PLACEMENT PROBLEMS ARISING FROM
AUTOMATIC LOGIC COMPILATION

William Wei-Lian Lin
(Thesis)

CS-TR-201-89

June 1989

PLACEMENT PROBLEMS ARISING FROM
AUTOMATIC LOGIC COMPILATION

William Wei-Lian Lin

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE
OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

June 1989

© Copyright by William Wei-Lian Lin 1989
All Rights Reserved

Acknowledgments’

I'd like to thank my advisor, Andrea LaPaugh, for her guidance and suggestions, for
her role in making this dissertation a reality.

I'd like to thank my readers, Bernard Chazelle and Ken Steiglitz, for taking the time
to look over my thesis and make comments.

Thanks also to Mihalis Yannakakis for suggesting the algorithm described in Sec-
tion 3.3. For the work in Chapter 6, I'd like to thank my collaborators, Luen Heng,
Andrea LaPaugh, and Ron Pinter.

t This work was supported in part by DARPA Contract N00014-82-K-0549 and NSF Grants MCS-8202594 and MIP-
8619335.

To Nora

TABLE OF CONTENTS

ABSITBCE - . coivvminiinsi 55 5 4 4 5 & wrussmemimimes & & & & 5 % & B 3% SORPEEFEE & o5 B 6 5 3 § 0) SO vii
1. Introduction e 1
1.1. Logic Compilation‘and Weinberger AImaysoeasvevarsisinins sumwauions 1
1.2. Prableme AtSing oM WOk OB WAG sosovsmevvavisionsns s vovmverss 6
2. Linear Arrangement With Critical Paths 12
2.1. NP-Completeness Proofs for LACPand DLACP 15
2.2. Undirected, Single Source, Paths Disjoint and Non-crossing 18
2.3. Directed, Constant Number of Critical Path Sources 27
2.4, Conclusions and Open Problems 30
3. Mincut Linear Arrangement with Critical Paths 32
3.1. Directed Mincut Linear Arrangement on Rooted Trees 35
3.2.Directed Tree, SISl CXIHCAN PRIN. .. 0 2. oo ovovusvnmmmmmmuus o issssess ssmses 38
3.3. Trees, Dinoint PR W URMLIEBEREccoovvesvuiensssisssmovavs 42
3.4. A Biconnected Component Heuristic for Mincut Linear Arrangement. 50
3.5. Open Problems and Future Research 53
4. Cluster Placement Inan-Avray ol Galesc.vvvivivvivisisisssnsninseis 56
4. 1. NE-cOmpletenestPrOnT s Bebr 0 8 i 0l s oL v w mmmreraicist v 6 5 5 5 § % % 5 § 4 SRR e 58
4.2. Issues for Heuristic Algorithms 61
C BT o 1o L1 o RO o AN AR 65
N R M . R T 65
4.3.2. PArfiBOMAE Rt iml W R0 | L s s s S £ B A E F B B E 8 B 66
4.3.3. Randomizetlierative INPIOVEMCHE« ovvvmmaacvonsssesnioss e 67
4.34. Simulated Annealing 70
4.4. Experimental Resultsottt ettt e 12
4.5.OpenProblems and Future Work i, 79
5. Terminal PlacementinaSingleChannelcccoiiiiiininriviisses 81
5.1. Some Restricted Cases for Single Channel Placement 82
5.2. Top Terminals Fixed, No Clusters, Length Bounded 86
5.3. Transformation to a SmallerProblem 89
54. AnHeuristic fof WCTRMEEEMETRIERE00 -0vsnssoorisensnsssnsonnsns 91
e My BT SRR e T I I T TT 93
542 ConsiderationS T CREEIEE W0cconvevvinorcassonnanonsons 99
5.5. OpenProblems and Future Research 105

6. Decreasing Lower Bounds by Channel Widening 106

6:1. SMOOth-FIUX. s sersessisosmamuis vay 9555 Sorueiass r s 6 8§ § & ouBIEwNEesg 107
6.2. The Flux Reductior: AR . ovcwawws o 5 s v 55 5 5 6 wuaeimes €6 ¢ ¥ 05 %5 § 35 S 113
6:2.1. Formal Problem Defmton oocvmii v v vs s un i sammmmmris o6 5 o6 5 4 5 5 sosmemesod s 113

6.2.2. Terminology fOr SWID - . & niciciimn v o voo 3 3 8 v 0 5 avsuesmanes & & 5 6 4 5 & % % 20 e s 115

6.2.3. The Algorithm e 117

6.24. Complexityofthe Greedy Algorithmc.ccoiioiisivssisisnonssn 118

6.2.5. Example Usage of the Greedy/ A gorithin &« ;.. ;i cosvimmammvn v v i is o s e mam 119

6.3. Proof of ODHMANEY v o is v s v sammpmemass 3555 § 55 SHMIuses i s a5 65 5§ wrmmms 120
6.3.1. ThIee PIOPBIHES . . o .« os s wnsbvmmimmam ¢ & & 4 o 5 5 & S smbantomim & & & & & 5 4 § 5 1 Svemmen 120

6.3.2. Critical INtervals i e 121

6.3.3. Performance of the Greedy Algorithm 123

6:3:4. TiansiotmAHon OL SOIMHONE covvvima s s m s mvuoime s g0 44 5 6 55 baviaEmes 125

G35 ThetNIROROSHUIE . v sssomomemvdv &3 5 995 5§ VREweees £ 57 5 5 3 5 3§ Siapys 128

6.4. Notes on the Smooth-Flux Metric i, 129
6.5. Extensions and Future Work e 131

G T e IR R S R I I e T 133
TACERIONe WO 60 b v s ¥y an S morsus @ e 5 58 5 5 8 5 5 @ SmERias & 55 3 5 55 5 6 oS e 136
RETBRBIIORE . . . oiivicvnshois b v 44 o iirmiptbiotosinse & € v ¥ o & % orio oot suwmdraies'sl o o o & %8 % n s 0 woKERER A Vo 139

vi

Placement Problems Arising from
Automatic Logic Compilation

William W. Lin

Princeton University

ABSTRACT

Automatic logic compilation is the process of taking an input description consisting
of Boolean logic equations and outputting an IC layout mask description implementing
the equations. There are a number of problems that must be solved by the compiler. In
this thesis, we shall discuss some placement problems that arose during the building of a

logic compiler, the Weinberger Array Generator.

