ODD CYCLES, BIPARTITE SUBGRAPHS
AND APPROXIMATE GRAPH COLORING

Susan S. Wang Yeh
(Thesis)

CS-TR-208-89

June 1989

Odd Cycles, Bipartite Subgraphs,
and
Approximate Graph Coloring

Susan S. Wang Yeh

A DISSERTATION
PRESENTED TO THE
FACULTY OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

JUNE 1989

© Copyright by Susan S. Wang Yeh 1989
All Rights Reserved

Abstract

The graph coloring problem is to color the vertices of a graph so that no two adjacent vertices have
the same color. This problem is not only NP-complete but also seems hard to approximate. In this thesis,
we investigate the interplay of three different topics: odd cycles, bipartite subgraphs, and approximate
graph coloring. Our primary goal is to design efficient approximate graph coloring algorithms with good
performance. Our focus is on odd cycles and our central approach is to find bipartite subgraphs of

graphs.

We examine the role played by odd cycles of graphs in connection with graph coloring. We show
that the presence or absence of certain size odd cycles gives graphs more structure and hence simplifies
graph coloring. More specifically, we show that the absence of small odd cycles enables us to find large
bipartite subgraphs. On the other hand, the absence of large odd cycles in a biconnected graph implies
the absence of large even cycles, and these conditions imply that the graph contains special structures.
We present efficient polynomial-time graph coloring algorithms which improve the performance guaran-
tee on certain graphs, sometimes by a large margin, over the existing approximate graph coloring algo-
rithms. For example, we can color triangle-free graphs with O(yn) colors, and in most cases, optimally

color graphs with only 3-cycles and 5-cycles in odd cycles.

We also present efficient polynomial-time algorithms for finding a maximum bipartite subgraph for
special classes of graphs which include proper circular-arc, circular-arc, permutation, and split graphs.
On numerous occasions, we use one technique, namely dynamic programming, for the development of the
algorithms. Furthermore, we show that we can modify the algorithms in a slight way to find a maximum

bipartite subgraph that includes a nontrivial subset of vertices.

Acknowledgements

My sincere thanks go to my advisor Andrea LaPaugh. She has provided guidance, advice, motiva-
tion, and support throughout my study at Princeton. I have benefited enormously from our weekly discus-
sions, from her constructive criticism, and from her careful reading of this dissertation. I am grateful and
privileged to have her as an advisor; one could not ask for a better one.

I thank my readers Joel Friedman and Bob Tarjan for reading this dissertation and for their valuable

suggestions.

I thank Fan Chung, Paul Erdos, Laszlo Lovasz, Rachel Manber, Ken Supowit, and Mihalis Yan-
nakakis for helpful discussions and for their willingness to share ideas.

I have many fond memories of my stay at Princeton, thanks to the people here, including the
faculty, the students, the staff, and my friends. Special thanks go to Toshio Nakatani and Deborah Silver

for their fellowship, and to Sharon Rogers for being so helpful.
I am forever grateful to my parents for their teaching and their unconditional support.

This research was supported in part by ARO fellowship grant DAAG29-83-G-0110, an IBM fel-
lowship, and NSF grant MIP8619335.

My deepest thanks go to Michael Yeh for his patience and love.

To My Parents

Abstract

Chapter 1:

1.1
1.2

Chapter 2:

2.1
22
23
24

Chapter 3:

3.1
3.2
33
34
3.5
3.6
3.7

Chapter 4:

4.1
42

43

44

Chapter 5:

51
92
5.3

54
3.5

Contents

.. i
Introduction e 1
General Introduction and Motivation 1
Organization of the:DIisSertation v s « ¢ cnvnnin & v & crszessmin s & » orseemes @ 5 % » s 4
BAckground. . oo s s avines s v 0 oaeEaE § S ¥ SREEEE K § § DSEEEEE 8 £ a0 6
Bagit DEANIIONS roaminis 5 & 5 5 soisaiss 5 € 5 S & 5 8 9007005 3 § & E@min 5 § ¢ 4 o 6
Biconfiected GIaphs: .55 25 vvimns & vouamons » o5 sueenre 56 § Fesme s § § & o8 8
Breadth-First Search e s 9
Finding a Smallest Odd Cycle i 10
Bipartite Neighborhood of a Smallest Odd Cycle 11
IDEOMUCHON. . ;5 cvvomn s & ¢ 5 sanensn § 5 § GowmEss § 5 & GewEeEn § § & SR § 5 ¥ 6 11
Preliminaries ; ; cosces 5 3 ¢ 5 owsioss 5 § 5 SRmEeG § 5 5 SRS § ¥ § SEEIEEE & § ¢ e 12
PIOPETtiCS ::ccommmsvs v o Guen % 5 5 5§ oneieis § 5 & HERERE ¥ ¥ § SOWEEE § T 6 060 13
ASSOCIAUON. . . . coimrie s 5 5 5 sosiodl 5 7 3 & RulSilah & 5 00008 § § 5015006 5 1 § Ras 16
1-Neighborhood i it e i 27
The Main TheOrem ittt ittt ittt 32
ASpecial Case e 36
Coloring Graphs with only “Large’” Odd Cycles 41
INroduchOn: : : 5 cumneis 55 & & ovmmms s & 5 ¢ SoEEEw E 5 5 DS § § ¥ SR 8 ¥ § B 41
k-Cycle and its 1-Neighbothood: ..o s ¢ o vammm s 5 4 omems 5 5 ¢ amanim s 5 5 55 43
A2 B [l B3 Colors, :;comvs s s comnmns i § pomanios § 8 LRmmaosE 3 § & 05 44
422 k>[n/3:4C0lors ...t e 46
423 k> [n/4:5C0l0IS ...ttt 47
424 k>[n/d:6[i 13172 C0lorst 49
k-Cycle:and its Local Neighborhood: o o o ¢ cmisne 5 o o s s s « o 56
4.3.1 A 4-Colorable Neighborhood of the k-Cycle 56
A2 ASHAEEY - comcmn s 55 6 @vosn 5 5 5 5 eiomm 5§ ¢ §amite s § & £ USRS § § 8§ 57
4.3.3 An Algorithm that 4-Colors a Subgraphof G 60
4.3.4 An Approximate Graph Coloring Algorithm 62
Performance AnalySisttt e 65
Coloring Graphs with only ““‘Small” Odd Cycles 69
INEOAUCHON: . s o & svwssnimwnizs & & @ crvswsenans & ¥ & RESREPE § § ¥ DWEHCED A § ¥ RIS S 3 69
0dd Cycles, Even Cycles, and the Chromatic Number 70
Odd Cycles = E-CyCle8 o o5 ¢ vmwrns 52 ¢ 0 omes 1 5 § SO0EEES § § 00 § ¥ 3 73
1o o R O I 1Tl “FiT 73
T 0 e 75
5303 EDS i o v wcnirmin ¢ o v s a v e e o R & & % WA 8 83
Odd Cycles =3-Cycles + 5-Cycles ii i 85
DISCUSSION 5oovc s 5 5 ¢ smvsrons & 5 § Sarrgms & 5 § & W & ¥ & 5 ST + & & SVWaes & ¥ 4 95

Chapter 6:

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7:

References

Algorithms for Finding a Maximum Bipartite Subgraph for Special

CISSE G GENEcoieisissfimanss 45 SO0RRE§ £ 5 A0REEsS € 5 Gan 96
INtrOdUCHON . ..ottt ettt e e e e 926
Preliminariesttt e 99
Interval Graphs ittt ettt e e e 100
Placing Intervals:on Tracks: ...ivu s « ¢ siommsmes o o suasmssnies s o ¢ sissmies 5 o ¢ v 102
Proper Circalar-Arc Graphs v v s 5 5 vwsmisi s o sovvmsns « 5 ¢ v » 0 & s 106
Circnlat-ArC ' GRAPS o s v v gvmmns 5 5 5 ¥ ormens 5 5 § SREGES § § ¢ seneive a § § S 111
Permutation Graphs ous v s ovirs 85 0 ¢ i 5 5 5 dvioms § § 3 SRamsms § & 8 & 5 113
ST GIAPHE . Jovini s 5od Smmis & ¥ i & § 5 oo 5.5 S9s & & ¢ 3 s 117
Concluding Remarks and Suggestions for Future Research 119
Conclusions and Future Work i 121

.. 124

Chapter 1

Introduction

1.1. General Introduction and Motivation

Graph coloring problems have intrigued many researchers in the past century, who have contri-
buted in turn to the various deep and interesting results in graph theory. Graph coloring problems come
in many flavors, and the favorite one, in the author’s opinion, is vertex coloring: color the vertices of a
graph G so that no two adjacent vertices have the same color. Vertex coloring is the problem we shall
concentrate on in this dissertation. Henceforth when we speak of graph coloring, we shall mean vertex

coloring.

The “‘field”” of graph coloring or colorability arrived at its present status much to the credit of the
celebrated Four Color Problem, posed by F. Guthrie around 1850 [May, 1965], which asks whether every
planar graph is 4-colorable. The Four Color Problem has become the Four Color Theorem, after many
unsuccessful attacks by graph theorists, and finally solved, with the aid of computers, by Appel and
Haken[1976, 1977, 1986] and by Appel, Haken, and Koch[1977].

Besides map coloring, the problem of graph coloring arises in many applications, including
scheduling ([Broder, 1964], [Brown, 1972], [Hall and Acton, 1967], [Neufield and Tartar, 1974], [Peck
and Williams, 1966], [Welsh and Powell, 1967], [Wood, 1968], [Wood, 1969]), loading problems ([Eilon
and Christofides, 1971]), resource allocation ([Christofides, 1975]), storage problems ([Bondy and Murty,
1976]), routing ([Tucker and Bodin, 1976]), estimation of sparse jacobian matrices ([Coleman and Mor€,
1981], [Curtis, Powell, and Reid, 1974]), printed circuit testing ([Garey, Johnson, and So, 1976]), layer
assignment ([Akers, 1972], [Ng and Johnsson, 1985]), and register allocation ([Chaitin, Auslander, Chan-
dra, Cocke, Hopkins, and Markstein, 1981], [Chaitin, 1982]).

Introduction 2

The graph coloring problem has also attracted interest in the computer science domain, not only
because it arises in practice and yet it is a ‘‘hard’’ problem to solve exactly, even when the graph under
consideration is restricted, but also because it seems to be a ‘“‘hard’’ problem to approximate. Graph
coloring, in its general form, in which one asks whether a graph G is k-colorable, has been shown to be
NP-complete by Karp[1972]. It remains NP-complete in the special case when k = 3 [Garey, Johnson,
and Stockmeyer, 1976], and furthermore, even if the graph is restricted to be 4-regular planar [Dailey,
1980]. Knowing the difficulty of obtaining an exact solution, one may be willing to settle for an approxi-
mate one. Graph coloring, however, has resisted heuristic attacks. Johnson[1974] has shown that many
graph coloring heuristics perform poorly. More specifically, for each algorithm from a collection of
prominent heuristics for coloring, Johnson showed that there exists a sequence of 3-colorable graphs G,,
with O(m) vertices such that A (G,,)2m, where A(G) is the number of colors used by algorithm A on
graph G. Garey and Johnson[1976] took a step further and proved that if P#NP then there exists no
polynomial-time approximation algorithm that is guaranteed to use less then two times the optimal

number of colors. These are rather negative and discouraging results.

On the more positive side, Johnson[1974] was the first to present a polynomial-time algorithm that
has a performance guarantee (the number of colors used by the algorithm over the chromatic number, in
the worst case) of O(n/logn). The approach of Johnson’s algorithm is: recursively find an approximate
maximum independent set by repeatedly adding a vertex of smallest degree to the set and deleting the
vertex and its neighbors from the graph. Wigderson[1983] improved the performance guarantee to
O(n(loglogn)?/(logn)*). Wigderson’s algorithm is based on the following interesting observation: in a
(k+1)-colorable graph, the neighbors of every vertex is k-colorable. His approach for graph coloring is:
find a vertex of largest degree (instead of smallest, as in Johnson’s algorithm) and color the neighbors of
the vertex by a recursive coloring algorithm that uses a 2-coloring algorithm as its basis (since all bipar-
tite graphs can be easily colored). More recently, Berger and Rompel[1988] further improved the perfor-
mance guarantee to O(n(loglogn)®/(logn)*) by combining the techniques of Johnson’s and Wigderson’s

but focusing on a group of vertices rather than just a single vertex.

The existence of these polynomial-time algorithms that have a guaranteed performance is encourag-
ing, yet what these algorithms can actually guarantee in performance is far from close to the chromatic

number and certainly far from desirable. Narrowing the gap between the guaranteed performance of

Introduction 3

polynomial-time algorithms and what is known as NP-hard: a performance guarantee less than 2, how-

ever, is a challenging and difficult task.

Motivated by the desire for more efficient approximation algorithms for graph coloring, the princi-
pal theme of this dissertation is in the design and development of algorithms for graph coloring with
““good’” performance. In our attempt to accomplish such a task, we shall examine more global properties
and structures of graphs. Graph coloring is solvable in polynomial-time for bipartite graphs (k=2), but
NP-complete for non-bipartite graphs (k=3). The property that distinguishes non-bipartite from bipartite
graphs is the presence of odd cycles. This result has stimulated our interest in the role played by odd
cycles of a graph in connection with graph coloring, because it is the presence of odd cycles that makes
the problem of graph coloring interesting. Hence we have made odd cycles the focus in our investigation
for more global properties and structures of graphs. Our approach for graph coloring is: find subgraphs of
a graph which we can color with a small number of colors. In particular, we are interested in finding
bipartite subgraphs of a graph, and this is a subject we pursue not only in the design and development of

graph coloring algorithms, but also as a problem in its own right for special classes of graphs.

Our approach for graph coloring is significantly different from previous ones in that we focus on
odd cycles instead of a single vertex of a graph, and in doing so we are able to extract more global pro-
perties and structures of graphs. For example, focusing on a smallest odd cycle of a graph enables us to
find bipartite subgraphs in the neighborhood of a smallest odd cycle. Focusing on odd cycles naturally
leads us to consider two different classes of graphs: graphs with only ‘‘large’” odd cycles, and graphs
with only “‘small”” odd cycles. For both classes of graphs, we have developed efficient approximate
graph coloring algorithms with good performance.

Readers who are interested in general reading and background on graph coloring can find more
information in Chapter 15 of Berge[1973], Chapter 5 of Bollobds[1978], Chapter 8 of Bondy and
Murty[1976], Chapter 4 of Christofides[1975], and Chapter 12 of Harary[1969].

In this dissertation, we shall be dealing with deterministic algorithms and their worst-case
behaviors. A different approach is to analyze the probable performance or the ‘‘average-case’” behavior
of graph coloring heuristics; see Dyer and Frieze[1986], Grimmett and McDiarmid[1975], Kucera[1977],
McDiarmid[1979], Shamir and Upfal[1984], Turner[1984, 1988], and Wilf[1984]. A variety of heuristics

for graph coloring have been developed, some of which are described in Matula, Marble, and

Introduction 4

Isaacson[1972], and Manvel[1985].

For some special classes of graphs, such as series-parallel and perfect (which includes chordal and
comparability), the graph coloring problem is polynomial-time solvable; see Johnson[1985] for more
details and references. In addition, the k-coloring problem is polynomial-time solvable for dense graphs

[Edwards, 1986].

1.2. Organization of the Dissertation

In this dissertation, as the title suggests, we investigate the interplay of three different topics: odd
cycles, bipartite subgraphs, and approximate graph coloring. Our primary goal is to design efficient
approximate graph coloring algorithms with good performance. Our focus is on odd cycles and our cen-
tral approach is to find bipartite subgraphs of graphs. We begin the dissertation with a general introduc-

tion in this chapter — Chapter 1. Next we give some background material in Chapter 2.

In Chapter 3 we investigate the role played by smallest odd cycles of a graph in connection with
graph coloring. We explore the local neighborhood of a smallest odd cycle of a graph and show that we
can find bipartite subgraphs within that local neighborhood. We use the results of Chapter 3 in Chapter 4
to color graphs with only “‘large’” odd cycles. We present two simple and efficient approximate graph
coloring algorithms. Applying the first coloring algorithm, we show that we can 6(i/3)!/2-color a graph G
when the size of a smallest odd cycle in G is greater than [n/f]. Using the second coloring algorithm, we
show that we can 4lgn *-color a graph G if the size of a smallest odd cycle in G is at least 4(1gn—lglgn).
Thus if the size of a smallest odd cycle in G is at least 5, i.e., if G is triangle-free, then we can O(n''?)
color G. Hence for triangle-free graphs, the performance of the coloring algorithms presented in this
thesis are better than that of all known approximate graph coloring algorithms. To provide evidence that
graphs with only large odd cycles are not trivial nor easy to color, we review graph theoretical results that
give tight bounds on their chromatic numbers. We then show the existence of such graphs by giving

examples, such as Borsuk graphs, Kneser graphs, and Ramanujan graphs, all of which can be constructed.

+ lgn=logyn

Introduction 5

In Chapter 5 we consider coloring graphs with only “‘small’’ odd cycles. We show that graphs
without large odd cycles possess many structures. Knowing the structures of graphs enables us to find
bipartite subgraphs which aid graph coloring. We start by focusing on graphs with only 3-cycles in odd
cycles, and give a complete characterization of their structures as well as an optimal coloring. Using
breadth-first search and more structural analysis, we show that we can 3-color graphs with only 5-cycles
in odd cycles. Then we present a simple algorithm that 4-colors graphs with only k-cycles in odd cycles.
Lastly we consider graphs with only 3-cycles and 5-cycles in odd cycles, and develop an algorithm that in
most cases uses an optimal number of colors. All the algorithms presented in this chapter are O (e) in
complexity.

In Chapter 6 we present efficient polynomial-time algorithms for finding a maximum bipartite sub-
graph for special classes of graphs which include proper circular-arc, circular-arc, permutation, and split
graphs. On numerous occasions, we use on¢ technique, namely dynamic programming, for the develop-
ment of the algorithms. Furthermore, we show that we can modify the algorithms in a slight way to find

a maximum bipartite subgraph that includes a nontrivial subset of vertices.

In Chapter 7 we close with a summary of contributions of this work, and give directions for exten-

sions and suggestions for future research.

Chapter 2

Background

2.1. Basic Definitions

In this chapter we introduce some basic definitions, notation, and background material that we will
use in this dissertation. More specific terminology and concepts will be presented later as needed at the
appropriate times.

In this dissertation G = (V, E) will denote a simple, connected, finite, and undirected graph with n
vertices and e edges. A subgraph G’ of G is a graph having all its vertices and edges in G. If V'cV then
G-V’ denotes the graph resulting from deleting vertices in V’ and edges incident to them from G. Note
that G-V’ is a subgraph of G.

A path of a graph G is an alternating sequence of vertices and edges v,e,v, - * * v,_;€,V, such that
all vertices and edges are distinct. Because G is a simple graph, we denote a path by its vertices only:
vi—vy—* + + —v,, where v;—v, represents a path of length 1 from v, to v,. Let path; be a path in G.
Then we shall let v;” sl —V, denote the path from v, to v, on path,, where v, and v, are two vertices
on path;.

A cycle of a graph G is an alternating sequence of vertices and edges v e v, - - - v,e,v,, starting
and ending at the same vertex such that all the edges are distinct (the vertices on the cycle are not neces-
sarily distinct). We also denote a cycle by its vertices only: vi—v,—* -+ —v,—vy. A simple cycle is a

cycle where all the vertices are distinct.

The length of a path or a cycle is the number of edges on it. The girth of a graph is the length of a
smallest cycle in G; the odd girth is the length of a smallest odd cycle in G; the even girth is the length of
a smallest even cycle in G. The circumference of a graph is the length of a largest cycle in G; the odd

Background 7

circumference is the length of a largest odd cycle in G; the even circumference is the length of a largest
even cycle in G. The diameter of a graph is the length of a longest shortest path between two vertices in
G.

A complete graph K, is a graph on n vertices with an edge between every pair of vertices. A

cligue of a graph is a maximal complete subgraph.

A graph G is p-colorable if it can be legally (or properly) colored with p colors, that is, if there
exists a function C defined over the vertices of G such that C assigns each vertex of G one of the values
1, 2, ..., p satisfying the condition that C(u)#C(v) if (u, v)eE. The chromatic number of a graph G,
denoted by x(G), is the minimum number p for which G is p-colorable. A p-coloring of G is the actual

assignment of colors so that G is p colored.

A bipartite graph G is a graph whose vertex set V can be partitioned into two subset V; and V,, V,
+ V, =V, such that every edge in E connects a vertex in V; with a vertex in V,. It is easy to see that a
bipartite graph is 2-colorable and all 2-colorable graphs are bipartite. Konig[1936] gave a characteriza-
tion of bipartite graphs.
Theorem 2.1. [Konig, 1936] A graph is bipartite if and only if it has no odd cycles.

Unfortunately there exists no characterization of p-colorable graphs for p=3. It seems to be a
difficult open problem. Due to Theorem 2.1, a bipartite graph G can be recognized and colored in time

O(e) using breadth-first-search (to be discussed in Section 2.3).

Let G; denote the graph obtained by iteratively deleting vertices of degree less than i from G.
Hence the minimum degree of G; is at least i. |
Lemma 2.1. If we can i-color G;, then we can i-color G.

Proof. We shall show how to i-color G once G; is i-colored. We will add the deleted vertices back to G;,
one at a time, in the reverse order that those vertices were deleted from G. Each time we add a vertex v
to G;, the degree of v is less than i (due to the way G; is created). Thus vertex v can be (legally) colored

with one of the i colors. The above condition holds for all vertices added to G;. Hence we can i-color G.

O

Background 8

2.2. Biconnected Graphs

A vertex v is an articulation point of G if the removal of v disconnects G. Equivalently a vertex v
is an articulation point if there exist two distinct vertices a and b, a, b #v, such that every path between a
and b contains the vertex v. A graph G is biconnected if it is connected and has no articulation point.
Equivalently a graph G is biconnected if every two vertices of G lic on a common simple cycle. Theorem

2.2 describes more equivalent characterizations of biconnected graphs.
Theorem 2.2. [Berge, 1973] The following properties are equivalent in a graph G of size at least 3:

1. G is biconnected.

2. Every two vertices of G lie on a common simple cycle.

3. Every vertex and edge of G lie on a common simple cycle.

4. Every two edges of G lie on a common simple cycle.

The following definition is adopted from Aho, Hopcroft, and Ullman[1974]. Let us define a natural
relation on the set of edges of G by saying that two edges ¢; and e, are related if e; = e, or there is a
cycle containing both e; and e¢,. It is easy to show that this relation is an equivalence relation that parti-
tions the edges of G into equivalence classes E, E,, * * -, E; such that two distinct edges are in the same
class if and only if they lic on a common cycle. For 1<i</, let V; be the set of vertices of the edges in E;.
Each graph G; = (V},E;) is called a biconnected component (or block) of G.

Theorem 2.3 lists some properties concerning the biconnected components of G.

Theorem 2.3. [Aho, Hopcroft, and Ullman, 1974] For 1<i</, let G; = (V;,E;) be the biconnected com-
ponents of a connected undirected graph G = (V,E). Then

1. G; is biconnected for each i, 1<i<].
2. For all i#j, V;~\V; contains at most one vertex.
3. ais an articulation point of G if and only if a € V;~V; for some i#/.

Biconnected components of G can be found in time O(e) (see Aho, Hopcroft, and Ullman[1974], or
Tarjan[1972]). From the results of Theorem 2.3, it is easy to see that the chromatic number of G is the
largest chromatic number of all the biconnected components of G, as also observed by Roschke and Fur-

tado[1973]. Analogously, in approximate graph coloring, the problem of coloring G can be reduced to

Background 2

smaller and hence simpler problems of coloring the biconnected components of G. The number of colors
used to color G is the maximum of number of colors used to color any biconnected component of G.

Henceforth we will assume that the graphs we are dealing with are all biconnected.

2.3. Breadth-First Search

Breadth-First Search is a procedure of visiting the vertices of a graph in a consistent manner. We
begin the breadth-first search procedure at a vertex r called the root (often the root is chosen arbitrarily).
First we search r, that is, visit all neighbors of 7, then search all neighbors of r, and then search all of
neighbors of neighbors of r, and so on. Each vertex in G is searched exactly once, and the breadth-first
search procedure halts after all vertices have been searched. It is clear that this breadth-first search pro-
cedure takes time O(e).

Let BFS(G,) denote the breadth-first search graph of G rooted at r, that is, BFS(G,) is a leveled
graph isomorphic to G. Let [(v) denote the level of vertex v in BFS(G,). The level of the root of
BFS(G,) is 0, and the level of all other vertices is inductively defined as: if vertex v is first visited through
the edge (u,v), then [.(v) = [(u)+1. Vertex u is a parent of vertex v in BFS(G,) if (u,v)eE and I(u) =
I, (v)-1. If u is a parent of v, then v is a child of u. Vertex u is an ancestor of vertex v if either u is a
parent of v, or u is an ancestor of a parent of v. Vertex w is a common-ancestor of vertices u and v if w is
an ancestor of both u and v. Vertex w is a nearest-common-ancestor of vertices u and v, denoted
NCA(u,v), if w is a common-ancestor of u and v, and the distance between w and u (/. (u)-I,(w)) is no
greater than that of any other common-ancestor of # and v. Note that # and v may have more than one
nearest-common-ancestor, as long as their nearest-common-ancestors are all equal distance away from

them,

BFS(G,) partitions the edges in E into three types: tre¢ edges, lattice edges, and cross edges. An
edge (v,w) is a tree edge if vertex w is first visited through edge (v,w). An edge (v,w) is a lattice edge if
vertex w has been visited, and [,(w) = [,(v+1. An edge (v,w) is a cross edge if I,(w) = I,(v).

We now state some facts concerning the breadth-first search graph of G.

Fact 2.1. The shortest distance between the root » and any of its descendant v is [.(v).

Background 10

Fact 2.2. The length of any cycle containing the root r and a vertex v is at least 2/,(v).

Fact 2.3. If (u,v) is a cross edge of BFS((G,), then the length of any cycle containing the root r and the

cross edge (u,v) is at least 21, (u)+1.

Fact 2.4. For all b # a-1, a+1, vertices on level a of BFS(G,) are disjoint from those on level b of

BFS(G,). Hence all the subgraphs induced by vertices on even (odd) levels of BFS(G,) are disjoint.
Fact 2.5. Every cross edge of BFS(G,) determines an odd cycle of G.

From Facts 2.4 and 2.5 it is clear that we can recognize and color a bipartite graph in time O(e),
since if a cross edge is present in a BFS(G,), for any vertex r, then G contains an odd cycle (Fact 2.5);
otherwise each level of BFS(G,) is an independent set of vertices and can be colored with 1 color, hence

BFS(G,) (or G) can be 2-colored (Fact 2.4).

2.4. Finding a Smallest Odd Cycle

Since one of our major goals in this dissertation is to investigate the roles played by odd cycles of a
graph in connection with graph coloring, hence it is of interest to find odd cycles and do so efficiently. In
particular, we will be focusing on a smallest odd cycle of a graph, and our approach requires us first to
find one. Itai and Rodeh[1978] have studied the problem of finding a smallest odd cycle and reduced it
within time O(n?) to that of finding a triangle (a 3-cycle) in an auxiliary graph. They then proposed three
different methods for finding a triangle in a graph and obtained algorithms that take 1). O(e*?) time in
the worst case, 2). O(n*'®) time on the average, and 3). O(n®) time in the worst case, where o is the
matrix exponent of a fast matrix multiplication algorithm. Presently the most efficient, asymptotically
speaking, matrix multiplication algorithm runs in time O(r**"®); see Coppersmith and Winograd[1987].
(To be more precise, an nxn matrix may be multiplied using O(n237¢) arithmetical operations; 2.376.. is
the matrix exponent. For a more practical matrix multiplication algorithm — O(r>*7), see
Strassen[1969]). When dealing with sparse graphs, we will use the bound of O(min{e*2, n>3%}) for
finding a smallest odd cycle of a graph; otherwise we will use the bound of O(n%3"6),

Chapter 3

Bipartite Neighborhood of a Smallest Odd Cycle

3.1. Introduction

In this chapter we investigate the role played by smallest odd cycles of a graph in connection with
graph coloring. We shall explore the local neighborhood of a smallest odd cycle of a graph G, and show
that we can find bipartite subgraphs within that local neighborhood. To be more precise, let k be the size
of a smallest odd cycle in G. Let k-cycle denote a smallest odd cycle of G. The I-neighborhood of a set
of vertices § are all those vertices that are distance 1 away from § but are not in §. In general, the ¢-

neighborhood of § are all those vertices that are distance ¢ away (the shortest distance) from § but are not

in §. The main result of this chapter is Theorem 3.1G, which essentially states that, for all t<-k—;l, the

subgraph which consists of any k—(2¢+1) consecutive vertices on the k-cycle plus the union of their 1-
neighborhood through #-neighborhood is bipartite. As Theorem 3.1G indicates, the coverage of the bipar-
tite neighborhood of a smallest odd cycle (the k-cycle) depends on k — the size of a smallest odd cycle.
The larger the value £ is, the larger (more global) is the bipartite neighborhood of the k-cycle.

As a special case, we show that (Theorem 3.2), if £>5, then we can 3-color the subgraph which

consists of vertices on the k-cycle and their 1-neighborhood, and this is the best we can do.

To give some motivation and insight into why the stated theorems are true, we offer the following
lines of reasoning. First we are focusing on a smallest odd cycle (the k-cycle) of a graph. Second we are
working with the local neighborhood of the k-cycle. The k-cycle and its local neighbors possess some
special structures and properties, for example, if the size of a cycle is “‘small’’ (less than k) then that
cycle must be even. Third when we want to show that a certain subgraph in the local neighborhood of

the k-cycle is bipartite, often our strategy is to show that any cycle in the subgraph is composed of

11

Bipartite Neighborhood of a Smallest Odd Cycle ' 12

smaller cycles usually consisting of some vertices on the k-cycle (because all vertices under consideration
are local to the k-cycle), and each smaller cycle is even (because each cycle is “‘small’”), which implies

that the cycle under consideration is even (because even plus even is even).

The remaining portion of this chapter is devoted to proving Theorems 3.1G and 3.2. Section 3.2
contains some preliminaries. Sections 3.3, 3.4, and 3.5 set the foundation for the two theorems. Section

3.6 is the main theorem — 3.1G and its proof. Section 3.7 covers the special case — Theorem 3.2.

3.2. Preliminaries

In this study, the odd cycles in G have sizes = k, and the even cycles in G may have arbitrary sizes.

We assume that the size of a smallest odd cycle in G is greater than 3, i.e., k#3.

We will use the following notation throughout the chapter.
Given a graph G=(V.E),

k — size of a smallest odd cycle in G, i.e., odd girth of G.

k-cycle — a smallest odd cycle in G, usually a specific one found by any smallest odd cycle algo-
rithm.

K = {v| vis a vertex on the k-cycle}.

§; = {v | shortest distance from the k-cycle to v is ¢}, for £21.

S, is also known as the ¢-neighborhood of the £-cycle, for =1.

Let cycle-a be a simple cycle in G. We shall pick arbitrarily a direction to traverse cycle-a, and
call that direction clockwise. In later arguments, clockwise traversal of cycle-a shall mean the same
direction. The direction opposite of clockwise is called counter-clockwise. We shall define some path
notation.

v1°—v,, v, and v, € cycle-a in G, means the path (0 or more edges) from v; to v, within cycle-a

traversed in clockwise direction.

vi"—v,, v, and v, € cycle-a in G, means the path (0 or more edges) from v; to v, within cycle-a

traversed in counter-clockwise, or the reverse, direction.

Bipartite Neighborhood of a Smallest Odd Cycle 13

v1—Vv,, v, and v,e V, means a path (0 or more edges) from v, to v,.
v1—V,, v; and v,€ V, means the path of length 1 from v, to v,.

In what follows, we will assume that we have found a smallest odd cycle in G, and call it the k-
cycle. We will rename the k vertices on the k-cycle ug uy,...,u—y in clockwise consecutive order (an
arbitrary direction of traversal is first picked to be clockwise), hence K={u¢ 1, ...,4z—; }. When we make

references to vertices in K, say u;, we really mean u; ;o4 k-

In the following sections, we will number the statements, including Theorems, Lemmas, Corol-
laries, and Properties, in increasing order. In general, if a statement has a numerical numbering, for
example — Theorem 3.1, then that statement applies to vertices on the k-cycle or vertices on the k-cycle
plus their 1-neighborhood. If a statement has a numerical numbering followed by G, for example —
Theorem 3.1G, then that statement applies to vertices on the k-cycle plus their ¢-neighborhood, for

t<k—;—1~ (thus Theorem 3.1G generalizes Theorem 3.1).

3.3. Properties

In this section we observe some special structures concerning the k-cycle and its local neighbors,

and list them as properties.
Property 3.1. Any subgraph of G with size smaller than k is bipartite.

Proof. Since k is the size of a smallest odd cycle in G, then any subgraph of G of size smaller than k

must not contain any odd cycles; hence it is bipartite.

Property 3.2. The k-cycle does not have any chords.
Proof. Any chord on the k-cycle divides it into two smaller cycles, one odd and one even. But the k-
cycle is a smallest odd cycle in G; hence the k-cycle does not have any chords.

i

Property 3.3. If a vertex 5 in §; is adjacent to 2 vertices u, and u, in K, then the shorter distance within

the k-cycle between u, and u, is 2.

