COMMUNICATION COMPLEXITY:
A SURVEY

Laszlo Lovasz

CS-TR-204-89

February 1989

COMMUNICATION COMPLEXITY:'
A SURVEY

LASZLO LovAsz

Department of Computer Science,
Eo6tvos Lorand University,
Budapest, Hungary H-1088

and

Princeton University,

Princeton, NJ 08544, USA

* Research supported by the joint research project of the Hungarian Academy of
Sciences and the Deutsche Forschungsgemeinschaft, and by the Hungarian National
Research Fund grant No. 1812.

. Introduction

. Time-area tradeoff in VLSI: a simple example

. Deterministic and non-deterministic communication complexity
. General results on communication

Some protocols

Moébius functions and the rank of the communication matrix

. Randomized protocols

VLSI again: how to split information?

Communication complexity and computational complexity

0 NG A WN O

0. Introduction

Complexity is one of the crucial scientific phenomena of our times. We are far
from understanding all its aspects; but the first elements of a comprehensive theory
do begin to emerge. To define a measure of complexity, we consider a certain
(computing) task, and ask: what is the minimum amount of certain resources that
is needed to carry out his task? The resources one considers depend on the device
we are using and on other circumstances. The most common complexity measures
are time and space, but many others can be considered.

The increasing importance of distributed computing, networking, VLSI and
the use of computers in telecommunication have pointed out the significance of
communication as a resource. In many devices, communication is significantly
slower and costlier than local computation, and it is the real bottleneck in solving
certain problems. One may mention the obvious example of a rocket approaching
Jupiter or Halley’s comet: local computation on the Earth can use the most powerful
devices, and even the rocket can be equipped with very reasonable computers; but
the communication is extremely slow and unreliable (which means that to make
it more reliable we have to introduce more redundancy and thereby sacrifice even
more time). If we go to more everyday examples it becomes less and less justified
to concentrate solely on the problems of communication, but (as we shall see) even
within a single chip, communication between various parts may be an important
task which has to be solved efficiently in non-trivial ways.

Communication complexity also plays an important role in theoretical studies:
many of the known “lower-bound” results in complexity theory are obtained by
analyzing the communication between various parts of the input and output. This
is perhaps only a temporary phenomenon, since such techniques do not seem to be
powerful enough to lead to much-hoped-for results like P#£NP; but it does indicate
that separating just this one factor contributing to the complexity of various tasks
can lead important information about the whole task.

2

In the following sections we give some examples from the theory of VLSI that
lead to problems concering communication; then give a survey of the theory of com-
munication complexity. I hope also to “communicate” my feeling that this lovely
theory brings together a surprising number of ideas from classical and modern math-
ematics, and it also illustrates in a rather clear way basic notions from complexity
theory like non-determinism and randomization.

1. Time—area tradeoff in VLSI: a simple example

Suppose that we want to design a “chip” that checks whether two strings of n
bits, arriving simultaneously on 2n wires, are the same. More exactly, by a “chip”
we mean a rectangular grid graph, with processors sitting in some of the nodes,
and edge-disjoint paths (called “wires”) connecting some of these processors. On
the upper edge of the array, we have 2n specified nodes called “input ports”, and
somewhere else on the boundary we have one more specified node called “output
port”. We feed n bits z;,...,Zn,¥1,...,Yn into the input ports, and we want the
gadget to produce a single bit at the output port, which is 1 iff z; = y; for all :. We
want the “chip” to be fast and small.

We make the following assumptions. The “chip” is systolic, i.e., it works in
distinct steps. At each step, each processor reads the bits sent to it, computes a
bit for some of the wires starting from it, and sends it to the processor at the other
end of the wire. It will be convenient to assume that it has a memory of a constant
number of bits, but it would not make any essential difference to exclude this.

Our simple task can be solved by a chip with the simplest possible topology: a
single path of length 2n (Figure 1). Let p;,...,p2 be the nodes of this path, each
containing a processor. These receive, in order, bits z1,...,Zq,¥1,...,Yn. Let each
node except pp+1 “sleep” at the beginning. In the first step, p,41 sends bit y; to
the left and an “alarm” bit to the right. This wakes up p,42, who sends y; to the
left and an “alarm” bit to the right. Each processor receiving a bit from the right
will transmit it to the left in the next step. So the bits y;,...,y, will march to the
left with one space left between any two.

Now when p; receives y;, it compares it with z;. He sends 1 to the right if
they are equal and a 0 otherwise. Processor p, receives this bit simultaneously with
y2; he compares y, with z2 and sends a 1 to the right if he received a 1 and also
To = ys; else, he sends a 0. This goes on like this until p, receives a bit from the
right (which is 1 if and only if z; = y1,...,Zn-1 = Yn-1) and simultaneously the
bit y, from the left. He compares z,, and y,, and produces the output bit.

It is clear that for the simplicity of the topology we had to pay with time: this
shifting back and forth took 2n steps. It is perhaps more natural to allow more
space and solve the problem in about O(logn) steps, using the chip in Figure 2.
In the first step, processors gqi,...,¢, make the comparisons z; = y1,...,Zn = Yn;

3

their findings are collected by a binary tree in logn further steps (all log’s are base
2).

But we had to make the chip much bigger: it has 2n? nodes; or, if we define
the “area” of the chip as the total length of wires, it has area larger than n?. We
could do a little better: combining the ideas from the two designs shown above one
obtains a chip working in O(logn) time, with area O(n?/logn). This construction
is left to the reader as an exercise.

Now this factor of logn is not too much gain; could we do better? Let us prove
that we cannot. More exactly, we prove the following “area-time tradeoff” theorem,
which says that to reduce the area, we have to sacrifice time. This theorem is a
special case of the results of Thompson (1979):

1.1 Theorem. If a chip decides the equality of two 0-1 sequences of length n
(in the sense described above), has area A, and works in time T, then

AT > 0°,

(Note that equality can hold, up to a constant, with A = O(n) and T = O(n), and
also with A = O(n?/logn) and T = O(logn), and in fact for every pair of values
inbetween satisfying the inequality.)

Proof. Let us draw a vertical line cutting the chip into two, so that one half
contains the ports z,,...,z, and the other, the ports y;,...,yn. Let us forget about
what happens inside the two parts, and concentrate on the communication across
this line. “Obviously” (we’ll come back to this!) at least n bits of information must
cross this line. Since we only have T steps, there must be a step when simultaneously
at least n/T bits cross the line. But one wire can transmit in one step only one bit
of information, so there must be at least n/T wires that cross the line.

Now if we shift the line to the right by one position, z; and y; may be on the
same side, so the amount of information sent across the line may be less. But we
can argue that the computation still has to decide whether z; ... 2,1 =¥1 ... ¥n—1
and so by the same argument, the shifted line must cross at least (n — 1)/T" wires.
Similarly, the line shifted by 2 positions must cross at least (n — 2)/T wires etc.

If we add up these numbers, we get exactly the total length of horizontal pieces
of the wires, which, in turn, is a trivial lower bound on the area. Hence

jotohianet, LN

n
> — .
A_T T : g T

¥

We have used in the proof that at least n bits have to cross a line separating the
z-ports from the y-ports. Note that this assertion is now independent of VLSI: the
two parts of the chip may be viewed as two processors, each getting a 0-1 sequence

4

of length n, and they have to decide whether these are equal. We want to show
that they have to communicate at least n bits.

This seems natural, and it is even true, but an exact proof is not quite obvious.
To warn the reader, let us mention that if they are allowed to use a random number
generator, and they want the answer only with a certainty of 0.9999999999, then it
suffices to communicate O(logn) bits (see section 6).

In the following sections we develop the theory of communication complexity,
which will allow us to prove these kinds of lower bounds. This example has served
to expose the problem and we are not going to treat the interesting and important
topic of area-time tradeoffs in VLSI in detail. However, we shall return briefly to
VLSI problems in section 8, to see which related communication problems are raised
by them.

2. The notion of communication complexity,

deterministic and non-deterministic

We consider a rather simple model of communication. We have two processors
and a direct link between them. Each processor knows some information, called
the input of that processor; and they want to compute a value which is a function
of both inputs. For simplicity, we shall assume (except for one case is section 8)
that this value to be computed is a single bit; we call this the output bit of the
communication problem.

We assume that both processors have unlimited computing power and that
local computation is free. However, we are charged for every single bit transmitted
from one processor to the other. Qur aim is to find methods to solve such problems
with a minimum number of bits transmitted.

When talking about this model, it is nicer to imagine that the two proces-
sors are two teenagers, Alice and Bob. Alice lives in Budapest, Bob lives in New
Zealand. To appreciate the importance of minimizing the length of communication
between them, imagine that we (the parents) have to pay the telephone bill for their
communication.