The first problem is Linear Arrangement with Critical Paths. The input is a graph
G and a set of critical paths (paths are subsets of G) with corresponding limits. The
objective is to place the nodes of G in a straight line so that the length of any critical path
is less than or equal to the limit for that path. In some versions of this problem, the main
goal is to minimize the cutwidth of the linear arrangement while satisfying the path lim-
its. This problem is called Mincut Linear Arrangement with Critical Paths. In the gen-
eral case, both of the above problems are NP-complete. We analyze restrictions on the
problems to determine the complexity of these restricted problems. Some algorithms are

given for solving speciai cases of the two general problems.

The second problem is Cluster Placement in an Array of Gates (CPAG). The input

consists of an ordered set of gates. Each gate consists of a set of clusters, where each
cluster is a group of signals that must remain together. The objective is to place the sig-
nals so that clusters do not mix and the total routing space needed is minimized. Since
the general problem is NP-complete, we present some heuristics to solve Cluster Place-

ment in an Array of Gates, along with experimental results.

The next problem we consider is the restriction of CPAG to a single pair of gates
and the channel between those gates. This problem is still NP-complete, so we consider
a heuristic for this problem that provides a lower bound for the channel density and splits
the problem into smaller subproblems. Each subproblem is constrained such that the top
terminals are in fixed positions and each net may have at most one top terminal and one
bottom terminal. We present an algorithm that finds a placement that achieves the

optimal possible density for each subproblem.

Finally, we consider a situation where the terminals’ vertical alignments are fixed,
but we may add empty columns to a channel. We describe how the width of the channel
is lower bounded by a metric called smooth-flux. The goal is to reduce the smooth-flux to
a given value. We present an algorithm that calculates how many columns to add and

where to place them.

viii

Chapter 1
Introduction

The task of designing a digital integrated circuit (IC) is a difficult one. Hand
designs are fine for small systems; but large systems, especially very large scale integra-
tion (VLSI) systems, are usually complex enough to confound human-only efforts to con-

struct them efficiently. So, chip builders must turn to computers for help.

In recent years, a vast amount of work has been done on computer-aided design for
VLSI. Analysis tools exist for such tasks as simulation of switching circuits (e.g., MOS-
SIM [Bryant]), timing estimations (e.g., CRYSTAL [Ousterhout1]), and design rule check-
ing (e.g., LYRA [Mayo]). Design tools exist for placement and routing problems such as
channel routing [Rivest] [Yoshimura] [Burstein]. For the custom chip designer, there are
a number of programs for specifying layout masks. These range from procedural
languages like ALLENDE [Mata] to interactive graphics packages like MAGIC
[Ousterhout2]. For a survey of recent work on computer-aided design for layout, peruse

[Ohtsuki].

1.1. Logic Compilation and Weinberger Arrays

One particular area of interest is logic compilation, which is the process of taking an
input description consisting of Boolean logic equations and outputting an IC layout mask
description implementing the equations. This difficult compilation process is usually
decomposed into four subtasks: function compilation, logic optimization, topological

optimization, and layout generation. Function compilation takes the input Boolean

Plarowont Prnhlaonie Avicing Bvram Autamatin I aaio Camnilatina

.

equations and converts them into an appropriate internal representation. An example of
one such representation is a truth table. The logic optimization phase implements the
functions under two main criteria. First, we may use only the types of gates allowed by
the target technology (this may be considered part of function compilation [Rowen]);
second, we want to use as few gates as possible. The third phase, topological optimiza-
tion, places the gates produced by the logic optimization phase. The goal of this phase is
to minimize the cost associated with the topology of the layout. There may be restric-
tions on the allowed topologies, depending on the paradigm one uses. Finally, the layout

generation produces an IC mask from the description provided by the first three phases.

The target technology (or technologies) can greatly affect the phases of compilation.
We assume that we are designing for nMOS or CMOS technology, with two metal layers

for routing. We also assume that all wire segments must either be vertical or horizontal.

When building an automatic logic compiler, one of the first questions that must be
addressed is what template to use for the layout. Two well-known paradigms are the pro-

grammable logic array (PLA) and the gate array.

A PLA implements the Boolean equations using two levels of logic. The functions
are rendered into disjunctive normal form (DNF). Operations are performed to decrease
the number of conjunctive terms used. These minimized DNF equations are then
translated directly into two levels of gates, commonly known as the ‘“AND’’ and ‘“‘OR”’

planes, in a particular array layout. For a treatment of these ideas, see [Brayton].

For gate array implementations, the functions must be built from a small set of
allowable gates. Typically, these gates have restricted fan-in (about 6) and may not be
complex. These gates are placed within an array grid, and the common signals are wired

together. For a general source on gate arrays, one might peruse [Hollis]

A less widely-used paradigm, but one that is quite interesting, is the Weinberger
array [Weinberger]. The basic general structure of a one-dimensional Weinberger array

is shown in figure 1-1. Logic “‘1”’ (= Vdd) and ‘‘0’” (= GND) signals traverse the top

Placement Problems Arising From Automatic Logic Compilation

e

and bottom of the array, respectively. The active elements (gates), represented by dashed
boxes in the figure, are placed one after another, in a straight horizontal line. Input and
output signals may enter or leave the array from any of the four rectilinear sides. The
signals are routed through the gates, where they may form transistors (e.g., Inl in gate 1),
just pass through (e.g., In2 in gate 2), continue (e.g., /n2 forms a transistor in gate I, then

continues through the gate), or terminate (e.g., Inl stops in gate).