Bipartite Neighborhood of a Smallest Odd Cycle 14

Proof. Suppose that the shorter distance within the k-cycle between u, and u, is greater than 2. Note that
the shorter distance can not be 1, otherwise we obtain a 3-cycle s—u,~u,—s. Then the distance in either
direction within the k-cycle between u, and u, is less than k—2. One of the cycles, s—u,°—u,—s,
s—u, —u,—s, is even, and the other odd. But the length of either cycle is less than k; more specifically,

the length of the odd cycle is less than k. Contradiction.
On the other hand, if the shorter distance within the k-cycle between u, and u;, is 2, we don’t find
any violations (i.e., odd cycles of length less than k). Hence this is fine.
o
Property 3.3G. Let s be a vertex in §,; u, and u, two vertices in K. If there exist two paths of length ¢
from s to u, and u;, then the shorter distance within the k-cycle between u, and u, is less than or equal to
2t
Proof. Note that this property is nontrivial only if k£ > 47. We shall prove Property 3.3G by induction on
[
Basis: =1
This is Property 3.3.
Hypothesis: t<m—1
Assume that for all t<m—1, Property 3.3G holds.
Induction: t=m
We shall consider two cases.
I. The two paths of length from s to u, and u, are disjoint.

Without loss of generality, let s”**! —»u, and u,?**?—s denote the two disjoint paths of

length m from s to u, and from u, to s, respectively. One of the cycles, sP**! —u,°—u,?**?

-,
sPURY sy T suPP2 45, is odd, and the other even, Without loss of generality, let the first cycle be
odd. Hence the size of the first cycle is greater than or equal to k, which means that the length of
the path u,°—u, is greater than or equal to k—2m. This implies that the length of the path u,”—u,

is less than or equal to 2m.

Bipartite Neighborhood of a Smallest Odd Cycle 15

II. The two paths of length ¢ from s to u, and u; intersect.

Without loss of generality, let sP**!—u, and s?**2—y, denote the two paths of length m,
and let vertex v be the first place pathl intersects path2 when pathl is traversed from s to u,. Ver-

tex v belongs in §;, for some i <m. The length of both paths — v***1 sy, and vP®?2

—uy, must be i,
otherwise s does not belong in §,. By the induction hypothesis, the shorter distance within the k-

cycle between u, and u, is less than or equal to 2i which is less than 2m.

Property 3.4. If a vertex s is in S, then s is adjacent to at most 2 vertices in K.

Proof. Suppose that s is adjacent to at least 3 vertices, say u,, U, and u,, in K. According to Property
3.3, the shorter distances within the k-cycle between u, and u,, u, and u,, u, and u, are all 2. This
implies that the k-cycle contains 6 vertices. But the k-cycle is odd. Contradiction.

D

Property 3.5G. Let t<%. Let 5, and s, be two vertices in §,. If s, is adjacent to s, then any two

paths of length ¢ from s, and s, to vertices in K must be disjoint.

Proof. Without loss of generality, let path1 and path2 denote two paths of length ¢ from s, to u, and
from s, to u,, respectively, for some u,,u,€K. Suppose that pathl and path2 intersect at some vertex v.
Now let’s consider the cycle s,7**! 5yP#2_55,—5,, where 5,7**! -y is the part of path1 that goes from
s, to v (similar interpretation for v***2_5s,). The size of the cycle is no more than 2¢+1. Since k>2t+1,
the cycle must be even. This implies that the parity as well as the length of the path s,7**! v are dif-
ferent from those of 5,P**2—v. Without loss of generality, let |s,7**1—v| > |5,?**25y|. This means
that the length of the path 5,72 _5yP# ! 4y is less than ¢. But s, is in S,. Contradiction.
m|

Property 3.6. Let s, and s, be two distinct vertices in §1; u, and u, two distinct vertices in K; 5, adja-

cent to u, and s, adjacent to u,. If 5, is adjacent to s5,, then
a) for k=5 the shorter distance within the k-cycle between u, and u, is less than or equal to 3,

b) for k>5 the shorter distance within the k-cycle between u, and u, is 1 or 3.

Bipartite Neighborhood of a Smallest Odd Cycle 16

Proof. Suppose that the shorter distance within the k-cycle between u, and u, is more than 3. The dis-
tance in either direction within the k-cycle between u, and u, must be less than k—3. One of the cycles
S1—U,"Up—82—51, 51—l —>U—S2—51, is even, and the other odd. But the length of either cycle is less
than k£ —1; more specifically, the length of the odd cycle is less than k—1. Contradiction.
If k>5 then the shorter distance within the k-cycle between u, and u, can not be 2, otherwise one

of the following cycles: s;—u,"—up—59—51, §1—U, —Up—52—51, is a 5-cycle.

o
Property 3.6G. Let s, and 55 be two vertices in S,; u, and u;, two vertices in K. If 5; is adjacent to 5,
and there exist two paths of length ¢ from s, to u, and from s, to u,, then the shorter distance within the
k-cycle between u, and u; is less than or equal to 2¢+1.
Proof. Similar to that of 3.3G.

|
Property 3.7. Let s;—vs—** *—V,—5,41 be a path of length a; 5, and s,4; two vertices in §,; u, and uy
two distinct vertices in K; s, adjacent to u, and s,,; adjacent to u, (see Figure 3.1). If the distance,
either clockwise or counter-clockwise, within the k-cycle between u, and u, is b and a+b is even, then
azb-2.
Proof. Without loss of generality, let’s assume that ¢ <d and the length of the path u.®—u, is b. Let us
consider the cycle (which may not be simple) 5;—vo— * * * =V—8g41 —Ug—Ug— * ° * —Ug_1—U~S1. Since k
is odd and a+b is even, the cycle is odd and its length is a+(k—b+2). Since k is the size of a smallest

odd cycle, thus a = b2,

Note that if a = 0, then this is Property 3.3 with b = 2.

3.4. Association

To relate the vertices in K and their local neighbors in §,, we introduce the notion of association.

We show in Lemmas 3.1, 3.1G, and 3.2G that cycles formed by ‘‘associated’’ vertices are even cycles.

Definition 1. A subset R, R=(s,,5,...,5,}, of §; is I-associated with a subset So, So={u;,Uc415....4a}, Of

K (see Figure 3.2) if the following three conditions are satisfied:

Bipartite Neighborhood of a Smallest Odd Cycle 17

a path of length a

S
s a+l

Figure 3.1. A configuration of vertices in Property 3.7.

i) there exists a simple path s,~s,~ - - - =5, covering all vertices in R,
ii) 51 and s, are adjacent to u, and ug4, respectively,
Note: 1f R={s,] then s, is adjacent to u, and uy; if So={u.} then s, and s, are adjacent to u,.

iii) there exist at least 3 consecutive vertices u',u?, and «> that are in K but not in S, such that

every vertex s; in R is adjacent to at least one vertex in K—{u',u?,u?).

Definition 1G. A subset R, R=(s51,53,...,5,}, of S, is t-associated with a subset Sq, So={1,,Uz41,....4s},

of K if the following three conditions are satisfied:
i) there exists a simple path 5,—s,— - - - -5, covering all vertices in §,,

ii) there exist two paths (not necessarily disjoint) of length ¢ from s, and 5p to u, and uy, respec-

tively,

Note: 1f R={s,} then there exist two paths of length ¢ from s; to u, and u,; if So={u,} then there

exist two paths of length ¢ from s, and Sp to u,; if R={s,} and Sy={u.} then there exist two distinct

Bipartite Neighborhood of a Smallest Odd Cycle 18

Figure 3.2. Anillustration of 1-association.

paths of length ¢ from s, to u,.

2, ...,u”* that are in K but not in §, such

iii) there exist at least 2¢+1 consecutive vertices u',u
that for every vertex s5; in R there exits a path of length ¢ from s; to at least one vertex in

Kt i u ™Y,

k-1

Note that Definition 1G makes sense only if 1< 2

. Thus when we speak of r-association, we will
assume that t<£—;—1—.

The following Properties — 3.8 and 3.8G, although not used later, give some insight into the mean-
ing of 1-association and t-association. Property 3.8 shows that if R is 1-associated with S, that is, if
every vertex s5; in R is adjacent to at least one vertex in K—{u',u2,u>), for some 3 consecutive vertices
u',u?, and 4, then R is not 1-associated with S,’, for some S’ that includes u',u2, and u* (because
otherwise some vertex in R would be adjacent to u',u?,u’ exclusively). For example, if R is 1-associated

with So, So={u;,U.41,....4z}, then R is not 1-associated with Sy’, S¢'={u,,u—, * - * ,uy}. Note that the

Bipartite Neighborhood of a Smallest Odd Cycle 19

parity of the size of S differs from that of §,’. This property is significant in that (see Lemmas 3.1,
3.1G, and 3.2G) cycles formed by ‘‘associated’’ vertices are even cycles. If R is 1-associated with both
S and Sy, as in the previous example, then Lemma 3.1 says that both cycles formed by associated ver-
tices in R and Sy, and in R and §,,” are even. But the parity of the size of S differs from that of §,". So
one of the cycles must be odd, hence we have reached a contradiction. Property 3.8G generalizes Pro-
perty 3.8.

Property 3.8. If a subset R, R={5,,52.,....5,}, of §; is 1-associated with §o={u;,u;41,....4a}, SocK, then
for any 3 consecutive vertices u;,u;,1,4;,2 in Sy, at least one vertex in R is adjacent to vertices in

{14, u;.,1,4;42} exclusively among vertices in K.

Proof. Since R is 1-associated with §, there exist at least 3 consecutive vertices u,,u, ;U 42, between uy
and u, in clockwise direction such that none of the vertices in R is adjacent to them exclusively among
those in K. Thus every vertex in R is adjacent to a vertex in K—{u,,u,,1,4,42}. Now suppose that Pro-
perty 3.8 is false, that is, there exist 3 consecutive vertices in Sy such that none of the vertices in R is
adjacent to them exclusively among those in K. Let u, be the first vertex starting from u, going clock-
wise for which the condition holds. Hence every vertex in R is adjacent to a vertex in K—{u,up,1,Up42]).
Because of the existence of u,,u,,,U,.o, and of u,,up.,q,u42, all of which distinct, K contains at least 6
vertices, i.e., k > 5. Since uy,up41,Up4o are in Sy, then uy is either uy, ., or it comes after u,,, but before

u, in clockwise direction on the k-cycle.

If uy#u,, then u,_, must be adjacent to some vertex, say s,, in R (if not, then u,_; would have been
a vertex before u,, that satisfies the mentioned condition). Figure 3.3 illustrates a possible configuration of
vertices. If up=u,, then s, is adjacent to u,. s, is also adjacent to a vertex in K—{uy,up1,Up 42}, thus s,
is adjacent 0 u;_p by Property 3.3. Note that if R = {5}, then s, is adjacent to u, and uz=u.,, by Pro-
perty 3.3. Hence it is not possible that s, is also adjacent to u,_,=u,_, because of Property 3.4. So we
have reached a contradiction and Property 3.8 holds when R = {s,}. For the discussion which follows,

we will assume that |R| > 1. Without loss of generality, we shall let 5, = 5; when up, = u,.

Let us now consider vertices in K that are adjacent to s,,;. What we want to show is that if a ver-
tex in K is adjacent to s,,;, then that vertex does not belong in {uy5,up,3, * - * ,uy}. Furthermore, we
want to show that if a vertex in K is adjacent to s;, @ <i <p, then that vertex does not belong in

{Up42.Up43, = - - ,uq). But since s, is adjacent to uy, we will then arrive at a contradiction.

Bipartite Neighborhood of a Smallest Odd Cycle 20

Figure 3.3. A configuration in the proof of Property 3.7.

We shall accomplish the above task by a two step process. The first part of the process involves an

induction. To set up the induction, we begin with some definitions.
Let 5;, 5;,41 be vertices in R, s; adjacent to 5;,;. Let V, V, be sets of vertices defined as follows:
Vi ={v|visinR and adjacent to a vertex in {u, 3,44, " * * Ups1}).
Vy ={[v|visinR and adjacent to a vertex in {u,.i,4y42, " * ,Up—1} }.
The first step of the process is to show that:
A. If 5; belongs in V; and V,, then s5;,; belongs in V; and V5.
Proof. Suppose that s;,; does not belong in both V' and V,. There are 3 possibilities.
A.l. s, belongs in V; but not to V.
A2. s5;4 belongsin V, butnotto V.
A3. s;4; does not belong in either V; or V.

Case A.1. Since s5;4; belongs in V; but not V5, then s5;,; must be adjacent to either u, or u,,;.

Bipartite Neighborhood of a Smallest Odd Cycle 21

Suppose that s;,; is adjacent to u,. Because s;,; is adjacent to a vertex in K —{u,uy.1,0p42)
and Properties 3.3 and 3.4 (s;,; is adjacent to at most 2 vertices in K and these two vertices must be
distance 2 apart), then 5;,; must be adjacent up_5. Note that uy,_5€ {1441, 842, * * * JUp—1 }. But 5;4

does not belong in V,. Contradiction.

Suppose that s;,; is adjacent to u,,;. Because s;,; is adjacent to a vertex in
K—{up,up41,u542) and s;4; is not in V5, then s;,; must be adjacent to u,,3 by Properties 3.3 and
3.4. Note that up,3 € {Uy41,U,42, * * " ,Up—1 }. Because s; is in V', s5;,, is adjacent to u,.,3, and Pro-
perty 3.6, s; must be adjacent to u,. s; is also in V,, hence s; is adjacent to u,_, by Property 3.3.
But this violate Property 3.6 — between s;,5;.,1,4,—2,U4p+3 in clockwise direction as well as counter-
clockwise direction (recall that k is odd and greater than 5). Contradiction. Therefore Case A.1l

does not hold.
Case A.2. Cases A.1 and A.2 are symmetrical. Thus Case A.2 does not hold either.

Case A.3. Since s;,1 does not belong to either V; or V5, then s;,; must be adjacent to a vertex in
{Up12.p43, =+ * ,U,}. On the one hand, because s;,; is adjacent to a vertex in K—{uy, 11,4512},
s;+1 must be adjacent some vertex u, in {up43,4p44, * * * .4, }. According to Property 3.6, the possi-
ble candidates for the neighbors of s; in K are u,_s,u,_1,Ug41,Ug43. Since s; is in V5, s; must be
adjacent to uy,; Or ug,; or both. On the other hand, because s;,; is adjacent to a vertex in
K—{u,,u,11,u, 12}, 5;y1 must be adjacent some vertex u; in {up49,Up43, * * * LU—1 }. According to
Property 3.6, the possible candidates for the neighbors of s; in K are u;.3,4;-1,Uy4 ,U143. Since s; is
in V', s; must be adjacent to u;_; or u;_3 or both. To summarize, both of the following conditions

must hold:

1. 5; is adjacent 0 uz.q OF Uy,3 OF both,

2. g is adjacent to u;—; or w3 or both.
Because of the above two conditions, u, must not be the same as »;. Hence s, is adjacent to two
vertices: u, and u;. Because of Property 3.3, either u, = u;4p or u, = u;5. If u; = w5, then Pro-
perties 3.3, 3.4, and 3.6 say that s; is adjacent to either u;_;, or u;_; and u;,q, OF Uy, OF Uy, and

U;43, OF up,3. But none of the above possibilities satisfies the two conditions described earlier.

Contradiction. If u, = u;_5, then s; is adjacent to only one vertex u,4; =y in K. Note that u;_, €

Bipartite Neighborhood of a Smallest Odd Cycle ' 2

{up41,Up42, * * ~ U, —}. Buts; isin V,, Contradiction.

s, belongs in both V; and V5, even when s, =5, (4 = u;). Therefore, by the induction, we have

shown that for all i, 1 <i <p, s; belongs in both V; and V».

The second step of the process is to show that:
B. If 5; belongs in V; and V, and if a vertex v in K is adjacent to s;, then v does not belong in
{Ups2up43,s * - - Jua).
Proof. We shall consider two possibilities.
If 5; does not have a neighbor in {u,,3,4,44, * * * .4y }, then the possible neighbors of s; are:
Uy = {(#ys1,4r42), Us = {Up,u5,1}. Since s; is in both V; and V,, then s5; must be adjacent to two
of the possible neighbors listed above, one from each set. The only combinations that satisfy Pro-
perty 3.3 are:
1. If u, = u,,3 and s; is adjacent to u,,; and u,,
2. If u, = u,,3 and s; is adjacent to u,,5 and up,q,
3. If up = u,.4 and s; is adjacent to u,,, and uy.
In all of the above combinations, s; does not have a neighbor in {up.0,u4p.3, * = * .4y} by Property

34.

If 5; has a neighbor in {u, .3,4,.4, - - * ,45_, }, then according to Property 3.3, 5; does not have

a neighbor in {uy40,Up43, * * * Ug).

Combining the results of A and B, we conclude that for all i, 1 <i < p, if a vertex v in K is adjacent
10 5;, then v does not belong in {uy42,4p43, * - * ,Ua}. But s, is adjacent to u,. Contradiction.

o
Property 3.8G. If a subset R, R={s1,55,....5,}, of §, is t-associated with §o={u;,u,11,....4a}, SocK, then
for any 2¢+1 consecutive Vertices u;, ;41 ,...,U;42, in S, there exists at least one vertex in R that has paths

of length ¢ to only vertices in {4,441, . . . , U4} among vertices in K.

Bipartite Neighborhood of a Smallest Odd Cycle 23

Proof. This proof is similar to that of Property 3.8.

m}

Note that we could have presented Properties 3.8 and 3.8G as corollaries of Lemmas 3.1 and 3.1G.

"

Next we show in Lemmas 3.1, 3.1G, and 3.2G that cycles formed by ‘‘associa vertices are

even cycles.

Lemma 3.1. If a subset R, R={51,52,...,5,}, of §; is 1-associated with a subset S¢, So={ut,Uc41,....4a},

of K, and |R|+|S¢|>3, then the cycle 5,—s3— - * * —Sp—Ug—Ug_1— * * * — U—S IS an even cycle.

Proof. The basic idea behind the proof is that the cycle under consideration is composed of even cycles,

and since the sum of even cycles is even, we then have the desired result.

Since R is 1-associated with S, every s; in R is adjacent to at least one vertex in K—{u', u?, u®),
for some 3 consecutive vertices u',u?, and u®. For each s;eR, we pick arbitrarily a vertex
u'e K—{u', u, u®} 1o which s; is adjacent, and use it consistently in later arguments. Exception: we pick
u, for s, and u, for 5, so uj=u, and u,=u,;. Now there exist 2 ‘“‘picked’” vertices u, and u, such that the
path u,”—u, includes u', #2, and 1>, and no vertex on that path besides u, and u, is a “‘picked’’ vertex.

Let S, denote the set of vertices on the path u,°—uy; So1 = {Ua,lg1,---Up}. Note that §ocS ¢ K.

We now break the path s{—s5— - - — sp into p segments of length 1. We shall discuss the case R =

{s;} later. For each segment s;—s;,;, the shorter distance within the k-cycle between u; and u;,; is less

than or equal to 3 by Property 3.6, which implies that the shorter path from u; to u;,, must use vertices in

So1. Now let’s consider cycle-i which is si—ufs”‘ —Uj— 5;1—S; (see Figure 3.4), where u,fs‘“ —u;y is

the path from u; to u},; on the k-cycle that uses only vertices in S, . The size of the cycle is less than &
Sar

because the length of the path u; ® —u;,; is less than k-3 (since the set K—S g +u;+u;,; contains at least

5 vertices). Hence cycle-i is even.

If we add (take the exclusive-or of) cycle-i and cycle-i+1 (cycle-i @ cycle-i+1), we get a simple
even cycle P ol T N v Figure 3.4), where u 5o —U;},o is the path from u; to uj,, on
the k-cycle that uses only vertices in Sq;. If we add cycles 1 through p-1, i.e., cycle-1®&cycle-2® ...
®cycle-p—1, we get the cycle s;—s5— -+ — Sp—Ug—lg_1— * * * — U;—s that must be even, because all cycles

1 through p-1 are even. Note that if Sy = {u.}, then 5,—5,— * * - —s, is an even path, since [R[+|So[>3.

Bipartite Neighborhood of a Smallest Odd Cycle 24

cycle-i
m Sin/— cycle-i+1

Si+2

S

Figure 3.4. Anillustration of cycle-i and cycle-i+1.

IfR={s,},then Sy = {u,, u 4, u.42) by Property 3.3. The cycle s;—u,—u,,;—U.,2—s5; is even.

o
Corollary 3.1. If a subset R, R={s,5,...5,}, of §; is l-associated with a subset S,,
So={u,Uc41,....,u3), of K, then parity of the path s,-s,—---—s, in R equals parity of the path

Ue—Upp1— " " —Uq in So.

Lemma 3.1G. For all :<£—;—1—, if a subset R, R={5,5,...,5,}, of S, is t-associated with a subset Sy,
So={ue,Uc415....44), Of K, and pathl and path2 are two paths of length ¢ from s, t0 u, and from s,, to 1,
respectively, then the cycle s,—s5— * * * =5,P**2 u;uy ;- - - - —u P**! 55, is an even cycle.

Proof. This proof is similar to that of Lemma 3.1. We show that the cycle under consideration is com-

posed of cycles of even lengths, and since the sum of even cycles is even, we have the desired result.

Note that path1 and path2 may intersect, hence the cycle under consideration may not be a simple cycle.

Bipartite Neighborhood of a Smallest Odd Cycle 25

Since R is t-associated with S, then for every s; in R there exists a path of length ¢ from s; to at
least one vertex in K—{u',u?, ...,u%*}, for some 2t+1 consecutive vertices u',u?,....u**!. For each
s;€R, we pick arbitrarily a path of length ¢ «call it path-i, from s; to u;, for some
uweK—{u',u?, ...,u**"}, and use that path consistently in later arguments. Exception: we pick pathl
for path-1 and path2 for path-p. Now there exist 2 vertices u, and u, in K that are on some *‘picked”’
paths such that the path u,”—u, includes u!,u2,...,.u**!, and no vertex on that path besides u, and u, is
on a ‘‘picked”’ path. Let Sy, denote the set of vertices on the path u,°—uy; So; = {Ugbigeqs... 14y }. Note

that SogS 01 K.

We now break the path s,—s,— - * * —s, into p segments of length 1. We shall discuss the case R =
{51} later. The shorter distance within the k-cycle between u; and u;,; is less than or equal to 2¢+1 by
Property 3.6G, which implies that the shorter path from u; to u;,; must use vertices in §y,. Now let’s

path—i+1

. Y s ol 5 y
consider cycle-i which is s~ —su; " —uj, —38;41—5;» where u;" " —u;,, is the path from u; to

u; 4, on the k-cycle that uses only vertices in Sy;. The size of cycle-i is less than k because the length of
the path u;°® —u/,, is less than k—(2+1) (since the set K—S o +u}+u’,; contains at least 2/ +3 vertices).

Hence cycle-i is even.

If we add cycle-i and cycle-i+1 (here adding cycle-i and cycle-i+1 means taking the exclusive-or of

paths on the k-cycle and retaining all other edges on both cycles except those on path-i+1) we get an even

. . .S 5 s .
cycle (which may not be simple) 5,4 —u " —uf,,P*"*2 55, 108, 41—5;, where u!” " —u,, is the path

from u; to u;,, on the k-cycle that uses only vertices in Sy;. If we add cycles 1 through p-1, we get the

pathl

cycle (may not be simple) s;—so— - - —sp""”‘z—md—ud_l— st =l —s, which must be even, because

all cycles 1 through p-1 are even. Note that if §¢ = {u.}, then 5,—5,— - - - =5, is an even path.

path2

Now we shall consider the case where R =(s;). If u.=uy, then s,***'—>u 2 55, is an even

cycle of length 2z, If u.#uy, then by Property 3.3G the shorter distance within the k-cycle between u, and
uy is less than or equal to 2, which means that the shorter path from u, to u; must use vertices in Sy .

pathl

.. : 8
Hence by a similar reasoning as above, we see that the cycle s,;7*2—u,”" —»u ! 55, =

P2 iy sy g~ oo o ~u P y5; is even.

Bipartite Neighborhood of a Smallest Odd Cycle 26

Corollary 3.1G. For all t<£;—l—, if a subset R, R=(s5,52,...,5,}, of S, is t-associated with a subset S,

So={t,Ug41,-s4a), Of K, then parity of the path s,—s,—-:-—s, in R equals parity of the path
Ue—Up 41— * * * — Uy in So.
Lemma 3.2G. Each simple cycle of the even cycle s;—s,—* * - — P2 Sugug 1~ —u L sy in

Lemma 3.1G is an even cycle.

Proof. Without loss of generality, let us assume that the even cycle of Lemma 3.1G is not simple. We

will use the same notation as that in Lemma 3.1G.
We shall prove Lemma 3.2G by induction on ¢.
Basis: =1
This is Lemma 3.1.
Hypothesis: t<m-—1
Assume that for all t<m-1, Lemma 3.2G holds.
Induction: t=m

Since the even cycle of Lemma 3.1G is not simple, then pathl and path2 intersect. Let ver-

tex v be the first place pathl intersects path2 when path1 is traversed from s, to u.. Now the even

cycle s1—53— -+ —85,P" 2 u;ugy— - - —uP**1 s, is composed of a simple cycle — cyclel
which is s§;—s,—- " —sp"“"‘z—w”“‘“—)sl and and another cycle - cycle2 which is
VPRl sy - —u P25y, Note that vertex veS,;, for some /<m. The length of path

vP**1_sy. must be the same as the length of path v***2u,, namely / (otherwise either s; or s,
does not belong in §,,). Thus {v}, a subset of §,, is l-associated with So = {u, k41, **° ,ua}.
Therefore cycle2 is an even cycle by Lemma 3.1G; moreover, each simple cycle of cycle2 is even

by the induction hypothesis. This implies that cyclel is a simple even cycle.

Bipartite Neighborhood of a Smallest Odd Cycle 27

3.5. 1-Neighborhood

In this section we focus on the 1-neighborhood of the k-cycle. First we prove a special case of
Theorem 3.1G, Theorem 3.1, which states that, for all £ > 3, the subgraph which consists of any k-3
consecutive vertices on the k-cycle plus their 1-neighborhood is bipartite. Theorem 3.1 actually sets the

foundation for Theorem 3.1G.

Let Ny (ug,up, « * * oiy), {Ug,Up,....u }K, denote vertices in S, that are adjacent to only vertices in
{#g,up, -+ - ,u;} among all vertices in K. Note that N (ug,u,, - - - ,u;) are all those vertices in §; that are

not adjacent to any of the vertices in K—{u,,up, * - * ,u;}.

Theorem 3.1. For any 3 consecutive vertices, u;, u;4, 42, in K, the subgraph induced by vertices
K—{u; 1541, U;.42)48 1-N 1 (U3, 4541, 4;.42) is bipartite.
Proof. Without loss of generality, let’s reindex the k vertices in K in clockwise consecutive order starting
with i=0; hence u; becomes u, u;,; becomes u;, and so on. Let W =K—{ug,u;,u}+S;-N(ug,u,,u,).
Let cycle-c be a cycle in W, (here W, means the subgraph induced by vertices in W,). Note that every
vertex in §1—N;(ug,u1,u) is adjacent to at least one vertex in K—{ug,u,u5}. We now consider dif-
ferent structures of cycle-c.
I Cycle-c consists of vertices in §; only; cycle-c = 5;—5,— - * * —5,~51.
Let us identify 2 vertices s, and s, on cycle-c. Without loss of generality, let us assume that
a < b Let Ri={54,50+1,-s5), Path-1=5,—5541— " * " =85, Ro={84,55-1,.+81.5p.8p-1,-...5 }, and
path-2=5,~5,_1— * * * =§1=8,~Sp_1— * * * —8p. Pick a vertex in K—{uo,u,u,} to which s, is adjacent,
call it u,; pick a vertex in K—{ug,u,,u,} to which s, is adjacent, call it u;. If c < d, let S, =
{ toaysnrtig), €lse let S = {ug,Up—1,....4g). ILis clear that ug, u,, and u, are not in S, since ¢ <
d in the first case and ¢ = d in the second case. Every vertex in R;(R,) is adjacent to at least one
vertex in K—{ug,u;,u,}. Hence both R, and R, are l-associated with §,. By Corollary 3.1 and
for ¢ < d (c = d), parity of path-1 equals parity of path u,—u,.1— - - * —ug (U;—u.-1— * - - —uy) equals
parity of path-2. Since cycle-c is composed of path-1 and path-2, it is therefore an even cycle.

II Cycle-c consists of alternating sequences of vertices in K and ;.

If cycle-c consists of exactly one vertex in K, that is, cycle-c = u,~s,—§2— " - — Sp—Ug, then

R={s1,52, """ .5,} is 1-associated with So={u,} and cycle-c is an even cycle by Lemma 3.1.

Bipartite Neighborhood of a Smallest Odd Cycle 28

If cycle-c consists of more than one vertex in K, then let us identify 2 vertices u, and u;, in K
and on cycle-c such that a<b<k-1, and if %; is in K and on cycle-c then w;€ {u,, U451, " * * ,Up}=S0.
Clearly ug,u,,u2eSy. Now cycle-c is composed of 2 paths, path-1 and path-2, each starting at ver-
tex u, then going through some alternating sequences of vertices in K and S, and ending at vertex
u,. The 2 paths are vertex and edge disjoint, except at vertices u, and u,. Let us analyze path-1;

the same results apply to path-2.

Basically we want to show that parity of path-1 is the same as parity of path
Ug—Ugy— * * * —Up. We do so by showing whenever path-1 leaves K, say at uy, (i.e., path-1 goes
from u; in K to some vertex in §,), parity of path-1 from u, to u; is the same as parity of path
Ug—Ug4— - - —uy. Similarly, whenever path-1 enters K, say at u,, (i.e., path-1 goes from some
vertex in §; to u, in K), parity of path-1 from u, to u, is the same as parity of path
Ug—Ugy1— " " —lgj

Let u; and s; denote the vertices in K and S, respectively, such that when path-1 leaves K
for the ith time, it goes from u; to s;. Let u,; and s,; denote the vertices in K and S, respectively,
such that when path-1 enters K for the ith time, it goes from s,; to u,;. Let R; denote the set of ver-

tices on path-1 from sy to 5,;. We shall do induction on i.
Basis: i=1
When path-1 leaves K for the first time at u;; (see Figure 3.5), parity of path-1 from u,

to uy; is the same as parity of path u,—u,.1—* * + —u;y, because the 2 paths are the same.

Note that u;; may be u,.

When path-1 enters K (after leaving it) for the first time at u,, (see Figure 3.5), we
have a<l 1<e 1<b, since path-1 is a simple path. Let S denote the set of vertices on the path
from u;; to u,; in clockwise direction; Sgy={t;1, 41141, *° * »Ue1}<So. Then R; is 1-
associated with S¢;, since ug,u;,u2¢8¢; and every vertex in R, is adjacent to at least one
vertex in K—{ug,u,u,}. By Corollary 3.1, parity of path-1 from s;; to 5., is the same as
parity of path u;,—uj141— * * * —t,1. Therefore parity of path-1 from u, to u,; = parity of path
Ug—Ugq1— * * * —iyp + parity of path u;,—s;; + parity of path-1 from s;; to s, + parity of path

Se1—U,y = parity of path u,—u,4— -+ —uyy + parity of path uy—uy14,— - - - —u,y = parity of

Bipartite Neighborhood of a Smallest Odd Cycle 29

pat‘h Ug—Ugyy— """ Ut

Sz S[3 = Se3

Sh

Figure 3.5. A possible configuration of path-1.

Hypothesis: i=m-1.
Assume that parity of path-1 from u, to w1y is thc same as parity of path
Ug—Ugs1— * * * —Uyom-1y, and parity of path-1 from u, to u,(,_;) is the same as parity of path
Ug=Ugy1— " " " —Ue(m—1)-

Induction: i=m.

When path-1 leaves K for the mth time at u,, (see Figure 3.5), parity of path-1 from u,
t0 Uy = parity of path-1 from u, t0 u, (m—1) + parity of path-1 from u, -1y to s, = parity of
path u,—lg, = * * —l,(m-1y (by induction hypothesis) + parity of path from u,,_;, t0 u,
within S = parity of path u,—u, 41— * * * —Ujp.

When path-1 enters K for the mth time at u,,,, either Im<em<b or em <Im <b. In the
first case (see Figure 3.5), let Sy, denote the set of vertices on the path from u,, to u,, in

clockwise direction; S gm={UmUims1» * * * »Uem}<Sg. Then R, is 1-associated with S, since

Bipartite Neighborhood of a Smallest Odd Cycle 30

Ug,U1,U2€ S, and every vertex in R,, is adjacent to at least one vertex in K—{ug,u,u,}.
By Corollary 3.1, parity of path-1 from s, to s, is the same as parity of path
Upy—Upm 41— * * * —Uem. Therefore parity of path-1 from u, to u,, = parity of path-1 from u, to
uy, + parity of path u,,—s,, + parity of path-1 from s, to s,,, + parity of path s,,—u,,, = par-
ity of path w,—u,41— - —uy, + parity of path up,—uyus—*** —U.m = parity of path

Ug—Ugy1— " * " —Uem.

In the second case, let S, denote the set of vertices on the path from u,, to u,, in
counter-clockwise direction; S gn={Um>Mim-1> ** * »Uem) So. Then R, is 1-associated with
Som. SINCE Ug,U1,U2¢ Sy, and every vertex in R,, is adjacent to at least one vertex in
K—{ug,u;,uz}. By Corollary 3.1, parity of path-1 from s, to s, is the same as parity of
path u,,—Up,_1— - * - —U,,. Therefore parity of path-1 from u, to u,,, = parity of path-1 from

Ug O uy, + parity of path uy,—s;, + parity of path-1 from s,,, to s,,, + parity of path s,,,—u,,, =

parity of path w,—u,4— -+ —uy, + parity of path wy,—up,_1— " —u., = parity of path
Ug=Ugy1= " " " —Uems
Hence we have shown that parity of path-1 is the same as parity of path u,—ug .1 — - - —u,.