The communication analogue to the fundamental notion of an algorithm in “or-
dinary” complexity theory is the notion of a protocol. Informally, a communication
protocol is a set of rules specifying the order and “meaning” of messages sent. So
the protocol prescibes who is to send the first bit; depending on the input of that
processor, what this bit should be; depending on this bit, who is to send the second
bit, and depending on the input of that processor and on the first bit sent, what this
second bit should be etc. The protocol terminates when one processor knows the
output bit and the other one knows this about the first one. This definition seems
strange, but it turns out more convenient technically than the obvious rule that the
protocol ends when both know the result. There is no real difference between the

5

two: if Alice knows the result, and Bob knows this about her, then she only needs
to send one more bit. Conversely, in every protocol which ends with both of them
knowing the answer, the situation before the last bit (which is sent, say, by Alice)
is that Alice must know the answer and the Bob must know that she knows it.

The complezity of a protocol is the number of bits communicated in the worst
case.

There is always a trivial protocol: Alice can send her input to Bob. Then Bob
has all the information he needs to compute the answer, and Alice knows this about
him. Of course, they can switch roles if this is better. (We shall see that sometimes
there is no better protocol than this trivial one).

Let us formalize this notion (following YAO 1979). Let a;,...,an, be the possible
inputs of Alice and b;,...,bm, the possible inputs of Bob. (Note that since local
computation is free, we don’t have to worry about how these are encoded. Two
inputs for Alice are clearly equivalent if they give the same results with any input
for Bob. So two such inputs can be identified from our point of view.) Let c;; be the
value they want to determine for inputs a; and b;. The 0-1 matrix C = (¢; J-):-‘=l;."=1
determines the communication problem; we call this the communication matriz
associated with the problem. Both players know the matrix C; Alice knows the
index ¢ of a row, Bob know the index j of a column, and they want to determine
the entry c¢;j. The trivial protocol (in which, say, Alice sends the index of her row
to Bob) takes [log, n] bits (of course if m < n then the reverse trivial protocol is
better).

A protocol has a very simple interpretation in terms of this matrix. First, it
determines who sends the first bit; say, Alice does. This bit is determined by the
input of Alice; in other words, the protocol partitions the rows of the matrix C into
two classes, and the first bit of Alice tells Bob which of the two classes contains her
row. From now on, the game is limited to the submatrix C; formed by the rows
in this class. Next, the protocol describes a partition of the rows or columns of C;
into two classes (depending on who is to send the second bit), and the second bit
itself specifies which of these two classes contains the line (row or column) of the
sender. This limits the game to a submatrix C; etc.

If the game ends after k bits then the remaining submatrix Cy is the union of an
all-1 submatrix and an all-0 submatrix. (We shall call this an almost homogeneous
matrix.) In fact, if (say) Alice knows the answer then her row in Ci must be all-0
or all-1, and since Bob knows for sure that Alice knows the answer, this must be
true for every row of Cj.

So the determination of the communication complexity is reduced to the fol-
lowing combinatorial problem: given a 0-1 matrix C, in how many rounds can we
partition it into almost-homogeneous submatrices, if in each row we can split each
of the current submatrices into two (either horizontally or vertically). We shall
denote this number by x(C).

Note that in each step, the maximum rank of the submatrices is decreased by a
factor of 2 or less, and hence we obtain the following inequality due to MEHLHORN
and SCHMIDT (1982):

2.1 Lemma If C has rank r then x(C) > logr. [

In particular, we obtain

2.2 Corollary If C has full row rank then the trivial protocol is optimal. [}

Here is a simple communication problem to which the previous corollary applies
directly. Suppose that Alice and Bob want to solve the following important problem:
is the recent edition of the Encyclopzedia Britannica that Alice has identical — letter
for letter — with that of Bob? An obvious solution to this problem is that one of
them reads reads the Britannica to the other over the phone. While this may be
a pleasure under the circumstances, clearly the parents object. But clearly they
cannot stop an important project like this; can they come up with a protocol that
is more efficient, i.e., that reduces the telephone bill*?

To formalize this problem, let us assume that we know the size of both editions
— say, n bits. Then there are 2" possible inputs for Alice and the same number
of possible inputs for Bob, and so C is a 2" x 2" identity matrix. This matrix has
rank 2", so it follows from Corollary 2.2 that for this problem there is no protocol
better than the trivial one: transmitting the whole input of one of the players. This
also completes the proof of Theorem 1.1. (We shall return to this question in the
next sections; among others, we shall see that randomization is extremely helpful.)

Let us also point out that this example shows that the matrix C can be of
enormous size, and typically only implicitly given — the problem specification tells
us how to compute any given element. In particular, the rank of C is not always
an easily computable parameter (even though it was in this last example).

A slightly more complicated communication problem is Disjointness: each
player has a subset of a specified set S, and they have to decide if their inputs are
disjoint. In other words, they both know a 0-1 vector of length n, and they want
to know whether the inner product is 0 or not. Various versions of this problem
will play an important role later in this paper, but now we can settle the commu-
nication complexity of the basic version easily. In fact, if we arrange the subsets
appropriately, the matrix associated with this problem will be lower triangular with
1’s in its main diagonal, and so non-singular. It follows that the trivial protocol is
optimal for the Disjointness problem.

Let us mention one more useful example, where the computation of the rank
is not so immediate. Let S be a set with n elements, and assume that Alice has
a subset X C S and Bob has a subset ¥ C S. They want to know the parity of

* This problem is not quite as artificial as it sounds. In the example of communi-
cation with a spa.cecra.ft,’ it may be important to check (say, before a new operation is
started) whether the program of the computer on board is still correct. This may re-
quire the comparison of strings longer than the Britannica — and with much more costly
communication.

|X NY|. In other words, they both know a 0-1 vector of length n, and they want
to compute the inner product modulo 2.

If we write up the corresponding matrix C, it will be symmetric and will have
a row (and column) of 0-s: the row corresponding to #. Let us drop this row
and column; we claim that the remaining matrix C' is non-singular. To see this,
compute (C')?: it turns out to have 2"~! in tis main diagonal and 2"~ elsewhere.

It is elementary linear algebra that this matrix is non-singular.
Hence rk(C) = rk(C') = 2™ — 1, and so (at least if n > 2)

k(C) > [log, tk(C)] = n.

So we obtain that for computing the inner product modulo 2, the trivial protocol is
optimal.

It is interesting to remark that the rank over GF(2), which would perhaps seem
more natural to use in this problem, would give a very poor bound here: the GF(2)
rank of C is only n.

The rank of C (not its logarithm!) bounds x(C) from above. It is easy to see
that a 0-1 matrix with rank r has at most 2" distinct rows. Since repeated rows
of C can clearly be suppressed without changing the communication complexity of
the problem, we obtain

2.4 Proposition. If C has rank r then k(C) <r.

In this Proposition, one could take the GF(2) rank as well, and our previous
remark shows that then the bound is sometimes sharp. For the real rank, however,
I don’t know of any communication problem for which x(C) would be anywhere
near the bound r. In particular it appears to be unsettled whether x(C) can be
bounded by any polynomial of logr.

In the complexity theory of algorithms, non-deterministic algorithms play a
crucial role; they specify important complexity classes like NP. Analogously, non-
deterministic protocols play an important role in the complexity theory of commu-
nication. They were introduced by Lipton and Sedgewick (1981).

Assume that there is an extra-terrestrial super-being, called E.T., who can
monitor the inputs and communication of Alice and Bob, and of course knows
the answer to the problem right away. He can also make any announcement on
the phoneline. Can he speed up communication by giving the right announcements
(hints)? For example, if he gets bored with Bob’s voice reading the Encyclopaedia to
Alice, can he shortcut the communication with an appropriate short announcement
from which both Alice and Bob can be certain what the answer is?

In this case, the answer depends on whether the outcome is that the two editions
are equal or that they are different. If they are different, E.T. can simply announce
‘the 37th character in the 14th line of page 568 of volume 24 is “,” in Alice’s edition
but “;” in Bob’s.” At the cost of these few bits, the problem is settled. On the other
hand, if the two editions are identical, then even the E.T. cannot save a single bit

8

of communication! This will become clear as soon as we formalize the notion of a
non-deterministic protocol.

Given a communication problem (in the form of a matrix C), there will be
two non-deterministic protocols, one for “1” and one for “0”. A non-deterministic
protocol for (say) “1” has to specify a set P of possible proofs. Further, it has to
include a rule for Alice that tells her which proofs she should accept depending on
her input, and a similar rule for Bob. For this non-deterministic protocol to be
correct, we require

(*) for a given pair of inputs the answer to the communication problem is “1”
if and only if there exists a proof p € P which is accepted by both Alice and Bob.

Without loss of generality we may assume that P consists of 0-1 strings, and
then the maximum length of these strings is the complezity of the protocol. Of
course, with appropriate encoding, this will be [log|P|]. We are interested in
finding the protocol for which this complexity is minimum; this value is denoted by
k1(C). A non-deterministic protocol for “0” and k¢(C) are defined analogously.