Out4 In5
!
vdd
!""l'"‘. :""l'"’.ll""l“"! .'"'l'"’.
Int Egatel; ::gageZE EﬁgareSi égar:zélE Out3
el
el T_o A
Lot [et |
]

= [ransistor
® = contact
= gate output

figure 1-1 Weinberger array: general structure

The Weinberger array paradigm offers certain advantages over other structures.
Unlike PLAs, which usually only allow simple gates such as NORs and NANDs, the
Weinberger array allows complex gates such as a NOR-of-ANDS (see fig. 1-2).
Although some gate array systems may allow complex gates, the allowed gates are of
restricted size; contrariwise, there is no set limit on the size of Weinberger array gates (in
practice, however, gate sizes will be limited in order to reduce propagation delays).

Also, unlike PLAs, the Weinberger array structure allows the use of multi-level logic.

Placement Problems Arising From Automatic Logic Compilation

_4-

Multi-level logic allows signals to propagate through more than two levels of gates. For
example, in figure 1-1, we have the propagation path In1 — gate 1 — gate 2 — gate 4
— gate 3 (Out?2). The use of complex gates and multi-level logic allows one to lay out

the circuit using fewer gates; thus, the area needed should decrease.

Gate: (@*b)+(c*d)+(e*f)+g

VDD

gate output

st R p—
a—————o
b : .
cC———o + OR
P 6 |
............. issesanneiia *. — metal
SRS PRSI : R polysilicon
f - : weeneeees diffsion
............. B dsiinsnndissssssinninet x transistor
g—i—9 e contact

figure 1-2 Example of complex gate: a NOR-of-ANDs
(nMOS technology)

Of course, there are possible disadvantages for Weinberger array layouts. One
disadvantage arises from the flexibility of having complex gates and multi-level logic.
Since the complex gates may have larger signal transition delays and the signal paths
may be longer than for two-level logic, the signal delays may be longer. This is not
always the case, though. If we are able to use many fewer gates, and the gates have
smaller fan-in and fan-out, the propagation delay may actually decrease. [Rowen] One

other disadvantage of the one-dimensional Weinberger array is that the aspect ratio may

Placement Problems Arising From Automatic Logic Compilation

<5

become very bad. There are at least two fixes to the aspect ratio problem. One is to
““fold”’ the array after a certain number of gates have been placed (see figure 1-3).
Another fix is to allow more than one gate per column, as mentioned by Rowen [Rowen].

Of course, these variations create other issues that must be handled.

VDD

Gy Gy @ Gen | Gy

signals

U

GND

VDD
G, Gy
GND signals
Gy Gr+1
VDD

figure 1-3 Example of array folding

The types of gates allowed and the structure of those gates may have a large impact
on the performance of the compiler. On the one hand, using more kinds of gates theoreti-
cally allows the logic optimization to perform better. On the other hand, the more kinds
of gates there are, the harder it is to find efficient layouts for all of them. In most of the
previous work with Weinberger arrays, implementers chose to restrict tightly the set of

allowed gates. The choices were limited to some subset of NANDS, NORS, ANDS, and

Placement Problems Arising From Automatic Logic Compilation

-

ORS [Siskind] [Southard] [Sabety] [JohnsonS].

Lin, Yeh, and LaPaugh chose to use NOR-of-ANDS, NAND-of-ORS, NANDS,
NORS, and NOTS in their implementation of the Weinberger Array Generator (WAG)
[Lin]. They added a further restriction that no gate may have a long AND chain, since a
long series of transistors increases the delay propagation. Their structure for a NOR-of-
ANDS gate is shown in figure 1-2. WAG’s choice of allowing a more varied mixture of

gates led to certain hurdles in the placement and routing for an array.

1.2. Problems arising from work on WAG

The problems we concentrate on occur in the topological optimization phase of the
logic compilation. After the logic minimization phase decides what gates to use to
implement the Boolean equations, the normal next step is to order the gates in a line. We
may shift the problem into a graph theoretical framework by representing each gate and
each signal as a vertex. Then, if a signal or gate output forms a transistor in another gate,
there is an edge between the corresponding vertices in the graph. (See figure 2-1.) Plac-
ing the vertices in a line is called /inear arrangement. Formally, a linear arrangement is

afunction f: V= {1,...,|V].

When deciding which linear arrangement to use, we may have several goals in
mind. One possible goal is to minimize the total length of wire used along certain *‘criti-
cal’’ signal propagation paths. That is, if there is a certain path that is critical to the pro-
pagation delay for the whole circuit, we would like that path to be as short as possible.
This task may be abstracted to a graph theoretic problem that we call Linear Arrange-
ment with Critical Paths (the same problem has been studied by Simonson under the
name Routing with Critical Paths [Simonson].) Another possible goal is to minimize the
number of signals that must run between any two consecutive gates, since this should
minimize the number of horizontal tracks needed for routing signals. This goal translates

into cutwidth minimization for linear arrangements of graphs. In Chapter 2 of this thesis,

Placement Problems Arising From Automatic Logic Compilation

=T

we look at the problem of Linear Arrangement with Critical Paths. We give the com-
plexity for the general problem and determine the complexity for special cases of the
problem. We examine in Chapter 3 the effects of adding cutwidth minimization as an

additional goal.

Once the gates are ordered, we must decide the relative ordering of signals into each
gate. For the case where only simple gates are used, the problem of ordering is not hard.
An optimal solution is given by a greedy track assignment, such as the one described in
[Ullman]. But if complex gates are allowed, it becomes harder. Refer back to figure 1-2.
Note that the seven transistors are all created on only two vertical tracks. This is possible
because the signals that are ‘‘ANDed’’ together (e.g., ‘‘a’’ and ‘‘b’’) are adjacent to each
other when they enter the gate. If they weren’t, then it would require more than two vert-

ical tracks to wire the gate.

Note that not all NOR-of-ANDS gate structures require certain signals to be adja-
cent (see figure 1-4). Here it is not important in what order the signals arrive; and since
the order of the signals does not matter, a ‘‘greedy’’ algorithm will pack the signals into
as few tracks as possible. However, there is a disadvantage to the structure shown in
figure 1-4. This NOR-of-ANDS gets very wide if there are a number of terms to be
NORed together; also, it would need many long vertical diffusion runs. Also, while the
alternate NOR-of-ANDS uses fewer horizontal tracks than the one in figure 1-2, the

excess of vertical tracks is a greater worry.

