CLOCKED ADVERSARIES FOR HASHING

Richard J. Lipton
Jeffrey F. Naughton

CS-TR-203-89

February 1989

Clocked Adversaries for Hashing*

Richard J. Lipton and Jeffrey F. Naughton
Computer Science Department

Princeton University

February 1, 1989

Abstract

A “clocked adversary” is a program that can time its operations and base its behavior
on the results of those timings. While it is well known that hashing performs poorly in the
worst case, recent results have proven that for reference string programs, the probability of
falling into a bad case can be driven arbitrarily low. We show that this is not true for clocked
adversaries. This emphasizes the limits on the applicability of theorems on the behavior of
hashing schemes on reference string programs, and raises a novel set of problems dealing

with optimality of and vulnerability to clocked adversaries.

1 Introduction

Traditionally, the performance of hashing schemes has been measured by modeling programs
as reference strings. This approach reduces a program to a sequence of memory references,
and then measures the performance of the hashing scheme when presented with that string
of references. However, in actual systems, programs are not just reference strings. Programs
have access to clocks, and can dynamically change their behavior based on the performance
of previous operations. To model this larger class of programs, we define clocked adversaries.

This is a simple concept; a clocked adversary is just a program that can time its operations,

and base its behavior on the results of these timings.

*Work supported by DARPA and ONR contracts NOOQO14-85-C-0456 and N00014-85-K-0465, and by NSF
Cooperative Agreement DCR-8420948

When one considers clocked adversaries, the expected performance of hashing schemes must
be re-examined. Intuitively, a clocked adversary can detect when two keys collide, and use this
knowledge to its advantage. In this paper we consider the implications of clocked adversaries
on two hashing applications. The first is universal hashing; the second is PRAM simulation.

In universal hashing, a hash function is chosen at random from a family of universal, hash
functions. Carter and Wegman [CW79] have shown that this technique provides O(n) expected
time for reference string programs of O(n) associative memory operations. In Section 3, for each
of the families of hash functions Hy, H,, and Hj presented in [CW79], we give clocked adversary
programs that make O(n) associative memory operations, yet take expected time Q(n?/logn),
Q(n?), and Q(n?) respectively. Whether there are universal, families of hash functions that are
not vulnerable to such an attack is an interesting open question.

The second line of research to which we apply clocked adversaries is the simulation of
PRAMs on message passing, bounded degree architectures. There is a growing body of literature
proposing that this be done by hashing the PRAM memory locations to the various memories
in the actual machine. These papers show that for reference string programs, the expected
time degradation in this simulation is at worst logarithmic. In Section 4 we show that, for
any function T'(n) > n(logn)?, there is a clocked adversary PRAM program that runs in time
O(T(n)) on a PRAM, yet takes expected time Q(nT'(n)) under the hash-based simulations.

Of course, it has always been known that in the worst case, hashing performs abysmally.
However, papers such as [CW79,KU86,Ran87] have essentially shown that the probability of
the worst case occuring can be made arbitrarily small. Such results begin to carry the weight
of absolute performance guarantees, since the probability of poor behavior apparently can be
driven far below the probability of machine failures. The work presented in this paper does not
dispute these results; however, it emphasizes that they hold only for a subset of the programs

that can be written on actual machines.

2 Clocked Adversaries

As mentioned in the introduction, a clocked adversary is a program that has access to a clock.

The critical capability of clocked adversaries is given by the following lemma.

Lemma 2.1 Let sy and sg be two possible states of a data structure D, and lel o be some

operation on D such that

e D does not change state in response to operation o, and
e operation o takes time ty in situation s$; and time ty in situation s3, and

o iy —ty > 4.

Then a clocked adversary with access to a clock that is accurate to within € can detect the

difference between s1 and sy with O(e/d) repetitions of operation o.

Proof: Because the data structure D does not change state in response to o, the adversary
can repeat o as often as required. Repeating o a total of m times in situation s; will take mi;
time, whereas in situation s, it will take mt;. Because t; — {5 > 8, we have mt; — mty > mé.

For the adversary to detect the difference between the two, we require that mé > ¢, or that
m > €/§, which completes the proof. O

As a concrete example, consider a hash table T in which the hash function h hashes keys
into the bins of T'. For definiteness, we will assume that chained-overflow collision resolution is
used!, although the adversaries presented in this paper can be adapted for other static collision
resolution strategies (e.g., open addressing.)

