be implemented equally efficiently on almost all machines types.
We decided to use the thread interface provided by Topaz as a base from which we chose binary
P/V and wait/signal. This set of primitives is easy to use and can be implemented efficiently
on both SUNs and VAXes.

Whether to allow semaphores to migrate is another concern. To allow migration, we es-
sentially have to implement a coherence algorithm for the semaphores. We can implement
migratable semaphores with remote operations or the shared virtual memory address space
[Li88a]. The shared virtual memory address space is a simple approach, but in our environ-
ment this may cause a lot of overhead since the SVM page size is 8K bytes. For this reason,
we decided to use remote operations to implement migratable semaphores.

The thread management also contains mechanisms for thread migration at iterative migrat-
able points and procedural migratable points. Clients are required to specify migratable points
explicitly in their programs. The Mermaid system implements the restricted second class mi-
gratable points which allow the callee procedures to reference arguments, local variables, and
global variables.

4.4 Storage Management

The storage management module consists of an allocator and a collector. Since garbage col-
lection algorithms for a shared virtual memory environment is still an open research problem
and this system is designed for simplicity, we will not implement a sophisticated collector. In-
stead we will provide for explicit free operations. The allocator uses a “first fit” algorithm
with one-level centralized control. One processor will be appointed to the centralized memory
manager. To reduce memory contention, the memory allocator aligns allocated chunks to page

15

boundaries.

A two-level memory management would be a more efficient approach, where each processor
has a local allocator maintaining a large chunk of memory allocated from the central memory
allocator. This large chunk of memory is used for the local memory allocations. When a local
memory allocator runs out of free memory, it will allocate another large chunk from the central
allocator. We plan to use this approach in our next implementation.

4.5 Remote Operation Module

The remote operation module provides the shared virtual memory system with an efficient
mechanism for handling all remote operations in other modules. Reliability and efficiency are
the main goals of this module.

The remote operation module uses the standard timeout-retransmission protocol to support
the following three kinds of remote operations:

e simple request/reply,
¢ request/forward/reply, and

e multicast request /reply.

A page can be included as part of any request or reply message. All remote operations can be
either synchronous or asynchronous.

The request /forward /reply mechanism allows a processor that received a request to forward
it to another processor. For example, processor 1 can send a request to processor 2, processor 2
forwards the request to processor 3, and so on until processor k performs the operation and sends
a reply back toprocessor 1. There are no intermediate replies involved in the operation. This
mechanism is particularly useful for implementing the dynamic distributed manager algorithm.

The multicast request/reply mechanism has three reply options: a reply from any receiving
processor, replies from all receiving processors, or no reply at all. The first option is useful for
locating some interesting information. The second option is used for implementing invalidation
operations. The third option is used for broadcasting approximate information.

The SUNs and the Fireflies are connected to an Ethernet in our computing environment.
Both systems use the User Datagram Protocol (UDP), whose underlying protocol is the In-
ternet Protocol (IP). Both systems have their own remote procedure call (RPC) mechanisms
implemented on top of the UDP protocol. Althought they are quite efficient, they are very dif-
ferent and tied to different programming languages. Also, the RPC mechanisms do not support
asynchronous, forwarding or multicast requests. For these reasons, we decided to implement
our own remote operation module using the UDP protocol.

The remote operation modules on both systems are similar. The only difference is the way
they hook up with their thread schedulers. The main goal of this module is to multiplex remote

16

operations among threads and maximize the utilization of processors and the network. A thread
performing a synchronous remote operation should be suspended until the completion of the
remote operation, so that other threads can run in the mean time.

4.6 File Access

File access is important to many applications. One goal of our system is to allow clients to
build system components in a more transparent way. Hence, in our design, we allow any thread
to access any file in the system at any time. That is, a thread running on either a SUN or a
Firefly can access both RFS files and NFS files.

The obvious way to achieve this is to implement our own file system using the facility
provided by both file systems. There are many design choices. For example, the question of
whether we want to implement the file system at the level of individual machines or at the level
of file systems? We chose the file system level for simplicity and we will implement it as a user
library package.