WAG’s gate structures are not unique in requiring adjacency constraints for signals.
For example, Schlag, et. al., require variables to be in the proper track for alignment in
cascode-switch macros [Schlag]. In order to make our work a bit more general, we
abstract the idea of adjacency. We assume that a signal must use the same horizontal
track to enter and leave a gate; and we assume that a gate requires certain signals to be
grouped together when they enter the gate. For simplicity, we assume that the gate out-

put must use a separate track from the incoming signals. (This is not necessarily the

Placement Problems Arising From Automatic Logic Compilation

Gate: (@a*b)+(c*d)+(e*f)+g

VDD

é gate output

A

d : ------

g i e

C ®---%--
GND

figure 1-4 Alternative NOR-of-ANDs gate
(nMOS technology)

case. If a signal terminates within a gate, it might possibly be able to share a track with
the gate output.) Then, we define a cluster to be a set of signals, none of which may be

intermixed with signals from another cluster.

In our problem conversion from the Weinberger array realm, gates become sets of
clusters. The task is, for each gate, to order (place) the gate’s signals so that no clusters
intermix and the amount of space required for routing between gates is minimized. Since
identical signals must be wired together, we may need some extra vertical tracks between

the gates to perform the routing. (See figure 1-5.)

The converted problem is Placement of Clusters in an Array of Gates, and it will be

examined in Chapter 4 of this thesis. We discuss some of the issues to consider in

Placement Problems Arising From Automatic Logic Compilation

extra vertical track

W

1 -2
s [
L

gate gate

figure 1-5 Example where routing requires ‘‘extra’’ vertical track
designing a heuristic to solve this problem. Then, we present some experimental results
29 (X3

with heuristics that were implemented. The methods used are “‘greedy’’, *‘randomized™’

iterative improvement, simulated annealing, and successive partitioning.

In Chapter 5, we consider a restriction on the cluster placement problem. In partic-
ular, we allow an array to consist of only two gates. We call our problem Single Channel
Placement. The problem is to position the terminals in order to minimize the number of
extra vertical columns needed to connect the signals. Note that placing the terminals is
only half the task. Given a positioning of the terminals into two rows, we want to be able

to find an optimal routing of the signals in the space between the two rows.

The problem of finding an optimal wiring of signals between two rows of terminals
is called channel routing. Following convention, the input consists of the top and bottom
rows, whose terminals must be connected across an intervening horizontal channel.
Optionally, there may be specified nets that must enter the channel from the left or leave
the channel from the right. The object is to connect all terminals that belong to a com-
mon net, for each net, using as few horizontal tracks as possible. The smallest number of

tracks that can possible be used is called the channel’s widrh.

How well one can perform a channel route depends on the routing model one uses.
A model specifies the number of layers one may use to route signals, and it specifies in

what ways (if any) wire segments may cross or overlap. There are various models, but

Placement Problems Arising From Automatic Logic Compilation

<10 =

one that matches our intended target technology is the commonly used 2-layer Manhattan
model. This model allows only 2 layers for routing, with one layer reserved for vertical
wire segments and the other layer reserved for horizontal wire segments. Wire segments
on different layers that intersect may cross (not affecting one another), or they may be

connected electrically via contact cuts.

Channel routing under the 2-layer Manhattan model is known to be NP-complete
[LaPaugh] [Szymanski]. Most heuristics try to route an instance using a number of
tracks very close to the densiry — the maximum, over all horizontal positions along the
channel, of the number of nets crossing that position — of the instance. In the Manhattan
model, any net 1| whose leftmost or rightmost terminal lies in column i is considered to
cross position i, unless the whole extent of net 1 consists solely of column i. We mention
this because in a model known as ‘‘knock-knee,’’ if column j contains two terminals, one
being the leftmost terminal for net M; and the other being the rightmost terminal for a

different net 1, then the density at j due only to nets 1; and 1 is one.

Our problem of terminal placement is different from the classical channel routing
problem in that the terminals in our problem are not in fixed positions. In Chapter 5, we
analyze the complexity of certain restrictions on the problem of Single Channel Place-
ment. Then, we consider the problem of Bottom Terminal Placement, which adds the
further restriction that the top terminals are in fixed positions. We show that Bottom Ter-
minal Placement is NP-complete, even if we fix the positions of the top terminals in a
fixed-length channel. Finally, we present a heuristic method to solve the problem. This
method splits the problem into smaller subproblems that are interesting in themselves.
We give an algorithm that finds placements that achieve the optimal densities for these

smaller subproblems.

In Chapter 6, we consider a problem somewhat related to Single Channel Place-
ment. Assume that we have a positioning of terminals that achieves a good density, so

that we do not want to shift the vertical alignment of terminals. Assume further that we

Placement Problems Arising From Automatic Logic Compilation

-11 -

have some extra space that may be used to stretch the channel, thus increasing its length.
That is, we may add empty columns to the channel. These extra columns cannot affect
the density of the channel, but it can affect a value called flux, which is a lower bound on
the width of the channel.

The bound of flux is not well-behaved with respect to the adding of empty channels.
We show how to modify the definition of flux to create a bound, smooth-flux, that is
well-behaved. Then, we present a “‘greedy’’ algorithm that calculates how to decrease

the value of smooth-flux to a given target value.

Placement Problems Arising From Automatic Logic Compilation

-12 -

Chapter 2
Linear Arrangement With Critical Paths

A linear arrangement of a graph G =(V, E) is formally defined as a function
f:V —>{1,2,...,|V|}. The graph my be either undirected or directed. (See figure 2-1.
Note the corresponding nMOS implementation, where horizontal wires correspond to the
graph edges. A correspondence holds for CMOS, but in some flavors of CMOS, the
number of horizontal wire segments is double the number of edges.) Conceptually, a
linear arrangement of a graph is simply the embedding of that graph onto a line (graph).
This in itself is not an interesting problem. The complexity arises if we want to restrict

the allowable arrangements or optimize some feature of the layout.