The same results apply to path-2, that is, parity of path-2 is the same as parity of path
Ug~Ug4— * * * —Uy. Since cycle-c is composed of path-1 and path-2, and the parity of the 2 paths are
the same, cycle-c is therefore an even cycle.
Now we conclude that the subgraph induced by vertices Wy=K—{ug,u,us}+S5 =N (uo,u1,u,) is
bipartite, because the subgraph does not contain any odd cycles.
m]

Corollaries 3.2-3.5 are results that follow from Theorem 3.1 and are used in Lemmas 3.3 and 3.4 of

Section 3.7.
Corollary 3.2. Any cycle with vertices in K and S, only which does not contain any of the 3 consecutive
vertices u;,U;,1,U;,o in K, for some i, and their exclusive neighbors Ny (u;,u;.1.%4;4,) in §4, is an even

cycle.

Bipartite Neighborhood of a Smallest Odd Cycle 31

Corollary 3.3. Any path from u, to u;, denoted by u,—uy, u,,u,€K, consisting of alternating sequences

of vertices in K and S, only and satisfying the following 2 conditions:
for some i,

a) path u,—u, does not contain any of the 3 consecutive vertices u;,u;4;,u;4o in K and their

exclusive neighbors Ny (u;,4;41,4;42) in ¢,

b) i tia1 s Ui42€ {Uastiarrs * ** Uy) (Uislisr s Uiv2€ (Uaslay, * *° S Up),
has the same parity as path u,~ug41— = * * —Up (Ug—Ug_1— " * * —Up).
Proof. Let us consider the cycle (which may not be simple) u,—uy~up_—----u,
(ug—>up—tp1— * * " —lig), and let’s call it cycle-c. If cycle-c is not a simple cycle, then it consists of sim-

ple cycles plus overlapping paths (i.e., 2 of the exact same paths). Each simple cycle of cycle-c is even
by Corollary 3.2. Thus cycle-c is an even cycle. This implies that the parity of path u,—u, is the same
as that of path u,~u,1— - - —up (Ug—Ug_1—* " * —Up).

m]

Corollary 3.4. Any path from u, to s, denoted by wu,—s,, u,eK, 5,8, consisting of alternating

sequences of vertices in K and §; only and satisfying the following 2 conditions:
for some i,

a) path u,—s, does not contain any of the 3 consecutive vertices u;,u;,1,4;4» in K and their

exclusive neighbors N (u;,u;.41,4;42) in 81,

b) uiaul'+1=ui+2e [umua+1v ce tuc] (ui:ui+11ui+ze {ua,ua—-ls et 1uc})= where uc is a vertex in K
adjacent to s,
has different parity than path u,—ug 41— * - —u, (Ug—ugq— " ** —U,).

Proof. Suppose that u, is not on path u,—s;. Path u,—s,—u, satisfies conditions in Corollary 3.3, hence
parity of path u,—»s,—u, = parity of path u;—uz. 1~ - - - =, (Ug~Ug—q— - - - —u;). Therefore parity of path
Ug—>sp # parity of path ug—tg4— - =+~ (Ug—Ug1— " * = —Ue).

Suppose that u, is on path u,—s,. If u, = u,, then the cycle u,—s,—u,=u, is even by Corollary
3.2. Therefore parity of path u,—s, is odd. The parity of a path consisting of a single vertex is even. If

u, # u,, then u,—s;, = u,—u,—»s;. Now consider path u,—s,—u, = u,—u,—>sp—u,. Cycle u,—»s,—u, is

Bipartite Neighborhood of a Smallest Odd Cycle 32

even by Corollary 3.2. Path u,—u, satisfies conditions in Corollary 3.3, hence parity of path u,—u, =

parity of path w,—ug— - =1, (Ug—tg_y— - —u,). Parity of path w,—u.—s,—u. = parity of path
Ug—Ugyy—* * * —U, (Ug—Ug_1— - —U). Therefore parity of path u,—»s; # parity of path u,—ug4—* * * —ii,
(Ug—tgg— "+ * —Ue).

o

Corollary 3.5. Any path from s, to s,, denoted by s,—>sp, 5,,5,€ 8, consisting of alternating sequences

of vertices in K and S only and satisfying the following 2 conditions:
for some i,

a) path s,—s, does not contain any of the 3 consecutive vertices u;,u;.1,4;4> in K and their
exclusive neighbors N (u;,14;41,4;42) in S 1,
b) w141 U;40€ (Ueobiorr, * * Mg} (UisUier,Uinn@ (U, Uy, * - - JUg)), Where u. and u, are vertices
in K adjacent to s, and s, respectively,
has the same parity as path u,—u, . — = = * —tg (Ue—Uo1—* * * —Uy).
Proof. Suppose that u, is not on path s,—s,. Path u—s,—»s, satisfies conditions in Corollary 3.4, hence
parity of path u,—s,—»s; # parity of path u,—u4— - * - —uy (u—t;—y— - * - —uy). Therefore parity of path
5a—>Sp = parity of path u—u 41—« * * —ug (U—th—1— * * * —Uq).
Suppose that u, is on path s,—s,. Path s,—s, = path s,—u.—s,. Now consider path
U,—S;—u,—>s,. Cycle u,—s,—u, is even by Corollary 3.2. Note that u, may or may not be on that cycle.

Path u,—»s, satisfies conditions in Corollary 3.4, hence parity of path u,—»s, # parity of path

Ug—Ugpq— " * —Ug (U~u,_— "+ —uy). Note that u; may or may not be on that path. Parity of path
U,—S,—>U,—>Sy, # parity of path u.—u 41— -+ - —ug (U.—~u._1— " - - —uy). Therefore parity of path 5,—s;, =
parity of path u.—y 41— -« * =g (Ue—Ue—1— * = * —Ug).

mi

3.6. The Main Theorem

We now focus on a larger neighborhood of the k-cycle — §,S,, - - - ,S,, where 2t+1<k. We prove
the major result of this chapter which says that any subgraph which consists of any k—(2¢+1) consecutive

vertices on the k-cycle plus their neighbors from the 1-neighborhood up to the ¢-neighborhood is bipartite.

Bipartite Neighborhood of a Smallest Odd Cycle 33

Let N, (u,,up, * + * up), {Ug,Up,....u }K, denote vertices in S, that have paths of length ¢ to only ver-
tices in {u,,up, - - - ,u;} among all vertices in K. Note that N,(u,,u, - - - ,u;) are all those vertices in S,

that do not have paths of length ¢ to any of the vertices in K—{ug,up, - - - ,1;}.
Theorem 3.1G. For any 27+1 consecutive vertices, u;, U;41,....4; 42, in K, the subgraph induced by ver-
tices K—{u;, 841, « « o s Uige J¥S 1—N 1 (Uialigts « o o Ui)t o +S—N (Ui, 0;41, * * + ,U;49,) 18 bipartite.
Proof. Without loss of generality, let’s reindex the k vertices in K in clockwise consecutive order starting
with i=0; hence u; becomes uy, 4;;; becomes u;, and so on Let
W=K—{ug,u1,...,uo}+S1=Ni(ug,u1,...,Uu) ... +8—N,(ug,u1, """ ,u2). We shall prove Theorem
3.1G by induction on ¢,
Basis: t=1

This is Theorem 3.1.
Hypothesis: t<m-1

Assume that for all t<m-1, Theorem 3.1G holds.
Induction: t=m

Let cycle-c be a cycle in W, that contains at least one vertex in S8,~N,, (kg i1, " * * ,U2p)

(here W,, means the subgraph induced by vertices in W,). Note that for each vertex §; in

Sp—Np(ug,tq, =+ * ,Us,), there exists a path of length m from s5; to at least one vertex in

K—{ug,uy,...,us,}. We now consider different structures of cycle-c.
I Cycle-c consists of vertices in §,, only; cycle-c = 5,—s3— * - - =5,—51.

Let us identify 2 vertices s, and s, on cycle-c. Without loss of generality, let us
assume that a < b, Let Ri=(85:5241>05), path-1=s,—s,.1— * - - =55,
R={54,855-15.s51:5ps8p-1-.-s5), and path-2=s,~5, 1~ * * =§1=8,~8,_1— "= * —§,. Since s,
(sp) 18 in 8,,—Np,(ug,u1, * * * ,U2,), there exists a path of length m from s, (s,) to a vertex, say
u, (ug), in K—{ug,u1,...,uom). If c<d, let §¢ = {ug, U 41,....Uq), €else let §y =
{u,u,_q,....0uy). It is clear that wy,u,, - - ,u,, are not in §,, since ¢ < d in the first case
and ¢ =d in the second case. For every vertex s; in R (R), there exists a path of length m
from s; to at least one vertex in K—{ug,uy,...,us,}. Hence both R; and R, are m-

associated with S§,. By Corollary 3.1G and for ¢ < d (¢ = d), parity of path-1 equals parity

Bipartite Neighborhood of a Smallest Odd Cycle 34

of path u,~u, .~ - - - —uy (u,—u,_y— - - - —uy) equals parity of path-2. Since cycle-c is com-

posed of path-1 and path-2, it is therefore an even cycle.
II Cycle-c consists of alternating sequences of vertices in S,, and in W,,,_;.

Basically we want to replace each path of cycle-c in §,, with a path of the same parity

in W,,_;, and show that the resulting cycle-c (which may not be simple) is an even cycle.

Let us identify one vertex v that is in §,,_; and on cycle-c. We shall arbitrarily pick a
direction of traversal of cycle-c to be clockwise, and traverse cycle-c from v in clockwise
direction. During the traversal, cycle-c enters S, (i.e., cycle-c goes from some vertex in S,
to some vertex in S,,) and leaves S, (i.e., cycle-c goes from some vertex in S, to some vertex
in §,_1), say, a total of p times. Let §¢n—1); and sn.; denote the vertices in §,,_; and S,,,
respectively, such that when cycle-c traversed in clock-wise direction from v enters S,, for the
ith time, it goes from § y-1ei 10 Spei- Let §¢m_1y; and s,,; denote the vertices in S,y and S,,,
respectively, such that when cycle-c traversed in clock-wise direction from v leaves §,, for
the ith time, it goes from s5,; 0 S¢m_1y;. Let Smei Y C—>s,,; denote the path on cycle-c
traversed in clock-wise direction from s,,,; 10 S,;. Note that path s,,,;2% —s,.; consists of

vertices in S,, only. Let R; denote the vertices on path §y,.; 7% ™ —8,;.

From each vertex §u—13e (S(m-1y), there exists a path of length m—1 to at least one
vertex in K—{ug,uy, " " ,Ugy}. For each s, 1y (Spm—1yu). We pick arbitrarily a path of
length m—1, call it path-ei (path-li), from §¢_1ye (S m-1yi) 10 Uy (), for some u,; (u;) €
K—{ug,uy, "+ * Uy}, and use that path consistently in later arguments. Now there exist 2
vertices u, and u, in K that are on some ‘‘picked”’ paths such that the path #,"—u, includes
Lo, U1, " " ,U2,, and no vertex on that path besides u, and u, is on a *‘picked’” path. Let Sy
denote the set of vertices on the path u,°—up; Sgo = {(Ug.lar1, * " -Up). Let ue,-s“"—auu
denote the path from u,; to u; on the k-cycle that uses only vertices in Sqg. Let Sq; denote the
vertices on the path it =3idg,

Now we see that R; is me-associated with Sy, and by Lemma 3.1G
sm,-m"“—)sm,,-—s(,,,_l);,-”“"‘"ﬁ—)uasw—>l¢¢.'pm_ei—>s(m-1)gi—smi (see Figure 3.6) is an even

cycle, for all 1<i<p. Hence the parity of the path 5§ —1ysi—Smei™" “—>Smii—S (m-1yi i the same

Bipartite Neighborhood of a Smallest Odd Cycle 35

Smei Smli

S(m-1)ei S(m-)li

path-ei path-li

LU
L ..,
L] .
® s s s amane"*

Figure 3.6. A segment of cycle-c and its local neighborhood.

N

as the parity of the path 5 (1) —u, * —>uP** 45,1y, for 1<i<p

Next we replace each path §m_1)i—Smei” “—Smi—S(m-1yi Of cycle< with path
s(,,,_,,,,P"”'“"'—au,,-S‘”—+u,,-P""“"—>s(,,ﬂl)h- (see Figure 3.6), for 1<i<p, and obtain a new cycle-
c. The parity of new cycle-c is the same as that of cycle-c. The new cycle-c consists of ver-
tices in W,_; only (actually new cycle-c consists of vertices in the subgraph induced by
K—{ug,q, ... Uom)+S1=Ny(Uo,ltyy . o sllgm)t ==+ 48, =Ny (Uo.lty, * * JUzm), and
this subgraph is a subgraph of W,_;). Hence new cycle-c is an even cycle by the induction

hypothesis (because W,,., is bipartite). This implies that cycle-c is an even cycle.

We conclude that the subgraph induced by vertices
W‘ZK'-{M(),HI § % o4 ,uz,]+Sl—Nl(uo,u1, ey ,u2,)+ 577 +S,-N,(Ho,u] s """ ,uz,) is blpartlle, because the
subgraph does not contain any odd cycles.

Bipartite Neighborhood of a Smallest Odd Cycle 36

3.7. A Special Case

In this section we come back to the 1-neighborhood of the k-cycle. First we prove two Lemmas —
3.3 and 3.4, Lemma 3.3 improves Theorem 3.1, and Lemma 3.4 improves Lemma 3.3. Then we prove
Theorem 3.2 which uses Lemma 3.4 and shows that, for k>5, we can 3-color the k-cycle plus its 1-
neighborhood. Last we demonstrate that Theorem 3.2 is tight, i.e., k can not be 5 or less, by showing a
graph, the Gritzsch graph, which is 4-chromatic and the entire graph consists of a smallest odd cycle of
length 5 plus its 1-neighborhood.

Lemma 3.3. For any 3 consecutive vertices, u;, U;41, U4z, in K, the subgraph induced by vertices
K—{u;41 }481-N 1 (u;,1;41,1;42) is bipartite.

Proof. Note that Lemma 3.3 differs from Theorem 3.1 in that the subgraph under consideration in
Lemma 3.3 is composed of the bipartite subgraph of Theorem 3.1 plus two vertices —u; and ;4.
Without loss of generality, let’s reindex the & vertices in K in clockwise consecutive order starting with

i=0, hence u; becomes ugq, u;,; becomes u;, and so on.

First we show that the subgraph induced by vertices K—{u,u}+S81-N(u¢,u1,u5) is bipartite. Let
cycle-c be a simple cycle in the above subgraph containing the vertex uy. We claim that cycle-c is even.

To see this, let’s consider different types of neighborhoods of u,.
I Both neighbors of 1y on cycle-c are in S;; let’s call them 5" and s”.
Since both s” and s” are adjacent to u, and are not in N (ug,u,u5,), then both of them must
be adjacent to u;_, by Property 3.3. The path from s to s” of cycle-c not containing u, satisfies

the conditions of Corollary 3.5. Hence the parity of that path = parity of path u;_» — 15 = even.

This implies that cycle-c is even.
II One neighbor of 1, on cycle-c is in §,, the other in K; let’s call them s and u’.

s” must be adjacent to u;_, by the same argument as above. u” must be u;_; because u; is
not in the subgraph. By Corollary 3.4, the parity of any path from u,_; to s” within the subgraph

induced by vertices K—{u,u1,u2}+81—N1(ug,U1,u42) is even. Thus cycle-c is even.

Bipartite Neighborhood of a Smallest Odd Cycle 37

We have established that any cycle in the subgraph induced by K—{u,,u}+S1—N(ug,u1,u1,) con-
taining the vertex u (or not) is even. Hence the subgraph is bipartite. It is easy to show that Corollaries
3.2 through 3.5 still hold if the cycle or path under consideration includes the vertex uq (which is #; in the
Corollaries). Then we can use similar arguments as above to show that the subgraph induced by
K—{u}+81-N(ug,u,,u,) (by adding u, to the above bipartite subgraph) is also bipartite.

a

Lemma 3.4. If k£ > 5, then for any 3 consecutive vertices, u;, W41, U4, in K, the subgraph induced by
vertices K—{u; 41 }+S,-N(u;,u;,5) is bipartite.

Proof. Note that Lemma 3.4 differs from Lemma 3.3 in that the subgraph under consideration in Lemma
34 is composed of the bipartite subgraph of Lemma 3.3 plus vertices in N;(u;;,), because
N (it 41, 0540) — N1 (;,u;.40) = N1 (u;4) (since if a vertex s in S is in N (u;,%;41,4;42) and adjacent to
u;41, then s is not adjacent to either u; or u;,,). Without loss of generality, let’s reindex the k vertices in
K in clockwise consecutive order starting with i=0, hence u; becomes ug, %;,; becomes u;, and so on.
Let cycle-c be a cycle in the subgraph induced by vertices K—{u }+S—N (u¢.42) containing at least one
vertex in N (u,). Let s be a vertex in N, (u,) on cycle-c. Note that both neighbors of s on cycle-c are in
S, because s is not adjacent to any other vertex in K besides u,; let’s call the two neighbors of s on
cycle-c s” and 5”. Because s” and s are not in N, (ug,u,) and k > 5, they must be adjacent to u;_ or
u4 by Property 3.6. But it can not be the case that one of s”, s” is adjacent to u,_, and the other adjacent
10 u4, since the distance between u,_, and u, is 6 and the distance between s” and s is only 2 (Property

3.7). Thus both s” and 5™ are adjacent to the same vertex, either u;_» or ug, in K.

Now we divide the two neighbors (which are on cycle-c) of all vertices v such that v is on cycle-c
and in N(u,) into 2 sides, side-1 and side-2. Side-1 contains those adjacent to u,. Side-2 contains those
adjacent to u;_,. See Figure 3.7 for illustration. Note that vertices on both sides are distinct, and number

of vertices on each side is even because both neighbors of vertices in N1(u,) go on the same side.

Next we delete from cycle-c vertices in N;(u;) and edges incident to those vertices. Note that no
two vertices in N(u,) are adjacent (otherwise we obtain a 3-cycle which consists of #; and two vertices
in Ny (u;)), hence the number of edges deleted is even. After deletion cycle-c becomes a collection of
paths. Each path goes from a vertex on side-i to another vertex on side-j, i, je {1,2}, and contains

exactly two vertices among the vertices from the two sides. Note that none of the paths contains #; and

Bipartite Neighborhood of a Smallest Odd Cycle 38

paths on cycle-c

side-1

Figure 3.7. Anillustration of division of vertices into 2 sides, side-1 and side-2.

vertices in N (ug,u,,u;). The number of paths from a vertex on side-1 to a vertex on side-2 is even,

because the number of vertices on each side is even.

First let’s consider paths that originate and terminate on side-1. The paths are of the form s,—s,
where s, and s, are adjacent to u4. The path s,—»s, satisfies conditions in Corollary 3.5 (modified so that
the path under consideration includes vertices u and u,, or ; and u;,, in the Corollary), hence parity of
path s,—s, = parity of path uy—u, = even. So parity of paths from a vertex on side-1 to another vertex
on side-1 is even. The same result applies for side-2, that is, parity of paths from a vertex on side-2 to

another vertex on side-2 is even.

Second let’s consider paths from a vertex on side-1 to a vertex on side-2. The paths are of the form
5,—5p, where s, is adjacent to u, and s, is adjacent to u;_,. The path s,—s, satisfies conditions in

Corollary 3.5, hence parity of path s,—»s, = parity of path u4—us— - - - —uy_, = odd. So parity of paths

Bipartite Neighborhood of a Smallest Odd Cycle 39

from a vertex on side-1 to a vertex on side-2 is odd.

Cycle-c is composed of an even number of edges (those deleted), an even number of odd paths
(side-1 to side-2), and a number of even paths (side-1 to side-1, side-2 to side-2); therefore, cycle-c is an
even cycle.

We have established that any cycle in the subgraph induced by K—{u;; }+51—N(%;,14;,2) contain-

ing vertices in N, (u,) (or not) is even. Hence the subgraph is bipartite.

Theorem 3.2. If k > 5, then we can 3-color the subgraph induced by vertices K+5 .

Proof. We know the subgraph induced by vertices K—{u;,; }+8,-N(u;,u;4,), for some i, is bipartite

from Lemma 3.4. Hence we can use 2 colors to color it.

Figure 3.8. A configuration showing the independence of vertices in Nj(u;, u;.,) and u;, ;.

Let sy, s, be vertices in N, (u;,u;,,) adjacent to u;, and 53, 54 be vertices in N, (u;,u;,,) adjacent to
Ui, (see Figure 3.8). s, is not adjacent lo s,, otherwise we obtain a 3-cycle: s,—s,—u;—s. Similarly 54

is not adjacent s4. ;4 is not adjacent to s;, i€ (1, 2, 3, 4}, otherwise we can easily obtain a 3-cycle.

Bipartite Neighborhood of a Smallest Odd Cycle 40

Since k£ > 5, 5, is not adjacent to 54 (in general a vertex in N, (4;,u4;,,) adjacent to u; is not a neighbor of
a vertex in N (u;,u;4,) adjacent to u;,;), otherwise we obtain a 5-cycle: §—u—u; 4 —i;43—53—5;. Thus
we can use the third color to color the independent set u;,,+N|(4;,4;,2). Therefore we can 3-color the
subgraph induced by the vertices K+85 .

[w}

Next we show that Theorem 3.2 is tight, that is, when & = 5, the subgraph induced by vertices K+,
is not always 3-colorable. The Grotzsch graph [Gritzsch, 1958], shown in Figure 3.9, is one example
where a smallest odd cycle size is 5, the chromatic number is 4, and if we pick v;—v,— -+ - —vs—v; to be

the k-cycle, then K+S, is the entire graph.

/AN
X< 1

Uy U3

Figure 3.9. The Gritzsch graph.

Chapter 4

Coloring Graphs with only ‘‘Large’” Odd Cycles

4.1. Introduction

In Chapter 3 we focused on a smallest odd cycle of a graph and its local neighborhood, and we
showed that portions of this neighborhood are bipartite. Recall the goal in that chapter is to investigate
the role played by smallest odd cycles of a graph in connection with graph coloring. This is an ambitious
and challenging goal. Although progress has been made, as we have shown that we can find 2-colorable
neighborhood of a smallest odd-cycle, much more remains to be done. We shall continue with this inves-
tigation in this chapter.

Our focus in this chapter will still be on a smallest odd cycle of a graph and its local neighborhood;
however, our aim is to develop good approximate graph coloring algorithms based on this focus. The
““goodness’’ of a graph coloring algorithm depends not only on its simplicity, efficiency, but also on its

performance — in terms of number of colors used.

In this chapter we present two approximate graph coloring algorithms, both of which are simple and
efficient. The main idea behind both algorithms is to find a subgraph of G of a certain size that we can
color with a small number of colors. The support for this idea is the results of Chapter 3 — the bipartite
neighborhood of the k-cycle. The performance of these two algorithms depends greatly on k — the size of
a smallest odd cycle in G (actually k relative to n). Each algorithm has a certain range (of £) over which
it out performs the other. As we have seen in the last chapter, the larger the value k is, the larger is the
bipartite neighborhood of the k-cycle. A direct translation of that result in this chapter is: the larger the
value k is (relative to n), the better each algorithm performs (i.e., the fewer colors used by each algo-

rithm) in both absolute and relative (compared with the chromatic number or with other existing

41

Coloring Graphs with only Large Odd Cycles 42

approximate graph coloring algorithms) terms. Hence the title of this chapter.

Now we shall give an outline of the developments in this chapter. We first focus on the k-cycle and
its 1-neighborhood (K+S;). We have shown in Theorem 3.2 that we can 3-color K+5,. With the aid of
the structures of K+S, and some counting arguments, we derive a lower bound on the size of K+S;.
Once we know how large a graph we can 3-color, then we can recursively find 3-colorable subgraphs

until all the vertices in G are exhausted. This gives us the first approximate graph coloring algorithm.

We show that if k=5 and k is of the form k> [ﬂ , for some i, then using this algorithm we can g-color G,

12
where ¢ is upper bounded by 6[%] (an explicit formula for g is also given). This result says that we

can color all triangle-free graphs (k=5) with O(+n) colors.

Next we focus on the k-cycle and its local neighborhood — §1,S5, - - - ,§,, for some ¢ to be specified
later. We introduce the notion of goals and separators, and a strategy for finding a subgraph of G that we
can 4-color. With the help of goals, scparators, and Theorem 3.1G, we derive a lower bound on the size
of the 4-colorable subgraph that we find in G. Based on this result, we present another recursive algo-
rithm for approximate graph coloring for k25. Using this second algorithm, we show that if

k>4(1gn—1glgn) then we can 41gn-color G.

We evaluate the performance of the two approximate graph coloring algorithms presented by first
comparing them against each other, second comparing them against the chromatic numbers of graphs
under consideration, and third comparing them against other approximate graph coloring algorithms. As
a result of the evaluation, we show that for all triangle-free graphs, the performance of the coloring algo-
rithms presented in this chapter are better than that of all known approximate graph coloring algorithms.

In this chapter, we will use the same notation as that presented in Chapter 3. Again, we assume

that the size of a smallest odd cycle in G is greater than 3 (k=5). When we say g-color a graph G, we

mean [q]-color G.

Coloring Graphs with only Large Odd Cycles 43

4.2. k-Cycle and its 1-Neighborhood

We have shown in Chapter 3 that the k-cycle and its 1-neighborhood possess many special struc-
tures and properties. The most important ones are: 1. a large portion of K+S is bipartite — Theorem 3.1,
and 2. if £>5, then K+S; can be 3-colored — Theorem 3.2. We will use these results in this section to

develop algorithms for graph coloring.

We start by examining graphs with k> -g—}, "ﬂ, and {%], and designing algorithms that 3, 4, and

5-color them, respectively. Then we present a general approach for graph coloring, using the above three
classes of graphs as basis. We analyze the performance of the algorithm on & of the form: k>{ﬂ, for

12
i >4, and find that the number of colors used by the algorithm is at most 6[—,}] . Since we assume that

k=5, then i is O(n), which implies that the algorithm uses O(yn) colors.

Before we proceed with the algorithms, we first observe and prove the following fact and lemma.
Fact 4.1, If a smallest odd cycle size of G is k and G’ is a subgraph of G, then a smallest odd cycle size
of G’ is at least k.

This fact is important because in this chapter we deal with recursive algorithms. Using the notation
of Chapter 3, knowing the value k of a graph G, we can safely assume that the same k value applies to

any subgraph of G (i.e., any subgraph of G has k as its smallest odd cycle size), or we can do better.
Lemma 4.1. If the minimum degree of G is at least g, then for k>5 (k=5), we can find a bipartite sub-

graph of size at least %k—qﬂ (2g) in K+8§,.

Proof. We shall consider the 2 cases k>5 and k=5 separately.
Lk>5

We shall use Lemma 3.4 to find a bipartite subgraph of the desired size. Since the degree of every
vertex in G is at least g, then every vertex in K is adjacent to at least g—2 vertices in §,. Property 3.4
says that every vertex in §, is adjacent to at most 2 vertices in K, thus the number of vertices in §, is at
g2k

2

Jeast de., IS, |z(‘f—‘2‘2~)—’£).

Coloring Graphs with only Large Odd Cycles ' 44

min |N(u;,u; =a,
ik 1 I 1(is L+2)I

then

lSI‘Z a<s

2 k [

Ek_ 21811
2

2181 V] -k
1511 -a2 18] - — = 18, 1(1-2) 2 L2E (g9
k k 2
According to Lemma 34, we can find a bipartite subgraph of size at least

(q _Zz)k —(g-2)+k—-1= —qzﬁ—qﬂ in K+S;.

II. k=5
Since k=5 and the degree of every vertex is at least g, then any two adjacent vertices in K plus ver-
tices adjacent to them constitute a bipartite subgraph of size 24.
m]
Corollary 4.1. If the minimum degree of G is at least 4, then we can find an independent set of size at
least k-1 in K+§,.
Proof. We shall consider 2 cases.

L k>5.

By Lemma 4.1, we can find a bipartite subgraph of size at least 2k—3 (since ¢=4) in K+, which

means that we can find an independent set of size at least k-1 in K+S,.
II. k=5.

By Lemma 4.1, we can find a bipartite subgraph of size at least 8 (since g=4) in K+§,, which

means that we can find an independent set of size at least 4=k—1 in K+§;.

42.1. k > {%“ 3 Colors

E}. This algorithm is the

In this section we present an algorithm that 3-colors a graph with k> >

Coloring Graphs with only Large Odd Cycles ' 45

only one in Section 4.2 that does not depend on Theorem 3.2; rather, it exploits special structures of the
k-cycle and its 1-neighborhood and takes advantage of the fact that k is large. One such special structure

is captured in the following fact.

L , then there exists a vertex u; in K that does not have the following structure:

Fact 4.2. If k > 2

W;—U; 41 —S—U; -1 —1;, for any s€ 8.
Proof. Suppose that every vertex in K has the described structure. Since every vertex in §; is adjacent to

at most 2 vertices in K (Property 3.4), then §; must contain at least k vertices. But k > {%] ,and k+k>n.

Contradiction.

The algorithm goes as follows.

Input. A graph G=(V,E), k> "!21]

Output. A 3-coloring of G.

1. Find a smallest odd cycle, the k-cycle, in G.
Let K and S, be defined relative to the k-cycle in G.

2 Find a vertex u; in K that does not have the following structure (Fact 4.2): uw;—u; ;—S—u;_1—i;, for any
seS 1-

3. Color vertex u; with color C.
4, Color K—u; (which is bipartite) with colors A and B.
(The rest of the graph {G —K+u;}, i.e., the graph induced by {V-K+u;}, is bipartite, since the number

of vertices remaining is n—k—1< % o)

5: Divide {G-K+u;)} into 2 independent sets, [, and I,.
6. WLOG let us assume that w;e,. Color vertices in /; with color C,
i Color vertices s in I, as follows:

8. If 5 is not adjacent to vertices in K that are colored A or B, then color s with color A (or we
could color s with color B).

9. If s is adjacent to exactly one vertex in K that is colored A(B), then color s with color B(A).

10. If s is adjacent to two vertices u, and u;, in K, then the shorter distance within the k-cycle
between u, and u; is 2 by Property 3.3. Note that u; is not the vertex that is distance 1 from

Coloring Graphs with only Large Odd Cycles) 46

both , and u, by the way u; is picked. Hence u, and u;, must have been colored the same, say

with color A, so we color s with color B.

(If a vertex s is in §,, then s is adjacent to at most 2 vertices in K by Property 3.4. Therefore we
need to consider no further.)

i

Ak

Algorithm 4.1. A 3-coloring algorithm for graphs with k >

Theorem 4.1. If k>

%, then Algorithm 4.1 3-colors G.

Proof. We need to show that Algorithm 4.1 produces a legal 3-coloring of G. All the vertices colored C
are in I, which is an independent set. All the vertices in I, are independent and are colored with colors
either A or B. Thus the coloring among vertices in /, is legal. The coloring among vertices in /, and ver-
tices in K is legal as well, because, as we have shown in Step 10, no vertex in /, is adjacent to two ver-
tices, one colored A and the other colored B, in K.

m]
Notice that the number of colors used in the above algorithm is tight, since the chromatic number
for any non-bipartite graph is at least 3.

The running time of Algorithm 4.1 is dominated by Step 1 — the time needed to find a smallest odd
cycle; all other steps can be accomplished in time O(e). As discussed in Chapter 2, the complexity of
finding a smallest odd cycle in a graph is the same as that of matrix multiplication when the graph is

dense, otherwise it is O(e*2). Hence the complexity of Algorithm 4.1 is O(min{e*2, n%%"6}).

422. k > % : 4 Colors

Our approach for 4-coloring G with k> {%} is simple. First we find an independent set of size at

least k—1 in K+S,, and this independent set uses one color. Then we 3-color the rest of the graph using
Algorithm 4.1. To find an independent set of size at least k—1 in K+§;, we use Corollary 4.1 of Lemma
4.1.

Coloring Graphs with only Large Odd Cycles 47

Input. A graph G=(V,E), k> [ﬂ 3

Output. A 4-coloring of G.

1 Delete (iteratively) all vertices in G with degree less than 4, and call the resulting graph G,. (Hence
after deletion, the minimum degree of G, is 4 or more.)

2. Find a smallest odd cycle, the k-cycle, in G,.
Let K and S, be defined relative to the k-cycle in G,4.

3 Find an independent set of size at least k-1 in K+S .
4. Use Algorithm 4.1 to 3-color the remaining graph (G, — independent set).
3. Add the vertices deleted in Step 1 to G4 and 4-color them.

Algorithm 4.2, A 4-coloring algorithm for graphs with k > {L;j‘ :
Theorem 4.2. If k:{ %] , then Algorithm 4.2 4-colors G.

Proof. Because of Corollary 4.1 we can carry out Step 3, hence all we need to show is that we are able to

perform Step 4. After the independent set of size at least k—1 (Step 3) is deleted from G4, the size of the

—n—l, kzl‘—;—lﬂ). If we let m=2—", then k>[ﬁl.