Suppose that we wish to determine whether or not two keys k; and ko collide under h.
Lemma 2.1 applies with s; the situation where k;y and k collide, s, the situation where they
do not, and o the operation fetch(k), for a key k. Here § is the difference between the time to
fetch a key at the head of a bin’s linked list and the time to fetch a key at some other position
in a bin’s list. Letting ¢ be the time to fetch a key inserted into a previously empty table (this
ensures that ¢ is the time to fetch an element at the head of the list in a bin) we construct the

following adversary.
o Insert £y and k2 into an empty table 7.
e Let ' be the time it takes to repeat the operation fetch(k;) ¢/§ times.

o If ¢ > t + ¢, then report a collision; otherwise, let ” be the time it takes to repeat the

operation fetch(ks) €/6 times.

"Each bin b is the head of a linked list containing all the keys inserted into 7" that hash via k to b.

o If t” > t + ¢, then report a collision; otherwise, report that k; and ko do not collide.

Real machines have widely varying é6’s. For example, on an IBM PC, § &~ 50 milliseconds,
whereas on a Cray-2 § ~ 4 nanoseconds. One implication of the Lemma 2.1 is that the resolution
of the clock does not matter except that changing the resolution of the clock changes the
constant factor in the running time of an adversary. In view of this fact, for the rest of this
paper we will assume that the adversary’s clock resolution is sufficiently high that ¢ < §, so the
difference between two situations of interest can be determined by timing a single operation.
As another example suppose we are given a set § of keys, and wish to determine if §
contains a colliding pair of keys and, if so, wish to identify one such colliding pair. The

following proposition demonstrates how a clocked adversary can do so in time O(|S]).

Lemma 2.2 Let T be a hash table, and let S be a set of keys. Then there is a clocked adversary
that makes O(|S|) insertions, deletions, and retrievals, correctly determines if § contains a pair

of keys that collide in T, and, if so, returns a pair of colliding keys.

Proof: Consider the following approach.

First, insert some key k from S into the empty table T, and time the retrieval of k. Let
that time be #o — this is the time to retrieve a key that does not collide with any other key in
the table. Next, insert the remaining keys of S into the table, and time the retrieval of every
key in §. If no key in S has a retrieval time ¢ > tg, then there must be no collisions; otherwise,
there is at least one collision.

Suppose that there is a collision. Then one of the keys participating in the collision, say k',
must have a retrieval time greater than ¢,. Delete all the elements of S from 7" except k.

Next, for each key k" # k', insert k", time the retrieval of k' and k", then delete k”. Because
k' collides with some key, there must be at least one k” such that when k" is inserted into T,
the retrieval of k' or k” is slowed. When such a k” is detected, report that &’ and k" collide.

This adversary makes O(|S]) insertions, deletions, and retrievals, and finds a colliding pair
if one exists. O

We close this section with a lemma about generating pairs of colliding keys. Note that this
lemma makes no assumptions about the hash function being used; the adversary used in the

proof of this lemma will be useful as a subroutine in the next section.

Lemma 2.3 Let n be the number of bins in a hash table T'. Then, for any € > 0, there ezists a
clocked adversary that generates a pair of colliding keys with probability p > 1 —e¢. Furthermore,

the adversary need only make O(y/n) insertions, deletions, and retrievals.

Proof: Consider generating /n random keys. If the hash function h distributes the
keys uniformly among the bins in the table T, then by a classical result from probability (the
“birthday paradox”), with probability approximately p = 1/2 two of these keys will hash to the
same bin. It is straightforward to show that if A distributes the keys nonuniformly, then with
probability ¢ > p two of the keys will hash to the same bin.

This implies that if we iteratively apply the adversary from Proposition 2.2 k times on
randomly generated sets of size \/n, we will get a collision on at least one of the iterations with
probability at least 1 — (1/2)*. Then for any €, where 0 < € < 1, by choosing k > loge we get
a colliding pair of keys with probability p > 1—¢. O

3 Adversaries for Universal Hashing

In universal hashing, a hash function as chosen at random from a family of hash functions.
Carter and Wegman [CW79] have shown that if the family of hash functions is universaly, then
the expected time for a sequence of n associative memory operations is O(n).