Consider an input graph G=(V,E) and an associated path
P=vy —>vy; >v3— -+ =¥ Itis assumed that v; € V, for all i, and (v;, v;11) € E,
for all 1 <i <k. Note that P is viewed as having direction, although the underlying
graph is undirected. We call v the source of the path and vy the sink. For a linear
arrangement f of G, the dilation of P is dil (P) =|f (vo)=f 1) +|f wa)y-f o) + -+ +
| f Vi)—f (vg-1)l. (For example, see figure 2-2.) We shall have occasion to refer to the
starting and ending nodes in a path, and we call them, respectively, the source and the
sink. When used in this thesis, these terms always refer to a path and not to the (possibly
directed) input graph.

In this chapter, we consider a problem called Linear Arrangement with Critical
Paths. The question is, given a graph, whether or not there is a linear arrangement of the

graph such that certain paths (subsets of the graph) are not ‘‘stretched’’ too much.

Placement Problems Arising From Automatic Logic Compilation

5

gl=a*b;g2=c*d, g3=g1*g2

figure 2-1(a) Equations and corresponding directed graph

O—@—0 ¥ 0—0—0

figure 2-1(b) Possible linear arrangement

vdd Vdd vdd
e o gy = 1 b catimaen o o o n
I [[| [[
I [[[[|
I t [[| |
a—i——e ! o—I L o @ | ¢ ! e————d
|- i I it I I ' o
I iend i L Sy | S=peaay P
| L e - Bt L S B T S—— _1
gate g1 : i gate g3 ' gate g2
GND b GND c GND

figure 2-1(c) Possible nMOS implementation

Formally, the problem may be defined as follows:

Placement Problems Arising From Automatic Logic Compilation

-14 -

Path P =(1, 2,5, 12)

o T o0 T

Positon: 1 2 3 4 5 6 7 8 9 10 11 12

dilation (P) =|f Q)~f (D|+|f G)-f @)\+|f 12)~f 5)|

=|7-8+|3-7+|4-3
=1+4+1
=6

figure 2-2 Dilation example

Linear Arrangement with Critical Paths (LACP):

Input:

Question:

Graph G = (V, E).
Set of ““critical’’ paths P ={p,...,Dn/.
Set of path limits L = {lim(py), . .., lim (p,y)}.

Is there a linear arrangement of G such that for all p; e P,

dil (p;) < lim (p;)?

We also consider a problem that we term Directed LACP (DLACP). DLACP is defined

identically to LACP with the addition of two constraints. First, the input must be a

directed acyclic graph G = (V, A); second, the nodes of G must be topologically ordered

— that is, if (x, y) € A, then f (x) < f (y). (Note that LACP does not become *‘directed”’

simply by having the graph be directed.)

There has not been very much previous work done on linear arrangement problems

with non-simple (i.e., not just consisting of a single edge) critical paths. In fact, the only

work we know of was done by Simonson, who studied the problem under the name

‘‘Routing with Critical Paths’’ [Simonson]. He showed that LACP is NP-complete, even

Placement Problems Arising From Automatic Logic Compilation

+ 155

for bipartite graphs. Further, he showed that under the restriction that all limits in L are
bounded by a constant (and all paths have bounded lengths), the problem is solvable in
polynomial time.

A closely related problem that has been more heavily studied is Bandwidth Minimi-
zation, in which the object is to minimize the maximum distance between any two ver-
tices that are endpoints of a common edge. The general bandwidth problem was shown
to be NP-complete by Papadimitriou [Papadimitriou]. Subsequently, Garey, Graham,
Johnson, and Knuth proved that bandwidth minimization remains NP-complete for trees
whose nodes have maximum degree of 3 [Garey1]. Garey, et. al., also give a polynomial
algorithm for the case when the maximum allowed distance between the vertices of an
edge is bounded by a constant. A survey of recent results on bandwidth is given in
[Chinn].

In Section 2.1, we present an independently derived proof of the NP-completeness
of LACP and DLACP. In Section 2.2, we present an algorithm to solve the problem of
LACP with the restriction that there is only one source for all critical paths, the paths are
““disjoint’” and ‘‘non-crossing’’. In Section 2.3, we look at the directed problem under
the constraint that there are a bounded number of sources. We show that we can decide
in polynomial time where to place the nodes by performing a reduction to a solved prob-

lem.

2.1. NP-Completeness Proofs for LACP and DLACP

Independently of Simonson, we have found a proof of the NP-completeness of the
LACP problem. While Simonson’s proof works for bipartite graphs, it does not classify
the problem for trees. Our proof shows that LACP is NP-complete for trees, even if all
the paths are ‘‘proper’’ — that is, they start and end at vertices of degree one. It is easy

to show that LACP is in NP. Following is a reduction from Bandwidth Optimization on

Placement Problems Arising From Automatic Logic Compilation

-16 -

Trees (BOT), which is known to be NP-complete [Garey1]. Note that if the critical paths
are not constrained to be proper, we may perform a very straightforward reduction that

makes each edge in the graph a critical path.

Input: B, a BOT instance with tree G = (V, E), integer K <|V/|, and with question *‘Is
there a linear arrangement f of G such that [f(v)—f) <K, for all

(u,v)e E?T’.
Reduction: Create p, an LACP instance.
(A) Create new graph G’ = (V’, E”"): (see figure 2-3)

(1) Foreachv e V,create vg, v, V.

V' ={vs, Vs, % | vE V)
(2) Create E’ consisting of

e edges (Vs, V), (Vs,v) , foreachve V

® (Us,vs) , foreachedge (u,v)e E

uS VS
. @ — U V &
v u
Uy Vi
(a) graph G (b) graph G’

figure 2-3 Sample edge transformation

(B) Create set of paths P consisting of
Bl py,=vy 2 vy o v, withlim(p,)=2, forallve V.

(B2) Puy = Us = Uy = V4 = Vv, With lim(p,,) =3K +2,

for all (u, v) € E.

(C) Ask the question “‘Is there a linear arrangement of G’ satisfying the limits for

the critical paths in P ?”’