3 3 3 2

remaining graph is n—(k-1) < n—k—} <] (since k>

Hence we can 3-color the remaining graph with Algorithm 4.1 by Theorem 4.1. Next (in Step 5) we can
4-color the vertices that are deleted in Step 1 due to Lemma 2.1.
o

The complexity of Algorithm 4.2 is O(min{e*2, n>%}) (Steps 2 and 4). All other steps take O(e)

time.

423. k > % : 5 Colors

n

We will use another simple approach to 5-color a graph with k> 2l Given a graph G, we first

find a bipartite subgraph of size at least %—4 in K+S, and this bipartite subgraph uses two colors. Then

we 3-color the rest of the graph using Algorithm 4.1. The algorithm goes as follows:

Coloring Graphs with only Large Odd Cycles 48

Input. A graph G=(V,E), k> i-%]

Output. A 5-coloring of G.

1. Delete (iteratively) all vertices in G with degree less than 5, and call the resulting graph Gs. (Hence
after deletion, the minimum degree of G 5 is 5 or more.)

2. Find a smallest odd cycle, the k-cycle, in Gs.
Let K and S, be defined relative to the k-cycle in Gs.

3. Find a bipartite subgraph of size at least 52_15_4 in K+5,.

4, Use Algorithm 4.1 to 3-color the remaining graph (G 5 — bipartite subgraph).
5. Add the vertices deleted in Step 1 to G5 and 5-color them.

Algorithm 4.3. A 5-coloring algorithm for graphs with k > [ﬂ .

Theorem 4.3. If k>

-;-!-], then Algorithm 4.3 5-colors G.

Proof. Because of Lemma 4.1 we can carry out Step 3 (for k=5 and ¢=5, 29 > %A&), then all we need

5k
2

is deleted from Gs, the size of the remaining graph is at most m =

to show is that we are able to perform Step 4. After the bipartite subgraph of size at least ———4 (Step 3)

n—(%&—él) < n—%cmnm < %"% (since k>H, szn). The. numiber of vertices in G5 is more

than 12 (n>12) because k=5 and the number of vertices in K+S§; is at least 5—2](Since n>12,

% = %(%ﬂ%;—), thus k> !'%‘I Therefore we can 3-color the remaining graph with Algorithm 4.1 by

Theorem 4.1. The rest of the graph G can be 5-colored (Step 5) due to Lemma 2.1.

Algorithm 4.3 has the same running time as Algorithm 4.2, that is, O(min{e*?, n2*7¢}),

Coloring Graphs with only Large Odd Cycles 49

3172
n]

424, k > [—|:6|— Colors
i 3

We have presented three different approaches for graph coloring specifically tuned for graphs with

k> % ,where i =2, 3, and 4. We now present a general approach for approximate graph coloring. This

approach does not depend on the form of k. However, the analysis is simplified when k is of the form

k>

% ,for i>4. And this is the form of k we shall use.

The general approach is based on the following ideas:

1. If we are using g colors to color a graph G, then we can just deal with G,, which has a minimum

degree of at least ¢ (Lemma 2.1).

2. We can g-color a graph G, if we can

a. p-color a subgraph G, of G, and

b. g-p-color the remaining graph G,—G,’ of G,.

Since the subgraph K+S; is 3-colorable when k>3, it is natural to let p be 3, and 3-color K+S;. To
g-3-color the remaining graph, we can repeat the same process, that is, recurse until g—3i<5, for some i,
in which case we can use one of the three algorithms presented earlier in this section. This is actually
what Algorithm 4.4 does, and it uses Algorithms 4.1, 4.2, and 4.3 as its basis. Algorithm 4.4 treats k=5

as a special case. The correciness of the above approach and of Algorithm 4.4 depends on g, which is yet

to be specified.

Note that Algorithms 4.2 and 4.3 are special cases of the general approach, with p taking on the
values 1 and 2, respectively. Since we have shown that a large portion of the neighborhood of the &-cycle
is bipartite, we can equally let p be 2 in Algorithm 4.4. So why do we choose p to be 37 The first reason
is that we are not able to bound the size of the bipartite neighborhood of the k-cycle we obtain. The
second reason is that when p=3 the analysis of Algorithm 4.4 is simpler, i.e., we obtain a clean (or
cleaner) formula for ¢ — the number of colors used. However, with the methods which we have
developed for finding 2-colorable and 3-colorable subgraphs, p=2 is probably the better approach. That

is, it probably takes fewer colors to color G if we recursively find 2-colorable subgraphs in G, using

Coloring Graphs with only Large Odd Cycles 50

Lemma 4.1 to bound the size of the 2-colorable subgraphs, than if we recursively find 3-colorable sub-
graphs in G. Due to the complexity of the analysis when p=2, we justify the preceding statement by the

size of 3-colorable subgraphs that we find with each approach, assuming k>5. In the p=3 case, we can

k(qg-2)
2

find a 3-colorable subgraph — K+S§, of size at least . In the p=2 case, we can find a bipartite

subgraph of size at least %——q—i-l, by Lemma 4.1, in K+S,. In the next iteration, we can find a bipartite

subgraph of size at least k(2_2) —(g—2)+1, again by Lemma 4.1. If we combine the first bipartite sub-

graph and an independent set of the second bipartite subgraph, we obtain a 3-colorable subgraph of size at

least 3—{:1-—%——3—'294%, which is larger than the size of the 3-colorable subgraph we find with the first

approach (p=3), assuming £>5. Thus in the p=2 case, we may be able to start with a smaller ¢ than the
p=3 case. This implies that the number of colors used by the second approach is as few as the first, if not
fewer. But for clarity and simplicity, we have decided in favor of p=3. We ask the readers to keep in
mind that the number of colors used by Algorithm 4.4 could possibly be improved. The numbers we pro-

vide can serve as an upper bound.

Input. A graph G=(V,E), k> {%], i>4.

Output. A g-coloring of G.

1. Delete (iteratively) all vertices in G with degree less than g, and call the resulting graph G,. (Hence
after deletion, the minimum degree of G, is g or more.)

2 Find a smallest odd cycle, the k-cycle, in G,.
Let K and §, be defined relative to the k-cycle in G,.

3. If k=5, then do
4. Find a bipartite subgraph of size at least 2q in K+5; and 2-color it.

5, If there exists a vertex in the remaining graph (G, —bipartite subgraph) of degree at least -2,
then do

6. Obtain an independent set of size at least ¢—2 in (G, — bipartite subgraph) and 1-color it.
(Hence we have obtained a 3-colorable subgraph of size at least 3g-2.)
W If -3 =3, 4, or 5, then
8. Use Algorithm 4.1, 4.2, or 4.3 to g—3-color the remaining graph (G, — 3-colorable
subgraph), respectively.

Coloring Graphs with only Large Odd Cycles ' 51

9. Else (g—3> 5)
10. Use Algorithm 4.4 to g—3-color the remaining graph (G, — 3-colorable subgraph).
11. Else (the maximum degree of (G, — bipartite subgraph) is at most g—3)
12. g-2 color (G, — bipartite subgraph).
13. Else (k>5), do
14. 3-color the subgraph K+5,.
15. Ifg-3=3,4,or5, then

16. Use Algorithm 4.1, 4.2, or 4.3 to g—3-color the remaining graph (G, — K — §), respec-
tively.

17. Else (g—3> 5)
18. Use Algorithm 4.4 to g—3-color the remaining graph (G, — K - §,).
19. Add the vertices deleted in Step 1 to G, and g-color them.

Algorithm 4.4. A g-coloring algorithm for graphs with k > ﬂ and i>4.
Now we shall specify what g is in Algorithm 4.4. If we express i as
i =1+6(0+142+ - - - +a) + (@a+1)b + ¢,
b <6, c <a+l,
that is,
iz6yj+1,
j=0
but
a+l
i<6Yj+1, for some a,
i=0
and
b is the quotient of i — (63 j + 1) divided by a+1,
j=0
¢ is the remainder of i — (63 j + 1) divided by a+1.
j=0
Then
q=f(a, b, c)

where

Coloring Graphs with only Large Odd Cycles

fla, b, c)=

Theorem 4.4. If k>

52

2+6a+b, if c =0,
2 + 6a, ifc=1,b=0,
3+6a+bh, ifc>0and b #0when c=1.

—':—1, i>4, then Algorithm 4.4 g-colors G, with g as specified above.

Proof. Algorithm 4.4 is recursive in nature. Note that the basis of this algorithm is Algorithms 4.1, 4.2,

and 4.3. It can be easily verified that the equation for ¢ is valid when i = 2, 3, and 4. We shall assume

that we are using ¢ colors to color G, thus we can just deal with G,, which has a minimum degree of at

least g.

First let us consider the case k>5. Because of Theorem 3.2, we can 3-color the subgraph K+

(Step 14). We now need to prove that we can g—3-color the rest of the graph G, - K - §,. Letm =

|G, — K = §,|. Basically we need to show that k>"-ﬂ, for some j, and if j can be expressed as

J =1+ 6(0+142+ - - - +a;) + (a;j+1)b; + ¢}, for some a;, b;, c;, then ¢—3 2 f (a;,bj,¢;).

Because of Property 3.4 and the degree of every vertex in G, is at least g, the number of vertices in

S, is at least klg-2) . Thus the number of vertices in G, — K — § is at most n——ﬁq—. So
2 ' 2

then

m< nwﬁ < n—f-q-, since k>[¥—] .
2 2i i

m<n(-Ly 2,7 >_M
2i i .

Coloring Graphs with only Large Odd Cycles 53

Knowing the value of j, we will show that ¢—3 > f(a;,b;,c;). We begin with ¢—3 =3, 4, 5, that is,
if ¢ = 6, 7, 8, then in order to apply Algorithms 4.1, 4.2, 4.3, we need to show that j < 2, 3, 4, respec-

tively. We shall consider each case separately.

Ifg=6then a=0, hence c=0,s0b=4and i = 1+0+440 = 5. 'I'hismeansthatj=’ri—%]=

{S—g] = 2. Thus we can use Algorithm 4.1,

Ifg=7thena=0,hence c=0,s0b=5andi=1+0+5+0 = 6. Thismeansmatjz{i——g—‘l=

{6—%} = 3. Thus we can use Algorithm 4.2,
Ifg=8thena=1, hence b =0, and either c =0 or ¢ = 1. So either i = 1+6+0+40 = 7, or i =
_ . : .|, gl _ 8 .|, gl _ 8| _
1+6+0+1 = 8. This means that either j = 1—2 = 7—-5 =3,0rj= 1——2 = 8—5 = 4. In both cases

we can use Algorithm 4.3,

Having proved the reduction to the basis step, now we move on to prove the general induction step.
Again we want to show that ¢-3 2 f(a;,b;,c;), where j = [i—ﬂ = 1+ 6(0+1+2+ - - - +a;) + (a;+1)bj+c;.

There are 3 cases.
1L i=1+6(0+142+ - - - +a) + (a+1)b, (c=0)
qg=2+6a+b,

f = [i--ﬂ =1+ 6(0+14+2+ - - - +a-1) +a(3+b) + B_]_l'

If b =0 and a=1, then f (0, 2, 0) = 2+0+2 = g—4.

If b =0and a>1, then f (a—1, 2, a—1) = 3+6(a—1)+2 = ¢-3.
If b=1or 2, then f (a—1, 3+b, 0) = 2+6(a—1+3+b = g-3.
If b = 3, then f (g, 0, 1) = 2+6a = g-3.

If b =4, then f (a, 1, 0) = 2+6a+1 = ¢-3.

If b =35, then f (a, 2, 0) = 24+6a+2 = g-3.

Coloring Graphs with only Large Odd Cycles 54

II. i=14+6(0+1+2+---+a)+ 1, (c=1and b =0)

qg=2+6a, j=[i——g:‘=1+6(0+1+2+--‘+a—1)+3a,

fla-1, 3, 0) = 246(a-1)+3 = g¢-3.

111, =1+ 6(0+142+ - - - +a) + (a+1)b + c,
(0<c <a+1 and b#0 when c=1)
g=3+6a+b,

J= [i—g—] =1+ 6(0+142+ - - - +a-1) + a(3+b) + H{_b;ﬂ'

Ifb=0andc > 1, then f (a-1, 3, c—1) = 3+6(a—1)+3 = g-3.
Ifb=1andc=1,thenf(a-1, 4, 0) = 2+6(a—-1)+4 = g4.
Ifb=1andc > 1, then f(a-1, 4, c-1) = 346(a-1)+4 = g-3.
Ifb=2and c < a, then f(a—1, 5, ¢) = 3+6(a—1+5 = g-3.

If =2 and ¢ = a, then f (g, 0, 0) = 2+6a = g-3.
Ifb=3and c =1, then f (@, 0, 1) = 2+6a = g-4.
Ifb=3andc > 1, then f (a, 0, ¢) = 3+6a = g-3.

If b =4, then f (g, 1, ¢) = 3+6a+1 = g-3.

If b=5and ¢ =1, then f (a, 2, 0) = 2+6a+2 = g—4.
Ifb=5andc > 1, then f (g, 2, ¢c-1) = 3+6a+2 = g-3.

We have shown that we can g—3-color the subgraph G,—K-§,. Since we can 3-color K+S§, hence

g colors are sufficient to color G,.

Second let us consider the case k=5. Because of Lemma 4.1, we can find a bipartite subgraph of
size at least 2¢ in K+S,. If there exists a vertex of degree at least ¢—2 in (G, — bipartite subgraph), then
the neighbors of this vertex form an independent set of size at least g—2, because k=5. Combining the

bipartite subgraph and the independent set, we have a 3-colorable subgraph of size at least 3g-2. Since

k=5 and q >4 (because i >4), then 3¢g-2 > -'%q- Hence the size of the 3-colorable subgraph is more than

%q—. Using the same analysis as in the case of k>5, we can show that the subgraph (G, — 3-colorable

Coloring Graphs with only Large Odd Cycles ' 55

subgraph) can be g—3-colored. Thus g colors are sufficient to color G,. If there exists no vertex of
degree at least ¢—2 in (G, — bipartite subgraph), which means that the maximum degree of (G, — bipar-
tite subgraph) is at most ¢—3, then (G, — bipartite subgraph) can be g—2 colored (Step 12), because every
vertex is adjacent to at most ¢—3 other vertices. In fact, the graph in Step 12 can be g—3-colored, for all
g-3 > 2, using a theorem of Brooks[1941] (Brooks’ theorem says that if the maximum degree of a graph
G is d > 2, then G is d-colorable unless G contains K., as a subgraph). However, this improvement

does not reduce the overall number of colors used in Algorithm 4.4.
Next we can g-color the rest of the graph G (Step 19) due to Fact 4.1.
m]
Before analyzing the running time of Algorithm 4.4, we shall examine the behavior of g in terms of

i. Note that i can also be expressed as

i=1+3a(a+1)+ (a+1)b +c.

Then
—g——%=az+(l+%)a+-§*+%,
%_%_1—12_%(1—%}=a2+(1+%)a+%+%+-§—;-,
=m+%+%f
6[—;——%—%2—%(1—%%”2=3+6a+b
Therefore

12
6[—;-] >3+ 6a+bxg.

This result is important enough to deserve a theorem of its own.

J2
Theorem 4.5. In a graph G, if k=5 and k> % , then we can g-color G with ¢ upper bounded by 6[—%} :

Theorem 4.5 says that we can color all triangle-free graphs (k=5) with O(+/n) colors.

Coloring Graphs with only Large Odd Cycles 56

Now we can analyze the running time of Algorithm 4.4, Each iteration of Algorithm 4.4 takes
O(min{e*2, n>*"¢}) time. The number of times Algorithm 4.4 is called is O(g) or O(i''?). Hence the

complexity of Algorithm 4.4 is O(i'"?min{e*?, n*376Y).

4.3. k-Cycle and its Local Neighborhood

In Section 4.2 we focused on the k-cycle and its 1-neighborhood, and essentially found a subgraph

of a certain size that we can 3-color. Base on this result we designed a recursive algorithm for graph

coloring (which works out well when £ is of the form k> [ﬂ). In this section we shall focus on a larger

neighborhood of the k-cycle — §1,S,, - - - ,S,. First we show that for all k=5 and t<£:—1—, we can g-color

2
the k-cycle plus the union of its 1-neighborhood through #-neighborhood, where g = 2{ Py ll. If we
let t=[k%3], then the preceding result says that we can 4-color the k-cycle plus all its first £ neighbor-

hoods. We choose the value t=[k%3] because it gives us a better asymptotic bound on the number of

colors used than other values of ¢. In this first ¢ neighborhoods of the k-cycle, we show that if we fail to
find a ““large’” 4-colorable subgraph, then we can find a separator (a set of vertices which, if deleted,
makes the graph disjoint). We then introduce the notion of goals which places a bound either on the size
of the 4-colorable subgraph or on the size of the separator. This bound enables us to develop a recursive
algorithm for finding a 4-colorable subgraph in G of a certain size. Based on this 4-coloring algorithm,
we then present an approximate graph coloring algorithm for all k>5. Using this algorithm, we show that
if k>4(lgn—lglgn) then we can 4lgn-color G.

4.3.1. A 4-Colorable Neighborhood of the k-Cycle
We now present a general theorem on coloring the local neighborhood of the k-cycle. The 4-

colorable neighborhood of the k-cycle comes as a special case of this theorem.

Theorem 4.6. For all k=5 and t<%, we can g-color the subgraph induced by vertices

' k
K+81+8,+ +S,, where g = 2[!:—2:—1}'

Coloring Graphs with only Large Odd Cycles 57

Proof. Because of Theorem 3.1G, we can 2-color the subgraph which consists of any k—(2¢+1) consecu-

tive vertices on the k-cycle plus their first ¢ neighborhoods. The number of disjoint sets of k—(2¢+1) con-

: : : : k
secutive vertices in K is
k-2t-1

] (where one of the set contains less than k—(2¢+1) consecutive ver-

. k
tices). Note that the sum of all [TR

w sets of k—(2¢+1) consecutive vertices plus their first ¢ neigh-

borhoods is K+§;+S,+---+S,. Hence we can 2{%;?1—1 -color the subgraph induced by vertices

K+81+85+ - - +5,.

Corollary 4.2. We can 4-color the subgraph induced by vertices K+8;+S,+ - - - 4§, where ¢ = [%31

Corollary 43. We can k+l1-color the subgraph induced by vertices K+§+S,+ - +S,, where

As Theorem 4.6 indicates, there is a trade off between number of colors used and the number of

neighborhoods of the k-cycle colored. The two extremes are Corollaries 4.2 and 4.3, that is, using 4

colors to color the first [%3] neighborhoods of the k-cycle, and using k+1 colors to color the first

l%s'] neighborhoods of the k-cycle, respectively. In what follows, we will use the result of Corollary

4.2, because it gives us a better asymptotic bound on the number of colors used.

4.3.2. A Strategy

It is gratifying to know that the k-cycle plus its first {k:f} neighborhoods can be 4-colored. Yet

without additional structure and properties of the graph, we do not have a bound on the number of

Coloring Graphs with only Large Odd Cycles 58

vertices contained in the first [

k-3

7 neighborhoods. Hence it becomes necessary to devise a strategy to

overcome this problem. The strategy we have designed is based on the following ideas:

L.

For each neighborhood, say i-neighborhood, of the k-cycle, we establish a goal, called goal;, which

is the number of vertices we would like the i-neighborhood to contain.

If every neighborhood of the k-cycle achieves its goal, then the total number of vertices contained
k-3
4

neighborhoods plus those on the k-cycle is at least k + Y, goal; = Goal. In this

i=l

in the first [k—3
4
case, we say we have achieved “‘Goal’’. Goal serves as a lower bound on the number of vertices

that can be 4-colored.

If one of the neighborhood of the k-cycle fail to attain its goal, say j-neighborhood is the first
neighborhood starting from the k-cycle that failed, then we know we can 4-color the vertices on the

k-cycle plus the vertices in the first j—1 neighborhoods. The number of vertices that can be 4-
j-1
colored is at least k + ¥ goal;. In addition, the j-neighborhood, which contains less than goal; ver-
i=1
tices, serves as a separator. The separator separates G into two disjoint graphs, G and G ,, where
j-1 j
G, =K+ 3¥S;,and G, =G -K - 3.5;. G, can be 4-colored. Furthermore, we can use the same
i=1 i=l1
4 colors and the same strategy to color G, (i.e., we can recurse on G, using the same 4 colors).
In both cases above, we have found a subgraph that we can 4-color. Either we have achieved
“Goal’’, that is, we have found a 4-colorable subgraph of size at least Goal, or we have achieved
“‘n — ¥ |separators|’’, that is, we have recursively found separators (never achieving Goal in each

recursive call), and along the way we have found a 4-colorable subgraph of size at least

n — Y '|separators|.

The parameters of the strategy are k and n, actually k relative to n. Based on k and n, we have to

k-3

decide what values to assign goal;, for i=1 to [— . Note that if the values assigned to goal; are small,

4

then Goal is small, which means that the 4-colorable subgraph of the first case is small. Yet if the values

Coloring Graphs with only Large Odd Cycles 59

i goal; c=1 1<e<2 c=2 c>2
k-cycle k k k k k
1 k k k k k
2 ck k ck 2k ck
3 2k k 2k 22k c2k
k3] [k—ﬂ lig [k—: i [.tws 2
["%"’] c[e k AN R I RN B I
-3 k-3 =)
[: k c[1 [!;3 c[il
Goal k+ E goal,- k+k[7-] k+k T k2 k+k T
o vs B lal>181 | lai>181 [1w>1pr | e>1BL
avsn | |al+|Bl=n |a|>~2’1 |a|>% |a|>% |u|>%

1 o — vertices in 4-colorable subgraph found by Algorithm 4.5 when all vertices have been placed in either o, or B.
1t B — vertices in the separators of Algorithm 4.5 (all vertices not placed in).

Table 4.1. An assignment of values to goal,.

assigned to goal; are large, then the size of the separator is large, which means that the 4-colorable sub-
graph of the second case is small. Without additional structure and properties of the graph, we do not
know whether each goal; can be achieved or not, which means that we do not know which of the two
cases will hold. Hence in order to find a “‘large’” 4-colorable subgraph, it is best to assign values to goal;
such that the two cases are more or less balanced. Table 4.1 displays one possible assignment of values

to goal;. This assignment is selected because it simplifies the analysis (see Theorem 4.7). In Table 4.1,

Coloring Graphs with only Large Odd Cycles 60

is a set containing vertices in those neighborhoods of the k-cycle that have achieved goal;, and B is a set

containing vertices in the separators. A more precise description for o and B is given in the next section.

4.3.3. An Algorithm that 4-Colors a Subgraph of G

Now we are ready to present an algorithm — Algorithm 4.5 which finds a subgraph of G that can be
4-colored based on the strategy described earlier and the assignment in Table 4.1. We declare two global

sets, o and B, where o collects vertices that can be 4-colored and B collects vertices in the separators.

Algorithm 4.5 halts either when all the neighborhoods (from 1 to l%) of the k-cycle achieved their

goals, which implies that o contains at least Goal (see Table 4.1) number of vertices, or when all vertices

in G have been placed in either a or B (| o]+ B|=n).

Input. A graph G=(V,E), k=>5.
Output. A 4-coloring of a subgraph of G.
1. Find a smallest odd cycle, the k-cycle, in G.

Let K and §,,55, - -,S, be defined relative to the k-cycle in G, where 1= [—k:,’].

2. Add K to o, where o is a global set.

3. Fori=1to [k;3 ,do

4. If | S;|2¢i 1k, then add §; to .
5. Else do
6. If |S;}=0, then exit Algorithm 4.5.
7. Else add S; to B, where P is a global set.

i
8. Call Algorithm 4.5 on all connected components of G-K-3%'S .

=
9. Exit Algorithm 4.5,
10. Place all the remaining vertices in p.

11. Exit Algorithm 4.5.

Algorithm 4.5. A 4-coloring algorithm of a subgraph of G.

Coloring Graphs with only Large Odd Cycles 61

Theorem 4.7. For ¢>2 Algorithm 4.5 finds and 4-colors a subgraph of G of size at least
k-3

s k] Sl 2 §,
c-1 c
Proof. If Algorithm 4.5 halts at Step 11 some time during a recursive call, which means that every neigh-
borhood of the k-cycle achieved its goal in a particular call of Algorithm 4.5, then due to Corollary 4.2
and for ¢>2, the size of the subgraph that can be 4-colored is at least
k-3 k-3 k-3
[[ah
YISl =a2k+ 3 goal; = k+k ET :

i=1 i=1

k+

Otherwise the recursive Algorithm 4.5 halts because all vertices in G have been placed in either o
or (. This means that during every call of Algorithm 4.5, a separator is found (except possibly in those
calls of Algorithm 4.5 when all the vertices have been exhausted and yet Goal has not been achieved).

Let Sp; denote the separator found at the j™ call of Algorithm 4.5, Sp; corresponds to some j;-

neighborhood, j, between 1 and [kT?’l of the k-cycle of the j* call of Algorithm 4.5. Since Sp; is a

separator, then |Sp;| < goal;. The size of the 4-colorable subgraph found at the j * call of Algorithm

4.5 is at least

-1 il il] jrl goal; 1Sp; |

5 i1, _ c 1 ¢k _ Ji i .
k+i§goal, _k+E{c k k+k[ey J > 1] > = , for ¢22.
The above inequality holds for all calls of Algorithm 4.5, thus
So:
[4-colorable subgraph found| > ¥ ICP,1| , or o] > ?”3—]1— for ¢>2.
= e~ o

. n
Since o] + |B| = n, therefore |o| > — for ¢>2.
c

[m)

Corollary 4.4. If ¢=2 then Algorithm 4.5 finds and 4-colors a subgraph of G of size at least min{
[k—B
4 | n
k2] 2 }-

Note that for ¢=1, we can also use Algorithm 4.5 to 4-color a subgraph of G. However, the perfor-

mance of Algorithm 4.5, in terms of the size of the 4-colorable subgraph, when c=1 is not as good as that

Coloring Graphs with only Large Odd Cycles 62

when ¢=2. To be more specific, when ¢=1, the size of Goal is smaller — k+k[%. The size of the

separator is also smaller, yet the best we can say about the size of [} relative to that of o (the size of the
separator relative to that of the 4-colorable subgraph) is that |B|<|o| (recall that we derived this same

inequality when ¢=2). So in terms of analysis, when ¢=1 the size of the 4-colorable subgraph — min{

k+k[k;3 , % } found by Algorithm 4.5 is smaller than that when ¢=2. For values of ¢<1, we find that

the size of Geal is too small to be of use.

Each call of Algorithm 4.5 takes time O(min{e*?, n>*’¢}). Note that during the course of Algo-
rithm 4.5, the value of n decreases. The original value of n serves as an upper bound. The total running
time of Algorithm 4.5 depends on the number of recursive calls Algorithm 4.5 makes. Clearly the param-
eters n, k, and ¢ play an important role in the running time. We shall analyze the time complexity of

Algorithm 4.5 later on specific cases.

4.34. An Approximate Graph Coloring Algorithm

Knowing how to find 4-colorable subgraphs of a graph leads us directly to a recursive algorithm for

approximate graph coloring — Algorithm 4.6.

Input. A graph G=(V,E), k5.
Output. A coloring of G.

1. Call Algorithm 4.5 on G.
Say Algorithm 4.5 produces a 4-coloring of G’, where G’ is a subgraph of G.
Note that G* and G — G’ contain vertices placed in o and P, respectively, that is, G’ =@, and
G — G’ =B in Algorithm 4.5.

2. If G - G’ is empty, then exit Algorithm 4.6.
3. Else call Algorithm 4.6 on all connected components of G — G”.

Algorithm 4.6. An approximate graph coloring algorithm,

k=3
In Algorithm 4.5 if we let ¢=2 and if Goal = k?,[“1s %, then according to Corollary 4.4, we can

k-3
find and 4-color a subgraph of G of size at least —g— Thus for all k such that kZ[T] = %, each iteration

Coloring Graphs with only Large Odd Cycles 63

of Algorithm 4.6 finds a 4-colorable subgraph that is at least half of the graph (of that iteration). And this
is actually the best Algorithm 4.6 can do; due to the min term in Corollary 4.4, Algorithm 4.6 can not
guarantee that it finds a 4-colorable subgraph that is more than half of the graph in each iteration. How-
ever, being able to 4-color at least half of the graph in every iteration means that the number of iterations
is at most Ign. Hence the number of colors used to color G is at most 4lgn. This result is stated formally

in the next theorem.

k-3
Theorem 4.8. For all k£ such that k=5 and kZ[T] =—, we can 4lgn-color G in time

2
2
O(mlnte 3:’2’ n2.376}_n_](l)cg£)_

Proof. We will use Algorithm 4.6 to color G. Let ¢=2 in Algorithm 4.5. Because of Fact 4.1, we can

k-3
safely use the same k value all throughout Algorithm 4.6. Since kZ[T-] 2 %, each iteration of Algo-

rithm 4.6 4-colors at least half of the graph (of that iteration). Algorithm 4.6 starts with n vertices, thus
the number of recursive calls it makes is at most Ign. Therefore the total number of colors Algorithm 4.6

uses is at most 41gn.
Algorithm 4.6 calls Algorithm 4.5 O(logn) times. Each time Algorithm 4.5 is called by Algorithm
4.6, it makes 0(%) number of recursive calls, because during each iteration of Algorithm 4.5 a 4-

colorable subgraph of size at least k (i.e., the k-cycle) is added to o Since each iteration of Algorithm

4.5 takes time O(min{e*2, n>376)), the total running time of Algorithm 4.6 in this case is

O(min{e 32 2376 } nl’zg").

[k—S
After some simple arithmetic, it is easy to see that if k > 4(lgn-Iglgn), then k2 1y % for n=16.
Thus we arrive at the following corollary.

Corollary 4.5. For all k=5 and k=4(lgn-lglgn), we can 4lgn-color G in time
O(min{e¥?2, n%376) "105")
2 k .

Coloring Graphs with only Large Odd Cycles 64

Algorithm 4.6 is a general approximate graph coloring algorithm that can be used for all graphs
with £ = 5. When k does not satisfy the condition in Theorem 4.8 (roughly when &k < Ign) and if we use
Algorithm 4.6 to color G with ¢=2 in Algorithm 4.5, then the strategy of Algorithm 4.5 says that we will
achieve Goal in every iteration of Algorithm 4.6 until some point when the number of vertices in G falls
below 2-Goal. The number of times we achieve Goal depends on the value of k. Note that we can adjust
the parameter ¢ in Algorithm 4.5 to alter the size of Goal. In general, the smaller the value k is, the
smaller the value Goal is, the easier it is to achieve Goal, the longer Algorithm 4.6 runs (because Goal is
achieved more often), hence the larger the number of colors required to color G. This is an expected
result because when k is small, the bipartite neighborhood of the k-cycle is small. Although we can adjust
(increase) the value of Goal (goal;), the trade-off between the size of Goal and the size of the separators
comes into play. For simplicity, when using Algorithm 4.6 to color graphs with ‘‘small’” k, we will still
choose ¢=2 in Algorithm 4.5. In doing so, we derive an upper bound on the number of colors needed to
color such a graph. Theorem 4.9 presents the performance results of Algorithm 4.6 on graphs with
“small” k.

n
Goal

k-3
Theorem 4.9. For all £ such that k=5 and kz[T] < 'g"’ we can 2lgGoal -color G in time

k=3
2 a5
O(min{e™?, n23761%f;“l), where Goal = k2! * 1,

Proof. We will use Algorithm 4.6 to color G. Let ¢=2 in Algorithm 4.5. Because of Fact 4.1, we can

k-3
safely use the same k value all throughout Algorithm 4.6. Since Goal = k2[T] < —;— then according to

Corollary 4.4, Algorithm 4.6 4-colors at least Goal number of vertices in each iteration until the first time
when the size of every connected component falls below 2:Goal. From that point on, the condition in
Theorem 4.8 holds for each connected component, hence the number of colors Algorithm 4.6 uses is at
most 4lgGoal (for each connected component). In the worst case, a graph gets decomposed into con-

nected components of size less than 2-Goal at the beginning, thus the number of colors used by Algorithm

4.6 is at most 2lgGoal* GZal :

n

Algorithm 4.6 calls Algorithm 4.5 O (logGoal- Godl

) times. Each call of Algorithm 4.5 by Algo-

Coloring Graphs with only Large Odd Cycles 65

rithm 4.6 takes time O(min{e*?, m’"m}%), where m is the number of vertices of the graph that is

passed from Algorithm 4.6 to Algorithm 4.5. To simplify the running time expression, we will use the

original n value (which bounds all subsequent n values from above). Hence the total running time of

2
Algorithm 4.6 in this case is O(min{e*2, n2¥76) 208204 1‘; i‘;ﬂf)

4.4, Performance Analysis

In this chapter we have presented two approximate graph coloring algorithms — Algorithm 4.4
(including Algorithms 4.1, 4.2, 4.3) and Algorithm 4.6. As we have seen, the performance, in terms of
number of colors used, of these two algorithms depends on k — the size of a smallest odd cycle of G.

Algorithm 4.4 performs well when £ is large relative to n, that is, Algorithm 4.4 6(i/2)"/?-colors G when

k> [% . Algorithm 4.6, on the other hand, performs its best when k is about 41gn, in which case it uses

41gn colors. Note that Algorithm 4.6 uses at least 4lgn colors, regardless how large k is. Chart 4.1

displays the performance of each algorithm over various ranges of k. Observe that Algorithm 4.4 out per-

n
%lgzn

forms Algorithm 4.6 when k> and when k<2lgn, while Algorithm 4.6 takes over in performance

when >k>2lgn. Because of the difference in performance strength of these two algorithms over

%lgzn
various ranges of k, combining the two algorithms to produce a hybrid algorithm, which is tuned depend-
ing on the relative values of k and n, is certainly a good idea and should be pursued in practice. Further-
more, both of these algorithms are recursive, hence the size of k relative to n increases as the algorithms
progress. Thus adjusting parameters, such as ¢ in Algorithm 4.5, may generate a large gain in perfor-

mance and is worthwhile investigating further.