Consider a non-deterministic protocol for “1”, a particular proof p € P, and
the entries of C' (i.e. inputs for Alice and Bob) for which this proof “works”. By (*),
these must be all 1’s; also, from the fact that Alice and Bob have to verify the proof
independently, we see that these 1’s must form a submatrix. So a non-deterministic
protocol corresponds to a covering of C by all-1 submatrices. Conversely, every such
covering gives a non-deterministic protocol: E.T. can simply announce the name of
the submatrix containing the given entry. So we obtain:

2.5 Lemma: The non-deterministic communication complezity x1(C) of a
matriz C is the least natural number t such that the 1’s in C can be covered by at
most 2! all-1 submatrices.

Note that the all-1 submatrices in the covering do not have to be disjoint.
Therefore, there is no immediate relation between the non-deterministic communi-
cation and the rank of C.

Yannakakis (1988) introduces two further concepts that further illuminate the
connection between rank and communication complexity (deterministic and non-
deterministic). He defines the unambigous communication complezity %,(C) of C
as the least natural number a for which the 1’s in C can be covered by 2° disjoint
all-1 submatrices; equivalently, it is the minimum complexity of a non- deterministic
protocol in which the “proof” in (*) is unique. Obviously,

x1(C) < %(C) < x(C),

and

, logrk(C) < %:(C).

It is easy to derive analogous results for the complexity of the answer “0”.
There is also a way to formulate, in some sense, an upper bound on the com-
plexity in terms of a certain “rank”. Let C be an n x m 0-1 matrix. Yannakakis

9

(1988) defines the positive rank rk,(C) of C as the least p for which there ex-
ists a non-negative n X p matrix A and a non-negative p x m matrix B such that
C = AB. (Note that without the non-negativity restriction, this would define just
the ordinary rank.) Trivially

rk(C) < 1ky (C).
It is also easy to show that
#1(C) < logrk4(C).

In fact, If C = AB where A and B are non-negative matrices with p columns and
rows, respectively, then let a; denote the ith column of A and b;, the ith row of B.

Then we have 5
C=) ab].
=1

Let Z; be the support of the matrix a;b7, then clearly Z; is an all-1 submatrix of C
and the Z;’s must cover all the 1’s in C. Hence x;(C) < logp as claimed. Finally,
we also have

logrk4+(C) < k(C),

which follows by a similar argument as for the rank. Unfortunately, the positive rank
of the matrix does not seem to be easy to handle (in particular, no polynomial-time
algorithm is known to compute it).

Let us mention one further, rather trivial bound on the non-deterministic com-
plexity. Assume that C has a 1’s but every all-1 submatrix of C' has at most b
entries. The trivially «;(C) > loga — log b. While I do not know any good applica-
tions of this observation, a version of it plays an important role in obtaining lower
bounds for randomized protocols (see section 6).

Returning to the Encyclopzedia Britannica example, it is obvious that the 1’s
in the the N x N identity matrix Iy cannot be covered by fewer that N all-1

submatrices. Hence
k1(IN) = [log N1.

For our Encyclopadia Britannica example this says that even the E.T. cannot prove
that the two editions are equal, any cheaper than reading the whole text!

3. A general upper bound on communication complexity

1

We have seen three lower bounds on the communication complexity of a matrix:
(3.1) logrk(C) < (C),

10

(3.2) xo(C) < x(C),
and
(3.3) x1(C) < &(C).

The identity matrix shows that it can happen that the (3.3) is very week: the right
hand side can be exponentially large compared with the left. Interchanging the roles
of 1 and 0, we obtain that the bound in (3.2) can also be very far from x(C). We do
not know such a bad example for (3.1), but it is likely that the situation is similar.
Note that (3.1) is also essentially symmetric in 0’s and 1’s: if we interchange the
0’s and 1’s in a C, the rank changes by at most 1.

However, it is a surprising fact that the product of any two of these three lower
bounds is an upper bound on the communication complexity. The first part of the
following theorem is due to Aho, Ullman and Yannakakis (1983), the second (and
third) to Lovész and Saks (1988b):

3.4 Theorem. For every matriz C,
(a) K(C) < (ko(C) +1)(k2(C) +1);
(b) K(C) < logk(C)(ko(C) + 1);
(¢) K(C) < logrk(C)(x1(C) +1).

It is clear that part (b) of this theorem implies part (c). We shall give the
proof of a result that is stronger than either one of (a) or (b). Let p;(C) denote the
size of the largest square submatrix of C such that (ordering the rows and columns
appropriately) every diagonal entry is 1 but every entry above the diagonal is 0.
We can define po(C') analogously.

It is clear that

£1(C) < 1K(C)

and

po(C) < 1k(C) < 1k(C) + 1.

Furthermore,
p1(C) < 2&1(0)’

since in every covering of C' with all-1 blocks, the diagonal entries in the submatrix
in the definition of p,(C) must belong to different blocks. Hence the following
theorem implies all three parts of Theorem 3.4:

3.5 Theorem. For every matriz C,

1

x(C) < (log p1(C))(%0(C) + 1)-

11

Proof. We use induction on p;(C). Let k = o(C); then the 0-s of C can
be covered by all-0 submatrices Cj,...,Cy where N < 2F. Let A; [B;] denote the
submatrix formed by those rows [columns] of C that meet C;. Then observe that

p1(4i) + p1(B;) < ;1 (C).

We may assume that for ¢ = 1,..., M, we have p;(4;) < p1(C)/2 but for i =
M +1,...,N, we have p;(B;) < p1(C)/2. We may also assume that M > N/2.

Now we can describe the following protocol.

First, Alice looks at her row to see if it intersects any of the submatrices
Ci,...,Cupm. If so, she sends a “1” and the name of such a submatrix. If not, she
sends a “0”.

If Bob recieves a “0”, he looks at his column to see if it intersects any of the
submatrices Cppqy,...,CnN. If s0, he send a “1” and the name of such a submatrix.
If not, he send a “0”.

This describes one round of the protocol. This round may end in three ways:

Case 1. Alice found an appropriate submatrix. Then they both know that
Alice’s row belongs to A4; (1 < ¢ < M). Since p;(4;) < p1(C)/2, by recurrence they
can find the answer by communicating at most

log(p1(4i))(ro(A4i) +1) < (log(p1(C)) — 1) (xo(C) +1)

bits. Since Alice’s message took 1+ [log M| < 1+ o(C) bits, this is altogether at
most (log p1(C))(ko(C) + 1) bits.

Case 2. Bob found an appropriate submatrix. This is similar to Case
1. Then they both know that Bob’s column belongs to B; (M =1 < 1 <
N), and so by recurrence they can find the answer by communicating at most
(log(p1(C)) — 1) (ko(C) + 1) bits. The count of bits for the round itself is slightly
different: 1 for Alice’s message and 1 + [log(M — N)] < &¢(C) for Bob’s message.
The final count is the same.

Case 3. Both Alice and Bob failed to find an appropriate submatrix. Then
the intersection of their lines cannot belong to any C;, and so it must be a “1”. So
they have found the answer.]

As a further corollary of this theorem we mention the following result of Yan-
nakakis (1988), bounding the deterministic complexity in terms of the unambigous
(but non-deterministic) complexity:

3.5 Corollary: x(C) <% (C)>.

Similarly, we obtain a relation between the rank, positive rank and communi-
cation complexity of the matrix:

3.6 Corollary: x(C) < (logrk(C))(logrk4+(C)).

12

Theorem 3.4(a) has an interesting interpretation. Define a communication
problem as a class A of 0-1 matrices; for simplicity, assume that they are square
matrices. The communication complexity of any N x N matrix is at most log N.
We say that H is in Peomm if it can be solved substantially better: if there exists a
constant ¢ > 0 such that x(C) < (loglog N)¢ for each matrix C € H, where N is the
dimension of C. Similarly, we say that H is in NPcomm, if there exists a constant
¢ > 0 such that for each C € H, x;(C) < (loglog N)°. We can define co-NPcomm
analogously. Just as for the analogous computational complexity classes, we have
the trivial containment

Peomin 'S N¥ somin (1 20-NP s -

However, for the communication complexity classes we also have the following,
rather interesting facts:

Peomm ’/: NP o s
NP comm ?é co-NPcomm

(both follow from the example of checking identity), but

Pcomm = NPeomm N c0-NPeomm

(by the theorem of Aho, Ullman and Yannakakis 4.3(a)). This idea was developed by
Babai, Frankl and Simon (1986), who defined and studied communication analogues
of many other well-known complexity classes like #P, PSPACE, BPP etc.