Carter and Wegman also give three examples of universaly functions. In this section we give
adversaries for each family. We assume that the adversary knows which family of hash functions
the hash table uses, but does not know the specific function the table has chosen from within
that family. Each of the adversaries shares the common theme of first using random probes to
generate a small number of colliding pairs, then using these colliding pairs to generate a large
set of keys that collide, and finally repeatedly retrieving a key in this set.?

Finding a small number of colliding pairs from random probes is straightforward, using the
technique from the proof of Lemma 2.3. Generating a large set of colliding pairs from these
colliding pairs is in general harder. In a sense is a cryptographic problem, because to solve
it the adversary must learn something about the (unknown) hashing function the table uses.
However, generating collisions is different from cracking codes in that it is not necessary for the

adversary to completely determine the hash function. In fact, none of the adversaries below

?Recall that a hash table stores unique keys — an attempt to insert a key already in the table is an error.

Because of this, the adversary must generate a large set of distinct keys.

actually discover the hash function; they just discover enough about the function to generate
n keys that collide from log n pairs of colliding keys.

In the following we will assume that the keys are drawn from some domain A, while the
bins are represented by the elements of another set B. Then each hash function is a mapping
from A to B; two keys in A collide if they map to the same element of B. We will present the
adversaries in order of difficulty: Hs, Hy, and finally H,.

3.1 The Family Hy

In the family Has, a generic function h(z) is defined by the equation h(z) = Mz + b, where
1. M is a log|A| x log|B| boolean matrix, and
2. bis a log|B]| bit boolean vector, and
3. multiplication is boolean and sum is exclusive or.

A specific function in Hj is generated by choosing a matrix M and vector b.
Constructing a clocked adversary for the functions in Hj3 is easy because the functions in

H3 are linear, as shown by the following lemma.

Lemma 3.1 Let h(z) = Mz @ b be a function from Hs, and let = and y be two keys in the
domain of h. Then h(z @ y) = h(z) ® h(y) & b.

Proof: The proposition follows immediately from the associativity and commutativity of
@, and the fact that - distributes over @. O

Note that if A(z) = h(y), then the preceding proposition implies that h(z & y) = b. This is
the key idea in the following theorem.

Theorem 3.1 Let T' be a hash table using a hash function chosen at random from Hs. Then
there exists a clocked adversary that makes O(n) insertions, deletions, and retrievals and runs

in time Q(n?).
Proof: Consider the following adversary:

1. Find logn pairs of colliding keys by repeatedly applying the adversary from Lemma 2.3.
Let these colliding pairs of keys be (z;,¥;), for 1 < ¢ < logn.

2. Let I be asubset of the interval 1 < ¢ < logn. Construct the n possible sums Y, ;(z: ®¥:).
3. Insert these sums into the table.

4. Time the retrieval of each of the sums. Let s be the sum with the maximum retrieval

time.
5. Perform the operation “retrieve s” n times.

Again there are O(n) sums of the form };c;(z; @ y;). By a straightforward application of
Lemma 3.1, there are only two bins into which these sums will hash: b, if the cardinality of I is
odd; 0 otherwise. This in turn implies that the bin containing the most keys must contain at
least n/2 keys. The retrieval time for at least one of the keys in that bin must be proportional

to n. Retrieving this key n times gives a running time that is Q(n?). O

3.2 The Family H,

The family H; is defined by h(z) = (az + 8 mod p) mod n. Here, n = |B|, a and 3 are random
integers, and p is some prime. The family of functions is generated by using multiple values
of a, (3, and p, generating one function for each triple (a, 3,p). Our adversary for Hy is more
complicated than our adversary for Hs, because the functions in H; are nonlinear.

Our clocked adversary for this family of functions makes use of the following lemma.

Lemma 3.2 Suppose that for 1 < i < k, h(z;) = h(y;). Then there are Q(2%/k) sets I C
{1yee. o} such thal

h(I) = h (Z(ﬂﬂi = y,'))

el
all have the same value.