We have analyzed the performance of Algorithms 4.4 and 4.6 in absolute terms, i.e., number of
colors used. It is desirable to compare the performance of these algorithms with the chromatic numbers
of the graphs under consideration. In Chapters 3 and 4, we have been dealing with graphs with only

“‘large” odd cycles, that is, graphs with large odd girth, where girth is the size of a smallest cycle in a

Coloring Graphs with only Large Odd Cycles 66

n n n n
k> [%! ’74 [Tl 4| ; 4(1gn-lglgn) 2lgn 3
"

} 1 il
T T T

numberof | 3 4 6(;;)1’2 4lgn 41gn 3(1%’!)“2 212
colors —— Algorithm 4.4 S Algorithm 4.6 ———>j&¢——— Algorithm 4.4 —>)|

Chart 4.1. Performance of Algorithms 4.4 and 4.6 over various ranges of k.

graph. Notice that sometimes ‘‘large’’ just means that k>5. One may wonder whether there is a relation-
ship between the odd girth or girth of a graph and its chromatic number. This is an interesting question
and has been considered by many graph theorists. We shall go into some history and background on this

problem.

Descartes[1947,1948, 1954] first showed that for all p, there exist p-chromatic triangle-free graphs.
Later Mycielski[1955], Zykov[1949], and Kelly and Kelly[1954] also proved the same theorem. The
constructions of Mycielski, Zykov, and also Schiuble[1967] all contain 4-cycles. The graphs constructed
by Descartes and Kelly and Kelly, on the other hand, have girth of size 6. By a more complicated pro-
cedure, Nesetril[1966] constructed p-chromatic graphs of girth at least 8. The generalized form of the
theorem is proved by Erd&s[1959] (see also Erdds[1961]), who showed, using probabilistic non-
constructive methods, that for all g and p, there exist p-chromatic graphs of girth at least g. A construc-
tive proof was given by Lovdsz[1968] and simplified by Nesetril and R&dI[1979]. Indeed, Bollobds and
Sauer[1976] and Miiler[1979] showed that for all g and p, there exists a uniquely p-colorable graph
whose girth is at least g. More recently, Lubotzky, Phillips, and Sarnak[1986, 1988] gave an explicit con-
struction of a family of d-regular graphs, called Ramanujan graphs, which have girth at least 4/3logy_n
and chromatic number at least n'’**, where h < girth. These bounds actually improve those derived by

Erdds using probabilistic methods.

For results on odd girth, Gallai[1973] constructed a 4-chromatic graph that has odd girth at least
n'/2. Erdés and Gallai (see Erdds[1962]) then conjectured that for every p there is a (p+2)-chromatic

Coloring Graphs with only Large Odd Cycles 67

graph with odd girth of size at least n!’?. Their conjecture is proved by Lovasz[1978]. Kneser graphs
[Kneser, 1955] are examples of explicit constructions of such graphs (this was shown by Lovasz[1978]
and Barany[1978]). As a matter of fact, for each p>2, there exist infinitely many (p +2)-chromatic graphs
whose odd girth is at least c,n'?, fo some constant c,. These bounds on the chromatic number and odd
girth are actually the best possible, as proved by Kierstead, Szemerédi, and Trotter[1984] (unfortunately,
their proof is non-constructive). They showed that if G is a graph on n vertices with odd girth of size at
least 4pn'’?, then the chromatic number of G is at most p+1. Although the odd girth of a Kneser graph is
large, the girth (or even girth) is small. Another family of graphs that can be simply constructed and con-
tains large odd girth is Borsuk graphs. Lovasz[1983] proved that for each p>2, the chromatic number of
a Borsuk graph is p+2 and its odd girth is at least cn'’?, for some constant ¢ that depends on p. These

bounds are similar to those of Kneser graphs. Borsuk graphs also contain small even cycles.

The results described above show that graphs with large girth, as well as large odd girth, exist and
can be explicitly constructed. In addition, graphs with large odd girth are not easy to color, since their

chromatic number may be large.

Now we shall review some graph-theoretic bounds on triangle-free graphs. Let n(p) denote the
smallest possible number of vertices in a p-chromatic triangle-free graph. Erdts[1961], using probabilis-
tic arguments, showed that for all p, n(p)<c,-p?-(logp)?, for some constant c;. For a lower bound on
n(p), Erdés and Hajnal[1985] showed that c,p’logp<n(p), for some constant ¢,. Thus we have
cop?logp<n(p)sc,p?-(logp)?, and the bounds are almost tight.

Knowing the tight bounds on the chromatic number of a graph in relationship with the size of the
graph and its odd girth, we shall proceed to evaluate the performance of Algorithms 4.4 and 4.6. We
begin with Algorithm 4.4. If G is triangle-free, then we can O(+/n)-color G using Algorithm 4.4. From
the result of Erdis[1961], we know that there exist triangle-free graphs with chromatic number that is just
slightly less than O(+/n). This shows that Algorithm 4.4 performs well. In fact, because of the existence
of graphs satisfying the bound derived by Erdds, Algorithm 4.4 can not perform much better. Next we
move on to Algorithm 4.6. Suppose that k is of the form cn!’?, k = odd girth, for some constant ¢. If

c24p, then a result of Kierstead, Szemerédi and Trotter[1984] indicates that G is p+1-colorable. Theorem

k-3
4.8 says that we can 4lgn-color G if kZ[T] 2%. For all sufficiently large k, the condition in Theorem

Coloring Graphs with only Large Odd Cycles 68

[en'?—3

4.8 is satisfied, i.e., cn'’P2 2%, hence we can 4lgn-color G. However, there exist smaller values

of & for which the condition in Theorem 4.8 is not satisfied. So the above analysis is inconclusive. Basi-
cally if k is of the form ¢cn'’?, then there exist values of k which satisfy Theorem 4.8 as well as values of
k which do not satisfy Theorem 4.8. Hence the graph-theoretic bounds that we have do not help in
evaluating the performance of Algorithm 4.6, that is, the graph-theoretic bounds that we have do not
characterize completely the relationship between the odd girth, the chromatic number, and the size of the

graph. More study in this area is needed.

As we have mentioned in Chapter 1, Berger and Rompel have designed an approximate graph
coloring algorithm with a performance guarantee of O(n(loglogn)®/(logn)*), which is the best bound thus
far. We shall now compare the performance of Berger and Rompel’s algorithm with that of Algorithms
4.4 and 4.6. For triangle-free graphs, Algorithm 4.4 uses O(+n) colors. Thus as long as k=5, the perfor-
mance guarantee of Algorithm 4.4 is O(«n), regardless of the size of k and the chromatic number. When
k > 4(lgn—lglgn), Algorithm 4.6 can 4lgn-color G, so in this case Algorithm 4.6 achieves a performance
guarantee of O(logn), regardless of the chromatic number. Both O(logn) and O(yn) are significant
improvements over O(n(loglogn)®/(logn)®). For 3-chromatic graphs, Berger and Rompel’s algorithm
achieves a performance guarantee of O((n/logn)'’?). We know from the work of Kierstead, Szemerédi
and Trotter that for all k£ > 8n'/2, G is 3-colorable. Thus for all >3 and k > 8n'/2 (which implies that

nl4
&
k > 4(lgn—Iglgn) for all sufficiently large k. Hence we can apply Algorithm 4.6 on those k that are

k=>5), the performance guarantee of Algorithm 4.4 is g(%)m = = O(n'*). If k >8n'2, then

sufficiently large and obtain a performance guarantee of O(logn). Once again, Algorithms 4.4 and 4.6 out
perform Berger and Rompel’s algorithm. We conclude that for all triangle-free graphs, as well as for
those graphs with ““large’” odd girth, Algorithms 4.4 and 4.6 give the best performance guarantee among

all approximate graph coloring algorithms.

Chapter 5

Coloring Graphs with only ‘“Small’’ Odd Cycles

5.1. Introduction

The role odd cycles plays in connection with the chromatic number of a graph is interesting. First
of all we know that the presence of odd cycles in a graph characterizes the bipartiteness of a graph (or
lack thereof). It is unfortunate that we know of no similar characterizations for p-chromatic graphs, for
p=3. Nonetheless, we wonder if the presence or absence of different sizes of odd cycles affects the
chromatic number of a graph in any way. In Chapter 4, we have shown some graph-theoretic bounds on
the size of a smallest odd cycle and the chromatic number of a graph. Algorithmically, it is the absence
of small odd cycles that enables us to find large bipartite subgraphs which in turn give rise to better
results for graph coloring. In this chapter, we shall concentrate on the other end of the spectrum — graphs
without large odd cycles. We shall show that graphs without large odd cycles possess many special struc-
tures. And it is these special structures that enable us to develop efficient and optimal (or near-optimal)

graph coloring algorithms.

A theme that is present throughout this chapter is structural analysis. For certain classes of graphs,
we show that we are able to characterize the structures of graphs completely and color the graphs
optimally. For others, we use breadth-first-search to decompose graphs and find bipartite subgraphs. As
we will demonstrate, breadth-first-search is an important and powerful tool for exploiting and analyzing
the structures of graphs. All the algorithms presented in this chapter are either optimal or near-optimal in
terms of the number of colors used, and efficient — O (e) in complexity. Table 5.1 summarizes the graph

coloring results of this chapter.

69

Coloring Graphs with only Small Odd Cycles

G is biconnected, non-bipartite, and contains: %(G) | Number of colors used
No odd cycles other than 3-cycles, and
No K 4 3 3
K, 4 4
No odd cycles other than S5cycles 3 3
No odd cycles other than k-cycles, k>5 3ord 4
No odd cycles other than 3-cycles & 5-cycles, and
NoK,, K5, K¢ 3ord 4
K 4 butno K 5 K 6 4 4
Ksbutno Kg 3 5
K¢ 6 6

Table 5.1. Graphs with various special structures, their chromatic numbers,
and how well we can color them using algorithms developed in this chapter.

70

The rest of this chapter is organized as follows. In Section 5.2, we provide some background and

graph-theoretic bounds on cycle sizes and the chromatic number for graphs with only small odd cycles.

In Section 5.3, we focus on graphs with only one odd cycle size — k, for k=3, k= 5, and £ > 5. In Sec-

tion 5.4, we move on to graphs with only 3-cycles and 5-cycles in odd cycles. In Section 5.5, we pose

some open problems.

5.2. Odd Cycles, Even Cycles, and the Chromatic Number

In studying graphs with only small odd cycles, we are interested in knowing whether the size of a

largest odd cycle determines or bounds the size of the chromatic number. This is a curious question. On

the one hand, a 2p-chromatic graph, as exemplified by K, — a complete graph on 2p vertices, need not

contain odd cycles of size 2p+1 or longer. On the other hand, Erdés and Hajnal[1966] proved that every

(2p +1)-chromatic graph must contain an odd cycle of size at least 2p+1. This is an important result and

we state it as a theorem.

Coloring Graphs with only Small Odd Cycles 71

Theorem 5.1. [Erdés and Hajnal, 1966] If G does not contain odd cycles of size more than 2p—1 (p=1),
then G is 2p-colorable, that is, x(G)<2p.

Hence the size of the largest odd cycle of a graph provides an upper bound for the chromatic

number of the graph. Erdds and Hajnal’s result is tight. Unfortunately their proof is non-constructive.

Throughout this study, we have focused on odd cycles in graphs. More specifically, we have res-
tricted attention to special classes of graphs — graphs with only ‘‘large’” odd cycles and graphs with only
“small’” odd cycles. One may wonder about the sizes of even cycles in these special classes of graphs.
Does limiting the sizes of odd cycles affect the sizes of even cycles of a graph? In the first class of
graphs, the answer is negative; a graph with only large odd cycles can have arbitrary small even cycles,
as we have seen in Chapter 4. In the second class, however, the answer is affirmative. It has been
observed that if G is biconnected, non-bipartite ((G)>3), and does not contain large odd cycles, then G
does not contain large even cycles. Lemma 5.1 describes this result more precisely. Because Lemma 5.1

is used later in the chapter, we have reproduced the proof.

Lemma 5.1. In a biconnected, non-bipartite graph G, if there exists an even cycle of size 2m in G, then

there exists an odd cycle of size at least m+1 in G.

Proof. Let Cy,, = vi—vy— - - —v,,,—v, be a simple even cycle of size 2m in G. Since G is non-bipartite,

then there exists a simple odd cycle C, in G. We shall assume that the size of C, is less than m+1.

If C, and C,,, edge-overlap, then C; @ C,,, (the exclusive-or of C; and C,,) is either a simple
odd cycle or a collection of simple cycles. If C; @ C,, is a simple odd cycle, then the size of C; @ C,,,
is at least m+1, because the size of C,,, is 2m and we assumed that the size of C is less than m+1. If
C, ® C,, is not a simple cycle, then it contains at least one simple odd cycle. Without loss of generality,
let C, be a simple odd cycle in C; @ C,,. Let D be a set containing edges that are on C; but not on
Com. Since Cy and C,,, edge-overlap, then |D| < |C4|. Because C; @ C,,, contains two or more simple
cycles, and for each simple cycle C in C; @ C,,, CnD is non-empty, hence the size of C,nD is less
than the size of D. Note that C, edge-overlaps C,,,, because C, ¢ C; @ C,,, and both C; and C,,, are
simple cycles. Now let us consider C, @ C,,,. Again Cy ® C,,, is either a simple odd cycle or a collec-
tion of simple cycles. If C, @ C, is a simple odd cycle, then using the same argument as above, either

C, or C, ® C,, or both is a simple odd cycle of size at least m+1. If C, @ C,,, is not a simple cycle,

Coloring Graphs with only Small Odd Cycles 72

then let C5 be a simple odd cycle in C, @ C,,,. Because C, @ C,,, contains two or more simple cycles,
the size of CinD is less than the size of C,nD. Note that C; edge-overlaps C,,, because
C;3 cC, ® Cy, and both C, and C,,, are simple cycles. Next we consider C3 @ C,,,. Basically we can
repeat the same process until we find a cycle C;, where C; is a simple odd cycle in C;_; @ C,,, such that
C; and C; ® C,,, are both simple odd cycles. Note that C; exists, because the size of C;ND is less than
the size of C;_;ND, for all j>1. At least one of C;, C; @ C», is a simple odd cycle of size at least m+1.
Furthermore, since C; edge-overlaps C,,,, and both C; and C; @ C,,, are simple odd cycles, then every

edge of C5,, is on some simple odd cycle (either on C; or on C; @ C»y,).

If C, and Cs,, are edge-disjoint, then according to Theorem 2.2, there exists a simple cycle C, that
contains an edge e; of C, and an edge e, of Cy,. If C, is odd, then using the preceding line of reason-
ing, there exists a simple odd cycle of size at least m+1, because C, edge-overlaps C,,. If C, is even,
then every edge of C, is on some simple odd cycle, because C, edge-overlaps C,, using the observation
in the above paragraph with C, replacing C,,,. More specifically, edge e, is on a simple odd cycle, say
C,. C, edge-overlaps C,,, thus again using the preceding line of reasoning, there exists a simple odd
cycle of size at least m+1.

m]

In the proof of Lemma 5.1, we have actually proved another useful result, and it is stated as Lemma
5.2,

Lemma 5.2. In a biconnected, non-bipartite graph G, every edge of G lies on a simple odd cycle.

Proof. Since G is biconnected, every edge in G lies on a cycle. Let e be an edge under consideration.
Suppose that ¢ lies on a simple even cycle C,. Since G is non-bipartite, there exists a simple odd cycle
C, in G. We sce that edge e of C, lies on some simple odd cycle by substituting C, for C;, C, for Cy,
and substituting edge e for e,, if necessary, in the proof of Lemma 5.1.

0

A direct consequence of Lemma 5.1 on the structure of a breadth-first search graph of a bicon-

nected, non-bipartite graph G is captured in the following lemma.

Lemma 5.3. In a biconnected, non-bipartite graph G, if G contains no odd cycles of size greater than m,

then the maximum level of any breadth-first search graph of G is at most m—1. Moreover, there exist no

Coloring Graphs with only Small Odd Cycles 73

cross edges at level m—1.

Remark. When counting the number of levels of a breadth-first search graph, we do not count the root as

alevel. Hence a graph consisting of a single vertex has 0 level.

Proof. Since G is biconnected, non-bipartite, and contains no odd cycles of size greater than m, then
according to Lemma 5.1 the maximum cycle size in G is at most 2m—2. Suppose that a breadth-first
search graph of G, say BFS (G,), contains more than m—1 levels. From Theorem 2.2 we know that any
vertex on level m of BFS(G,) and the root r lie on a common simple cycle. The size of this common

simple cycle is at least 2m (Fact 2.2). Contradiction.

Similarly, if there exists a cross edge e at level m—1 of some breadth-first search graph of G, say
BFS (G,), then according to Lemma 5.1, cross edge e and the root r lie on a common simple cycle. The

size of this common simple cycle is at least 2m—1 (Fact 2.3). Contradiction.

5.3. Odd Cycles = k-Cycles

In studying graphs with only small odd cycles, we shall first focus on graphs with only one odd
cycle size — k, i.e., graphs with no odd cycles other than k-cycles. We show that the restriction of having
only one odd cycle size plus the property that graphs are biconnected give rise to tightly structured
graphs. We start with £k = 3 and show that we can completely characterize and optimally color such
graphs. We then move on to k = 5 and use breadth-first-search to decompose the graph into a bipartite
portion and an independent set portion. Thus an optimal 3-coloring of the graph follows immediately.

Lastly we give a simple approach for 4-coloring graphs with no cycles other than k-cycles, for £>5.

5A). k=3

As expected, k = 3 is the simplest case among all the values of k. Let G be a biconnected, non-
bipartite graph containing no odd cycles other than 3-cycles. First we prove a lemma that illustrates the

interactions among 3-cycles in G.

Lemma 5.4. In a biconnected, non-bipartite graph G, if G contains no odd cycles other than 3-cycles,

then G does not contain 2 edge-disjoint 3-cycles.

Coloring Graphs with only Small Odd Cycles 74

Proof. Suppose that G contains 2 edge-disjoint 3-cycles — Cy: vi—vy—v3—v; and Cy: v,=vp=v,~V,.
According to Theorem 2.2, edges (vy,v3) and (v,,v;) lie on a common simple cycle, say C3. The size of
C4 is either 3 or 4 by Lemma 5.1. If the size of C5 is 3, then cycles C; and C, have a common vertex.
Without loss of generality, we assume that v, = v;,. Thus the edge on C5 that connects C; and C, must
be (vq,v,). But the cycle: v;—v,~v,—v,—v3—v, is a 5-cycle. This means that the size of C3 must be 4
and cycles C; and C, have no common vertices. But the cycle C; ® C3 is a S-cycle. Contradiction.

m]

Lemma 5.4 indicates that graphs with only 3-cycles in odd cycles are tightly structured. In fact, we
will show in the proof of Theorem 5.2 that only 2 families of graphs are possible. Being able to charac-

terize the structures of graphs enables us to color the graphs optimally.

Theorem 5.2, If G is biconnected, non-bipartite, and contains no odd cycles other than 3-cycles, then we

can optimally color G in O (¢) time.

Proof. First we show that if G contains a 4 clique, then G is exactly K,. Let K4 (v1,v5,v3,v4) be a 4
clique in G. Let v, be a vertex in G but not in K, and let (v,,v;) be an edge incident to v,, for some ver-
tex v, in G. From Lemma 5.2, we know that every edge in G lies on a 3-cycle. Hence (v,,v,) lies on
some 3-cycle C = v,—v,—v,—v,, for some vertex v, in G. According to Lemma 5.4, C shares an edge with
every 3-cycle in K,. But this is not possible for any combination of v,, v.. Thus G contains exactly 4

vertices and G = K 4.

Next we show that if G is not a 4 clique, then G must belong to the family of graphs illustrated in
Figure 5.1. First of all, we know that G contains a 3-cycle, because G is non-bipartite. Second, every
edge of G lies on a 3-cycle (Lemma 5.2). Third, since G docs not contain a 4 clique, then due to Lemma
5.4 all 3-cycles in G must share the same edge. Thus every vertex not on the shared edge is on some 3-
cycle containing the shared edge. Fourth, if we delete the 2 vertices associated with the shared edge from
the graph, then all the vertices remaining in the graph are independent. For if an edge exists in the
remaining graph, then that edge must liec on a 3-cycle, and the 3-cycle must contain the shared edge,

which is not possible (since there are 4 distinct vertices).

Now we have established that G is either K4 or a member of the family of graphs shown in Figure

5.1. In the first case, the chromatic number of G is 4; in the second case, it is 3. In either case, it is easy

Coloring Graphs with only Small Odd Cycles 7

Figure 5.1. A family of graphs containing only 3-cycles in odd cycles and no Kj.

to see that G can be optimally colored in O (e) time.

a

Due to the restricted structures of graphs satisfying the properties of Theorem 5.2, we can recog-
nize such graphs in O (e) time (using breadth-first-search, for example). Observe that all vertices except
the two on the shared edge in Figure 5.1 have degree 2. Hence a biconnected, non-bipartite graph of
degree at least 3 and containing no odd cycles other than 3-cycles is exactly K,. Thus one way of
optimally coloring a graph satisfying the properties of Theorem 5.2 is: First, iteratively delete vertices of
degree less than 3 from G. After deletion, if the graph is non-empty, then it must be K4, and we can 4-
color it. By Lemma 2.1, all the vertices deleted can be 3-colored, and this can be accomplished in time

O(e).

532 k=5

The structures of graphs become more complicated as we move from k = 3 to k = 5. When k
increases, the number of levels in a breadth-first search graph of G increases. The interactions between
vertices on adjacent levels of a breadth-first search graph are more involved. And we have more cases to
consider. We shall use breadth-first search to strip away complicated structures, as demonstrated in

Lemma 5.5.

Lemma 5.5. In a biconnected, non-bipartite graph G, if G contains no odd cycles other than k-cycles,

k>3, then every level of a breadth-first search graph of G is 2-colorable (bipartite or independent).

Proof. Let BFS(G,) be some breadth-first search graph of G. Suppose that level p of BFS(G,) contains
an odd cycle, which must be a k-cycle (since k is the only odd size cycle in G). Without loss of

Coloring Graphs with only Small Odd Cycles 76

generality, we shall label the vertices on the k-cycle vg,vy, - * * ,v4—;. Let us consider two vertices v, and
Vasz (we really mean v,iomeary) On the k-cycle, where ae (0,1, - - ,k-1}. v, and v,4,, must have
exactly one and the same parent in BFS(G,), otherwise there exists a common-ancestor w of v, and v,
distance 2 or more away such that the simple cycle that consists of {path from v, to w + path from w to
Va2 + Vasn—Vasa— - - - —V,} is odd and has size greater than k. The above statement applies to all v, and
Va4, a€ (0,1, - - - k—1). Therefore all the vertices on the k-cycle must have the exact same parent,
which means that there exist 3-cycles in G. But k>3. Contradiction.

m]

Notice that Lemma 5.5 does not hold when k = 3, since if G = K4, then G contains a 3-cycle on

level 1 of a breadth-first-search graph of G.

Our approach for 3-coloring a graph G with only 5-cycles in odd cycles is to analyze the structures
of G using breadth-first-search and the results of Lemmas 5.3 and 5.5. To simplify structural analysis, we
shall deal with graphs of degree at least 3 (i.e., we first iteratively delete vertices of degree less than 3 and
use Lemma 2.1). After considering various structures of BFS(G,), we show that BFS(G,) consists of a

bipartite portion and an independent set portion. Hence a 3-coloring of G follows immediately.

Theorem 5.3. If G is a biconnected, non-bipartite graph of degree at least 3 and contains no odd cycles

other than 5-cycles, then we can 3-colors G in O (e) time.

Proof. According to Lemma 5.3, BFS(G,) has at most 4 levels, and all the vertices on level 4 are
independent (since there are no cross edges). All the vertices on level 1 of BFS(G,) are independent
because there are no 3-cycles in G. Furthermore, vertices on levels 1 and 4 are independent from each

other (Fact 2.4).

Next we show that vertices on levels 2 and 3 of BFS(G,) induce a bipartite subgraph. Hence to 3-
color G, we use 2 colors for vertices on levels 2 and 3 of BFS(G,) plus the root, and a third color for ver-
tices on levels 1 and 4. According to Lemma 5.5, each level of BFS(G,) is 2-colorable. Thus if an odd
cycle exists on levels 2 and 3 of BFS(G,), then it must be a 5-cycle with vertices on both levels 2 and 3.
There are 6 possible structures for a 5-cycle on levels 2 and 3, as illustrated in Figure 5.2. We shall con-

sider each structure individually, and show that none exists.

Coloring Graphs with only Small Odd Cycles 7

r
Vi
Va
Vb
v
1
Ve
v V3 V4 V5
v \' vs
(a) V2 V3 4
L
Vi v2 v3 V4
Va Vi
b ¢
Vi ‘ V4
V5 '
(b) vs
I
L]
Vi v2
Va
Vb
—
] Va2
V3 V5
V4
(e) V3 Vs
AL

Figure 5.2. Possible structures for a 5-cycle on levels 2 and 3 of a BFS(G,) in Theorem 5.3.

les
Cyc
dd

allo

ith only Sm

hs w

ing Grap

loring

Co

va
Vi
V5
V3
(d)
v
Vi
V5
V4
(e)
V3
v
vi
V5
V4
(f)

78

Va .
Vi
V5
v3
r
Vb
va
Va
Vi
v3 .
V4
r
Vb
Va va
Vi
V5
V4

pd = y .3.
rem
. T
r}
S(
BF
fa
n
eve
C
C
fOl‘a
St uc
5 . 3“ t; n eo Ei
re
[lgu 2 E 0SS I | § Ei le on l A\ (! 1 h

Coloring Graphs with only Small Odd Cycles | 79

Structure (a). Since G does not contain 3-cycles, the parents of v5 and v, must be distinct and not equal
to v;. Without loss of generality, let vy, v, be the parent of v, v4, respectively, and let v, be a parent of
vi. The parent of v, is the root r. v, must be the unique ancestor of v, and v3 on level 1, otherwise we
can easily construct a 7-cycle through the root. Likewise, v, is the unique ancestor of v3 and v,, and of
v4 and vs on level 1. Hence v, is the only grand-parent of v,, v3, v4, vs. Note that v, is the only parent
of v, and vs, otherwise we obtain an odd cycle of size at least 7 from the following construction. Let v,
be a parent of v, (note that structure (a) is symmetrical with respect to v, and vs, hence results for v,
also hold for vs). Then the path from v, to v; (v,—v;) via their nearest-common-ancestor is even of

length at least 2. But the cycle: v,—v—vs—v4~Vv3—v2-V, is 0dd of size at least 7.

Since G is biconnected, then according to Theorem 2.2 there exists a simple cycle C; that contains
the root r and the edge (v,,v3). The size of C, is at least 7 (Fact 2.2), hence C, is an 8-cycle (Lemma
5.1). This implies that C; contains exactly 2 cross edges. C; does not contain cross edge (va,va), Va#v3,
otherwise we obtain a 7-cycle, since the nearest-common-ancestor of v, and v; must be the root. Simi-
larly, C; does not contain cross edge (v3,v,), v.#v,. Thus C; does not contain 2 cross edges on level 3,
hence it must contain a cross edge ¢ on level 2 because level 1 does not contain cross edges. This implies
that C; must contain edge (v{,v,) (since v, has only one parent — v;) and another tree or lattice edge
incident to v, which means that cross edge e is incident to either v, or a parent of v4. If e is incident to
vy, that is, e = (vq,vy), for some vertex vy, then the nearest-common-ancestor of v; and v, must be the
root. But we obtain a 9-cycle: r—vy—v;—v,—v3—v,4—v,~V,~r. Contradiction. If e is incident to a parent
of v3, say v,, that is, e = (v,,v,), for some vertex v, then the nearest-common-ancestor of v, and v, must
be the root. But we obtain another 9-cycle: r—v,—v,~v3—v4—vs—v—v,~r. Contradiction. Thus structure

(a) does not exist in BFS(G,).

Structure (b). Let v, (v,) be a parent of v, (v5) in BFS(G,). Note that v, and v, are distinct, otherwise
we obtain a 3-cycle: v;—v,—v,—v;. The root r is the parent of v, and v,. v, must be the only parent of
v, otherwise there exist 2 disjoint paths from v3 and v, to r and the cycle: v{—vs—v4—v3—r—v, isa 7-
cycle. Similarly, v, must be the only parent of v, and v4. But the cycle: r—v,~v—v,—v3—v4~v,~r is a

7-cycle. Contradiction. Thus structure (b) does not exist in BFS(G,).

Structure (c). Let v,, v, be a parent of v,, v4, respectively, in BFS(G,). Note that v, # v;,v, because

otherwise we obtain 3-cycles. v, must be the unique grandparent of v; and v,, otherwise if v4 and v,

Coloring Graphs with only Small Odd Cycles | 80

have distinct ancestors on level 1, then we obtain a 7-cycle through the root. Thus v, is the only parent
of v,. Likewise, v, must be the unique grandparent of v, and vs, and v, is the only parent of v,. But the

cycle: v,—v;—v,-v, is a 3-cycle. Contradiction. Thus structure (c) does not exist in BFS(G,).

Structure (d). Let v, be a parent of v, in BFS(G,). The root r is the parent of v,. v, must be the unique
grandparent of v, and v (which implies that v, is the only parent of v; and v,), otherwise there exist 2
disjoint paths of length 3 from v3 and vs to r and the cycle: v3—r—vs—v; is a 7-cycle. Furthermore, v,
must be the only parent of v,, for if v, is another parent of v;, then the cycle:
V3—V,—V,~V1—V,4—Vy—Vs—V3 is a 7-cycle. Likewise, v, must be the only parent of vs. Note that v, and

v, are not incident to cross edges, for if (vy,v,) is a cross edge, then the cycle vi—v,—r—v,~vy—v4-v; is
a 7-cycle (a similar construction holds if v, is incident to a cross edge).

Since G is biconnected, then according to Theorem 2.2 there exists a simple cycle C; that contains
the root and the edge (vs,vs). The size of C; is at least 7 (Fact 2.2), hence C, is an 8-cycle (Lemma
5.1). This implies that C; contains exactly 2 cross edges. The 2 cross edges on C; must be on level 3 of
BFS(G,), because there are no cross edges on level 1 and the only parents of v5 and vs that are on level 2
are not incident to cross edges. Without loss of generality, we shall assume that C'; contains cross edge
(v3,vp). Note that the path from 7 to v, not going through v; on C; must be disjoint from the path
r—v,—v,—Vvs, because C; is a simple cycle. Thus C; consists of r—v,~v,=vs—v3—V,~v,~v4T, where v, is
a parent of v,, and v, is a parent of v, (v.#v,, vz#v,, because C, is simple). Note that v .#v, because
otherwise we obtain a 3-cycle: v,—v;—v3—v,. But the cycle: r—v,—v—v3—v,—v,—v,—r is a 7-cycle. Con-
tradiction. Thus structure (d) does not exist in BFS(G,).

Structure (e). Let v, (v,) be a parent of v, (v,) in BFS(G,). Note that v, and v, are distinct, otherwise
we obtain a 3-cycle: v{—v,—v,—v;. The root r is the parent of v, and v,. Let v, be a parent of v;. But
one of the following cycle: r—v,—v3—v4—v—vy—v,—r (even if v, = v,), or r=v,~v3—vs—vo—v—V,—r (if v,
=v,) is a 7-cycle. Contradiction. Thus structure () does not exist in BFS(G,).

Structure (f). Let v, (v,) be a parent of v, (v3) in BFS(G,). Note that v, and v, are distinct, otherwise
we obtain a 3-cycle: v,—v,—v,—v,. The parent of v, and v, is the root r. v, must be the unique
grandparent of v, and vs (which implies that v, is the only parent of v, and v3), otherwise there exist 2
disjoint paths of length 3 from v, and vs to r and the cycle: v4—r—vs—v, is a 7-cycle. Notice the sym-

metry of structure (f). We now observe some structural properties concerning the neighborhood of vertex

Coloring Graphs with only Small Odd Cycles | 81

v4. Due to symmetry, all the structural properties concerning the neighborhood of v4 apply to vs as well.

1.

v, has only 1 parent — v;.

Suppose that v, is another parent of v4. v,#v, v3, otherwise we obtain 3-cycles. But the cycle
that consists of {v4—v, + path from v, to NCA(v,,vy) + path from NCA(v,,v;) t0 v{ +
V1—V,—V3—Vs5—v,} is odd of size greater than 5.

v4 does not have any children.

Suppose that v, is a child of v4. According to Theorem 2.2, there exists a simple cycle in G con-
taining v, and the root r. Since v, is not incident to a cross edge (Lemma 5.3) and v, lies on a com-
mon simple cycle with the root r (Theorem 2.2), then v, must have another parent — v, (v #vs).
We now consider possible parents of v; and show that none exists.

a). v, is a parent of v,.

But the cycle v,—v~v—v,~v3—v5—v,—V, is a 7-cycle.

b). v, is a parent of v,.

But the cycle v,—v,~v,—v3—v,~v{—V4—V, is a 7-cycle.

c). vs is a parent of v,.

But the cycle v,—v,~v3—v,—r—v,—v,—v,—v,4—V, is a 9-cycle.

d). v, is a parent of v, e#1,2,3.