4. Some protocols

We have seen that the Disjointness problem, i.e., the problem of deciding
whether two given sets are disjoint, is trivial from the communication point of view:
the trivial protocol (Alice sends her input to Bob) is optimal. Often, however, the
sets the players have are restricted in one way or the other. We shall discuss some
general types of restrictions in the next section; here we analyse two special exam-
ples. In both examples the rank lower bound is very far from the complexity of
the trivial protocol; and in both cases it will turn out that this rank bound is quite
close to the truth. In particular, we shall describe some examples of non-trivial
communication protocols.

4.1 Problem. Let T be a tree and let Alice be given a subtree T4 and Bob,
a subtree Tg of T. T1}1eir task is to decide whether T4 and T have a node in
common.

Suppose that T has n nodes. The number of subtrees of T' can be between
(3) + n+1 (if T is a path) and 2"~! + n (if T is a star). Typically, however, it is

13

exponential in n; for example, if T has no nodes of degree 2 then it has more than
2"/2 gubtrees.

Let us write up the matrix Cr corresponding to this communication problem
(rows and columns indexed by subtrees, with a 1 in a position if and only if the
corresponding subtrees are disjoint). The size of Cr can vary, but it is typically
exponential. It is perhaps more surprising that the rank of Cr is determined by n,
and it is in fact very low:

tk(Cr) = 2n.

In the next section, we shall see the general reason behind this lemma; at this
moment, we leave it to the reader as an exercise.

The non-deterministic complexity of our problem is easy to find. To exhibit
that the two subtrees intersect, E.T. can announce a common node. This takes
[log n] bits. To exhibit that they do not intersect, E.T. can either announce that
one or the other is empty, or he can announce an edge uv such that if we delete uv
from T, then in the remaining forest, T4 is in the component containing u but Tg
is in the component containing v. So there are 2n possible announcements of E.T'.,
and — in appropriate encoding — this takes [logn] + 1 bits. It is not difficult to
see that these are optimal non-deterministic protocols, i.e.

k1(Cr) = [logn] + 1, ko(Ct) = [logn].

From this, we obtain by the general results in the previous section the following
bounds on the communication complexity of Problem 4.1:

[logn] +1 < k(Cr) < ([logn] + 1)*.
We show that the lower bound is near the truth (Lovasz and Saks 1988a).
4.2 Theorem. x(Ct) < logn + loglogn + 1.
Proof. First, we describe a protocol that gives a somewhat worse result: about

2logn as an upper bound. The protocol consists of two parts:

1°: Alice selects any node x € V(T4), and sends its name to Bob (we have to reserve
one message to indicate if her subtree is empty; but in this case they are done).

2°: Bob determines the (unique) node y € V(Tg) nearest to z, and sends this to
Alice (we have to reserve one message to indicate if his tree is empty).

Now it is easy to argue that the two subtrees T4 and T are node-disjoint if
and only if y € V(T4). So at this point Alice knows the answer (and Bob knows
that she knows).

As it stands, this protocol involves the communication of 2log(n + 1) bits (the
names of two nodes). To improve it, we use the following lemma:

4.3 Lemma. The nodes of T can be labelled by 1,2,...,n so that if we delete
the nodes labelled 1,...,k — 1, every connected component of the remaining forest

14

has no more than 2n/k nodes. (]

The players agree on such a labelling in advence (it is part of the protocol).
Now we replace the first step by

1°°: Alice selects the node z € V(T4) with the least label, and sends its label to
Bob (she sends 0 is her subtree is empty; in this case, they are done).

Suppose the label of z is k. Receiving this, Bob will know that Alice’s tree
does not contain the nodes labelled 1,...,k — 1, so he can delete these from the
tree. Each of the components of the remaining forest has at most 2n/k nodes, and
Bob also knows which of these contains T4, since he knows a node of this tree. So
from now on they are restricted to a tree T, with at most 2n/k nodes, and he can
carry out the second step more economically as follows:

2°°: If V(Tg) N V(Tp) # 0, then Bob determines the (unique) node y € V(Tg) N
V(To) nearest to z, he counts the number ! of nodes in Tp with label not larger than
the label of y. He sends to Alice the number I. If V(Ts) N V(T;) = 0, he sends 0.

Since this protocol differs from the previous one only in the encoding, its cor-
rectness is clear. The number k has log k bits; the number ! is at most 2n/k, so it
has at most log(2n/k) =logn + 1 — log k bits. This is altogether logn + 1 bits.

There is one catch: while sending the bits of k, Alice has to indicate that she
is finished. (In other word, she has to use a prefix-free encoding of the integers up
to n.) One solution is to start with loglogn further bits, announcing the length of
k. This gives the bound in the theorem. (It can be shown that no encoding trick
can get rid of these extra bits.)]

Our second example is again a special disjointness problem. It was formu-
lated by Yannakakis (1988) in connection with a complexity problem concerning
the vertex packing polytope (see section 7).

4.4 Problem. Let G be a graph and let Alice be given a set A of independent
nodes, and let Bob be given a clique B. Their task is to decide whether A and B
have a node in common.

Let G have n nodes. The number of independent sets/cliques in G can be
exponentially large. The matrix Cg associated with the problem has a row for each
independent set, a column for each clique, and (say) a “1” at a position where the
corresponding clique and independent set intersect (this is now conversely to the
convention in the previous problem, but here this will be the more convenient). The
rank of this matrix is very low:

rk(CG) =n.

15

(This is now quite easy to see: this matrix is the product of the independent set-
node incidence matrix and the node—clique incidence matrix.)
The non-deterministic communication complexity for non-disjointness is again
[logn]. So we have
k1(Cg) = logn

and hence Theorem 3.4 implies the following bound, which was first proved by more
direct means by Yannakakis (1988):

[log n] < &(Cq) < ([logn] +1)°.

We show a protocol due to A. Hajnal that reduces the upper bound by a factor of
2:

4.5 Theorem. x(Cg) < 1(logn +1)2.

Proof. We describe the protocol. First, Alice checks if her independent set A
contains a node that has degree at least n/2. If it does, then she sends the name
of such a node v to Bob. Now they both know that Alice’s set is contained among
the nodes non-adjacent to v (inculding v), and so the problem is reduced to one on
a graph with at most n/2 nodes.

If Alice does not find such a node, then Bob looks for a node in his clique B
to see if B contains a node with degree less than n/2. If it does, he sends the name
of such a node u to Alice. Then they both know that Bob’s set is contained among
the nodes u and those adjacent to u, and so the problem is again reduced to one on
a graph with at most n/2 nodes.

If neither one is succesful, they know that every node of Alice’s set has degree
less than n/2 while every node of Bob’s set has degree larger than n/2, and hence
they know that the two sets are disjoint.

It is easy to estimate the complexity of this protocol and get the bound as
given. §

Note that in this case the nondeterministic communication complexity for dis-
jointness is not easy to find. A non-deterministic protocol for disjointness corre-
sponds to a family of subsets H of subsets of V(G) such that for each pair (A, B)
where A is an independent set, B is a clique, and AN B = @, there exists an H € H
such that A C H C V(G) — B. We call such a system H a separating family. The
size of the smallest family is not known; in particular, we don’t know if a separating
family of polynomial size exists for each graph. As a corollary to Theorem 4.5, the
non-deterministic communication complexity of disjointness is at most (logn)?.
Hence we obtain the following, purely graph-theoretic result:

1

4.6 Corollary. Every graph on n vertices contains has a separating family of
size n(ogn)/2,]

16

5. Mobius functions and the rank of the communication matrix

Our previous discussions have shown that the rank of the communications
matrix is very intimately related to the communications complexity. They also
show, however, that it is in general not an easy task to compute this rank. In
this section we are going to study a rather general situation in which this rank
can be computed, or at least, reduced to the study of a well-known function in
combinatorics.

To motivate our abstractions, let us discuss one further communication problem
in graph theory.

5.1 Problem. Let V be a finite set and assume that both Alice and Bob are
given a graph with node set V. Their task is to decide whether the union of these
graphs is connected.

Hajnal, Maass and Turén (1988) proved that for this problem, the trivial proto-
col is optimal. One should notice that the trivial protocol is not that Alice transmits
the whole graph; this is redundant information for Bob. All he needs to know is
which pairs of nodes can connected in Alice’s graph. In other words, he needs
the partition of V defined by the connected components of Alice’s graph. Since
the total number of partitions is the Bell number B,,, this trivial protocol takes
[log, Bn] = nlog, n bits.

To prove that this trivial protocol is optimal, Hajnal, Maass and Turan use the
rank bound, but to compute the rank of the corresponding communications matrix is
by no means obvious. Their method involves the use of the “Mobius function” of the
partition lattice. Lovéasz and Saks (1988a) showed that this method of computing
the rank extends to a large class of problems, which can be formulated as follows.
Let S be a finite set. A filter on S is a non-empty family of subsets of S such that
UeF,UCVC SimpliesV € F.

5.2 Problem. Let S be a finite set and F, any filter in 25. Let Alice be given
aset X C F and Bob, a set Y € F. Their task is to decide whether X UY € F.