Placement Problems Arising From Automatic Logic Compilation

- V7 -

Correspondence between J} and p:
For any linear arrangement f of G, consider the corresponding ‘‘block’ placement
f’ of the nodes in G”. Specifically, let f'(v«) =3*(f (v)-1)+2, f'(vg) =f'(v4)—1,

and f'(v;) = f'(v«)+ 1. If fis a solution to the B, then f” is a solution to the p.
Proof:

From inspection, we can see that f” is a legal linear arrangement of G’,
since it is a one-to-one function from the set V' to the set

flaians
the form (B1) have their limits satisfied. For a path p,, of type (B2), the dila-

V’| =3|V|}. Also, from our definition of f’, it is clear that paths of

tion under f’ is
dilp puy) =f) =f)| +1f')= f () +f W) =f v
=1+|B*(f W)-D+2] - [3*(f w)-1)+2] +1

=2+[3*(f (V) f W)

<2+3*%K , since f a solution 3
So, paths of the form (B2) also have their limits satisfied; thus, f” is a solution
to p.
B
Finally, we must show that any solution f” of p has a corresponding solution f of .
Assume p has a solution f”.
Proof:

The limit of 2 (= path length) on paths of form (B1) forces vg, v«, and v,
to be together in legal linear arrangements of G’. There are two possible ord-
erings of these nodes: Fw)+2=f (v)+1=f(v) OR
f)=f)+1=f(v,)+2. That is, the three nodes related to v must be

placed as a block (block v), with v, and v, flanking v.. Since v, must lie in

Placement Problems Arising From Automatic Logic Compilation

- 18 =

middle of block v and f*:V’ = {1,...,3V|}, f'(v«)=2 (mod 3). Further,
given a path p,, of type (B2), dllf' Pw) = 2+|f’(v*)“‘f’(u*)l <
lim(p,,)=3K +2. So,

|lff) —f () £3K (2.1)

Now, consider the linear arrangement f on G where f (v)=[f (v.) /3.
For edge (u, v), the dilation is
dil(u, v) =|f (v) = f W)
=|[F' o) 13 =[f w13
=|lf'v-f @l /3

<[(BK+2)-2]/3 = K, equation (2.1)

So, the edges (u, v) satisfy their limits, and f is a solution to .
O

The basic proof structure for LACP also can be used to prove that DLACP is NP-
complete, even if all critical paths are proper. There are two basic differences. First, the
reduction is from Directed Bandwidth on Trees, which is shown to be NP-complete in
[Gareyl]. Second, there is only one possible ordering for the block v: f(vs)+1=
f (vi)=f(v;)—1. Also, note that after the reduction from Directed Bandwidth on Trees,

the resulting directed tree is no longer rooted, since none of the nodes v; have ancestors.

2.2. Undirected, Single Source, Paths Disjoint and Non-crossing

In this section, we consider a restriction on the LACP problem. We only consider
problem instances where there is a single source node for all critical paths and the critical
paths are ‘‘disjoint’’ (i.e., the only node that may be shared by two critical paths is the

source). We also restrict the allowed linear arrangements to those where the critical

Placement Problems Arising From Automatic Logic Compilation

-19-

paths do not ““cross’’ over the source node; that is, all paths must lie entirely to the left or
the right of the source node. We call nodes or paths lying to the left of the source node to
be on the left side, nodes or paths lying to the right to be on the right side. The problem
is to find a linear arrangement that satisfies all path limits, if one exists. We shall refer to
our problem as USS (Undirected, Single Source). Note that there is a basically identical
problem where, instead of a single source for the paths, we allow only a single sink for all

paths. (Just reverse the sense of direction of every path arc.)

Without loss of generality, we shall assume that all nodes in the graph are in some
critical path. We may do this since nodes not in critical paths have no restrictions on
their placement, and may thus be placed arbitrarily far from the source node. Also, let
s (i) = length of path p;, n =|V| — 1, and M =|P|.

To solve USS, we shall create a dynamic programming algorithm that is a variation

on the pseudo-polynomial algorithm to solve the PARTITION problem [Garey2]. Let

N= min{n , rr;)ax [lim (p;)]}, the farthest away from the root any node may possibly be
3

placed.
Algorithm 2.1:

(1) Order the paths by non-decreasing order of /im (i).
Thus, we assume that lim (j) < lim (k), if j < k.

(2) Build table ¢[1:M, O:N, 0:N], where ¢[i, [, r] indicates whether or not there is a
placement of the first i paths such that there are / nodes on the left side and r
nodes on the right side:

(a) £[1,0,s(1)]=TRUE ifs(1)<lim(p,), else FALSE

(b) t[1,5(1),01=TRUE ifs(1)<lim(p,), else FALSE

(c) t[1,l,r1=FALSE , except for cases covered by (a) and (b)
(d) forl<i<M, t[il,r]=TRUE iff

t[i-1,1-5 (), r]=TRUE , sG)<! <lim(p;)
OR\,1i=1,1, r=s ()] =TRUE , s(i) <r < lim(p;)

=2}~

(3) There is a solution iff ¢ [M, X, Y]=TRUE, for some X,Y <N.
We may backtrack from ¢[M, X, Y] to find a solution. See the proof of theorem

2.1 below for the procedure.

The main idea of the algorithm is contained in part 2(d). We place the nodes
(except the source) of each critical path as an inseparable block. The paths are placed
one at a time, each path being placed to the left or to the right of all preceding paths.
Paths with smaller limits are placed first, so that they are closer to the source node.
Meanwhile, we keep track of all possible pairs of totals for the number of nodes on the
left side (/) and the number of nodes on the right side (r). An (/, r) pair is legal for path i
under two different conditions. One is if path p; is placed on the left side and p;’s limit is
less than or equal to [. There is a parallel condition for legality if p; is placed on the right

side.

Now, we shall prove that algorithm 2.1 correctly solves the USS problem. First, we
show that we may place nodes of any given path so that the nodes farther from the source
in the path are also farther from the source in the linear arrangement. We say that the
nodes of the path are internally ordered. For a given linear arrangement, if all paths have
their nodes internally ordered, we say that the arrangement is internally ordered. Thus,

for any path, we only have to worry about the position of the sink.