This package contains mainly two things: a naming module and a file operation module.
The naming module provides a translation mechanism for a given file name. The basic rules
used in the naming module are:

e Use a hierachical name space. The general form is
/FileSystem/Machine/DirectoryAndFileName.

e If the machine field is missing, then the name service will pick a machine name from the
available machines that run the specified local file system.

For example, /nfs/hoskin/f/1i/foo.txt means the file foo.txt is an NFS file residing in
the directory /£/1i and that it can be accessed through machine hoskin first. And the
name /nfs/f/1i/foo.txt refers to the same file, but the naming service may translate into
/nsf/king/f/1i/foo.txt where king is a machine name picked by the service.

The file operation module contains primitives such as create, open, close, read and write.
Create, open, and close are implemented by remote operations. These operations are always
performed on the machines of the file systems specified. An open file operation is implemented
by mapping the file into the shared virtual memory space, in a form of lazy evaluation. We
use 8K bytes as a unit of each mapping invocation. A close operation is implemented by
unmapping the file. Read and write operations are implemented as reads and writes from and
to the mapped portions in the mapped shared virtual memory space. We expect such a design
to provide us with good performance in both fetching and caching [LLD*83, Che88].

17

4.7 Linker, Loader, and Shell

The basic tools needed for the shared virtual memory system to accommodate heterogeneity
are a linker, a loader and a simple shell. The linker takes different machine code object files in
Unix object file representation, and links them together into an executable image with multiple
code segments and data segments. In our current implementation, an image has only two code
segments (68020 and VAX) and three data segments (two private and one shared).

The loader can load an executable image into the shared virtual memory address space and
execute it. To execute such an image, an initial thread on each kind of machine will start at its
code segment.

The simple shell provides clients with a minimum interface to the file package and the
execution of heterogeneous code images. The initial set of commands in the shell is a subset of
the Unix shell csh without programming ability. The file names in the shell will be translated
by the simple naming service.

4.8 Restrictions

The shared virtual memory system outlined above supports many system components using
heterogeous machines in a transparent way. Since it is designed based on the philosophy of
simplicity, it has a number of restrictions.

The first restriction is that threads cannot migrate freely among different types of machines.
Although our current design allows the restricted class of procedural migratable points which is
stronger than the RPC approach, the callee procedures are allowed to reference only arguments,
local variables and global variables. Outer scope variables rather than arguments are not
allowed. We are still doing research on how to simplify the implementation of other class of
migratable points.

For simplicity, our first implementation does not include all atomic data types for convert-on-
reference data conversion. Since the MC68000 and the VAX have the same byte representation
[Coh81] and the system implements byte order swapping for words and longwords, but they
have the same byte representation [Coh81], it is sufficient for many applications.

5 How to Use Mermaid

In this section, we discuss what we can build with the Mermaid system by discussing two
examples. In both examples, we will try to explain how systems that require data sharing can
be implemented on the shared virtual memory and do their own data conversion. Since we have
not built any of these examples yet, the discussion serves only for further understanding of our
shared virtual memory system.

18

5.1 An Object-oriented System

An object in a typical object-oriented system consists of a set of data items and some access
methods associated with it. The only way to access the data of an object is via its access
methods.

To implement an object-oriented system on the shared virtual memory, every access method
can check the data representation of an object before performing its operation. A tag in each
object can be used to record its current data representation. If the data representation is
compatible with the current machine type, no conversion will be necessary. For example, when a
thread running on a VAX accesses an object whose data is stored using the SUN representation,
the system will first perform a data conversion such as byte-order swapping, translating the
IEEE floating point representation into the VAX floating point representation, and so on. If
the data is already in the VAX data representation, no conversion is needed. This is in contrast
to the heterogeneous RPC mechanism in which conversion to a standard data representation is
always enforced.