But the cycle that consists of {v,~v,~v, + path from v, to NCA(v,,v3) + path from NCA(v,,v3) to
V3 + V3—vs—v,4—V,} is odd of size greater than 5.

If v4 is incident to a cross edge (v4,v,), then the parent of v, must be v;.

v, is not a parent of v,, otherwise we obtain a 3-cycle: v,~v;—v4—v.. v, is not a parent of v, oth-
erwise we obtain a 7-cycle: v,—v,—v,—r—v,—v—v4—v,. If the parent of v, is not v;, then the cycle
that consists of {vs—v, + path from v, to NCA(v.v3) + path from NCA(v.,vs3) to v +
va—v,—v -4} is odd of size greater than 5.

If v, is incident to a cross edge (v4,v.), v.#vs, then vs is not incident to any other cross edge
besides (v4,vs).

If vs is incident to a cross edge (vs,vy), then the parent of v, must be v, as noted above. But the

cycle v.—v4—vs—v—v—v,—v3—V, is a 7T-cycle.

Coloring Graphs with only Small Odd Cycles 82

From observations 1, 2, and 4 of structure (f), we conclude that at least one of v,4, vs is a vertex of

degree 2. Since G is a graph of degree at least 3, then structure (f) does not exist in BFS(G,).

We have shown that there exist no 5-cycles on levels 2 and 3 of BFS(G,), hence the vertices on
levels 2 and 3 are 2-colorable. The complexity for 3-coloring G is the same as that of breadth-first-
search, which is O (e). Notice that in this case, both the number of colors used and the running time are

optimal.

Combining Theorem 5.3 and Lemma 2.1, we arrive at the following corollary.

Corollary 5.1. If G is biconnected, non-bipartite, and contains no odd cycles other than 5-cycles, then

we can 3-colors G in O () time.

The class of graphs that can be 3-colored by the algorithm of Corollary 5.1 (a simple algorithm can
be derived by combining the algorithms of Lemma 2.1 and Theorem 5.3) properly contains those that
satisfy the properties stated in Corollary 5.1. It seems that recognizing graphs that contain only 5-cycles
in odd cycles is harder than coloring them. But from the point of view of graph coloring, a graph need
not be recognized before it is colored. Hence for a graph that is suspected of satisfying the properties of
Corollary 5.1, we can try to color it using the algorithm of Corollary 5.1. If the graph is properly colored,
then our task is done. If not, then we can conclude that the graph does not belong to the class (i.e., bicon-

nected, non-bipartite, and containing only 5-cycles in odd cycles). The whole process takes O (e) time.

With the aid of breadth-first-search, when k£ = 5, we have been able to decompose a graph G satis-
fying the properties of Theorem 5.3 into components each of which can be colored with a small number
of colors. However, unlike the case when k = 3, we do not have a complete characterization of the struc-
tures of the graph (see Conjecture 5.1). As Corollary 5.1 indicates, additional vertices of degree less than
3 can be added to G iteratively as long as the properties of the graph are preserved in the resultant graph
(note that the graph remains 3-colorable even if some of the properties are violated while vertices are
added in). To shed some light on the structures of graphs with only S-cycles in odd cycles, we prove the
following lemma, which has the same flavor as Lemma 5.4. The proof for Lemma 5.6 is more involved

than that of Lemma 5.4.

Coloring Graphs with only Small Odd Cycles 83

Lemma 5.6. In a biconnected, non-bipartite graph G, if G contains no odd cycles other than 5-cycles,

then every pair of 5-cycles in G must share at least 2 vertices.

Proof. Suppose that G contains 2 5-cycles — C; and C, that share at most 1 vertex. Let e; and e, be
two edges on C, and C,, respectively. According to Theorem 2.2, ¢; and e, lie on a common simple

cycle, say C3. We shall assume that C is not an odd cycle of size greater than 5.

Because C5 contains edges e; and e,, there exist 2 vertex-disjoint paths — path, and path, on C,
such that both paths go from a vertex on C; to a vertex on C,, and both paths are disjoint from C; and
C, except at their endpoints. Because C; and C, share at most 1 vertex, at least 1 of path,, path, has
length greater than or equal to 1. Observe that there are two edge-disjoint paths on C; (and on C,) going
from an endpoint of path, to an endpoint of path,. The lengths of the two paths on C; (also on C,) are
either 1 and 4 or 2 and 3. Now it is not difficult to choose a combination of sizes so that a path on C,
plus path, plus a path on C, plus path, form an odd cycle of size greater than 5. Contradiction.

0

The combination of Lemmas 5.2 and 5.6 suggests that in a graph that contains only 5-cycles in odd
cycles, not only does every edge lie on a 5-cycle, but every 5-cycle shares at least 2 vertices with every
other 5-cycle. Hence the interactions among odd cycles are tight. The tight interactions give rise to more

structure which may lead to a proof of Conjecture 5.1.

533. k>5

As we have seen, the approach we used in the previous section for 3-coloring a graph with only 5-
cycles in odd cycles involved some structural analysis. As k increases, the complexity of the structures of
the graph also increases. We don’t see an easy way to extend the method used in the case k = 5 for 3-
coloring a graph to the case k > 5. However, we do have a simple algorithm that 4-colors a graph with

only k-cycles in odd cycles for £ >5. The algorithm is based on Lemma 5.5 and goes as follows.

Input. A graph G that is biconnected, non-bipartite, and contains no odd cycles other than k-cycles, k>5.
Output. A 4-coloring of G.

1. Arbitrarily select a vertex r in G to be the root.

Coloring Graphs with only Small Odd Cycles ' 84

2. Build BFS(G,).

3. If vertices on even levels (including level 0) of BFS(G,) are independent, then color them with color A;
else color them with colors A and B.

4, If vertices on odd levels of BFS(G,) are independent, then color them with color C; else color them
with color C and D.

Algorithm 5.1. A 4-coloring algorithm for graphs that contain no odd cycles other than k-cycles, k>5.

Theorem 5.4, If G is biconnected, non-bipartite, and contains no odd cycles other than k-cycles, £>5,

then Algorithm 5.1 4-colors G in time O (e).

Proof. According to Lemma 5.5, all levels of BFS(G,) are 2-colorable. Since all even (odd) levels of
BFS(G,) are independent from each other (Fact 2.4), hence we can 2-color all the even (odd) levels.
Therefore 4 colors are sufficient to color G. It is clear that Algorithm 5.1 runs in time O (e).

0

Observe that in Algorithm 5.1, if all even (odd) levels of BFS(G,) form an independent set, then
only 3 colors are needed to color G. Once again, it is not necessary to recognize a graph before coloring
it. Hence we can run Algorithm 5.1 on all potential graphs and if any level of a breadth-first-search
graph of G fails to be bipartite, then we know that the graph does not satisfy all the properties of Theorem
5.4.

It is unfortunately that we are unable to characterize the structures of graphs with only k-cycles in
odd cycles, for k = 5. We have shown that for k = 5, k = 5, all such graphs are 3-colorable, 4-colorable,
respectively. But are these graphs all 3-colorable? This is an interesting question. We have the follow-
ing conjecture.

Conjecture 5.1. There exist no biconnected, non-bipartite graphs of degree at least 3 and containing no

odd cycles other than k-cycles, for all k£ = 5.

Note that if Conjecture 5.1 is true, then all graphs that contain only k-cycles in odd cycles, for
k=5, can be optimally colored in time O(e) due to Lemma 2.1. This will also provide a uniform

approach for optimally coloring all graphs with only k-cycles in odd cycles, for all values of k.

Coloring Graphs with only Small Odd Cycles ' 85

5.4. Odd Cycles = 3-Cycles + 5-Cycles

We now move on to graphs with two odd cycle sizes, more specifically, graphs with only 3-cycles
and 5-cycles in odd cycles. These graphs may contain K¢ — a 6 clique as a subgraph, hence they may
require at least 6 colors. However, as Theorem 5.1 indicates, they are 6-colorable. Once again, our
approach for coloring a graph G with only 3-cycles and 5-cycles in odd cycles is to analyze the structures
of G. To simplify the analysis, we shall first deal with graphs of degree at least 3, and then use Lemma
2.1 to relax the degree restriction. An outline of the structural analysis is as follows. We show that if G
contains either K5 or K¢, then the size of G is small. If G contains K4 but no K5, then we give a com-
plete characterization of the structures of G and an optimal coloring of G. If G contains K3 but no Ky,
then we show that each level of a breadth-first-search graph of G is bipartite. Hence a 4-coloring of G
follows immediately. We have designed a simple and efficient algorithm — Algorithm 5.2 based on our
analysis. Algorithm 5.2 [-colors G (see Table 5.1 for the value of /), and in many cases / equals the

chromatic number. We present our analysis of structures of G in the proof of Theorem 5.5.

Input. A graph G that is biconnected, non-bipartite, of degree at least 3, and contains no odd cycles other than
3-cycles and 5-cycles.

Output. A l-coloring of G (see Table 5.1 for the value of J).
L If G contains no more than 6 vertices, then color G using %(G) colors.
2. Else do (G contains no Ks)
3. If G contains K4, then do
4, Delete (iteratively) all vertices in G with degree 3 (after deletion, G becomes empty).
5. Add all the vertices deleted in Step 4 back to G and 4-color them.
6. Else if the size of a smallest odd cycle is 5, then use the algorithm of Theorem 5.3 to 3-color G.
7. Else do (G contains a 3-cycle but no K,)
8. Select a vertex r on a 3-cycle in G to be the root.
9. Build BFS(G,). (BFS(G,) has at most 3 levels and every level of BFS(G,) is bipartite.)
10. Color vertices on level 1 of BFS(G,) with colors C and D.
11. If vertices on level 2 of BFS(G,) are independent, then color them with color A.
12. Else color vertices on level 2 of BFS(G,) with colors A and B.

13. Color the root r with color A.

Coloring Graphs with only Small Odd Cycles ' 86

14. Color vertices on level 3 of BFS(G,) with color D.

Algorithm 5.2. A [-coloring algorithm (see Table 5.1 for the value of])
for graphs that contain no odd cycles other than 3-cycles and 5-cycles.

Theorem 5.5. If G is a biconnected, non-bipartite graph of degree at least 3 and contains no odd cycles
other than 3-cycles and 5-cycles, then Algorithm 5.2 [-colors G (see Table 5.1 for the value of /).

Proof. We shall analyze different structures of G, as listed below, and show that in the first three cases
we can color G with an optimal number of colors, and in the last case we use at most 1 more than the

optimal number of colors.

(1) G contains Kg,
(2) G contains K5 but no K,
(3) G contains K, but no K5 and K,

(4) G contains no K4, K5, and K.

In the following analysis, we will make use of the fact that if G contains no more than 6 vertices,

then we can optimally color G by exhaustive search.

Structures (1) and (2). We show that because G contains K5, the number of vertices in G is at most 6.
Suppose that G contains more than 6 vertices. Let us consider the subgraph G — Ks. If G — K5 contains
an edge, say e, then according to Theorem 2.2, there exists a simple cycle C, that contains edge e; and
an edge on K5. Because K5 is a complete graph on 5 vertices, it is not hard to construct an odd cycle of
size at least 7 from C; and Ks. Thus G — K5 must be an independent set. Let v; and v, be two vertices
in G — K5. Because the degrees of v, and v, are both at least 3, each of vy, v, must have 3 edges to K5,
thus they must share a vertex on Ks. Without loss of generality, let u,,u,,u4,U4,45 be the 5 vertices of
K 5, let the shared vertex be u,, let v, be adjacent to u,, and let v, be adjacent to u5. But we can con-
struct a 7-cycle from the edges (vy,u1), (v1,42), (v2.43), (v2.u3) and K's. Contradiction. Hence G con-

tains at most 6 vertices.

For both of these structures we can optimally color G in Step 1. So starting from Step 2 of Algo-

rithm 5.2, we can assume that G does not contain K's.

Coloring Graphs with only Small Odd Cycles 87

Structure (3). Suppose that we have identified a K. For simplicity, we shall call it K, and label its ver-

tices vg,Vp,V., V4. We make the following observations.
3.1 All vertices in G-K 4 are distance 1 away from K 4.

Suppose not. Without loss of generality, let v, be a vertex that is distance (shortest distance)
2 or more away from K,. According to Theorem 2.2 there exists a simple cycle C, that contains
v; and an edge on K4. Because v, is distance 2 or more away from K, the total length of paths
on C, that connect v; with K4 is at least 4. Thus from C,, we can easily construct a simple odd

cycle of size at least 7, because K4 is a complete graph on 4 vertices. Contradiction.
3.2 G-K, does not contain paths of length 2.

Suppose that it does. Without loss of generality, let v;—v,—v; be a path of length 2 in
G-K,. We claim that both v; and v3 must be adjacent to only one and the same vertex on K.
Suppose not. From the preceding observation, we know that both v, and v; must be adjacent to
some vertex (may be different) on K4. Without loss of generality, we assume that v, (v4) is adja-
cent to v, (vp). Then v=vy—v3—v,—v,~v;~v,~v is a 7-cycle. Contradiction. This means that

both v, and v; are vertices of degree 2. But G is a graph of degree at least 3. Contradiction.

Figure 5.3. Two families of graphs containing K4 but no K5
and only 3-cycles and 5-cycles in odd eycles.

From Observation 3.1 we know that every vertex in G-K, is adjacent to at least one vertex on K ;.
From Observation 3.2 we know that each connected component of G—K 4 is either a vertex or a path of

length 1. Note that each vertex in G-K, is adjacent to at most 3 vertices on K4, because G does not

Coloring Graphs with only Small Odd Cycles 88

contain K. Since the degree of G is at least 3, an independent vertex in G—K 4 is adjacent to exactly 3
vertices on K4, and a vertex on a path of length 1 in G-K, is adjacent to either 2 or 3 vertices on K 4.
Due to the degree limitations, G—K 4 does not contain an independent vertex and a path of length 1, other-
wise it is easy to construct a 7-cycle. Thus the connected components of G—K 4 are either all independent
vertices or all paths of length 1. If G-K, contains all independent vertices and |G| = 7, then all the
independent vertices are adjacent to the same 3 vertices on K, (otherwise it is easy to construct a 7-
cycle). If G-K,4 contains paths of length 1 and |G| = 7, then all vertices in G—-K4 are adjacent to the
same 2 vertices on K4 (otherwise it is easy to construct a 7-cycle). Thus we have completely character-

ized the structures of G for |G| = 7; G belongs to one of the two families of graphs shown in Figure 5.3.

Knowing the structures of G, a 4-coloring of G can be easily accomplished. Note that if we itera-
tively delete vertices of degree 3 from G, we arrive at an empty graph. Thus 4 colors are sufficient to

color G by Lemma 2.1 (Steps 4 and 5).

Structure (4). If G contains no 3-cycles, that is, if G contains only 5-cycles in odd cycles, then we can
use the algorithm of Theorem 5.3 to 3-color G (Step 6). In the discussion which follows, we shall assume

that G contains a 3-cycle. We make the following observations.

4.1 If G contains Figure 5.4 as a subgraph, then G is Figure 5.4 (i.e., G consists of exactly those 6

vertices).

Ve

vi V5

v v
2 v3 4

Figure 5.4. A structure containing a 5-cycle.

Coloring Graphs with only Small Odd Cycles 89

Suppose not. Then G contains at least 7 vertices. Let u be a vertex in G that is not part of
Figure 5.4. We shall label the 6 vertices in G that correspond to v, through v¢ in Figure 5.4 in the
same manner as they appear in Figure 5.4. According to Theorem 2.2, u and edge (v,,v;) lic on a
common simple cycle C;. Due to the symmetry and structure of Figure 5.4, there exist paths of
length 2, 3, 4, and 5 between any two vertices in Figure 5.4. Thus it is not hard to construct a 7-

cycle from C; and the graph of Figure 5.4 (see Figure 5.5 for illustration). Contradiction.
5
7 l‘\
N~
3

Figure 5.5. Anillustration ofa 7-cycle.

4.2 If there exists a 5-cycle on some level of a breadth-first search graph of G, then the vertices on
the 5-cycle have exactly one parent, that is, the structure of the 5-cycle is the same as Figure

54.

Suppose not. Without loss of generality, suppose that v; has another parent. Then there
exist 2 disjoint paths from v, and v, to a common ancestor — v, that is at least 2 levels above them.
But the cycle that consists of path v,—vs—v4—v3 plus the 2 disjoint paths from v, and v; to v, is

odd of length at least 7. Contradiction.

From Observation 4.1, we see that if G has Figure 5.4 as a subgraph, then G is optimally colored by
Algorithm 5.2 at Step 1. Combining Observations 4.1 and 4.2, we can assume that from Step 7 on, a
breadth-first-search graph of G does not contain a 5-cycle on any level. Now let » be a vertex on a 3-

cycle in G (Step 8). Next we show that every level of BFS(G,) is bipartite.

Coloring Graphs with only Small Odd Cycles | 90

4.3 BFS(G,) has at most 3 levels.

Suppose not. Let (v;,v,) be a cross edge on level 1 of BFS(G,) forming a 3-cycle with r.
Let u be a vertex on level 4 of BFS(G,). According to Theorem 2.2, u and (v;,v;) lie on a com-
mon simple cycle, say C;. The size of C; is at least 7. Because of Lemma 5.1, G does not contain
even cycles of size 10 or more. Thus if C, is even, then size of C, must be 8. Since C contains
the edge (v;,v,) and it is of size 8, then C; does not contain the root r. Because edge (v,v;) form
a 3-cycle with the root, we obtain a 9-cycle by deleting the edge (v,,v;) from C,; and adding edges

(v4,7r) and (r,v,) to C,. Contradiction.
4.4 There exist no cross edges on level 3 of BFS(G,).

Suppose that level 3 of BFS(G,) contains a cross edge. Let (v{,v2) be a cross edge on level
1 of BFS(G,) forming a 3-cycle with r. Let (v,,v;) be a cross edge on level 3 of BFS(G,).
According to Theorem 2.2, (v1,v3) and (v,,v;) lic on a common simple cycle, say C;. The size of
C, is at least 6. If C; does not contain the root, then we construct an odd cycle of size at least 7
by deleting the edge (v,,v,) from C; and adding edges (v,,r) and (r,v;) to C;. If C; contains the
root, then by Lemma 5.1 the size of C, is 8 or 9. If C; is even, then C; contains exactly 2 cross
edges: (vq,v3) and (v,,v,). Thus C; must contain either v,—vy-r or vo—v;—r. Without loss of
generality, we assume that C; contains v;—v,-r. But we obtain a 7-cycle by deleting the edges
(v1,v2) and (v,,r) from C; and adding edge (v,,r) to C;. Contradiction. Thus vertices on level 3

of BFS(G,) form an independent set.

4.5 If BFS(G,) contains a 3-cycle on some level, then Figure 5.6 is a part of the structure of
BF§(G,).

Since G does not contain K, as a subgraph, BFS(G,) does not contain a 3-cycle on level 1.
Thus the only level that a 3-cycle can appear on is level 2 of BFS(G,). We shall label vertices on
the 3-cycle v,,v,, and v3. These 3 vertices must not have the same parent, because otherwise we
obtain a K,. Without loss of generality, we assume that v, and v, have different parents, and they
are v, and vs, respectively. v, is not incident to a cross edge (v4,v,), for some vertex v,#vs, since
otherwise we obtain a 7-cycle: v4—v,~—r—vs—vy—v3—v;—v4. Similarly, vs is not incident to a cross

edge (vs,v,), for some vertex vy#v4.

Coloring Graphs with only Small Odd Cycles 91

V4 V5

v3 vy v2

Figure 5.6. A structure containing a 3-cycle.

We know that there exists a cross edge, call it e; = (v, vp), on level 1 of BFS(G,), because r
is part of a 3-cycle by construction. We now claim that v, is adjacent to v by a cross edge, and it
is the only cross edge on level 1. If not, then edge e, and edge (v,,v;) lie on a common simple
cycle C, by Theorem 2.2. Note that v,, v, # v4, vs since neither v4 nor vs is incident to a cross
edge other than (v4,vs). We shall denote cycle vi—v,—v3—v; by C,. Let path; be the path on C,
containing edge e; with two endpoints v, and v; on C, such that if we traverse C; from edge e, in
one direction we enter C, for the first time at v,, and if we traverse C; from edge e, in the other
direction we enter C, for the first time at v; (see Figure 5.7). The length of path; must be either 3
or 4, because if the length of path, is 5 or more, then we can easily construct an odd cycle of size
at least 7 from path, and C,. Because path; contains edge e; and its length is only 3 or 4, path,
does not contain the root. Now suppose that the length of path, is 3. Then v, and v, must be adja-
cent to two distinct vertices on C,. This means that either v, or v, or both is on path;. Without
loss of generality, we assume that v, is on path, and v, is adjacent to v,. But we obtain a 7-cycle:
V1—V3—Vy—vs—r-v,—V,—v;. Contradiction. Suppose then the length of path, is 4. Since path;
does not contain r, then we can augment path, by replacing edge e, with edges (v,,r) and (v,,r) so
that path,; becomes a path of length 5. But we can easily construct a 7-cycle from the augmented

path, and C,. Contradiction,

One more observation we make is that parent(s) of v3 must be either v, or vs or both.

Because if one of the parent of v, is some vertex other than v4 or vs, then we obtain a 7-cycle.

Coloring Graphs with only Small Odd Cycles 92

r
eq
Va ‘/

: \[
ety &5 uk
~_

vo

v3 vi

Figure 5.7. An illustration of path;.

Without loss of generality, we assume that one of the parent of v, is v, due to symmetry. Figure

5.6 displays the structure we have thus far.

4.6 BFS(G,) does not contain Figure 5.6 as a part of its structure, thus BFS(G,) does not contain

3-cycles on any level.

We demonstrate the validity of Observation 4.6 by showing that the root r does not have chil-
dren other than v, and vs, which means that the root is of degree 2. Since the minimum degree of
G is at least 3, then the structure in Figure 5.6 does not exist in BFS(G,), and we have the desired

result.

If u is a child of r and u#v,,vs, then edge e, = (u,r) and edge (v,,v,) lie on a common sim-
ple cycle Cy by Theorem 2.2. We shall denote cycle v,-v,~v3—v; by C,. Let path, be the path
on C,; containing edge e, with two endpoints v, and v; on C, such that if we traverse C, from
edge e, in one direction we enter C, for the first time at v,, and if we traverse C; from edge e, in
the other direction we enter C, for the first time at v4;. Since path, contains e, and two vertices on
C,, its length must be 4 or more. Specifically, the length of path, is exactly 4, because if the
length of path, is 5 or more, then we can easily construct an odd cycle of size at least 7 from path,
and C,. Since the length of path; is 4, then u must be adjacent to a vertex on C,. Suppose that u
is adjacent to v,. Then we obtain a 7-cycle: u—v,—v,-vi—v,4—vs—r—u. Contradiction. We can do

similar constructions and obtain 7-cycles if « is adjacent to v, or v4. Contradiction.

Coloring Graphs with only Small Odd Cycles 93

Figure 5.8. A family of graphs containing K3 but no Ky
and only 3-cycles and 5-cycles in odd cycles.

Lastly we show that we can 4-color G. From Observations 4.3 and 4.4, we know that BFS(G,) has
at most 3 levels and the vertices on level 3, if they exist, form an independent set. Thus 1 color is
sufficient to color them (Step 14). From Observations 4.1 and 4.2, we know that BFS(G,) does not con-
tain 5-cycles on any level. From Observations 4.5 and 4.6, we know that BFS(G,) does not contain 3-
cycles on any level. Thus every level of BFS(G,) is bipartite and 4 colors are sufficient to color G. Fig-
ure 5.8 illustrates a families of graphs having structure (4) and also containing 3-cycles.

[m]

The number of colors used by Algorithm 5.2 is displayed in Table 5.1. Algorithm 5.2 uses the
optimal number of colors in all cases except possibly one — when G does not contain K,. Note that in
this case, Algorithm 5.2 uses at most 4 colors, and the chromatic number of G could be 4, as exemplified
by the graph in Figure 5.4. Also note that Algorithm 5.2 uses 3 colors if vertices on level 2 form an

independent set (Step 11).

We shall now show that the complexity of Algorithm 5.2 is O (e). First of all, it is not necessary to
identify K5 or K¢ in G, if one exists, in order to color it, because the size of the graph is small (no more
than 6 vertices). In addition, to determine whether or not G contains K4 is simple. Observe that in Fig-
ure 5.3, every vertex of degree 3 forms a complete graph — K4 with its neighbors. Thus to find K4 in G,
we only need to check whether or not G contains a vertex of degree 3, and if it does whether this vertex
forms a complete graph with its neighbors. Next we show that when G does not contain K, it is not
necessary to determine the size of a smallest odd cycle before coloring G. We have decided to present

Algorithm 5.2 in an intuitive and simple manner. However, an equivalent execution of Steps 6-14 of

Coloring Graphs with only Small Odd Cycles | 94

Algorithm 5.2, which is a combination of the algorithm of Theorem 5.3 and Algorithm 5.2, is shown in
Figure 5.9.

I Arbitrarily select a vertex a in G 1o be the root. (At this point, G contains no K, and |G| = 7).
2. Build BFS(G,) (BFS(G,) has at most 4 levels).
3. If there exist no cross edges on level 1 of BFS(G,) and every level of BFS(G,) is bipartite, then do

4, If the vertices on levels 2 and 3 of BFS(G,) induce a bipartite subgraph, then 3-color G (since
both levels 1 and 4, if level 4 exists, are independent sets).

3; Else (the size of a smallest odd cycle is 3) 3-color or 4-color G (since every level of BFS(G,) is
bipartite).

6. Else do (the size of a smallest odd cycle is 3)

72 Identify a 3-cycle in G. (Either there exists a cross edge on level 1 of BFS(G,), in which case,
the root @ and the cross edge forms a 3-cycle, or some level of BFS(G,) is not bipartite, in which
case, a 3-cycle can be identified on that level using breadth-first-search. Recall from Observa-
tions 4.1 and 4.2 that no level of any breadth-first-search graph of G contains a 5-cycle.)

8. 3-color or 4-color G (Steps 8-14 of Algorithm 5.2).

Figure 5.9. An equivalent execution of Steps 6-14 of Algorithm 5.2.

All steps in Figure 5.9 take O (e) time. Therefore Algorithm 5.2 runs in O (¢) time.

The class of graphs that can be I-colored by Algorithm 5.2 properly contains those which satisfy the
properties stated in Theorem 5.5. Once again, it is not necessary to recognize G before coloring it. Thus
for a graph G that is suspected of satisfying the properties stated in Theorem 5.5, we can run Algorithm
5.2 on it. If a proper coloring is produced, then we are all set. If not, then we conclude that G does not

belong to the class of graphs described in Theorem 5.5.

Using Lemma 2.1, we can relax the degree restriction of Theorem 5.5, and obtain the following
corollary.

Corollary 5.2. If G is biconnected, non-bipartite, and contains no odd cycles other than 3-cycles and 5-

cycles, then we can [-color G in O () time (see Table 5.1 for the value of [).

Coloring Graphs with only Small Odd Cycles | 95

5.5. Discussion

In this chapter, we have shown that biconnected graphs containing only small odd cycles possess
many special structures. We have used breadth-first-search to identify various structures and to show that
certain structures do not exist. Knowing the structures of graphs enables us to find bipartite subgraphs
which aid graph coloring. We have developed graph coloring algorithms that are simple, efficient, and

either optimal or 1 more than optimal in the number of colors used.

Our approach for analyzing graph structures in this chapter has been, more or less, a case study.
Although we have had success with it, the approach does not generalize. As k increases, the complexity
of the structures of the graph increases, and the number of cases increases. For large k, case analysis
becomes infeasible. A more general, uniform method of analyzing and identifying global structures of
graphs is certainly more desirable. We pose this as an open problem for further studies. Other open
problems include resolving Conjecture 5.1, and improving the performance of algorithms so that optimal

coloring is produced for all graphs studied in this chapter.

Chapter 6

Algorithms for Finding a Maximum Bipartite Subgraph
for Special Classes of Graphs

6.1. Introduction

In this chapter we are interested in finding a maximum induced bipartite subgraph of a graph, that
is, 2 independent sets that cover maximum number of vertices. (For the rest of the chapter, when we say
subgraph we mean induced subgraph.) In general this problem is NP-complete as shown by Lewis and
Yannakakis[1980]. Furthermore, even when restricted to planar graphs, the maximum bipartite subgraph
problem remains NP-complete [Lewis and Yannakakis, 1980]. This makes one wonder if additional res-
trictions on graphs affect the complexity of this problem. In particular, it is interesting to identify special
classes of graphs for which finding a maximum bipartite subgraph is solvable in polynomial time. The
focus of this chapter is in showing efficient polynomial-time algorithms for this problem on proper
circular-arc, circular-arc, permutation, and split graphs. More specifically, we present O(n8?%) algorithm
for finding a maximum bipartite subgraph for circular-arc graphs, when the graphs are given in the form
of a family of intervals, where & is the minimum number of arcs covering any point on the circle. For
proper circular-arc graphs, we give an O(n?) algorithm that solves the same problem. Using dynamic
programming, we show how to find a maximum bipartite subgraph for permutation graphs in time O(ne,),
where e, is the number of edges in the complement of a permutation graph after transitive reduction. For
split graphs, we use matrix multiplication and obtain an O(n**"®) algorithm for the maximum bipartite

subgraph problem.

In this chapter we will also consider finding a maximum bipartite subgraph that includes a non-

trivial subset (size > 0) of vertices. We shall call this the maximum bipartite subgraph with a chosen

96

Finding Maximum Bipartite Subgraphs 97

subset problem, with the understanding that the size of the chosen subset is greater than (. If we allow
the size of the chosen subset to be 0, then the maximum bipartite subgraph problem is a special case of
the maximum bipartite subgraph with a chosen subset problem. This means that the second problem is as
hard as the first, if not harder. However, if we only consider the cases where the size of the chosen sub-
set is greater than (), then, as we will show, in most cases the complexity of the algorithms for finding a
maximum bipartite subgraph remain the same, and in one case — circular-arc graphs, the complexity of
the algorithm is reduced from O(n8?) to O(nlogn + nA), where A is the maximum number of arcs cover-
ing any point on the circle.

Finding a maximum bipartite subgraph falls in the general frame work of finding a maximum k-
colorable subgraph of a graph. Two well-known problems: maximum independent set and the chromatic
number, are also special cases of this problem. Interestingly, the maximum independent set problem,
though shown to be NP-complete for general graphs and planar graphs, is polynomially solvable for a
wide range of other well-known classes of graphs, including perfect (which properly contain chordal,
comparability, permutation, and interval), circle, circular-arc, series-parallel, and k-outerplanar graphs;
see Johnson[1985] for references. The chromatic number problem, however, is NP-complete for a larger
number of classes of graphs, including planar, circular-arc, and circle graphs, but is polynomial for per-
fect, series-parallel, and k-outerplanar graphs; see Johnson[1985] for references. The existence of
polynomial-time algorithms for the maximum independent set and the chromatic number problems on
various classes of graphs may lead one to believe the maximum bipartite subgraph problem is solvable in
polynomial time for these classes of graphs as well. In fact, the complexity of the maximum k-colorable
subgraph problem on special classes of graphs has been investigated by a number of researchers, includ-
ing Frank[1980] who has presented a polynomial-time algorithm for this problem on comparability and
co-comparability graphs, and Yannakakis and Gavril[1987] who have shown for chordal graphs this prob-
lem is polynomially solvable when k is fixed, but NP-hard when £ is not fixed. One implication of these
results is that the maximum bipartite subgraph problem is polynomially solvable for comparability, co-

comparability, and chordal graphs.

Finding Maximum Bipartite Subgraphs

Running Time
Transformation
Graph Class Discoverer
Max. Bipartite with Subset Timef
1. Interval O(nlogn) O(nlogn) Yannakakis and Gavril[1987] | O(n + €)
2. Proper Circular-Arc | O(n?) O(nlogn + nA)t | Yeh and LaPaugh 0(n?)
3. Circular-Arc 0(nd)H O(nlogn + nA) | Yeh and LaPaugh” o(n*)
4. Permutation O(nz;)HH O(ney) Yeh and LaPaugh™* O(de + n?)H#
5. Comparability O(ne) open Frank[1980] O(de)
6. Co-Comparability O(ne) open Frank[1980] O(de)
7. Split 0(n%376) 0(n>375) Yeh and LaPaugh NA
8. Chordal O(ne) O(ne) Yannakakis and Gavril[1987] | O(n + ¢€)
9. Series-Parallel On + e)tt open Takamizawa et al[1982] NA
10. Planar NP-complete NP-complete Lewis and Yannakakis[1980] | NA
11. Circle NP-complete NP-complete Sarrafzadeh and Lee[1987] NA
12. General NP-complete | NP-complete Lewis and Yannakakis[1980] | NA

o8

+ Transformation time corresponds to the time needed to transform a graph G = (V, E) to the proper representation required by the
algorithm.
+t Takamizawa, Nishizeki, and Saito[1982] have claimed this result in their paper but a proof was not given.
* An independent study of this problem on circular-arc graphs has been done by Manber and Narasimhan[1987] where they
obtained an O(n?) time algorithm.

** Recently Sarrafzadeh and Lee[1987] have developed an O(n2logn) algorithm for this problem on permutation graphs. Their
algorithm will be the preferred algorithm when the complement of the permutation graph after transitive reduction is dense.

% A is the maximum number of arcs covering any point on the circle, A< d <n.