Of course, one can formulate the “dual” problem, in which F is an ideal and
Alice and Bob have to determine whether X NY € F. This is trivially equivalent
to 4.2 under complementation. To get Problem 4.1, we take all the edges of the
complete graph on V as elements of S, and let F consist of all connected graphs
with this set of vertices.

Let us recall a problem from the previous section.

5.3 Problem. Let T be a tree and let both Alice and Bob be given a subtree
of T. Their task is to decide whether these subtrees have a node in common.

17

We have seen that in this case the trivial protocol is by far not optimal. Let
us formulate a generalization of this problem. Let S be a finite set. An alignment
on S is a collection A of subsets of S closed under intersection.

5.4 Problem. Let S be a finite set and .4, an alignment on S. Let Alice be
given a set X € A and Bob, aset Y € A. Their task is to decide whether X NY = 0.

Both of these general problems, and several other natural problems of this kind,
are equivalent to the following, which sounds perhaps more special but will be easier
to handle.

5.5 The Meet Problem. Let £ be a finite lattice. Let Alice be given an
element z € £ and Bob, an element y € £. Their task is to decide if t Ay = 0 (here
0 is the zero element of the lattice).

Before showing how the other two problems can be reduced to this, we have
to define what we mean by reduction. Fortunately, this is much easier here than
in “machine-based” complexity theory. Given an instance of any communication
problem, i.e., a 0-1 matrix C, check if there are two equal rows or columns in C.
Clearly, one of such a pair of rows can be deleted without changing the complexity
(deterministic or non-deterministic) of the problem. Carry out this until every pair
of rows and every pair of columns will be different. The remaining matrix will be
called the core of C.

Now we say that a class A of 0-1 matrices can be reduced to a class B of 0-1
matrices, if for every A € A there exists a B € B such that the core of A is the same
(up to permutation of rows and columns) as the core of B. Two classes of matrices
are equivelentif they can be reduced to each other. Lovédsz and Saks (1988a) proved:

5.6 Lemma. Problems 5.2, 5.4 and 5.5 are equivalent.

Proof. Most of the reductions needed to show this are straightforward. We
sketch the (perhaps) least trivial fact that 5.2 can be reduced to 5.5. Let S be a
finite set and F, a filter on S. Define a relation ~ on 2° by saying that X ~ Y iff
for every Z C S, we have X UZ € Fifand only f Y U Z € F (i.e., if the rows of
the communication matrix corresponding to X and Y are identical). Trivially, this
is an equivalence relation. It is equally trivial, but somewhat unexpected, that the
following holds:

Claiml1l. f X ~Y then X ~ X UY.

This claim implies that the union X = U{Y : Y ~ X} also satisfies X ~ X.
Now it is not difficult to check that

Claim 2. The g_p_ération X — X is a closure operator on 25. Furthermore,
XeFifandonlyif X = S.

As usual, call a set X closed if X = X. Then it follows easily that

18

Claim 3. The closed sets form a co-atomic lattice L.

(A lattice is co-atomic if every element of it is the meet if co-atoms, i.e., elements
covered by the top element. This property will, however, play no role in the sequel.)

Now the core of the communication matrix is just the submatrix formed by
rows and columns corresponding to closed sets. The problem is equivalent to the
modified problem where both players are given a closed set and they have to decide
if the closure of the union (i.e., the join in the lattice £) is the “top” element S.
This is just the same problem as 5.5, but “upside down”. (]

So from now on we shall restrict our attention to the Meet Problem. The
corresponding matrix C' = (¢;;) has its rows and columns indexed by the elements
of the lattice £, and for z,y € £ we have

_J1, ifzAy=0,
€2y =10, otherwise. /er

Now this matrix is well-known in algebraic combinatorics! To formulate its main
property important for us, we have to introduce a few further matrices associated

with the lattice. Let
Cin it eSSy,
¥ 7 10, otherwise. fcr

and Z = ({;y). This matrix Z is sometimes called the zeta-matriz of the lattice. If
we order the rows and columns of Z compatibly with the partial ordering defined
by the lattice, it will be upper triangular with 1’s in its main diagonal. Hence it is
invertible, and its inverse M = Z~! is and integral matrix of the same shape. This
inverse is a very important matrix, called the Mobius matriz of the lattice. Let

M = (u(z,9))z,yec-

The function u is called the Mabius function of the lattice. From the discussion
above we see that u(z,z) =1 for all z € £, and u(z,y) = 0 for all z,y € £ such
that z £ y. Moreover, the definition of M implies that for every pair of elements

a < b of the lattice,
5 wos)= {3 Ho=t
! 0, otherwise;

)

a<z<bh
and
_J1, ifa=},
> Hzb)= {o, otherwise.
, a<z<b

These identities provide a recursive procedure to compute the Mobius function. It
is easy to see from this procedure that the value of the Mébius function pu(z,y),
where z < y, depends only on the internal structure of the interval [z,y]. Also note

19

the symmetry in these two identities. This implies that if u* denotes the Mobius
function of the lattice turned upside down, then

b (z,y) = p(y, z).

We cannot survey here the many properties and applications of the Mobius
function. We shall restrict ourselves to those issues relevant for determining the
rank of C. For more see Rota (1964), Lovasz (1979), Chapter 2, or Stanley (1986),
Chapter 3.

Let us introduce one further matrix: D is a diagonal matrix defined by (D)., =
p(0,z). Now it is not difficult to verify the following identity (Wilf 1968):

5.7 Lemma. C = ZTD2Z. ¥

Since Z is invertible, and the rank of the diagonal matrix D is the number of
non-zeros in its diagonal, we obtain

5.8 Corollary. The rank of C s the number of elements z € L such that
u#(0,z) # 0. In particular, if u(0,z) # 0 for all z € L then the trivial protocol is
optimal for the Meet Problem. (]

We shall call an element z of the lattice £ satisfying u(0,z) # 0 a Mobius
element. To be able to use this corollary, we have to find the Mdobius elements.
Unfortunately, the Mébius function can be quite complicated, and there is no easy
characterization of the Moebius elements. Let us collect a few facts.

It is easy to see that if z is an atom in £ then u(0,z) = 1, and so every atom
is a Mobius element. On the other hand, we have (Ph. Hall 1936):

5.9 Theorem. Every Mdibius element is a join of atoms. [

Unfortunately, the converse is not true, an element that is a join of atoms
is not necessarily Mobius. One important condition on the non-vanishing of the
MGabius function is the following (Rota 1964). Recall that a lattice is geometric if it
is semimodular and atomic. Geometric lattices are just lattices of flats of matroids.

5.10 Theorem. If L ts geometric and z,y € L, z < y, then u(z,y) # 0. In
particular, every element ss Mabius.

From the theorem we obtain the result of Hajnal, Maass and Turédn immedi-
ately.

5.11 Corollary. The communication complezily of problem 5.1 is at least
nlogn.

20

Proof. The lattice associated with Problem 5.1 by the general construction is
just the partition lattice turned upside down. Now the partition lattice is geometric,
and so the Mobius function does not vanish on any interval of it. But then it does
not vanish on any interval of the “upside down” lattice either, and hence the trivial
protocal for the communication problem is optimal. +

There are other classes of lattices on which the Mébius function does not vanish.
For such a lattice, the trivial protocol is optimal for the disjointness problem. One
interesting class to mention here are face lattices of convex polytopes.

In our other starting example, we consider the lattice L1 of subtrees of a tree
T. Using Theorem 5.8 (upside down!), it is easy to compute the Mobius function
of this lattice:

5.12 Lemma. For the Moebius function of LT,

1, ifz=0 orx is a subiree with 2 nodes,
p(0,z) = ¢ =1, if z is a subiree with a single node,
0, otherwise.

(This way of determining the Mobius function extends to a large class of alignments
called antimatroids. See Lovasz and Saks 1988a.)

From this lemma we see that the rank of C is 2n. We have seen in the previous
section that the bound for this problem is very close to being optimal.

Now let us return to the general Meet Problem, and discuss the non-
deterministic complexity of the problem. If E.T. wants to exhibit that z Ay # 0, it
suffices to exhibit an atom of £ that lies below both z and y. Hence

k1(C) < log,(number of atoms).
(It is easy to see that in fact equality holds here.) Hence by Lemma 2.1 and Theorem

3.5, we have the following bounds on the communication complexity of the Meet
Problem:

5.13 Theorem. Let C be the communication matriz associated with the Meet
Problem for a lattice L. Let L have a atoms and b Mobius elements. Then

log, b < k(C) < (log, a)(log, b).

Since every atom is a Mobius element, and b = rk(C'), we obtain:

21

5.14 Corollary: For the Meet Problem,
log, tk(C) < K(C) < (log, tk(C))".

6. Randomized protocols

So far, our protocols have not used randomization. If we do, many of the
previously discussed problems become substantially easier. In a randomized protocol
we allow the players to throw dice, and we only want to result be correct with
probability at least 2/3. The smallest k for which such a protocol exists involving
the transmission of at most k bits will be denoted by «™"4(C).