Further optimization to minimize the need for data conversion is possible. Instead of using
a tag to record the data representation of the entire object, a tag could be used for each data
item, so that data conversions can be performed at data item level. This approach requires the
knowledge of which access method will access which data items, and also requires additional
space for tags.

Implementing a distributed, object-oriented system based on the RPC mechanism or a
message-passing system for a heterogeneous environment can be very complicated. In addition
to data conversions, a distributed implementation requires locating the object before invoking
an access method [ABLN83], and maintaining the consistency of objects if the system supports
caching. Furthermore, the overhead of passing complex data structures can be very high and
it would be rather complicated to implement collectable storage management.

The main advantage of using the shared virtual memory system to build an object-oriented
system over using the heterogeneous RPC mechanism is that the property of coherent memory
greatly simplifies the implementation of the object-oriented system. Using the shared virtual
memory system, the shared virtual memory mapping mechanism provides clients with the
same shared-memory space as that on a tightly-coupled multiprocessor. The difficulties of
locating objects, consistency of multiple copies, and marshalling complex data structures are
non-existant.

5.2 A Database system

It is well-known that building a distributed database is not trivial [RBF*77, SN77], especially on
a heterogeneous environment. A database implementation may require both data conversions
and the coherence and consistency of the database. Although we can use an object-oriented

19

system to implement a database to avoid doing any client-level data conversion, the approach
may not be appropriate since some database systems require fast response time.

If it is sufficient to use byte vectors to hold data in a database implementation, then the
shared virtual memory system will not require database implementors to do any extra work
in terms of data conversion. If sharing byte vectors does not suffice, then we can partition
a database into different portions and let each partition have its own data representation.
A database query may migrate from one machine to another in order to access appropriate
relations without performing any data conversion. This would greatly improve the performance
if the database is large. A user query may start on a workstation, migrate to a supercomputer,
and finally come back to the workstation with its result. This type of query processing can be
conveniently implemented with the thread management in our system.

The shared virtual memory system reduces the problem of implementing a database system
on multiple machines to a multi-user-centralized database system problem. Although database
designers need to work out the details for each individual system design, including such problems
as recovery scheme and logging, the difficulties of concurrency control and distributed database
consistency no longer exist.

6 Conclusions

Our research motivation in accommodating heterogeneity stems mainly from the observation
that most workstation systems have better user interfaces than supercomputers. We also believe
that as communiation technology improves, parallel processing and sharing of resources, such as
processors, memories, and secondary storage, in a research computing environment will become
more important. Our research effort is directed towards this goal.

We have discussed the main issues and solutions of building a shared virtual memory system
on a network of heterogeneous machines. Compared with related work in heterogeneous RPC,
the shared virtual memory approach provides clients with a more transparent interface and a
programming environment fitting the shared-memory model of parallelism.

As a practical research effort, we designed a shared virtual memory system for a network
of SUN workstations and Firefly multiprocessors. Although this design is simple, it provides
a more transparent way of building systems in a heterogeneous environement than with the
heterogeneous remote procedure call paradigm.

We are currently implementing the Mermaid system presented in this paper. Part of the
implementation is already operational. We plan to do experiments and measurements on the
system in the near future. We feel the research has given us a lot of insight into parallel and
distributed computing in a heterogeneous environment in general.

20

References

[ABLN83] G.T. Almes, A.P. Black, E.D. Lazowska, and J.D. Noe. The Eden System: A Technical

[Apo87]

[BCL*87]

[BLPS5]

[BN84]

[Che88]

[Coh81]
[Den80]

[Gel77]

[Hal85]

[LHS6]

[Li86]
[Li88a]
[Li88b]

[LLD*83]

[MS87]

Review. Technical Report 83-10-05, University of Washington, October 1983.

Apollo. Network Computing Systems Reference Manual. Apollo Computer Inc., Chelmsford,
Mass., 1987.