Proof: First, note that by definition of mod,
h(z) = (a:c +8-p lwm%@-J) mod n

Next, let I C {1,...,k} and define [(I) by

[pmnes]) sjonts]

i€l ¥ il p iel

It is straightforward to show that /(I) = O(k) for all sets I. Next, note that

M) = Y (a(m; —y)+B—-p {MJ)

i€l p
=, (Z(aa:,- +8)-p> [aw* s ﬁD - (Z(aye +8)-p) IMJ) + 8- pl(I)
i€l i€l p iel iel p il

We wish to bound the number of values the last line may take on, modulo n. First, note that

the first term on the right side,

(Z(am,’ +8)-pY [am" +ﬁJ)

i€l iel p

is just 37;er A(z;). Similarly, the second term is just 3 ;c;h(y;). So, replacing these terms, we
have that the sum is just

> h(zi) = D h(y:) +)8 — pl(I) mod n

1€l i€l i€l
Because for each h(z;) = h(y;) for each i, this is just) ;c; 8 — pl(I) mod n. By definition of

the mod function, this is

Zﬁ—pl(I)_n[MJ

iel "

Because 3, n and p are independent of I, this can take on the same number of values as

=I(I) = n |-I(I)/n]

But, because I(I) = O(k), this last quantity can take on at most O(k) values.
To complete the proof, notice that there are 2 subsets of the set {1,...,k}. Since the

quantity

h(I) =h (Z(w; = yg—))

i€l
can take on only O(k) values, by the pigeon-hole principle, 2(2*/k) of these subsets must take
on the same value. O
Lemma 3.2 allows us to state the following theorem about the existence of adversaries for

the family of functions H;.

Theorem 3.2 Let T be a hash table using a hash function chosen at random from H,. Then
there exists a clocked adversary that makes O(n) insertions, deletions, and retrievals and runs

in time Q(n?/logn).

Proof: Consider the following adversary:

1. Find logn pairs of colliding keys by repeatedly applying the adversary of Lemma 2.3. Let
these colliding pairs of keys be (z;,y;), for 1 < i < logn.

2. Form all n sums of the form 3 ;c (2 — i), where I C {1...logn}.

3. Insert these sums into the hash table. By Lemma 3.2, some bin must contain Q(n/logn)

keys.

4. Time the retrieval of all n sums just inserted into the table. Let s be the sum with a

maximal retrieval time.
5. Perform the request “retrieve s” n times.

There are {}(n) sums of the form 3 ;c;(z; — ¥:), and they can be generated in linear time.
By Lemma 3.2, Q(n/logn) of these sums hash to the same bin.
If a bin in T contains n/logn keys, then the retrieval of at least one of these keys must

take time proportional to n/logn. Asking for this key n times gives a running time that is
Qn?/logn). O.

3.3 The Family H,

The family of hash functions Hj is similar to the family H3. However, before multiplying
the key = by the boolean matrix A, the key z is transformed. The difficulty here is that the
functions in H, are strongly nonlinear, requiring a more sophisticated attack than either H; or
Hs.

A function from H; works as follows. For some integer d, consider the key z to be a number
base d. (For example, if d = 4, then each pair of bits in the binary representation of z specifies
one digit between 0 and 3.) Thus, setting m = log|B|, and r = logd, the key z is interpreted
to be the number dyd;...d,, ;.. Next, re-represent z in unary by mapping did,...d,, e to
0410%10. .. 0%m/r10(r—Dm=di=dz=wmdimr) T resulting bit string is then multiplied by a
rm X n boolean matrix M to give the bin corresponding to z.

For a key =z, let u(z) = 2’ be the result of interpreting # as a number base d and then
re-expressing it in unary. The difficulty in constructing an adversary for H, is that u(z) is

nonlinear, so the hash functions in Hs, h(z) = Mu(z) @ b, are also nonlinear. To avoid this

difficulty we define a subset A’ of the key domain A such that for any key = in A’, u(z) is linear.
The set A" consists of all keys = such that, when 2 is interpreted as a number base d, the digits
in z form a word in the regular set {12 4 21}™/?,

In the following, it is perhaps easiest to think of each member z of A’ as being designated
by a binary number & of m/2r digits, where digit ¢ of & is 1 if the ith pair of digits in z is 12,
and digit ¢ of & is 0 otherwise. We let D be the set of designators, and f be the map from
a designator # to the corresponding key z. The key to the adversary for H, is the following

lemma.

Lemma 3.3 Let & and § be designators for keys x and y in A’. Then u(f(2® §)) = u(f(2))®
u(f(§)) & ¢, where ¢ = (0010)% ...