We could require in place of 2/3 any fixed number greater than 1/2: repeating
the protocol a constant number of times, the probability of getting the correct
answer could be pushed arbitrarily close to 1. (If we want the probability of the
correct answer only to be greater than 1/2, but allow it to tend to 1/2, we get a
different kind of problem. We do not discuss this here, but refer to Alon, Frankl
and Rodl (1985) and Babai, Frankl and Simon 1986. For a thorough study of
randomized protocols, see also Yao 1983.)

Let us discuss the Encyclopaedia Britannica example. We have seen that the
best protocol to decide whether two strings of length n are equal is the trivial pro-
tocol and requires the communication of n bits. In contrast, we have the following
theorem (Yao 1983):

6.1 Theorem. There exists a randomized protocol to decide the equality of two
strings of length n, using O(logn) bits.

Proof: The protocol can be viewed as an extension of “binary check”. Consider
the inputs as two natural numbers z and y, 0 < z,y < 2", Alice selects a prime
p < n?, computes the remainder z' of z modulo p, and then sends the pair (z',p)
to Bob. Now Bob computes the remainder y' of y modulo p, and compares it with
z'. If they are distinct, he concludes that z # y. If they are the same, he concludes
that z = y.

If the two numbers = and y are equal then, of course, so are z' and y' and so
the protocol reaches the right conclusion. If z and y are different then, however,
it could happen that z’ and y' are the same and the protocol reaches the wrong
conclusion. This happens if p|z — y. Now |z — y| < 2" and so = — y has fewer than
n different prime divisors. On the other hand, Alice had about n/logn primes to
choose from, and so the probability that she chose one of the divisors of z — y tends
to 0.

22

Clearly, this protocol uses at most 4logn bits. [}

In our treatment of deterministic protocols, the general Disjointness problem
and the Inner product modulo 2 behaved very similarly to the Encyclopzedia prob-
lem; we just had to replace the identity matrix by some other matrix with obvi-
ously high rank. But for randomized protocols, they are substantially more difficult.
Before stating this exactly, let us formulate some combinatorial conditions and a
general linear algebraic lower bound on the randomized complexity. For simplicity
of presentation, we restrict ourselves to n X n matrices.

Consider a matrix C and any randomized protocol to solve the associated
communication problem using at most k bits. For the purposes of lower bounds,
we assume that the random number generator is public, i.e., the random bits are
available to both players (this only makes the life of Alice and Bob easier, and so our
task to give a lower bound more difficult). We may also assume that these random
bits are available right at the beginning. Now the players look at this sequence
and depending on it, they select a (deterministic) protocol that they follow. This
protocol ends up with a partition of the matrix into terminal submatrices. This time
it will be more convenient to assume that the protocol stops when both players know
the answer (both have to have the same answer, which, of course, may be wrong).
This means that some of the terminal submatrices are labelled “1” and others are
labelled “0”, meaning that if for a particular input the protocol ends up with this
submatrix, then this is concluding value. Since in this case the conclusion is not
necessarily correct, the submatrices labelled “1” may contain 0’s and vice versa.
(We shall see though that in some average sense, terminal submatrices labelled
with “1” must have more 1’s than 0’s.)

For each submatrix T, let p(T') denote the probability of the event that in the
randomly chosen protocol, T is a terminal submatrix labelled “1”. Our assumption
on the probability of error implies that

>’ 2/3, ifc,-j = 1,
{6.1) ; AT) { <1/3, ifeci;j=0.
iJET
Moreover, every protocol produces at most 2¥ terminal submatrices, and hence
2 KTt
v
We may consider the linear program

minimize Y p(T)
T

subject to (6.1) and the obvious constraints
(6.2) p(T) 2 0.

23

If 4(C) denotes the optimum value of this program, then
k > log u(C).

We call this the linear programming bound on the randomized communication com-
plexity of the matrix. We can apply linear programming duality and obtain u(C)
as the maximum of the dual program. This program has variables ¢;; associated
with the entries of the matrix, constraints

(6.3) $i; 20, ifc;=1,

(6.4) $i; <0, ifc; =0,

(6.5) Z ¢ij <1 for each submatrix T,
ijET

and objective function
2 1
(6.6) 3 > ¢+ 3 ij-

So u(C) could also be defined as the minimum of (6.6) subject to (6.3), (6.4) and
(6.5). In particular, any feasible solution of (6.3)—(6.5) provides a lower bound on
the randomized communication complexity. Of course, if we want the probability
of error be at most p, then we can replace (6.6) by the objective function

(1-p) Y ¢ii+p Y. &ij.

cij=1 cij=0

Note that a feasible solution of (6.3)—(6.5) can be viewed as a matrix ®. Condition
(6.5), which is the most awkward, and contains exponentially many contraints, can
be replaced by a somewhat stronger condition using some linear algebra. Let T be
any submatrix. Let a € IR" be the incidence vector of the set of rows in T and
b € IR™, the incidence vector of the set of columns of T. Then the sum of entries in
T is just aT®b, and so (6.5) can be rephrased as

aTdb<1

whenever a and b are 0-1 vectors. By elementary linear algebra, the left hand side is
at most ||al| - ||b]| - ||®||, where ||®]| is the spectral norm of the matrix & (recall that
this can be expressed as A(®7®)!/2, where A(M) denotes the largest eigenvalue of
the matrix M). So if we require that

(©7) el < 2,

24

then (6.5) is automatically satisfied. Moreover, we can express the objective function
as
1 1
DI
i 0

Since the first term is at most 1/2 by (6.7), we can disregard it. The second term
involves another norm of the matrix ®:

2= 3 16

We can formulate our result as follows:

6.2 Lemma. For every non-zero matriz ® satisfying (6.3) and (6.4), we have

£™24(C) > log (;ll—%l-n) -3.

In particular, we can use here the matrix 2C — J. Clearly [2C — J| = n?, and
hence we obtain:

6.3 Corollary. x™*(C) > log ('!TTC““-_J’II) e X

As an application, consider the Inner product modulo 2 problem. For this,
2C — J is an Hadamard matrix (a +1 matrix with any two columns orthogonal)
and hence its spectral norm is y/n. This implies the following result of Chor and
Goldreich (1985): the randomized communication complezity of computing the inner
product of two vectors of length m modulo 2 is Q(m).

Note that if Corollary 6.3 gives any valuable result then the matrix C has to be
very homogeneous: ||2C — J|| must be o(n) and hence it follows that each submatrix
has to contain almost exactly as many 1’s as 0’s. But a somewhat weaker condition
also works, as shown by Yao (1983):

6.4 Lemma. Assume that for some a,b,c > 0,

(6.8)

for every submatriz T with t > an? entries, at least bt entries in T' are 0;

(6.9)

at least cn? entries of C are 1.

Then the randomized communication complezity of the problem is Q (%&%’I) 3

25

Proof. If there is a randomized protocol using k bits with error probability
1/3, then repeting this O(|log(bc)|) times, we get one with error probability less
than bc/3. To estimate the complexity of this from below, we construct a feasible
solution of (6.3)—(6.5) with objective value log(c/a); this will prove the lemma. Let

.. ={ﬁ5’ if ¢jj =1,
- a‘;‘b N if c,-_,- = 1.

Then a simple computation shows that we have the feasible solution as desired. J

As an application of this lemma, Babai, Frankl and Simon (1986) show that the
randomized communication complezity of the Disjoininess problem for the subsets
of an n-element set is 2(/n). They restrict the problem to subsets of cardinality
v/n. Then the matrix associated with this restricted problem satisfies hypotheses
(i) and (ii) with a = const/y/n,b,c = const. The proof is combinatorial and not
discussed here.

7. VLSI again: How to split information?

Consider the “chip” in Figure 3, which solves the Equality Problem in a very
simple way: It compares z; with y;, etc. and then uses a binary tree to collect
this information. It works in O(logn) time and has area O(nlogn). Doesn’t this
contradict our Theorem 1.17

The trick is of course that the input is coming now in a different arrangement.
In general, if we want a chip to compute a Boolean function f(z;,...,z2,) then we
can either prescribe where the input bits come in or (depending on the situation)
we may choose this ourselves. In this second case (as the above example shows)
we can have quite different results. The communication complexity bound works,
but we have to use a more involved measure. We can split the variables of f into
two sets of n elements, and consider the ordinary communication complexity of the
problem of evaluating f if Alice gets one half of the variables and Bob, the other
half. This complexity will depend on the partition. We define the worst-partition
communication complezity of f as the maximum of this complexity. The best-
partition communication complezily is defined as the minimum over all partitions
of the variables into two sets of equal size (we have to add this restriction to avoid
putting all variables into one class).