Lemma 2.1:
Assume a critical path p; = Vgouree = V1 — = V() in an instance of USS. If
there is a solution f to the instance, there must be one f such that the set of posi-
tions occupied by the nodes of p; are the same as in f, i.e., {f (1),...,f (s(i))}
={f'(1),...,f (s(i))}, and such that the nodes of p; are internally ordered, i.e.,

Vigjgsiy1 LD <G+ or YVigicsiyr fG)>fFG+).

Proof:

Placement Problems Arising From Automatic Logic Compilation

.

Consider the case when p; is placed on the right side. There is a parallel
case for p; on the left side. Assume a solution f such that f (Vsource) = X0- Also,
assume that the vertices in p; are placed at positions x1,X2,...,Xsi), where
X1 <X9 < "+ <Xg). There is a path from vspyrce t0 the node at x,(;), SO we

have a lower bound on the dilation:

dil min (Pi) 2 X5() —Xo0-

We may form a linear arrangement f* where the nodes of the path are placed in
order (ie., f'(v;) < f'(vj41)) and on the same positions. We then have that

f'(vj))=xj,forall 1 <j <s(i). Then, the new dilation is
dil,ra(p) =|x1 —x0| +|x2—x1] + *++ HXeqiy = X501l
=Xgi) — X0 < dil pin(Pi)

which is optimal for any fixed set of vertex positions.

Now, we show that the critical paths (disregarding the source node) may be disjoint

from one another; thus a solution may always be disjoint.

Lemma 2.2:

Proof:

Assume a critical path p; = Vgoupee = V1 = **° — V() in an instance of USS. If

a solution f exists, there must be an internally ordered solution f* such that

151}12;{(:') vl - 15?22(;') [FFpl = s(@)-1.

We shall only consider the right side of the linear arrangement. There is a

parallel argument for the left side. Assume that there are m critical paths on the
right side for a solution fto the instance of USS; by Lemma 2.1, we may assume
that the critical paths are internally ordered. Denote by R; the position of the

rightmost node (the sink) of path p;, and let R be the position of the source. By

Placement Problems Arising From Automatic Logic Compilation

-2 -

construction and Lemma 2.1, dil (p;) = R; — Ry. We may re-number the paths so
that R; < R;,ifi < j.

First, look at path p;. Consider a (new) linear arrangement f” that places
the nodes of p; in the positions Ro+1, Ro+2, ..., Ro+s(i)=R’;, and the nodes
v not in p; for which Rg < f (v) <R, are shifted over to occupy the positions
R’{+1,...,R. This shift is done so that the relative ordering of the nodes in
any given path is not changed. Clearly, R"; <R, since all the nodes in p; were
originally at or to the left of R;. The new dilation of p; is R"1—Ro S R1—Ro <

lim(p1), so p1’s limit is satisfied by f’. And the nodes of p; are ‘‘together,”
with [(j)] - “f"[f’(k)] =s(1)-1. No other path’s dilation is affected,
J

since no other rightmost points were moved. Since f is a solution, then so is f.
Also, f* has the nodes internally ordered, since the order of nodes within a partic-

ular path has not changed.

In the same manner in which we shifted p,, we may continue shifting the
remaining paths (starting with p,) to create new linear arrangements; and these
linear arrangements are all legal solutions. After we shift p,,_;, all paths are
placed as blocks, with no interleaving between the blocks, and the paths are all
internally ordered. Thus, the final arrangement is a solution that is internally

ordered and disjoint.

There is one final lemma we wish to prove: We may always place the paths by
non-decreasing order of limits.
Lemma 2.3:
For a linear arrangement of G, assume a solution f that satisfies Lemmas 2.1 and
2.2. Let the paths placed on the left side be (in increasing order of distance from

the source) (pr ,pr,,....pr,) and the paths placed on the right side be

Placement Problems Arising From Automatic Logic Compilation

=23

(PR, PR,» - - - »Pr,)- Then, there must be a solution such that the critical paths

remain internally ordered and disjoint, and, additionally, they are ordered by their

limits, i.e.,¥1 < j<u,1 lim (pr,) Slim (pr,,) and¥1 <<y, 1 lim (p) <lim (pR,,,)-

Proof:

Assume we have a solution f that is internally ordered and disjoint. We only
consider the nodes on the right side, since there is an identical argument for the
left side. Assume that f places ¢ critical paths on the right side. Let the paths be
(in increasing distance from the source) pg,, PR, »- - -» PR,» and let there be Ry
nodes on the right side.

Let pg, be a path with maximal limit among the paths placed on the right
side, ie., lim(pg) 2 lim (pg,), for all 1<j <t Consider a new linear arrange-
ment f* identical to f, except that pg_has been moved to the far right. The new
path ordering is

M pr; | for1gj<x-1

pr’,=y(2) pr,, ,» forx<j<t
3) pr, ° forj=t

Paths of type (1) are in the same positions for both fand f”, so their limits
must be satisfied in both. For the type (3) path, lim (pg’,) 2 lim (pg,) 2 R4, since
all path limits are satisfied by f; so the path limit is satisfied in f*. The paths of
type (2) have been shifted left, so dilf(pRj) < dilf(pr;) <lim (pRJ_); thus, their
limits are also satisfied by f”.

We may recursively shift a path with largest limit to the far right, then con-
sider only paths to its left. After each shift, the new arrangement satisfies all path
limits (by the argument above). After the last path is shifted, the paths are
arranged in order, by non-decreasing path limits; and the resulting linear arrange-

ment is a solution that is internally ordered and disjoint.

Placement Problems Arising From Automatic Logic Compilation

-24 -

Finally, we prove that algorithm 2.1 actually solves the problem of USS.

Theorem 2.1:

Algorithm 2.1 correctly solves the problem of USS.

Proof:

We want to show that there is a solution if and only if at the end of algo-
rithm 2.1, there is a table element ¢[M, X, Y] =TRUE, for some X, Y. Recall that
a solution must place all paths such that the each path is totally placed on one side
of the root and such that all path limits are satisfied. We call a placement of a
subset of the paths legal if the paths are ‘‘non-crossing’’ and all placed paths have

their limits satisfied.