#} 8 is the minimum number of arcs covering any point on the circle, 8 < .

$+f & is the number of edges in the complement of a permutation graph after transitive reduction.

it d is the maximum degree of a vertex.

Table 6.1. Polynomial algorithms and NP-complete results for the maximum bipartite subgraph problem and
the maximum bipartite subgraph with a chosen subset problem. Algorithms for graphs 1, 2, 3, 4, 7 are presented in
this chapter.

Finding Maximum Bipartite Subgraphs 99

Table 6.1 summarizes the current status of polynomial-time algorithms and NP-complete results for
the maximum bipartite subgraph problem and the maximum bipartite subgraph with a chosen subset prob-
lem on various classes of graphs. We have analyzed the running time of algorithms presented by Frank
for comparability and co-comparability graphs and by Yannakakis and Gavril for chordal graphs [Yan-
nakakis, 1987], and included our findings in the table.

The remaining portion of this chapter is devoted to presentation of the algorithms. We start with
some preliminaries in Section 6.2. In Section 6.3 we describe a greedy algorithm for interval graphs; in
Section 6.4 we introduce the notion of placing intervals on tracks and present algorithms for track assign-
ment problems. The discussions of Sections 6.3 and 6.4 will be used to develop the algorithms for proper
circular-arc and circular-arc graphs. We present algorithms for proper-circular-arc, circular-arc, permuta-
tion, and split graphs in Sections 6.5, 6.6, 6.7, and 6.8, respectively. In Section 6.9 we close with some

concluding remarks and suggestions for future research,

6.2. Preliminaries

In this chapter when we consider a subgraph G4 (A < V) of G, we mean the induced subgraph of
G, that is, G, consists of the set of vertices A, and two vertices are adjacent in G, if and only if they are
adjacent in G. A graph G = (V, E) is called an intersection graph for a family F of sets if each set in F is
represented by a vertex and two vertices are adjacent if and only if their corresponding sets intersect. The
intersection graph of a family of intervals on a real line is called an interval graph. The intersection
graph of a family of arcs on a circle is called a circular-arc graph. A proper circular-arc graph is a
circular-arc graph such that no arc is contained within another. The intersection representation for inter-
val, proper circular-arc, and circular-arc graphs can be constructed in time O(n+e) [Booth and Lueker,
19761, O(n?) [Tucker, 1971], and O(n®) [Tucker, 1980], respectively.

A graph G = (V, E) is called perfect if for every subgraph G, of G (A c V), the chromatic number
of G4 equals its maximum clique size. Perfect graphs properly contain comparability, permutation, chor-
dal, split, and interval graphs. Comparability graphs, also known as transitively orientable and partially
orderable graphs, are undirected graphs G = (V, E) that can, by appropriate orientation of their edges, be
turned into transitive directed graphs (directed graphs such that if (a,b) and (b,c) are arcs, then so is (a,c)).

Co-comparability graphs are graphs whose complements are comparability graphs. Permutation graphs

Finding Maximum Bipartite Subgraphs 100

are comparability graphs whose complements are also comparability graphs (an alternate characterization
of permutation graphs is given in Section 6.7). An undirected graph G is called chordal if every cycle of
length greater than 3 has a chord, i.e., an edge joining two nonconsecutive vertices on the cycle. Chordal
graphs are also known as triangulated, perfect elimination, rigid-circuit, and monotone transitive graphs.
Split graphs are chordal graphs whose complements are also chordal graphs (an alternate characterization
of split graphs is given in Section 6.8). Comparability and chordal graphs are incomparable, that is, nei-

ther is properly contained within another.

6.3. Interval Graphs

Assume an interval graph 7 is given as a set of intervals, I=(f1,fs, * * .f,}, on the real line. Each
interval is in the form of (left_endpoint, right_endpoint), and is represented by a vertex. Without loss of
generality we can assume that the 2n endpoints of the intervals are distinct.! The algorithm for finding a

maximum bipartite subgraph for interval graphs goes as follows:

Input. An interval graph I given as a set of intervals, I={f1,f2, * = = ,f.}-
QOutput. A maximum bipartite subgraph of I.
1. Sort the 2n endpoints in ascending order.

2. Number the n intervals (vertices) according to their right_endpoints in ascending order. Let B, p = {1,
2, ..., n}, be the collection of n intervals.

3. While B is nonempty do
4, Pick an interval with the smallest right_endpoint from B and add it to a set called S (originally
empty).
5. Delete all intervals from B that overlap two intervals already in .
end while

6. Retumn S.

Algorithm 6.1. Maximum bipartite subgraph algorithm for interval graphs.

t If the endpoints are not distinct, then we can make them distinct by placing one endpoint just to the left or right of the other, depend-
ing on whether we consider intervals to be overlapping if they only overlap at one endpoint. It is important that we do not change the
“‘overlap relationship’* among the intervals during this process.

Finding Maximum Bipartite Subgraphs ' 101

This is a greedy algorithm; at each step we are picking an interval that is as good as, if not better
than, any other interval that overlaps it. We will need the following definition for the proof of the correct-
ness of Algorithm 6.1:

Let G,=(V,, E,) < G and G,=(V},, E;) € G. G, disagrees with G, at vertex v, if v, is the smallest

numbered vertex in V, but not in V,,. Similarly if an interval graph 7 is given in the form of a fam-

ily of intervals, and I,cl, I,cl, then we say I, disagrees with I, at interval f, if f, is the smallest
numbered interval in I, but not in [,,.
Theorem 6.1 [Yannakakis and Gavril, 1987]. Algorithm 6.1 finds a maximum bipartite subgraph of an
interval graph I given in the form of a family of intervals.

Proof. Assume § is not a maximum bipartite subgraph of 1.

Step 5 of the algorithm ensures that § is an bipartite subgraph of /. Let Iy be a maximum bipartite
subgraph of I with which § disagrees the latest, i.e., § disagrees with I at the highest numbered interval
among all maximum bipartite subgraphs of I. Without loss of generality let’s say S disagrees with Iy at
interval f;, and Iy disagrees with § at interval f;,. By Step 4 of the algorithm, we know the right_endpoint
of interval f; is less than that of interval f,. So f; < f; by the way intervals are numbered (Step 2). Know-
ing I is bipartite, the number of intervals in 7z numbered larger than f;, and overlapping f, is at most 1,
and let’s call it f, if it exists. Thus f, and f, are the only two possible intervals numbered larger than f,
in /p that can overlap f;. Now we have two cases to consider: 1. f, € §; 2. f, ¢ §. In the first case, we
can substitute f; for f; in Iz without violating the bipartiteness of I, because all intervals that overlap f,
in I are also in §. In the second case, we observe that at most one of f;, f, overlaps intervals numbered
less than f; in I, Hence we can substitute f; for f;, or f, whichever has a smaller left_endpoint in Ip
without violating the bipartiteness of Ip. In either case, § disagrees with this new maximum bipartite sub-
graph at an interval numbered larger than f;. Contradiction.

m]

The most time consuming part of Algorithm 6.1 is sorting (Step 1), which takes O(nlogn) time. We
determine which intervals to delete (Step 5) by keeping track of the interval with the second largest
right_endpoint that overlaps another interval in §, and deleting all intervals in B that overlap this
right_endpoint. The total amount of time spent in Step 5 is O(n). Hence the whole algorithm runs in time
O(nlogn).

Finding Maximum Bipartite Subgraphs 102

We will discuss the maximum bipartite subgraph with a chosen subset problem for interval graphs

in Section 6.4.

6.4. Placing Intervals on Tracks

The maximum bipartite subgraph problem is also known as the maximum 2-colorable subgraph
problem. The vertices in each color induce an independent set. In the case of interval graphs, the ver-
tices in each color are non-overlapping intervals. If we place these non-overlapping intervals on a
“track”, then the maximum bipartite subgraph problem for interval graphs can be viewed as a 2-track
assignment problem:"

Given 2 tracks numbered from 0 through 2n-1, and n interval of the form (J;, r;); I;, r; take on

values between 0 and 2n—1 inclusive; all 2z values of [; and r; are distinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

The algorithm that solves the 2-track assignment problem is the same as Algorithm 6.1, except in Step 4
we actually place intervals on the tracks: Pick an interval with the smallest right_endpoint from B and
place it on the “‘tighter’” fitting track, i.e., the track having an interval with the largest right_endpoint, if it

fits on both. Ties are broken arbitrarily.

Now let’s consider a variation of the 2-track assignment problem - left-end-limited 2-track assign-
ment problem:

Given 2 tracks - track 1 (2) is numbered from p, (p,) through 2n -1, and » interval of the form (I;,

;)i P1. P2, i, r; take on values between 0 and 2n—1 inclusive; all 2n values of [; and r; are distinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

We solve the left-end-limited 2-track assignment problem by first deleting all those intervals that
can not be placed on the limited tracks, i.e., deleting all intervals that either contain the point
min{p,,p,}-1 or end before min{p;,p,}, and then calling the 2-track assignment algorithm on the
remaining intervals with one modification: after Step 2 and before Step 3, place dummy intervals (0,

p1—1) and (0, p,—1) on trackl and track2, respectively. It is clear the complexity of the algorithm for the

1 In this chapter we shall always sort the 2z endpoints; hence without loss of generality we can assume that the left and right end-
points of intervals take on values between 0 and 2n—1.

Finding Maximum Bipartite Subgraphs 103

left-end-limited 2-track assignment problem is also O(nlogn).

We can define the right-end-limited 2-track assignment problem accordingly. The right-end-limited
2-track assignment problem is actually the left-end-limited 2-track assignment problem in reverse. Hence

the right-end-limited 2-track assignment problem can also be solved in time O(nlogn).

Another variation of the 2-track assignment problem is the two-end-limited 2-track assignment
problem:

Given 2 tracks - track 1 (2) is numbered from p; (p,) through ¢, (g,), and n interval of the form

i,) p1s P2y 91, 42, i, r; take on values between 0 and 2n—1 inclusive; all 2n values of /; and r;

are distinct.

Pack as many intervals on the 2 tracks as possible without overlapping.

The approach we take in solving the two-end-limited 2-track assignment problem is similar to that
of Algorithm 6.1 with one difference: in Algorithm 6.2 we look for opportunities to reduce this problem
to a left-end-limited 2-track assignment problem plus a right-end-limited 2-track assignment problem.

The algorithm goes as follows:

Input. 2 tracks numbered from p, (p,) through g, (g,); an interval graph I given as a set of intervals,
I={f1.f2 " Ja)-

Output. 2-track assignment — a placement of the maximum number of intervals on the 2 tracks without over-
lapping.

1. Sort the 27 endpoints in ascending order.

2 Number the » intervals according to their right_endpoints in ascending order.
Let B, B = {1, 2, ..., n}, be the collection of » intervals.

Delete all intervals from B that either contain the point min{p,,p;}—1 or end before min{p,,p,}.
Delete all intervals from [} that either contain the point max{q,,q,}+1 or begin after max{q,.q,}.

Place dummy intervals (0, p;—1) and (0, p,—1) on trackl and track2, respectively.

I

While B is nonempty do
% Determine f— the interval from B with the smallest right_endpoint.

8. If the right_endpoint of f is greater than min{q,,q,} (the track with the smaller right end is
filled), then place a dummy interval (min{q;.q,}+1, 2n—1) on the track with the smaller right
end, if one is not already placed there.

0. If there exists an interval f;, on trackl or track2, such that f; is the left-most interval that overlaps
£, f; is not a dummy interval, and f; does not overlap any other interval already placed on the

Finding Maximum Bipartite Subgraphs 104

tracks,

then do
(we have found a cut at a point just to the left of for f;; see Figure 6.1 for illustration.)

10. Add f, f;, and all intervals on the same track as f; and to the right of f; (if they exist) back
to list B.
11. Solve the right-end-limited 2-track assignment problem on trackl and track2 with intervals

remaining in .
12. Exit Algorithm 6.2.
Now we know no interval satisfies the condition described in Step 9.
13. Place f on the tighter track, if it fits on both.
14. Remove all intervals that overlap two intervals already placed on trackl and track2 from B.
end while

Algorithm 6.2. Two-end-limited 2-track assignment algorithm.

e

cut

Figure 6.1. An example where a cut is found just to the left of /4

Theorem 6.2. Algorithm 6.2 correctly solves the two-end-limited 2-track assignment problem.

Proof. Algorithm 6.2, like Algorithm 6.1, is basically a greedy algorithm. If the condition described in
Step 9 is never true, then we can use similar arguments as those in the proof of Algorithm 6.1 to show
that there must exist a maximum two-end-limited 2-track assignment T such that T agrees with intervals

picked by Algorithm 6.2.

Finding Maximum Bipartite Subgraphs | 105

On the other hand, if the condition described in Step 9 is true at some point, then using similar
arguments as above, we know there exists a maximum two-end-limited 2-track assignment T'; such that
T agrees with intervals picked by Algorithm 6.2 up to that point of the algorithm. This means that inter-
vals fand f; of Step 9 are in T,. Since f and f; do not overlap intervals that begin to their left in T';, there
must exist an unit interval gap (a;,a;41) just to the left of f or f; that is not covered by any interval in T;.
Knowing T is a maximum two-end-limited 2-track assignment, we can cut the 2 tracks at the unit inter-
val (a;,a;,,) and reduce the two-end-limited 2-track assignment problem to one left-end-limited 2-track
assignment problem plus one right-end-limited 2-track assignment problem.

[m]

Algorithm 6.2 not only selects but also places the intervals on tracks subject to the constraints of
the limited tracks. Note that in the above proof, the reason the arguments in the proof of Theorem 6.1
apply when the condition described in Step 9 is never true is because, in this case, the bipartite subgraph
corresponding to those intervals picked by Algorithm 6.2 that fit between the overlapping part of the two
tracks (between max{p,,p,} and min{q,,9,}) is connected; hence there is exactly one way to place the
intervals on tracks — basically placing an interval on the tighter track when it fits on both is the correct
strategy. However when the condition described in Step 9 is true at some point, due to the limited right-
end of the tracks, the proper choice for placing intervals f and f; of Step 9 on the tracks to the right of the
gap (a;,a;41) is not apparent. (Note that the strategy for selecting the intervals is still correct.) In this
case, cutting the tracks at (a;,a;,;) and approaching the problem from the right-end will give us the

proper placement of intervals on tracks.

The complexity of Algorithm 6.2 is still dominated by sorting (Step 1), which is O(nlogn). All

other steps take linear time. Hence the total running time of Algorithm 6.2 is O(nlogn).

Now we will consider the maximum bipartite subgraph with a chosen subset problem for interval
graphs. Without loss of generality we can assume that the intervals in the chosen subset are bipartite. It
is easier to view the maximum bipartite subgraph problem on interval graphs as a 2-track assignment
problem when a subset is included. So in what follows, we shall discuss only the 2-track assignment
problem. If two of the intervals in the chosen subset overlap, then we can reduce the original problem to
two subproblems by cutting the tracks at a point of overlap. Hence without loss of generality, we can

assume that all the intervals in the chosen subset are non-overlapping. There are 3 varieties of the 2-track

Finding Maximum Bipartite Subgraphs 106

assignment problem with a chosen subset: 1). un-limited, 2). left-end-limited (or right-end-limited), and

3). two-end-limited.

At the first sight, adding a chosen subset to the 2-track assignment secems to increase the complexity
of this problem. However the greedy approach of Algorithm 6.1 and Algorithm 6.2 can still be employed

to solve the 2-track assignment problem with a chosen subset; although some care must be taken.

We will use Algorithm 6.1 (or its variation) to solve the first 2 varieties of the 2-track assignment
problem with a chosen subset, and Algorithm 6.2 to solve the third variety, and in both cases we will

apply the following modifications:
Delete all the intervals in the chosen subset from [.

Place the intervals in the chosen subset, one at a time, on the tighter fitting track, in increasing

order of their right_endpoint at the appropriate times.

By the appropriate times, we mean: 1. an interval f; in the chosen subset is placed on the track right after
the first interval that overlaps and ends before f; is placed on the track, if such an interval exists, and 2.
all intervals that end after f;, for some f; in the chosen subset, are placed on the tracks after f;. These
modifications can be done with some simple book keeping. Note that Step 5 of Algorithm 6.1, and simi-
larly Step 14 of Algorithm 6.2, is carried out even when an interval in the chosen subset is placed on the
track. This is done to ensure that the 2-track assignment is always valid, i.e., the corresponding subgraph
is always bipartite.

The correctness of the above approach is validated by proofs of Theorem 6.1 and 6.2, because any
maximum 2-track assignment must include all the intervals in the chosen subset; hence substitution, the
method used in showing the correctness of Algorithm 6.1, is applied only to those intervals not in the

chosen subset, and remains valid.

6.5. Proper Circular-Arc Graphs

In the following we will assume that a proper circular-arc graph C is given in the form of a family
of arcs, C= {c1,¢5, " * ,¢,), On a circle, where each arc is denoted by two endpoints — left and right, in
clockwise direction. Again without loss of generality we can assume that the 2n endpoints of the arcs are

distinct. As pointed out in the preliminaries, if a graph G is given in the form of vertices and edges, then

Finding Maximum Bipartite Subgraphs 107

we can use Tucker’s algorithm to construct a circular-arc representation of G in O(n?) time.

We will consider the following two possibilities when finding a maximum bipartite subgraph for a
proper circular-arc graph C:
1. C has a maximum bipartite subgraph that is also an interval graph.

2. Not case 1, that is, the union of arcs of every maximum bipartite subgraphs of C covers the

circle.

If case 1 is true, then we can reduce this problem on a proper circular-arc graph to 2n problems on inter-
val graphs by cutting the circle at each of the 2n endpoints, apply Algorithm 6.1, and take the maximum
bipartite subgraph we find. Recall in a proper circular-arc graph no arc is properly contained within
another. Thus any arc in a bipartite subgraph overlaps at most two other arcs in the subgraph. Now if
case 2 is true, then any maximum bipartite subgraph of C must be an even cycle (in the degenerate case,
it consists of 2 arcs or vertices), since each arc in the maximum bipartite subgraph must overlap exactly
one arc to the right and one arc to the left of it. The maximum independent set of an even cycle consists
of half of the arcs in the cycle. Note that the other half is also a maximum independent set of the even
cycle. As we shall show in the proof of Theorem 6.3, if all maximum bipartite subgraphs of C are even
cycles, then there exists a maximum bipartite subgraph S of C such that S consists of the union of max-
imum independent set of interval graphs C, and C,, for some a, b, 1<a,b<2n, where C; is the set of arcs

in C except all those that contain interval (g;, a;,,) as defined in Step 2 of Algorithm 6.3.

The following algorithm describes the details of the above approach.

Input. A proper circular-arc graph C given as a set of arcs, C = {¢;,¢3, " "~ ,C,}.

Output. A maximum bipartite subgraph of C.

1. Sort the 2n endpoints in clockwise direction and output them in a list ¢, o={a,,a,, * ' - ,a,,}, where
Aoy =dq.

2. For i =1 to 2n, determine C;.

C; is defined as the set of arcs in C except all those that contain interval (a;, a;;;). Note that C; is an
interval graph.

3. For i =1 to 2n obtain a maximum bipartite subgraph of C; by running Algorithm 6.1.
4, For i = 1 to 2n obtain a maximum independent set M; of C; by the following steps:'

+ This maximum independent set algorithm is presented by Gupta, Lee, and Leung[1982].

Finding Maximum Bipartite Subgraphs ' 108

5. Reindex the endpoints in C; so g;,; becomes a,, a;,, becomes a4, ... , a; becomes a,,.

6. Number the n; intervals in C; according to their right_endpoints in ascending index order.
Let By, B; = {1, 2, ..., ;), be the collection of »; intervals,

7. While B; is nonempty do

8. Pick an interval with the smallest right_endpoint from B; and add it to a set called
M; (originally empty).

9. Delete all intervals from B; that overlap any interval already in M;.
end while

10. Let first; (last;) denote the first (last) arc placed in set M;.

11. For each set M;, find a set M, if one exists, such that |M;]| = |M;]| and M; + M; is an even cycle. Let M;;
denote the set containing such an even cycle.

12. Return the maximum bipartite subgraph produced in Steps 3 and 11.

Algorithm 6.3. Maximum bipartite subgraph algorithm for proper circular-arc graphs.

Theorem 6.3. Algorithm 6.3 finds a maximum bipartite subgraph of a proper circular-arc graph C.

Proof. If C has a maximum bipartite subgraph that is also an interval graph, then Algorithm 6.3 finds it at
Step 3.

Now assume that all maximum bipartite subgraphs of C are even cycles. Let B be one of them. B
consists of two independent sets, say X and Y, of equal size. Without loss of generality let (a;, a;41) be an
unit interval on the circle such that exactly one arc in B covers it. Without loss of generality let ¥ be the
set that contains the arc, say y,, covering interval (a;, a;41). We shall label the arcs in Y, ¥ =
{y1.¥2, - * *,¥], according to their right endpoints in clockwise direction. Similarly we shall label the
arcs in X, X = {x;,x,, - - - ,x,}, according to their right_endpoints in clockwise direction such that x,
overlaps y; and y,. In general, x; overlaps y; and y;,;. Note that X is an independent set of interval
graph C;, and M; (obtained through Steps 4-10) is a maximum independent set of C;. Let’s label the arcs
in M;, M; = {m;,m;5, - -+ ,my}, according to the order the arcs are placed in M;. Observe that m;; never
ends after x; ends (i.e., the right_endpoint of m;; < the right_endpoint of x;) due to the way m;; is picked
(Step 8). Since C is a proper circular-arc graph, m;; never begins after x; begins (i.e., the left_endpoint of
m;; < the left_endpoint of x;). So my; either equals or proceeds x; in clockwise direction. Figure 6.2 illus-

trates the relationship among the arcs in sets X, Y, and M;.

Finding Maximum Bipartite Subgraphs 109

Figure 6.2. Arcsinsets X, Y, and M,.

Now we claim that the union of two independent sets M; and Y is also a maximum bipartite sub-
graph of C. First, we note that the union of M; and Y is a bipartite subgraph of C. Second, we observe
that the size of M; is no less than size of X. Thus the only way M; + Y is not a maximum bipartite sub-
graph of C is when the two sets have arc(s) in common. Without loss of generality let m;; be the first arc
in M; that is in Y, i.e., m;; = y,, for some k. In this case we know m;; proceeds x; in clockwise direction.
Since x; overlaps y; and y;4; and m;; = y;, the index j must be equal to or greater than £, i.e., j2k. Now
let’s consider the set Z = {m;y, m;a, = - ,Mg_1, Xk, Xe41» "> % }. Z is an independent set; |Z] = |X]; Z
is disjoint from Y. Thus Z + Y is a maximum bipartite subgraph of C. Note that m;_; does not overlap
Y&, because m;; = y,, and j=k. Then Z + Y is an interval graph, since the gap between y;_; and y, is not
completely covered by any of the arcs in Z. This is a contradiction because we assumed that C does not
have any maximum bipartite subgraph that is an interval graph. Therefore M; + ¥ must be a maximum

bipartite subgraph of C.

Finding Maximum Bipartite Subgraphs 110

Using similar arguments as above we can show that if (a;, a;,;) is an unit interval on the circle
such that none of the arcs in Y covers it (this implies that there exists an arc in M; that covers it), then M;
+ M; is also a maximum bipartite subgraph of C. Therefore we just proved that if all maximum bipartite
subgraph of C are even cycles, then there exists a maximum bipartite subgraph M;; of C such that M;;
consists of the union of M; and M;, for some i, j, 1<i,j<2n. Algorithm 6.3 finds M; + M; = M;; at Step
11.

a

Before analyzing the running time of Algorithm 6.3, we need to specify how to perform Step 11.

First we prove the following:

Lemma 6.1. Given two independent sets M; and M; (as defined in Step 4 of Algorithm 6.3) of the same

size, if either
1. last; overlaps last;, and first; overlaps last; and first;, or
2. last; overlaps last;, and first; overlaps last; and first;,
then M; + M; forms an even cycle.

Proof. Without loss of generality, let’s assume that case 1 is true, i.e., 1. M; and M; are two independent
sets, 2. IM;| = |M;|, 3. last; overlaps last;, and 4. first; overlaps last; and first;. To prove M; + M; forms
an even cycle, it suffices to show that L. M; is disjoint from M;, and II. arcs in M; and M; cover the whole
circle.

L M; is disjoint from M;.

Suppose not. Let ¢ be the first arc that is placed in both M; and M;. According to the maximum indepen-
dent set algorithm (Steps 5-9) all the arcs placed in sets M; and M; after ¢ are the same, with the possible
exception of the last arc that is placed in M;. Thus last; is also placed in M;. Since first; overlaps last;,
last; is not the same as last;. The above two statements imply last; does not overlap last;. Contradiction.
II. Arcsin M; and M; cover the whole circle.

Suppose not. Without loss of generality let (a;, ax.1) be an interval on the circle not covered by arcs in
either set. The maximum independent set algorithm (Steps 5-9) would have placed the same arcs in both
sets M; and M; after the point a;,,, with the possible exception of the last arc that is placed in M;. Using

similar arguments as above, we again reach a contradiction.

Finding Maximum Bipartite Subgraphs 111

(m]

Now we are justified to restate Step 11 of Algorithm 6.3 as: For each set M;, find a set M;, if one
exists, such that |M;| = |M;|, and either last; overlaps last;, and first; overlaps last; and first;, or last; over-
laps last;, and first; overlaps last; and first;.

After the initial sort (Step 1), which takes O(nlogn) time, Steps 3, 4-10, and 11 all can be carried
out in time O(n?). Therefore we can find a maximum bipartite subgraph of a proper circular-arc graph in
O(n?) time.

The complexity of the maximum bipartite subgraph with a chosen subset problem for proper
circular-arc graphs is the same as that for circular-arc graphs, i.e., O(nlogn + nA), where A is the max-
imum number of arcs covering any point on the circle. We will discuss the algorithm for finding a max-

imum bipartite subgraph with a chosen subset for circular-arc graphs in Section 6.6.

6.6. Circular-Arc Graphs

Assume a circular-arc graph is given in the form of a family of arcs C= {c¢,c3, ** - ,¢,} On a cir-
cle, where each arc is denoted by two endpoints — left and right, in clockwise direction. Again without

loss of generality we can assume that the 2n endpoints of the arcs are distinct.

The approach we take in finding a maximum bipartite subgraph of a circular-arc graph is as fol-
lows: For any unit interval (a;, a;,,) on the circle, exactly one of the following three cases is true of any
maximum bipartite subgraph Cp of C:

1. None of the arcs in Cp covers the interval (g;, a;,1).

2. Exactly one arc in Cp covers the interval (a;, a;4;).

3. Exactly two arcs in Cp cover the interval (a;, a;,1).

In the first case, Cp is an interval graph. To obtain Cy we can cut the circle at the interval (a;, a;,1), and
find a maximum bipartite subgraph on the corresponding interval graph. The second and third cases can
be handled by considering all possible combinations of arcs covering interval (a;, a;,;), cutting the circle
at the interval (g;, g;,1), and solving the corresponding two-end-limited 2-track assignment problem (the
exact details are given in Algorithm 6.4). Not knowing which of the three cases holds for any particular

interval (g;, a;,1), we shall solve them all and take the maximum bipartite subgraph we find. An unit

Finding Maximum Bipartite Subgraphs 112

interval (a;, a;,4) best suited for the above approach is one with the least number of arcs covering it in C.

All these steps are described in Algorithm 6.4.

Input. A circular-arc graph C given as a set of arcs, C = {c;,c3, * * " ,¢,}.
Output. A maximum bipartite subgraph of C.

| Sort the 2n endpoints in clockwise direction and output them in a list o, a={a,,a,, - - - ,a,,}, where
A2p41 =43

2. For i = 1 to 2n, determine D;.
D; is defined as the set of arcs covering the interval (a;, a;,;).

3. Determine k such that |D;| = min{|D;], 1<i<2n}.
4, Obtain a maximum bipartite subgraph of the interval graph C-D, by running Algorithm 6.1.
5. For each arc ¢; = (a4, a,,) in D do

(c; is the only arc covering the interval (a;, a;,;) in the bipartite subgraph.)

6. Solve the corresponding two-end-limited 2-track assignment problem of C (Algorithm 6.2) by
mapping endpoint @, ; to 0, a;,, to 1, ... , a; to 2n—1, and numbering trackl, track2 from 0 to
2n~1, |ri—k| to |2n—k+1;|, respectively.

T Let G; be the set of arcs placed on trackl and track2 in Step 6 plus arc ¢;.

8. For each pair of arcs ¢; = (a;,, @,,) and ¢; = (a,j,a,j) in Dy do
(both arcs c; and c; cover the interval (a;, a;,;) in the bipartite subgraph.)

9. Solve the corresponding two-end-limited 2-track assignment problem of C (Algorithm 6.2) by
mapping endpoint @,y to 0, a2 to 1, ..., @, to 2n-1, and numbering trackl, track2 from |ri—k|
to [2n—k+1], |rj—k to [2n—k+1;], respectively.

10. Let Gy; be the set of arcs placed on trackl and track2 in Step 9 plus arcs c; and c;.
11. Return the maximum bipartite subgraph produced in Steps 4, 7, and 10.

Algorithm 6.4. Maximum bipartite subgraph algorithm for circular-arc graphs.

Let’s define & to be the minimum number of arcs covering any particular interval (g;, a;,;) on the
circle; & = |Dy| in Algorithm 6.4. We shall parametrize the running time of Algorithm 6.4 in terms of 8.
After the 2n endpoints are sorted (Step 1), the second for loop (Steps 5-7) takes O(nd) time, since each
call to Algorithm 6.2 takes linear time. The third for loop (Steps 8-10) takes O(n8%) time, since there are
8 number of pairs of arcs in D, to consider. Thus the total running time of Algorithm 6.4 is O(nd%).
Note that & is upper bounded by the minimum degree of vertices in C. Clearly 8 is upper bounded by e

Finding Maximum Bipartite Subgraphs 113

— the number of edges in circular-arc graph C. & is also upper bounded by the number of edges in a

minimum maximal clique of C.

Circular-arc graphs is one class of graphs where the complexity of finding a maximum bipartite
subgraph is reduced, from 0(n8%) to O(nlogn + nA), when a chosen subset is included (the size of the
chosen subset is greater than (), where A is the maximum number of arcs covering any point on the cir-
cle. The reason is that if an arc is included in the bipartite subgraph, then we can narrow the searching
space for optimal solutions. First, we observe that if there exist two overlapping arcs in the chosen sub-
set, then we can cut the circle at a point of overlap and reduce the original problem on a circular-arc
graph to a two-end-limited 2-track assignment problem with the chosen subset (the chosen subset will not
include the two overlapping arcs). The complexity of the algorithm in this case is O(nlogn). Second, we
note that given that an arc (g;, g;) is included in the bipartite subgraph, then in any maximum bipartite
subgraph the unit interval (g;, g;.1) is covered with exactly one arc or exactly two arcs on the circle. We
have dealt with this situation previously in circular-arc graphs, but now we know arc (g;, a;) is in the
bipartite subgraph. Thus we only have to consider all possible arcs (other than (a;, a;)) covering or not
covering the unit interval (g;, g;,1), and solve the corresponding two-end-limited 2-track assignment
problem with a chosen subset. The number of arcs we need to consider is at most A. Note that A <d <n,
where d is the maximum degree of vertices in C. Hence the complexity of finding a maximum bipartite

subgraph with a chosen subset for circular-arc graphs and for proper circular-arc graphs is O(nlogn + nA).

6.7. Permutation Graphs

Suppose that IT = [&,, T, *** , ®,] is a permutation of n numbers. Let w;” denote the position in
the sequence where the number i can be found. A permutation graph G[IT] is an undirected graph on n
vertices such that vertex i is adjacent to vertex j if the larger of {i, j} appears to the left of the smaller in
I1. More formally, the graph G[IT] = (V, E) is defined as follows:

V=1{1,2,.:: 1]}
and
ije E e (i— pm™ -m;) <.

An undirected graph G is a permutation graph if there exists a permutation IT such that G is isomorphic to
G[II].

Finding Maximum Bipartite Subgraphs 114

As mentioned in the preliminaries, permutation graphs are also characterized as comparability
graphs whose complements are also comparability graphs. Permutation graphs are a proper subclass of
comparability (or transitively orientable) graphs which are a proper subclass of perfect graphs. To obtain
a transitive orientation 8[11] of a permutation graph G[IT], we simply orient each edge toward the larger
vertex. Note that after orientation, the resulting directed graph must be acyclic. A transitively reduced
graph G,[TT] of G[IT] is a directed graph that consists of vertices in G(IT], and an arc (a,c) is in G,[IT] if
and only if (a,c) is in G[IT] and there exists no vertex b such that (a,b) and (b,c) are in G[IT]. Note that
a[l'l] is a subgraph (not induced) of 6[1'1]. An interesting property of permutation graphs is that the
complement of a permutation graph is another permutation graph. If we let IT” be the reverse of permuta-

tion IT, then it is clear G[I1] = G[IT"].

Given a permutation graph G, a suitable permutation IT can be constructed in time O(de + n?)
[Golumbic, 1980], where d is the maximum degree of a vertex. The transitively reduced graph a[l'[] can
be constructed from IT in O(n?) time. In the following, we will assume that a permutation graph G is
given as G[IT].

Two elementary propertics of permutation graphs G[IT] are: 1. the increasing subsequences of IT
and the independent sets of G[IT] are in one-to-one correspondence, and 2. the decreasing subsequences
of IT and the cliques of G[IT] are in one-to-one correspondence. Thus a maximum bipartite subgraph of
G[IT] corresponds to a longest subsequence IT; of IT such that IT; is composed of two increasing subse-

quences of I1.