Proof: Let & = z122...2; and § = y1y2...9;. Then by definition of v and f, we have

that
u(f(£)) = 0z1(1 ® 21)10z2(1 B z2)1...

and

u(f(9)) = 01 (1@ 31)10y2(1 B y2)1. ..
Again by definition of u and f, we have
wWf(2DF) = 0(z10mn)1Bz1Dy1)...

Oz1dm)((1dz1)d (1Y) 1)...
w(f(2)) ® u(£(§)) ® 00100010. ..

In other words, for keys z in A’, u(z) is linear.

Lemma 3.4 Let & and j be designators for two keys ¢ and y in A’, and let h(z) = Mu(z)+ b
be a function from Hy. Then h(f(Z @ §) = h(f(2)) ® h(f(9)) @ b.

Proof: Similar to that of Lemma 3.1. Recall here that A is of the form h(z) = Mu(z)® b,
which can be written h(z) = Mu(f(2)) ® b. The key point is that f, u, are linear, thus so
is their composition, which in turn implies that % is linear. A picture of the maps involved

appears in Figure 1. In that figure, we let h' represent the function A(y) = My @ b. O

10

D B

Figure 1: Mappings used in Lemma 3.4

Theorem 3.3 Let T' be a hash table using a hash function chosen at random from H,, where
that function interprets each key in A as a number base d. Furthermore, let r = logd, and
assume that (log|B|)/2r > 2log|A|. Then there exists a clocked adversary that makes O(n)

insertions, deletions, and retrievals and runs in time Q(n?).

Proof: Consider the following adversary.

1. Find logn pairs of colliding keys by a process similar to repeating the the adversary
from Lemma 2.3. However, in this case, instead of generating the keys directly, generate
designators, then work with the keys these designators designate. This ensures that we
will only deal with keys in A’. Let the designators for the colliding pairs of keys be (;, i),
for 1 < i <logn.

2. Construct the n possible sums &7 = Yicr(#: ® i), where I C {1...y/n}
3. For each sum of designators 3y, insert f(3r) into the table.

4. Time the retrieval of f(3;), for each I. Let § be the sum with the maximum retrieval

time.
5. Perform the operation “retrieve f(3) ” n times.

This adversary works in for the same reason the adversary in Theorem 3.1 works — the hash
function is linear (when restricted to A’.)
The technical restrictions on the sizes of A and B are necessary to ensure that there are

enough keys in A’. O

11

4 Adversaries for PRAM Simulations

Much of the work in parallel algorithms has been devoted to algorithms for the PRAM model
of computation. The most salient feature of this model is the assumption of a single, uniform,
shared memory. This shared memory greatly simplifies the task of writing programs. However,
it is difficalt to provide such a memory in an actual machine, especially if the number of
processors is large [AS88].

This has given rise to schemes for simulating PRAMs on multiprocessors without true shared
memory. In the remainder of this section, the machine upon which the simulation of the PRAM
is running will be called the target machine. We assume that the target machine consists of
n processors, numbered 0 through n — 1, each with an associated local memory. There is no
global memory; however, the processors are connected by some interconnection network.

We will assume the target machine has the following properties:
* Each memory can only respond to one request (read or write) at a time, and

¢ Local memory references (processor i referencing a location in memory #) respond more

quickly than remote references (processor i referencing a location in memory j # i.

Each assumption is well motivated by actual machines. Real memories can only respond to a
small constant number of requests at a time. Also, a memory reference that need only use a
local bus can be made to run much faster than a memory reference that requires a network
message plus a local bus access. Any computer architect would take advantage of this fact to
provide fast local memory.

If a PRAM program is to be simulated on a target machine, then the memory addresses of
the PRAM program must be mapped to actual memory addresses in the memories of the target
machine. The danger is that at some step, many processors may reference PRAM addresses
within the same target machine memory. This creates a “hot spot,” as n requests to the same
target machine memory must take n target machine cycles to be serviced.

PRAM simulations attempt to eliminate hot spots in two ways. First, they use “combining
networks” [PN85] that combine multiple requests for the same memory location as the requests
pass through the network. This technique eliminates the possibility of hot spots due to multiple
requests for the same PRAM address.