Now the best-partition communication complexity can replace the ordinary
communication complexity in lower bounds if we are free to choose the positions
of the ports (even inside the chip). (The worst-partition complexity has other
uses.) Unfortunately, it is in general more difficult to compute the best-partition
complexity. We shall restrict ourselves to an example.

26

Hajnal, Maass and Turdn (1988) settle the following question. Alice and Bob
want to decide if a given graph G is connected. Half of the pairs of nodes are
supervised by Alice; she knows if these pairs are adjacent in G or not. The other
half is similarly supervised by Bob. For a given partition of the edges, this is an
ordinary communication problem. We want to find a lower bound valid for all
partitions.

Another way to look at this problem is that Alice knows a graph G 4 on a given
set V of nodes, Bob knows another graph G g, and they want to decide whether the
union is connected. This is now an ordinary communication complexity problem,
similar to problem 5.2. What makes different (easier for Alice and Bob, but more
difficult for us) is that they both know that Alice’s graph must consist of red edges
and Bob’s graph must consist of blue edges. Now Hajnal, Maass and Turan show
that still essentially the same lower bound holds as for a pair of unrestricted graphs:

7.1 Theorem. The best-partition communication complezity of determining if
a graph is connected is Q(nlogn).

Proof. The proof goes by reduction to Corollary 5.11, but this reduction
is quite involved, so we only sketch it. Using the powerful Regularity Lemma of
Szemerédi (1976) one can prove the following:

7.2 Lemma. Let G;UG; be a partition of the complete graph on the n-element
node set V into two subgraphs with %(g) edges. Then there ezists a set W C V' with
|W| = Q(n) with the following property: We can associate with each partition P of
V two subgraphs G¥ C Gy and GY C G, such that for every two partitions P and
Q of V, the union GF U qu 1s connected if and only if PUQ is the trivial partition
of V.]

Consider the matrix C of the communication problem. This lemma says that
this contains the matrix C' of the meet problem for the “upside down” partition
lattice of W as a submatrix. So &(C) 2 &(C') = Q(nlogn).]

8. Communication complexity and computational complexity

We discuss some examples where communication complexity seems to have
close relationship with certain other complexity issues. The first of these is the
work of Yannakakis (1988) about expressing combinatorial optimization problems
as linear programs.

a. Most combinatorial optimization problems (Matching, Travelling Salesman,

27

]

various scheduling problems etc.) can be viewed as the task to find a member of
a given set-system JF with maximum value. Furthermore, most often the value is
given by associating weights with the elements of the underlying set S, and letting
the value of a member of F be the sum of weights of its elements.

One of the most succesfull approaches to such combinatorial optimization prob-
lems is to represent each set A € F by its incidence vector x4 € IR®, and consider
the convex hull P of these. Our task is then to optimize a linear objective function
over P. If we are able to find the system of linear inequalities describing P, then
we can apply powerful techniques of linear programming.

There is a basic difficulty with this method: it can easily happen that both
the number of vertices and the number of facets of P is exponentially large (in the
natural size of the problem, which is a power of the dimension). Hence the system
of linear inequalities describing P will be exponentially large. There are ways out
of this difficulty; essentially, in some cases one can generate the program as one
proceeds with the algorithm (see Grotschel, Lovész and Schrijver 1988, Grotschel
and Padberg 1985).

Another possibility is to reduce the size of the program by introducing new
variables. Geometrically, this means to represent P as the projection of another
polyhedron @ in higher dimension, but with fewer facets (hopefully only a poly-
nomial number of them). Since projecting a polytope may increase the number of
facets, this approach is promising. In fact, if we want to translate into a geometric
language simple algorithms consisting of case distinctions and dynamic program-
ming methods, we often end up with introducing new variables.

This leads us to the following, purely geometric question: given a polytope
P in R", can it be represented as the projection of a polytope @ with “few” (say,
O(n®°"*!)) facets? (Note that the dimension in which Q lives is less than the number
of its facets.) If this is the case, and if in addition one can efficiently generate a
linear description of @), then we can optimize any linear objective function over P
by lifting it to @ and using any polynomial time linear programming algorithm.
This approach was tried (unsuccesfully) to solve the travelling salesman problem in
polynomial time (Swart 1986). It could be expected that no polytope coming from
an NP-hard optimization problem can be lifted like this. But even some “nice”
polytopes (coming from polynomially solvable problems, like matching or vertex
packing in perfect graphs) seem to resist attempts to obtain them as projections of
polytopes with a polynomial number of facets.

Yannakakis made an important step in this question by showing that the match-
ing and travelling salesman polytopes of complete graphs cannot be obtained as
such projections, if we assume that the natural symmetries of these polytopes can
be lifted to Q. He also sketched a possible route to prove such results without this
symmetry assumption. This approach uses the following observation. Given a poly-
tope P C R", consider the following communication complexity problem: Alice is
given a vertex v of P, Bob is given a facet F of P, and they have to decide whether
v € F. Let us call this the Vertex-Facet problem, and let Cyr(P) denote the corre-
sponding matrix (we write a 1 if the corresponding facet contains the corresponding

28

vertex). Then

8.1 Lemma. If P is the projection of a polytope Q with t facets then
ko(Cvrp)) < [logt].

Proof. The vertex v is the projection of a vertex w of . The facet F is
the projection of a face G (usually not to a facet) of Q. We can obtain G as
the intersection of facets; at least one of these, say G', does not contain w. Now
E.T. can announce the name of G’ as a proof that v ¢ F; this takes only [log t] bitsj

As a special case, consider the vertez packing polytope, i.e., the convex hull of
incidence vectors of independent sets of nodes of a graph G. Every (maximal) clique
of a graph G defines a facet of the vertex packing polytope. A vertex is not on a face
if and only if the corresponding independent set is disjoint from the corresponding
clique. Hence by our discussion in section 4 we obtain:

8.2 Corollary. If a graph has no polynomial size independent set-clique sep-
arating family then its vertez packing polytope cannot be obtained as the projection
of a polytope with a polynomial number of facets.

Unfortunately, we do not know if there is any graph to which this corollary
applies. On the other hand, as far as I know there could even be perfect graphs
with this property.

b. The second application we discuss is a result of Karchmer and Wigderson
(1988). Consider a Boolean function f : {0,1}® — {0,1}, and a Boolean circuit
evaluating this function. This consists of a directed graph that has 2n sources
and a single sink. The sources are labelled with the variables z;,...,z,, and their
negations. Moreover, every non-source node has indegree 2, and is labelled either
by “AND” or by “OR”. To operate the circuit, we feed in the actual values of the
variables at the sources, and let each other node compute the conjunction or the
disjuncton of the two logical values at the tails of the two incoming edges. The
value produced at the sink is the value of the function. The depth of the circuit is
the longest path from the source to the sink. To prove lower bounds on the depth
of a Boolean circuit evaluating various given Boolean functions is one of the hottest
topics in theoretical computer science.

With a Boolean function f, we can associate the following communication prob-
lem. Alice gets a 0-1 sequence (ay,...,a,) and Bob gets a 0-1 sequence (by,...,b,),
such that f(a;,...,a,) =0 and f(d,,...,b,) = 1. Their task is to find an index ¢
such that a; # b;. We call this the Difference Problem for f. (Note that this is not
a decision problem.)

Karchmer and Wigderson show the following:

8.3 Lemma. A Boolean function can be evaluated by a circuit of depth t if and
only if the communication complezity of the Difference Problem for f is at most t.

29

Proof. We show how to translate a Boolean circuit into a communication
protocol; the reverse construction is similar. We suppose that both Alice and Bob
know the Boolean circuit (this is part of the protocol). Then Alice can follow the
evaluation of f(a,,...,a,). This will associate a logical value a(v) with each node
v. Similarly, Bob can evaluate f(b;,...,b,) and thereby associate a logical value
B(v) with each node v.

During the protocol, Alice and Bob construct a path “backwards”, starting
from the sink and ending at one of the sources. The source where the path ends
will give the index ¢ that they are looking for. More generally, at each step, they
will have a node w such that a(w) = 0 and f(w) = 1. Let uw and u'w be the
two edges entering w. If this current node w is labelled “AND” then it is Alice’s
turn. At least one of a(u) and a(u') is 0; Alice sends a bit to Bob to indicate which
one, and they move to that node. (Observe that since f(w) = 1, it follows that
B(u) = B(u') = 1.) If w is labelled “OR” then it is Bob’s turn and his message is
determined analogously. +

There is an analogdus result if we restrict ourselves to monotone Boolean nc-
tions and monotone circuits computing them (i.e., circuits where only the unnegated
variables occur at the sources). The corresponding communication problem is only
slightly more difficult: Alice and Bob have to find an index ¢ such that a; = 0 and
b; = 1 (since the function is monotone, such an index must exist).