B.N. Bershad, D.T. Ching, E.D. Lazowska, J. Sanislo, and M. Schwartz. A Remote Procedure
Call Facility for Interconnecting Heterogeneous Computer Systems. IEEE Transactions on
Software Engineering, SE-13(8):880-894, August 1987.

E. Balkovich, S. Lerman, and R.P. Parmelee. Computing in Higher Education: The Athena
Experience. Communications of the ACM, 28:1214-1224, November 1985.

A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM Transactions on
Computer Systems, 2(1):39-59, February 1984.

David R. Cheriton. The Unified Management of Memory in the V Distributed System. Draft,
1988.

Danny Cohen. a Plea for Peace. IEEE Computer, pages 49-54, October 1981.

Peter J. Denning. Working Sets Past and Present. IEEE Transactions on Software Engi-
neering, SE-6(1):64-84, January 1980.

D.P. Geller. The National Software Works: Access to Distributed Files and Tools. In Pro-
ceedings of the ACM National Conference, pages 39-43, October 1977.

Robert H. Halstead Jr. Multilisp: A Language for Concurrent Symbolic Computation. ACM
Transactions on Programming Languages and Systems, pages 501-538, October 1985.

Kai Li and Paul Hudak. Memory Coherence in Shared Virtual Memory Systems. In Pro-
ceedings of the 5th Annual ACM Symposium on Principles of Distributed Computing, pages
229-239, August 1986.

Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis, Yale Uni-
versity, October 1986. Tech Report YALEU-RR-492.

Kai Li. IVY: A Shared Virtual Memory System for Parallel Computing. In Proceedings of
the 1988 International Conference on Parallel Processing, pages 94-101, August 1988.

Kai Li. Memory Coherence with Non-uniform Block Sizes. In preparation, 1988.

P.J. Leach, P.H. Levine, B.P. Douros, J.A. Hamilton, D.L. Nelson, and B.L. Stumpf. The
Architecture of an Integrated Local Network. TEEE Journal on Selected Areas in Communi-
cations, 1983.

P.R. McJones and G.F. Swart. Evolving the UNIX System Interface to Support Multi-
threaded Programs. Tech Report 21, DEC Systems Research Center, September 1987,

[MSC*86] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H. Howard, D.S.H. Rosenthal, and F.D.

[Nel81]

Smith. Andrew: A Distributed Perosnal Computing Environment. Communications of the
ACM, 29(3):184-201, March 1986.

Bruce J. Nelson. Remote Procedure Call. PhD thesis, Carnegie-Mellon University, May 1981.

21

[NHSS87]

[RBF*77]

[RTY*87]

[SN77]

[Sung86]

[TS87]

[WPE*83)]

D. Notkin, N. Hutchinson, J. Sanislo, and M. Schwartz. Heterogeneous Computing Envirn-
ments: Report on the ACM SIGOPS Workshop on Accommodating Heterogeneity. Commu-
nications of the ACM, 30(2):162-142, February 1987.

J.B. Rothnie, P.A. Bernstein Jr., F. Fox, N. Goodman, M. Hammere, T.A. Landers, C. Reeve,
D. Shipman, and E. Wong. Introduction to System for Distributed Databases (SDD-1). ACM
Transactions on Database Systems, 5(1), 1977.

R.F. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron, D. Black, W. Bolosky, and
J. Chew. Machine-independent Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architecture. In Second International Conference on Architectural Support
for Programming Lanugages and Operating Systems, pages 31-41, October 1987.

M. Stonebraker and E. Neuhold. A Distributed Database Version of INGRES. In 2nd
Berkeley Workshop on Distributed Data Management and Computer Networks, May 1977.

Sun. Sun-3 Architecture: A Sun Technical Report (revised version). Sun Microsystems, Inc.,
August 1986.

C.P. Thacker and L.C. Stewart. Firefly: a Multiprocessor Workstation. In Proceedings of
Second International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 164-172, October 1987.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. The LOCUS Distributed Operating
System. In Proceedings of the ninth Symposium on Operating Systems Principles, pages 49—
70, October 1983.

22