However, combining networks do not prohibit hot spots due to requests for distinct PRAM

12

addresses that map to the same target machine memory. This is where hashing comes in — the
hope is that through a suitable hashing scheme, the probability of requests for a large number
of distinct PRAM addresses within the same target machine memory is extremely low.

A number of papers have dealt with how to emulate a PRAM on a multiprocessor without
shared memory [UW84,KU86,Ran87]. In Karlin and Upfal [KU86] and in Ranade [Ran87], it
is proven that with the proper choice of the hashing, routing, and combining strategies, the
target machine can simulate a single step of a PRAM in O(logn) with high probability. As we
will show in this section, these proofs depend on the fact that in the PRAM model, programs
do not have access to clocks. If we allow the class of simulated programs to contain clocked
adversaries, then we can give a program that runs in time O(T(n)) on the PRAM, but in time
Q(nT'(n)) (rather than O(T(n)logn) on the target machine.)

Before stating our results about such adversaries, we note that in any target machine with
more than one processor, every program is potentially a clocked adversary (not just those with

explicit access to a clock.) This is made more precise by the following proposition.

Proposition 4.1 Let M be a target machine with n > 1 processors, and let M’ be an identical
target machine except that one processor has been replaced with a clock. Then for every clocked

adversary P’ running on M', there is an equivalent adversary P that runs on M,

Proof: Clearly, any segment of P’ that makes no reference to a clock can be run on the
n — 1 processors of P, so we just need to show how P can simulate a clock. This can trivially be
accomplished by dedicating one processor of P to continually incrementing a register r. Then
calls to “get time” on P’ are replaced by the operation “read r” in P. O

Note that in an uninteresting technical sense, PRAM programs cannot be clocked adver-
saries, because there is no notion of time (other than computational steps) in the PRAM model.
Our intent is that the clocked adversary PRAM program is a program written to run on the
PRAM simulator. From this perspective, the results of this section can be interpreted as em-
phasizing that a PRAM simulator peforms abysmally on some programs that step outside of
the PRAM model by either explicitly or implicitly accessing a clock. This is analogous to the
adversaries for universal hashing demonstrating that universal hashing performs abysmally on
some programs that step outside of the reference-stream program model.

Also, note that having n processors simultaneously access the same memory location does

not create a hot spot, as the requests will be combined in the network. To produce an (n)

13

slowdown, the adversary must determine Q(n) distinct PRAM addresses that hash to the same
memory of the target machine.

We first give a preliminary bound on the slow-down achievable by using an clocked adversary.

Theorem 4.1 Let M be an n processor target machine. Then if T(n) > n?, there is a clocked
adversary that runs in time O(T(n)) on an n-processor PRAM and runs in expected time

Q(nT'(n)) under the hash-based PRAM simulation.

Proof: Consider the following adversary. First, processor zero determines n — 1 distinct
addresses that are local to memory zero. Next, processor zero distributes these addresses, one
to each of the remaining processors 1 through n — 1. Finally, for T(n) steps of the PRAM
adversary program, processors 1 through n — 1 ask for the address given them by processor 0.
Below we show that this adversary achieves the bounds required by the theorem.

Because there are n memories, a random memory request by processor 0 has a 1/n chance
of being local. Requesting a n? random memory locations will find n local addresses on average;
this can be repeated k times to produce n distinct local addresses with high probability (where
k depends only on the desired probability.) So in O(n?), processor 0 can discover n — 1 local
addresses.

If processors 1 throught n — 1 all ask for their assigned addresses simultaneously, in each
step of the simulation n — 1 requests must enter and leave memory 0. (Because the addresses
are distinct, no combining is possible.) Because the memory can only satisfy one request per
time step, these requests cannot possibly be satisfied in fewer than n — 1 steps of the target
machine. Thus T'(n) such requests will take time Q(n7'(n)), as required.

Finally, note that if 7'(n) > n?, then the running time on the PRAM is O(T'(n)), again as
required in the statement of the theorem. O

The adversary in the proof of Theorem 4.1 is naive in that it makes no use of the specific
family of hash functions used in the simulation. A more sophisticated attack, like those used
in the adversaries for universal hashing, would allow the construction of adversaries that give
linear slowdown for programs that have running times much lower than O(n?).