Using this transformation of the problem, Karchmer and Wigderson were able
to show that every Boolean circuit determining whether a two points in a given
graph G can be connected by a path must have depth at least (logn)?. More recently
Karchmer, Newman and Wigderson (unpublished) gave interesting applications of
this transformation in the reverse direction: they showed how to design Boolaen
circuits with small depth for various problems using general results similar to those
in section 3.

c. Hajnal, Maass and Turan (1988) find another connection of this kind. Fix
n Boolean variables z,,...,z,. By a test tree we mean a binary tree in which every
internal node v has an associated “test function”, a Boolean function g, : {0,1}" —
{0,1}, and each leaf has value 0 or 1. Such a test tree can be used to compute a
Boolean function in n variables: we start from the root and move down to a leave.
At each internal node v, compute the test value g,(z1,...,2z,). If this is 0, we move
right, else we move left. When we arrive at a leaf, we read off the associated logical
value. The depth of the tree is the longest path from the root to a leaf.

We are interested in finding the minimum depth of a test tree computing a
given Boolean function f, where the test functions are restricted to some simple
class (if they are restricted to single variables, we get the more usual decision trees.
The following observation of Hajnal, Maass and Turén gives a lower bound on this
depth:

8.4 Lemma. If a test tree computes a Boolean function f with worst-partition
communication complezity k, and every test-function has worst-partition communi-

30

cation complezity l, then sts depth is at least k/1.

One nice set of test functions are disjunctions of variables (i.e., we can test
whether a given set of the variables contains a “1”). These have worst-partition
communication complexity 2. The lemma implies, in conjunction with Theorem
7.1, that with such tests one cannot determine the connectivity of a graph in depth
less than Q(nlogn).

d. Finally, we sketch an interesting application of communication complexity
to random number generation due to Babai, Nisan and Szegedy (1988). Assume
that we have a random 0-1 sequence a of length m. We call this the “seed” We
want to generate from it a 0-1 sequence # of length n > m, which is still “essentially
random”. By this we mean that it cannot be distinguished from any truly random
0-1 sequence of length n by any machine of some prescribed class; in this case, we
consider on-line RAM machines with a sublinear (O(n®?) bound on the memory.
(For this machine, we may even allow to have a true random number generator;
note that this machine does not want to generate random numbers; rather, it wants
to show that our way of generating them is bad.) The machine is getting the bits
of B one by one, and at any time it can occupy only O(logn) space. Having seen
some bits from f, the machine has to compute a “guess” for the next bit. We say
that the pseudorandom sequence f fails the test if the probability that this guess
is correct is larger than 51%. Babai, Nisan and Szegedy give a construction of a
pseudorandom sequence B with n = m®1°8™ that passes all logspace on-line tests.

Let p,q,r be positive integers with pgr < m, and consider a p x g array (v;;),
where each v;; € {0,1}". The bits in all the v;; are truly random bits of the seed.
Let f(ui,...,uq):{0,1}79 — {0,1} be an appropriate function. For every choice
of1<i, <p(v=1,...,9), compute the bit z[iy,...,i;] = f(vi, 1,...,vi,4). Order
these bits lexicographically according to the index sequences, to get the sequence
of length n = p?.

Let us show how the pseudorandomness of this sequence depends on commu-
nication complexity. Consider the moment when the machine has to guess the
bit z[i1,...,%5]. At this moment, it has already seen all bits coming from lexico-
graphically smaller index sequence. We may split this sequence into ¢ segments as
follows: let 8, be the beginning segment of B consisting of those bits z[jy,..., 4]
with j; < 1;; generally, let let B, (1 <t < ¢) consist of those bits z[j;,...,j,] with
J1 =11, J2 =13, ..., Jt—1 = 131 but j; < ;. Clearly, each B is a segment of # and
together they make up the portion of 8 before z[iy,...,1,].

Now comes the key observation: the bits in f; are independent of v;, ;. Let us
invite g players and assign the tth player to “supervise” the segment §;. This means
that he can see all bits in #;. If the machine can make a good guess of z[iy,..., 1,
then these players can also compute this guess: the first player computes whatever
the machine has in its memory when having processed $;, and sends this to the
second player; now he computes from this whatever the machine has in its memory
after having processed f;, etc. The last player will be able to compute the guess
of the machine. If the machine uses at most M bits of memory then this protocol

31

involves the communication of not more than Mg bits.

To obtain a lower bound, we make the life of the players even easier: we allow
them to “broadcast” all messeges (so that all the other players also can learn them),
and we tell the tth player the whole seed with the exception of the bits in v;, 4. So
we have the following communication complexity problem. We have g players, and
also g vectors wy,...,w, € {0,1}". The tth player knows all vectors except w;.
Their task is to “guess” f(w;,...,w,) at the expense of a minimum number of
“broadcasted” bits, so that the probability of guessing correctly is at least 51%.

Babai, Nisan and Szegedy consider the function f that gives the parity of the
number of positions where each w; has a 1 (a generalization of inner product) and
show by a rather involved extension of the methods in section 6 that this takes
(r279) bits. For the choice of r = m*#%2, g = .001log m and p = m'%97, this gives a
pseudorandom sequence S of length m°11°8 ™ which passes all tests using at most
m®? space. It is interesting to remark that this function is logspace computable, so
the random number generator works very fast.

References:

A. V. Aho, J. D. Ullman and M. Yannakakis (1983), On notions of informations
transfer in VLSI circuits, Proc. 15th ACM STOC, 133-139.

L. Babai, P. Frankl and J. Simon (1986), Complexity classes in communication
complexity theory, Proc. 27th IEEE FOCS, 337-347.

L. Babai, N. Nisan and M. Szegedy (1988), Multiparty protocols and logspace-hard
pseudorandom sequences, manuscript.

B. Chor and O. Goldreich, (1985), Unbiased bits from sources of weak randomness
and probabilistic communication complexity, Proc. 26th IEEE FOCS, 429-442.

M. Grotschel, L. Lovasz and A. Schrijver (1988), Geometric Algorithms and Com-
binatorial Optimization, Springer.

M Grotschel and M. W. Padberg (1985), Polyhedral computations, in: The Travel-
ling Salesman Problem (ed. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnoy Kan and
D. Schmoys), Wiley, 307-360.

A. Hajnal, W. Maass and G. Turén (1988), On the communication complexity of
graph properties, Proc. 20th ACM STOC, 186-191.

P. Hall (1936), The Eulerian functions of a group, Quart. J. Math. Ozford 134-151.

M. Karchmer and A. Wigderson (1988), Monotone circuits for connectivity require
super-logarithmic depth, Proc. 21th ACM STOC, 539-550.

R. Lipton and R. Sedgewick (1981), Lower bounds for VLSI, Proc. 1Sth ACM

32

STOC 300-307.

L. Lovasz (1979), Combinatorial Problems and Ezercises, Akad. Kiadé — North
Holland.

L. Lovédsz and M. Saks (1988a), Lattices, Mobius functions and communication
complexity, Proc. £29th IEEE FOCS, 81-90.

L. Lovész and M. Saks (1988b), unpublished

K. Mehlhorn and E. M. Schmidt (1982), Las Vegas is better than determinism in
VLSI and distributed computing, Proc. 14th STOC 330-337.

C. H. Papadimitriou and M. Sipser (1983), Communication complexity, Proc. 14th
ACM STOC, 196-200.

G.-C. Rota (1964), On the foundations of combinatorial theory I. Theory of Mobius
functions, Z. Wahrscheinlichkeitstheorie 2, 340-368.

R. P. Stanley (1986), Enumerative Combinatorics, Vol. 1, Wadsworth, Monterey,
California.

E. R. Swart (1986), P=NP, Tech. Report Univ. Guelph.

E. Szemerédi (1976), Regular partitions of graphs, in: Problémes Combinatoire et
Théorie des Graphes (ed. J.-C. Bermond, J.-C. Fournier, M. Las Vergnas and D.
Sotteau), CNRS, 399-401.

C. D. Thompson (1979), Area-time complexity for VLSI, Proc. 11th ACM STOC,
81-88.

H. S. Wilf (1968), Hadamard determinants, Mobius functions and the chromatic
number of a graph, Bull. Amer. Math. Soc. T4, 960-964.

M. Yannakakis (1988), Expressing combinatorial optimization problems by linear
programs, preprint.

A. C.-C. Yao (1979), Some complexity questions related to distributive computing,
Proc. 11th ACM STOC, 209-213.

A. C. Yao (1981), The entropic limitations of VLSI computations, Proc. 15th ACM
STOC, 209-213.

A. C.-C. Yao (1983), Lower bounds by probabilistic arguments, Proc. 2{th IEEE
FOCS, 420-428.

33

Figure 1
I L2 I3 Ty Is Ig Iz Ty 1 Ya Ya Ya Ys Ys Y7 Ys
a1
q2
g3}
[g4
gs]
g5 |
a7}
Ii} L s} —
Figure 2

Figure 3