In developing an algorithm for finding a maximum bipartite subgraph of G[IT], we will be working
with the complement of the permutation graph, i.e., G[IT"]. More specifically, we will be dealing with the
transitive directed graph 3[1’[’], which is obtained from G[IT"] by orienting each edge toward the larger
vertex. Now if (r,”, ®,") is a directed edge in E[I'I"], then ," > m,” and b < a. Note that the directed
paths in 8[11’] are in the opposite direction as the subsequences in IT", and this is done for simplicity of
describing the algorithm. Directed paths in 3[II’] and cliques of G[II"] are in one-to-one correspon-
dence; equivalently directed paths in 8[H’] and independent sets of of G[II] are in one-to-one correspon-
dence. Our strategy for finding a maximum bipartite subgraph of G[II] is to look for 2 directed paths in

3[1'[’] containing the maximum number of vertices. Note that the 2 directed paths need not be disjoint.

Finding Maximum Bipartite Subgraphs 115

To find 2 such directed paths in 6[1'[’], we first compute, for each pair of vertices u and v, a best-pair-of-
paths from u and v in a[l”l’], 1<u,v<n. A best-pair-of-paths from vertices u and v in 6[1'['] is defined as
2 directed paths starting from vertices # and v and containing the maximum number of vertices in 6[1'[’].
A best-pair-of-paths that contains the maximum number of vertices among all best-pair-of-paths in a[l'[’]

corresponds to a maximum bipartite subgraph of G[IT].

An interesting observation we make is that all best-pair-of-paths in 8[H’] use only edges in the
transitively reduced graph G,[IT"] of GIIT']. For if there exists a directed path from # to v in G(IT’], then
there exists a directed path from u to v traversing only transitively reduced edges that is as long as any
other directed path from « to v in 6[1?]. Thus we only have to deal with the transitively reduced graph

a [IT"] when computing a maximum bipartite subgraph of G[II].

‘We now present a simple algorithm, based on dynamic programming, for finding a maximum bipar-

tite subgraph of a permutation graph. It goes as follows:

Input. A permutation graph G[IT].
Output. A maximum bipartite subgraph of G[IT].
1. Let [T, the reverse of I1, be indexed as: IT" = [n],n}, =+ *, 7,].

2 Construct the transitively reduced graph a{ﬂ’] of 6[1]’].
The edges in 6,[1']’] are always oriented toward the larger vertex.

3 Fori=1ton,do
4, For j =1 to i, compute a best-pair-of-paths from vertices 7t} and T} in a[l'l'].

3 Return a best-pair-of-paths from ©t}, and 1}, in a[ﬂ’], for some 7}, and 7}, 1<m},mj<n, that contains the
maximum number of vertices among all best-pair-of-paths computed in Step 4.

Algorithm 6.5. Maximum bipartite subgraph algorithm for permutation graphs.

Algorithm 6.5 correctly solves the maximum bipartite subgraph problem because the best-pair-of-
paths computed in Step 5 corresponds to a longest subsequence IT; of IT such that IT; is composed of two

increasing subsequences of IT which corresponds to a maximum bipartite subgraph of G[IT].

The dynamic programming part of Algorithm 6.5 comes into play in Step 4, and it proceeds as fol-

lows:

Finding Maximum Bipartite Subgraphs 116

1. A best-pair-of-paths from = and =} (j < i) = a best of {best-pair-of-paths from n} and =, where n} is
a vertex pointed to by]} plus the vertex =}.
2. A best-pair-of-paths from n] and nt], = a best of {best-pair-of-paths from =} and =}, where =} is a ver-

tex pointed to by =} }.

nt. b

Figure 6.3. A best-pair-of-paths from r1*; and nrj through ",

Basically a best-pair-of-paths from n; and nt; must go through some vertex, say 7}, pointed to by n]. See
Figure 6.3 for illustration. Note that 7t may also be pointed to by n]. Due to dynamic programming, a
best-pair-of-paths from =} and =}, &, j <, has been determined earlier, and that information is readily
available. If there exist more than one best-pair-of-paths from =] and 7}, then we can freely choose one.
The amount of work needed to compute a best-pair-of-paths from =} and =}, for some j < i, is bounded
by the outdegree of vertex m} in the transitively reduced graph a[l'l’]. Thus the total running time of
Algorithm 6.5 is O(3 nd,) = O(ne;), where d, is the outdegree of vertex v and ¢; is the number of edges

in G,[IT"].
Due to the nature of dynamic programming, we can easily adapt Algorithm 6.5, with some simple
modifications, to find a maximum bipartite subgraph with a chosen subset for permutation graphs. Let S

be the chosen set, S = {m;, m, ---,mf), a<b< --- <s. Because all directed paths

T, >, — * ** o, in a[ﬂ"] have the property that @, <m, <--- <m, and v;>v,> - - >y, a best-

Finding Maximum Bipartite Subgraphs 117

pair-of-paths from n and =}, j <i, must include all those vertices 7}, of S such that h <i, if they exist.
For if a vertex w}, of S, h <1, is not included in a best-pair-of-paths from =} and =}, j < i, then all best-
pair-of-paths that build on top of best-pair-of-paths from =} and 7 will not include the vertex mj, either.
To find a maximum bipartite subgraph that includes S, we need to modify Step 4 of Algorithm 6.5 as fol-
lows: For j =1 to i, compute a best-pair-of-paths from vertices nt and =} in 6, [IT"] that includes all those
vertices 7, of § with 4 <i. This modified Step 4 can be computed by considering only those vertices 7t}
that are pointed to by n] such that a best-pair-of-paths from n; and =} plus the vertex n include all those
vertices 7, of S with h <, if such a best-pair-of-paths exists. Of course the best-pair-of-paths deter-
mined in Step 5 of Algorithm 6.5 must include the whole set S. The complexity of this modified algo-
rithm is still O(ne;), where ¢, is the number of edges in a[ﬂ’].

6.8. Split Graphs

A graph G = (V , E) is called a split graph if V can be partitioned into two subsets I and C such that
I is an independent set and C induces a complete graph. Split graphs are also characterized as chordal
graphs whose complements are also chordal graphs. Split graphs are a proper subclass of chordal graphs.
It is clear that the complement of a split graph is also a split graph.

In this section we present a simple algorithm for finding a maximum bipartite subgraph of a split
graph. First we make the following observation: If we partition the vertex set V of a split graph into two
subsets [and C such that / is an independent set and C induces a complete graph (for example, if we use
a maximum independent set algorithm to find 7), then any maximum bipartite subgraph of G contains at
least one and at most two vertices from C. Thus our task becomes: Find a bipartite subgraph of size || +
2, if it exists. Otherwise the set / plus any vertex in C is a maximum bipartite subgraph of G. The algo-

rithm for finding a maximum bipartite subgraph of G goes as follows:

Input. A split graph G = (V, E).
Output. A maximum bipartite subgraph of G.

1. Find a maximum independent set of G using Gavril’s[1972] algorithm.
Let I, denote the maximum independent set, and C denote the set of vertices that induces a complete
graph, I, +C=V.

Finding Maximum Bipartite Subgraphs ' 118

2. Determine M which is defined to be the adjacency matrix with (M),, = 1 if and only if (u,v)eE,
uel,,, and veC.

3. Calculate M? which is the boolean multiplication of M with itself.
4. If there exist v, v; € C such that (M?),,, = 0, then

5 Let B = Iy +v; +v;.
Otherwise

6. LetB=1I_, +v, for any vin C.
7 Return B.

Algorithm 6.6. Maximum bipartite subgraph algorithm for split graphs.

To see Algorithm 6.6 correctly finds a maximum bipartite subgraph of a split graph G, we note that
two vertices v;, v; in C form a bipartite subgraph with I,,,, only if there exists no vertex u in /,, such
that u is adjacent to both v; and v;, in other words, only if the length of the shortest path between v; and
v; in the subgraph (actually a bipartite subgraph) determined by the adjacency matrix M (Step 2) is more

than two, or (M 2),,i,,,j =0.

Gavril’s maximum independent set algorithm on chordal graphs takes O(n + €) time when it is
combined with a perfect vertex elimination scheme of the same time bound (an O(n + e) algorithm of
Rose, Tarjan, and Lueker[1976] will do). Thus the running time of Algorithm 6.6 is dominated by matrix
multiplication (Step 3), in other words, the complexity of Algorithm 6.6 is equivalent to that of matrix
multiplication. Presently the most efficient, asymptotically speaking, matrix multiplication algorithm runs
in time O(n**"®) [Coppersmith and Winograd, 1987]. (To be more precise, an nxn matrix may be multi-
plied using O(n*3"®) arithmetical operations; 2.376.. is the matrix exponent. For a more practical matrix
multiplication algorithm — O(n%%%"), see Strassen[1969]). Therefore we can find a maximum bipartite

subgraph for a split graph in time O(n2%"5).

Adding the constraint that a maximum bipartite subgraph must include a chosen subset of vertices
may simplify the problem when we are dealing with split graphs. For we know a bipartite subgraph can
include at most two vertices from C, and even knowing one vertex in C must be included in the bipartite
subgraph will narrow down our choices. The complexity of finding a maximum bipartite subgraph with a
chosen subset for split graphs, however, remains the same as the complexity of matrix multiplication,

since the chosen subset may contain only vertices that are in I, and in which case we will have to use

Finding Maximum Bipartite Subgraphs 119

Algorithm 6.6.

In Algorithm 6.6 we have reduced the problem: find a bipartite subgraph of size |I] + 2, if it exists,
to the problem: determine if there exist two vertices in C such that the shortest path between those two
vertices is more than 2, and we solved the latter by matrix multiplication. Now we observe that the
second problem falls in the framework of a more general question: is the diameter of a bipartite graph
larger than 2?7 The diameter of a graph is defined as the length of any longest shortest path between 2
vertices in the graph. The complexity of this problem is the same as that of matrix multiplication. An
open problem is whether we can improve the running time of this algorithm, or whether we can use a
more combinatorial approach and achieve a time bound better than O(ne) (i.e., without using matrix mul-
tiplication). Interestingly, the complexity of determining whether the diameter of a bipartite graph is
greater than k, for any fixed k, is the same as that of matrix multiplication; however, when £ is not fixed,
the complexity becomes O(ne) using breadth first search or O(n>(loglogn/logn)'’*) using an algorithm of
Fredman[1976].

6.9. Concluding Remarks and Suggestions for Future Research

In this chapter we have used the dynamic programming technique on numerous occasions to solve
the maximum bipartite subgraph problem, including interval graphs, 2-track assignment problems,
circular-arc graphs, and permutation graphs (the greedy approach of Algorithms 6.1 and 6.2 can be con-
sidered as dynamic programming). In fact, dynamic programming is also employed to solve the same
problem for chordal graphs, by Yannakakis and Gavril[1987]. We believe the approaches of Bern,
Lawler, and Wong[1987] and Baker[1983], both of which use dynamic programming, can be applied to
find a maximum bipartite subgraph for outerplanar and k-outerplanar graphs, respectively; although we
have not checked the details. Dynamic programming has proven itself to be a powerful technique. How-
ever, it is not powerful enough (at least it has not been shown to be) to solve the maximum bipartite sub-
graph problem for all classes of graphs when such polynomial-time algorithms exist, as demonstrated by
Frank[1980] for comparability graphs. Another interesting observation we make is that the decomposi-
tion approach in dynamic programming in each class of graphs is different. Usually we have put the
graph in proper representation before the decomposition approach becomes apparent. One such example

is permutation graphs; in Algorithm 6.5 the permutation graph is built as a transitively reduced transitive

Finding Maximum Bipartite Subgraphs 120

directed graph to be operated on by dynamic programming. Another example is chordal graphs; in the
algorithm of Yannakakis and Gavril[1987], a chordal graph is first represented as an intersection graph of
a family of subtrees in a tree before the algorithm proceeds.

Due to the nature of dynamic programming, we can easily adapt the algorithms based on dynamic
programming for finding a maximum bipartite subgraph, with some simple modifications, to find a max-
imum bipartite subgraph with a chosen subset, as we have done for interval graphs, 2-track assignment
problems, circular-arc graphs, and permutation graphs. In the same spirit, the algorithm of Yannakakis
and Gavril[1987] for chordal graphs can also be modified to find a maximum bipartite subgraph with a
chosen subset by considering only those subgraphs (cliques) such that if a vertex is in the chosen subset,

then that vertex is colored in the subgraph, i.e., included in the maximum bipartite subgraph.

In this chapter we have presented efficient algorithms for finding a maximum bipartite subgraph for
various classes of graphs; however, the complexity of this problem for some important classes of graphs
still remain open, including perfect graphs. For perfect graphs, both independent set and chromatic
number problems are known to be polynomial-time solvable via the ellipsoid method (see Gritschel,
Lovdész, and Schrijver[1981]). These results may or may not provide a clue to the complexity of the max-
imum bipartite subgraph problem for perfect graphs. In any event, determining its complexity can be
interesting and challenging, and is left for future research. In addition, the complexity of the maximum
bipartite subgraph with a chosen subset problem for comparability graphs and series-parallel graphs are

open, and deserve further studies.

In this chapter we have restricted our attention to those classes of graphs that have polynomial-time
algorithms for the maximum bipartite subgraph problem. Another possible direction of study is in the
development of approximation algorithms or heuristics for this problem, meaning algorithms that produce
a bipartite subgraph of a certain size, possibly parameterized by the chromatic number, for all graphs.

This is another interesting and challenging problem left for future studies.

Chapter 7

Conclusions and Future Work

In this dissertation we have designed algorithms for approximate graph coloring with good perfor-
mance by examining more global structures and properties of graphs than previously examined. We have
investigated the role played by odd cycles of graphs in connection with graph coloring and found that the
presence or absence of certain size odd cycles gives graphs more structure and hence simplifies graph
coloring. More specifically, we have shown that the ‘‘local’’ neighborhood of a smallest odd cycle of a
graph is bipartite. The locality of this bipartite neighborhood depends on the size of a smallest odd cycle
— k. The larger the value k is, the larger is the bipartite neighborhood. Thus the absence of small odd
cycles enables us to find large bipartite subgraphs. On the other hand, the absence of large odd cycles in
a biconnected graph implies the absence of large even cycles, and these conditions imply that the graph
contains special structures. Hence graph coloring is simplified due to the special structures. We have
presented efficient graph coloring algorithms that improve the performance guarantee on certain graphs,
sometimes by a large margin, over the existing approximate graph coloring algorithms, because we have

exploited some favorable global structures and properties of graphs.

Another factor that has contributed to the success of the graph coloring algorithms presented in this
dissertation is the approach, which is: find large bipartite subgraphs. However, it is the combination of
identifying global structures of a graph and finding large bipartite subgraphs that gives rise to a “‘work-
ing’” algorithm with a guaranteed performance.

Despite the improved performance guarantee, the graph coloring algorithms presented in this disser-
tation have their limitations. For one, the algorithms are not ‘‘general’’ graph coloring algorithms, for
they do not provide good performance guarantee on all graphs. The algorithms in Chapter 4 are designed
for triangle-free graphs, while in contrast the algorithms in Chapter 5 are designed for graphs with only

121

Conclusions and Future Work 122

small odd cycles. How do we color graphs that have both large and small odd cycles? Can we extend
the techniques developed in this dissertation to handle general graphs? Is it possible to combine different
methods so that all cycle sizes are covered? Also can we describe the performance of graph coloring
algorithms in terms of the chromatic number of the graph? These are some of the interesting questions

and problems that arise from this work, and they pose challenges for future research.

In this dissertation, we have obtained some global structures and properties of graphs by focusing
on odd cycles of graphs. However, we do not have a complete picture on the role played by odd cycles of
a graph in connection with graph coloring, for example, Conjecture 5.1 is unresolved. We have begun
the investigation. We hope our results will bring interest to this problem, so that the investigation contin-

ues.

Because we have been focusing on a smallest odd cycle of a graph in Chapters 3 and 4, we are
interested in methods of finding one efficiently. As we commented in Chapter 2, Itai and Rodeh[1978]
have reduced the problem of finding a smallest odd cycle to that of matrix multiplication. Can this bound
be reduced? An open problem is whether it is possible to find a smallest odd cycle in a graph more
efficiently, possibly in O(n?) time without using matrix multiplication. In contrast, a smallest even cycle
in a graph can be found in O(n?) time. Monien[1983] has presented an algorithm that finds a smallest
even cycle of a graph in time O(n*min{A (n),MG)}), where A is the inverse Ackermann-function and
AG) is the length of a smallest even cycle of G. The presence of inverse Ackermann’s function in the
running time is due to the use of an Union-Find algorithm. An observation we make is that the structure
of the ‘“‘union tree’’ in Monien’s algorithm is fixed, so that the structure of the unions is known in
advance, hence we can apply the algorithm of Gabow and Tarjan[1985] to obtain a linear time bound for
disjoint set union in Monien’s algorithm. Therefore we can find a smallest even cycle of a graph in time

O(nz) by combining the algorithms of Monien[1983] and of Gabow and Tarjan[1985].

In Chapter 5, we have designed algorithms for coloring graphs with only small odd cycles by
analyzing the structures of those graphs. For graphs with only 3-cycles in odd cycles, we have shown a
complete characterization of their structures. For other graphs we used breadth-first search as a tool to
help us simplify the structures. To analyze the structures of graphs, we performed case studies. As the
complexity of the structures of graphs increases, however, we find the technique of case analysis unsatis-

factory, for it does not extend well. An approach that is general and can be uniformly applied is certainly

Conclusions and Future Work 123

more desirable in this case. Further study is needed in this direction.

In this dissertation, we have investigated the interplay of three different topics: odd cycles, bipartite
subgraphs, and approximate graph coloring. Certainly other combinations of topics are possible. Are
there other structures of graphs which we can exploit to aid graph coloring? This is an interesting ques-
tion and is left for future work.

We have been interested in more theoretical issues in this dissertation. We have presented coloring
algorithms with guaranteed performance, rather than heuristics which seem to run well. We have
designed algorithms that find maximum bipartite subgraphs efficiently, asymptotically speaking. In prac-
tice, however, what does one expect in terms of performance of these algorithms? Are they still efficient?

We leave this as an open problem.

References

Aho, A. V.,]. E. Hopcroft, and J. D. Ullman [1974]
The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, MA.
Akers, S. B. [1972]

Routing, in Design Automation of Digital Systems - Vol. 1: Theory and Techniques, M. A. Breuer
(ed.), Prentice-Hall Inc., Englewood Cliffs, NJ, pp.283-333.

Appel K., and W. Haken [1976]
Every planar map is four colorable, Bull. Amer. Math. Soc., 82, pp.711-712.

Appel K., and W. Haken [1977]
Every planar map is four colorable: Part I: ‘‘Discharging”’, Illinois J. Math., 21, pp.429-490.
Appel K., and W. Haken [1986]
The four color proof suffices, Math Intelligencer, 8 (1), pp.10-20.
Appel K., W. Haken, and J. Koch [1977]
Every planar map is four colorable: Part II: “‘Reducibility”’, Illinois J. Math., 21, pp.491-567.
Baker, B. S. [1983]
Approximation algorithms for NP-complete problems on planar graphs, Proc. 24th Annual Sympo-
sium on Foundations of Computer Science, pp.265-273.
Bdrdny, 1. [1978]
A short proof of Kneser’s conjecture, J. Combinatorial Theory A, 25, pp.325-326.

Berge, C. [1973]
Graphs and Hypergraphs, North Holland, Amsterdam and London.
Berger, B., and J. Rompel [1988]
A better performance guarantee for approximate graph coloring, Manuscript, June, 1988.
Bern, M. W, E. L. Lawler, and A. L. Wong [1987]
Linear-time computation of optimal subgraphs of decomposable graphs, J. Algorithms, 8, pp.216-
235.

Bollobds, B. [1978]
Extremal Graph Theory, Academic Press, New York, New York.

Bollobds, B., and N. Sauer [1976]
Uniquely colourable graphs with large girth, Can. J. Math., vol 28, no 6, pp.1340-1344.

Bondy, J. A., and U. S. R. Murty [1976]
Graph Theory with Applications, North-Holland, New York, New York.

Booth, K. S., and G. S. Lueker [1976]
Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algo-
rithms, J. Comput. System Sci., 13, pp.335-379.

124

References ' 125

Broder, S. [1964]
Final examination scheduling, CACM, vol 7, no 8, pp.494-498.

Brooks, R. L. [1941]
On colouring the nodes of a network. Proc. Cambridge Philos. Soc. 37, pp.194-97.

Brown, J. R. [1972]
Chromatic scheduling and the chromatic number problem, Management Science, vol 19, no 4,
pp-456-463.

Chaitin, G. J. [1982]
Register allocation & spilling via graph coloring, Sigplan Not., vol 17, no 6, pp.98-105.

Chaitin, G. J., M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and P, W, Markstein[1981]
Register allocation via coloring, Computer Languages, 6, pp.47-57.

Christofides, N. [1975]
Graph Theory, Academic Press, New York, New York.

Coleman, T. F., and J. J. Mor¢ [1981]
Estimation of sparse jacobian matrices and graph coloring problems, ANL-81-39, Argonne National
Lab., June 1981.

Coppersmith, D., and S. Winograd [1987]
Matrix multiplication via arithmetic progressions, Proc. 19th Annual ACM Symposium on Theory of
Computing, pp.1-6.

Curtis, A. R., M. J. D. Powell, and J. K. Reid [1974]
On the estimation of sparse jacobian matrices, J. Inst. Maths. Appl., 13, pp.117-119.

Dailey, D. P. [1980]
Uniqueness of colorability and colorability of planar 4-regular graphs are NP-complete, Discrete
Math., 30, pp.289-293.

Descartes, B. [1947]
A three-colour problem, Eureka, 9, April, 1947.

Descartes, B. [1948]
Solutions to problems in Eureka No. 9, Eureka, 10, March, 1948.

Descartes, B .[1954]
Solution to advanced problem No. 4525, Amer. Math. Monthly, 61, pp.532.

Dyer, M. E., and A. M. Frieze [1986]
Fast solution of some random NP-hard problems, Proc. 27th Annual Symposium on Foundations of
Computer Science, pp.331-336.

Edwards, K. [1986]
The complexity of colouring problems on dense graphs, Theoretical Computer Science, 43,
pp.337-343.

Eilon, S., and N. Christofides [1971]
The loading problem, Management Science, 17, pp.259.

References ' 126

Erdds, P. [1959]
Graph theory and probability, Canad. J. Math., 11, pp.34-38.
Erdds, P. [1961]
Graph theory and probability II, Canad. J. Math., 13, pp.346-352.
Erdds, P. [1962]
On circuits and subgraphs of chromatic graphs, Mathematika, 9, pp.170-175.
Erdds, P. [1979]
Problems and results in graph theory and combinatorial analysis, in Graph Theory and Related
Topics, edited by J. A. Bondy and U.S.R. Murty, Academic Press, pp.153-163.
Erdds, P., and A. Hajnal [1966]
On chromatic numbers of graphs and set systems, Acta math. Sci. Hungar., 17 (1-2), pp.61-99.

Erdds, P., and A. Hajnal [1985]
Chromatic number of finite and infinite graphs and hypergraphs, Discrete Math., 53, pp.281-285.
Erdds, P., and H. Sachs [1963]
Regulire graphen gegenebener teillenweite mit minimaler knotenzahl, Wiss. Z. Univ. Halle - Wit-
tenberg, Math. Nat. R., 12, pp.251-258.
Frank, A. [1980]
On chain and antichain families of a partially ordered set, J. Combin. Theory Ser. B, 29, pp.176-
184.
Fredman, M. L. [1976]
New bounds on the complexity of the shortest path problem, SIAM J. Comput., 5, pp.83-89.
Gabow, H. N., and R. E. Tarjan [1985]
A linear-time algorithm for a special case of disjoint set union, J. Comput. and Sys. Sci., 30,
Pp-209-221.
Gallai, T. [1973]
Kritische graphen, Publ. Math. Inst. Hungar. Acad. Sci., 8, pp.165-192,
Garey, M. R., and D. S. Johnson [1976]
The complexity of near-optimal graph coloring, JACM, vol 23, no 1, pp.43-49.

Garey, M. R., D. S. Johnson, and H. C. So [1976]
An application of graph coloring to printed circuit testing, I[EEE Trans. on Circuits and Systems, 23,
pp.591-598.

Garey M. R., D. S. Johnson, and L. J. Stockmeyer [1976]
Some simplified NP-complete graph problems, Theor. Comp. Sci., 1, pp.237-267.

Gavril, F. [1972]

Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum
independent set of a chordal graph, STAM J. Comput., 1, pp.180-187.

Golumbic, M. [1980]
Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York.

References ' 127

Grimmett, G. R., and C. J. H. McDiarmid [1975]
On colouring random graphs, Math. Proc. Camb. Phil. Soc., 77, pp.313-324.
Gritschel, M., L. Lovdsz, and A. Schrijver [1981]
The ellipsoid method and its consequences in combinatorial optimization, Combinatorica, 1,
pp.169-197.
Gritzsch, H. [1958]
Ein Dreifarbensatz fir dreikreisfreie Netze auf der Kugel. Wiss. Z. Martin-Luther-Univ. Halle-
Wittenberg. Math.-Nat. Reihe, 8, pp.109-119.
Gupta, U. L, D. T. Lee, and Y.-T. Leung [1982]
Efficient algorithms for interval graphs and circular-arc graphs, Networks, 12, pp.459-467.
Hall, A. D., and F. S. Acton [1967]
Scheduling university course examinations by computer, CACM, vol 10, no 4, pp.235-238.
Harary, T. [1969]
Graph Theory, Addison-Wesley, Reading, Massachusetts.
Imrich, W. [1984]
Explicit construction of regular graphs with no small cycles, Combiratorica, 4, pp.53-59.
Itai, N., and M. Rodeh [1978]
Finding a minimum circuit in a graph, SIAM J. Comput., vol 7, no 4, pp.413-423.
Johnson, D. S. [1974]
Worst case behavior of graph coloring algorithms, in: Proceedings of the 5th S-E Conference on
Combinatorics, Graph Theory and Computing, Congr. Num., 10, pp.513-527.

Johnson, D. S. [1985]
The NP-completeness column: an ongoing guide, J. Algorithms, 6, pp.434-451.
Karp, R. M. [1972]
Reducibility among combinatorial problems, in: Complexity of Computer Computations, R. E.
Miller and J. W. Thatcher (eds.), Plenum Press, New York, pp.85-103.
Kelly, J. B, and L. M. Kelly [1954]
Paths and circuits in critical graphs, Amer. J. Math., 76, pp.786-792.
Kierstead, H. A., E. Szemerédi, and W. T. Trotter [1984]
On coloring graphs with locally small chromatic number, Combinatorica, 4, pp.183-185.
Kneser, M. [1955]
Aufgabe 300, Jahresbericht. Deutschen Math.-Verein., 58, pp.27.
Kanig, D. [1936]
Theorie der endlichen und unendlichen Graphen, Leipzig, 1936, Reprinted Chelsea, New York,
1950.
Kucera, L. [1977]
Expected behavior of graph coloring algorithms, in Fundamentals of Computation Theory,
Springer-Verlag Lecture Notes in Computer Science, no 56, pp.447-451.

References ' 128

Lewis, J. M., and M. Yannakakis [1980]
The node-deletion problem for hereditary properties is NP-Complete, J. Comp. System Science, 20,
pp.219-230.
Lovdsz, L. [1968]
On chromatic number of finite set-systems, Acta Math. Acad. Sci. Hungar., 19, pp.59-67.
Lovdsz, L. [1978]
Kneser’s conjecture, chromatic number, and homotopy, J. Combinatorial Theory A, 25, pp.319-324.
Lovdsz, L. [1983]
Self-dual polytopes and chromatic number of distance graphs on the sphere, Acta Sci. Math.
Szeged., 45, pp.317-323.

Lubotzky, A., R. Phillips, and P. Sarnak [1986]
Explicit expanders and the Ramanujan conjectures, Proc. of 18th ACM Symp. on Theory of Com-
puting, pp.240-246.

Lubotzky, A., R. Phillips, and P. Sarnak [1988]
Ramanujan graphs, Combinatorica, 8 (3), pp.261-277.

Manber, R., and G. Narasimhan [1987]
Algorithms for the maximum induced bipartite subgraph problem on interval and circular-arc
graphs, U. of Wisconsin - Madison CS Technical Report #696, April, 1987.

Manvel, B. [1985]
Extremely greedy coloring algorithms, in Graphs and Applications, Proceedings of the First
Colorado Symposium on Graph Theory, edited by F. Harary and J. S. Maybee, John Wiley,
pp-257-270.

Margulis, G. A. [1982]
Graphs without short cycles, Combinatorica, 2, pp.71-78.

Matula, D. W., G. Marble, and J. D. Isaacson [1972]
Graph coloring algorithms, in Graph Theory and Computing, edited by R. C. Read, Academic
Press, pp.109-122.

May, K. O. [1965]
The origin of the four-color conjecture, Isis, 56, pp.346-348.

McDiarmid, C. J. H. [1979]
Colouring random graphs badly, in Graph Theory and Combinatorics, edited by R. J. Wilson, Pit-
man Research Notes in Mathematics, 34, pp.76-86.

Monien, B. [1983]
The complexity of determining a shortest cycle of even length, Computing, 31, pp.355-369.

Milller, V. [1979]
On colorings of graphs without short cycles, Disc. Math., 26, pp.165-176.

Mycielski, J. [1955]
Sur le coloriage des graphes, Collog. Math., 3, pp.161-162.

References ' 129

Nesestril, J. [1966]
On k-chromatic graphs without circuits of a length < 7 (Russian), Comm. Math. Univ. Carolinae, 7,
3.

Nesestril, J., and V. Radl [1979]
A short proof of the existence of highly chromatic hypergraphs without short cycles, J. Combina-
torial Theory B, 27, pp.225-227.

Neufield, B. A., and J. Tartar [1974]
Graph coloring conditions for the existence of solutions to the time-table problem, CACM, 17,
pp.450.

Ng, T., and L. Johnsson [1985]
Generation of layouts from circuit schematics; A graph theoretic approach, Research report
YaleU/DCS/RR-378, March, 1985.

Peck, J. E. L., and M. R. Williams [1966]
Examination scheduling, CACM, vol 9, no 6, pp.433-434.

Roschke, S. 1., and A. L. Furtado [1973]
An algorithm for obtaining the chromatic number and an optimal colouring of a graph, Information
Processing Letters, 2, pp.34-38.

Rose, D. J., R. E. Tarjan, and G. S. Lucker [1976]
Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5, pp.266-283.

Sarrafzadeh, M., and D. T. Lee [1987]
A new approach to topological via minimization, Northwestern University, Center for Integrated
Microelectronic Systems Technical Report CIMS-87-01, November, 1987.

Shamir, E., and E. Upfal [1984]
Sequential and distributed graph coloring algorithms with performance analysis in random graph
spaces, J. Algorithms, 5, pp.488-501.

Schiuble, M. [1968]
Beitrige zum problem der existenz und konstruktion endlicher graphen gegebener chromatischer

zahl, die gewissen strukturbedingungen geniigen, und zu verwandten problemen, Dissertation,
Ilmenau.

Strassen, V. [1969]
Gaussian elimination is not optimal, Numerische Mathematik, 13, pp.354-356.
Takamizawa, K., T. Nishizeki, and N. Saito [1982]
Linear-time computability of combinatorial problems on series-parallel graphs, JACM, vol 29, no 3,
Pp.623-641.
Tarjan, R. E. [1972]
Depth first search and linear graph algorithms, SIAM J. Computing, 1:2, pp.146-160.
Tucker, A. [1971]
Matrix characterization of circular-arc graphs, Pacific J. Math., 39, pp.535-545.

References ' 130

Tucker, A. [1980]
An efficient test for circular-arc graphs, SIAM J. Comput., 9, pp.1-24.

Tucker, A. C., and L. Bodin [1976]
A model for municipal street sweeping operations, Case Studies of Applied Mathematics, Math.
Assoc. of America, Washington, pp.251-295.

Turner, J. S. [1984]
On the probable performance of graph coloring algorithms, 22nd Allerton Conf. on Communica-
tions, Control, and Computing, pp.281-290.

Turner, J. S. [1988]
Almost all k-colorable graphs are easy to color, J. Algorithms, 9, pp.63-82.

Welsh, D.J. A., and M. B. Powell [1967]
An upper bound for the chromatic number of a graph and its applications to timetabling problems,
The Computer Journal, 10, pp.85-86.

Wigderson, A. [1983]
Improving the performance guarantee for approximate graph coloring, JACM, vol 30, no 4,
pp-729-735.
Wilf, H. S. [1984]
Backtrack: an O(1) expected time algorithm for the graph coloring problem, Inform. Process. Lett.,
18, pp.119-121.
Wood, D. C. [1968]
A system for computing university examination timetables, The Computer Journal, 11, pp.41.
Wood, D. C. [1969]
A technique for coloring a graph applicable to large scale timetabling problems, The Computer
Journal, 12, pp.317.
Yannakakis, M. [1987]
Personal communication.
Yannakakis, M., and F. Gavril [1987]
The maximum k-colorable subgraph problem for chordal graphs, IPL 24, pp.133-137.
Zykov, A. A. [1949]
On some properties of linear complexes (in Russian), Mat. Sbornik N.S., 24, pp.163-188. English
translation in: Amer. Math. Soc. Transl., 79, (1952), reissued in: Translations Series 1, 7, Algebraic
Topology, pp.418-419 (Amer. Math. Soc. 1962).