This adversary is also naive in that it makes no use of the parallel processing capability of
the multiprocessor in discovering collisions. The parallel processing capability is used in the

following lemma.

14

Theorem 4.2 Let M be an n processor target machine. Then if T(n) > nlogn, there is a
clocked adversary that runs in time O(T(n)) on a PRAM and runs in ezpected time Q(nT(n))
under the hash-based PRAM simulation.

Proof: We prove the lemma by exhibiting an adversary that meets the bounds. The
adversary makes note of the following property of the target machine: if processor i is accessing
a local memory location at the same time as a remote processor is also accessing memory i, then
processor ¢ will see a slower response time than if no remote processor was accessing memory
t, due to contention for the memory.

Consider the following adversary. First, processor 0 identifies a local memory location
through O(n) samples. Next, the remaining n — 1-processors each generate a random address,
and reference that address at the same time that processor 0 references its local address. If one
of the n — 1 random addresses is local to processor 0, then processor 0 will notice a slowdown,
due to contention for the memory. If there is such a collision, the colliding address can be found
in O(logn) PRAM steps by doing a binary search, that is, first processors 1 through n /2 access
their addresses, then processors n/2 + 1 through n access their addresses. Then recur on the
subset that contained a collision with processor 0’s local address.

This can be repeated ¢(n — 1) times to identify n — 1 addresses local to processor 0 in
O(nlogn) steps. After that, just as in the adversary in Theorem 4.1, processors 1 through

n — 1 access their assigned memory locations T'(n) times. O

5 Conclusion

Clocked adversaries constitute a class of programs that more closely model the capabilities
of real programs than do such classes as reference-stream programs or PRAM programs. We
have demonstrated that the performance of some hashing schemes must be re-examined when
clocked adversaries are taken into account.

Clocked adversaries give rise to a number of open problems, including

1. Our adversaries for PRAM simulations ignore the important question of how large the
queues in the interconnection network can grow during the simulation. How much can

clocked adversaries degrade the queue lengths in PRAM simulations?

15

2. Are there efficient adversaries for hash functions of the form h(z) = ((Xo<i<. a;z*) mod

p) mod n?

3. Are there hashing functions that are immune to attacks from clocked adversaries? That
is, are there hashing functions such that one can prove a lower bound on the amount of

work a clocked adversary must do in order to degrade performance by a specified amount?

4. What is the expected performance of other types of data structures, including dynamic
data structures (e.g. dynamic perfect hashing [DKM*88]) when faced with clocked ad-

versaries?

One natural question is whether clocked adversaries represent a type of program people will
actually write. After all, the general intent is that a program should try to use a data structure
well, rather than as poorly as possible. In some sense, that is a moot point; theorems about the
behavior of algorithms and data structures are intended to give users bounds on performance,
and clocked adversaries illustrate that in some cases, the proof of the performance only holds
if the program in question has no clock.

Also, there are many programs that do monitor their behavior and base decisions on mea-
sured performance. Such programs are especially prevalent in distributed or parallel enviro-
ments. While the intent of such monitoring is to improve (rather than degrade) performance,

clocked adversaries demonstrate how bad pathological cases can be.

References

[AS88] William C. Athas and Charles L. Seitz. Multicomputers: message-passing concur-
rent computers. IEEE Computer, 9-24, August 1988.

[CW79] J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions.
Journal of Computer and System Sciences, 18:143-154, 1979.

[DKM*88] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer, H. Rohnert, and R. E. Tarjan.
Dynamic perfect hashing: upper and lower bounds. In Proceedings of the 29th IEEE
FOCS Conference, pages 524-531, 1988.

[KU86] Anna Karlin and Eli Upfal. Parallel hashing — an efficient implementation of shared
memory. In Proceedings of the 27th Annual Symposium on Computer Science, 1986.

16

[PN85]

[Ran87]

[UW84]

G. F. Pfister and V. A. Norton. Hot-spot contention and combining in multistage
interconnection networks. In Proceedings of the International Conference on Parallel

Processing, pages 790-797, 1985.

Abhiram G. Ranade. How to emulate shared memory. In Proceedings of the 28th
Annual Symposium on Computer Science, pages 185-194, 1987.

Eli Upfal and Avi Wigderson. How to share memory in a distributed system. In
Proceedings of the Sizteenth ACM STOC, pages 171-180, 1984.

17