Our proof will be by induction on the number of paths placed. In particular,
we shall show that t[k, I, r] = TRUE iff there is a legal placement of the first k
paths by order of limits such that / nodes are placed on the left side and r nodes
are placed on the right side.

By Lemmas 2.1, 2.2, and 2.3, we may assume that the critical paths are
placed as disjoint, internally ordered blocks.
Part 1: ONLY IF
Basis: k=1

Assume that t[1, /, r] = TRUE. By the algorithm 2.1, steps 2(a) - 2(c), one
of [or r must be 0 and the other s(1). Without loss of generality, assume that
r =0 and / =s(1). Consider an internally ordered placement f of path p, to the
left of the root. By step 2(b) of the algorithm, s (1) </lim(p;), so all path limits

are satisfied by f.

Induction step: (k > 1)

Placement Problems Arising From Automatic Logic Compilation

« 25

Assume that our hypothesis holds for k=1,...,i—1. Also, assume that
t(i, I, r1=TRUE, for some given i, [, . We show that we can construct an

appropriate legal placement of the first i paths.
By the algorithm (step 2(d)), t[i, I, r1 = TRUE only if
t[i-1,1-s(i), r]=TRUE and s(i) <! <lim(p;) (2.2)
or
tli-1,1, r=s(i)]=TRUE and s(i) <r <lim(p;).

Without loss of generality, we assume that the first set of conditions holds. Then
by the induction hypothesis, there is a legal placement f of the first i —1 paths such
that / — 5 (i) nodes are placed on the left side and r nodes are placed on the right
side. Now, consider the placement f which is identical to f except that path p; is

placed to the left of all other placed nodes.

In placement f”, there are (I —s(i))+s (i) =/ left nodes and r right nodes.
Since their relative placements are the same as in f, all paths p,...,p;_; have
their limits satisfied by f’. Also, from equation (2.2) above, s (i) <! <lim(p;);
thus, path p; also has its limit satisfied. Therefore, f” is a legal placement of the

first i paths.

Part2: IF
Basis: k=1

Assume a legal placement f of p; with [left side nodes and r right side
nodes. Since fis a legal layout, all the nodes must be on the left side or on the
right side. Without loss of generality, assume that all the nodes are on the left
sidle — I=s5(i), r=0. The legality of the placement then forces
I=s5@) £lim(p;). Therefore, by the algorithm 2.1, step 2(b),
t[1,s(1),0] =TRUE.

Placement Problems Arising From Automatic Logic Compilation

=26 -

Induction step: (k > 1)

Assume a legal placement f of paths p,...,p; with [left side nodes and r
right side nodes. Without loss of generality, we may assume that path p; is placed

on the left side. Then, from the legality of f,

s@) <1 < lim(p;). 2.3)

Consider another placement f that is identical to f, except that the non-root
nodes of p; are not placed. Since their positions relative to each other and the
root are unchanged, the path limits for py, ... ,p;—; are all satisfied by f”; thus, Y il
is a legal layout of the first i—1 paths. Also, the number of left side nodes is
I —s(i) and the number of right side nodes is r. Therefore, by the induction

hypothesis,

t[i-1,l=s(),r]1=TRUE. (2.4)

By equations (2.3) and (2.4) above, step 2(d) of algorithm 2.1 gives that
tli, I, r]=TRUE.

We can bound the running time of algorithm 2.1 by counting the number of array
elements that may possibly be accessed during the algorithm’s operation. A quick upper
bound is the size of the array, whichis M * N 2. We may get a better bound by making a
simple observation: after placing a number of paths, the sizes of the paths placed on the
left and the sizes of the paths on the right must sum up to the total number of nodes
placed so far. That 1is, after i paths are placed, we must have that
I+r=s5(1)+ -+ +s5(i) £N; so, for any given i, we only need to access O(N) table
entries. This immediately gives us a bound of M * N on the number of entries we need to
consider. Finally, we note that M = O (N), since the critical paths are disjoint. N is

O (n); thus, the total number of table accesses done by the algorithm is O (n?).

Placement Problems Arising From Automatic Logic Compilation

-27 -

2.3. Directed, Constant Number of Critical Path Sources

In this section, we consider a restriction on the Directed Linear Arrangement with
Critical Paths problem where there are a constant number of critical path source nodes.
The task is to determine a linear arrangement such that all path limits are satisfied, if one
exists. We shall call this problem Constant Number of Sources (CNS), and we shall
show that there is a polynomial algorithm to solve it. Note that the problem with a con-
stant number of critical path sinks is equivalent to CNS — the reduction reverses the
direction of every graph arc and every critical path arc, thus exchanging path sinks with
path sources, and vice versa. Further, note that CNS subsumes the version of DLACP

restricted to a constant number of critical paths.

Assume there are exactly K distinct critical path source nodes, where K is bounded.
The first step in our polynomial algorithm is to place only the source nodes, assigning
each node to one of the positions between I and |V| =n. We call such a placement of
only the source nodes a skeleton layout. We may split the skeleton layout process into
two parts. In the first part, we relatively order the source nodes; and in the second part,

we choose the positions in which to place the source nodes.
Relative Ordering:

Let s; be the source for path p;. There are K'! permutations of the nodes, but not all
the permutations are necessarily legal. In particular, if there exists in the graph a directed
(not necessarily a critical) path from source s; to source s;, then any permutation in
which s; precedes s; is illegal. The upper bound on the number of permutations is poly-
nomial since K is bounded by a constant. We shall ignore any skeleton layouts that

violate precedence constraints between the source nodes.
Placing the Source Nodes:

Now that we have relatively ordered the source nodes, we have to choose the exact
positions for the source nodes. There are n available positions for K source nodes; thus,

the total number of ways to choose the positions is

Placement Problems Arising From Automatic Logic Compilation

-28 -

(2)-00

The steps above show that the number of legal skeleton layouts is
onfk

The remainder of the algorithm consists of transforming the skeleton layout and the

input graph into a scheduling problem that is known to be solvable in polynomial time.

Before we proceed with the rest of the algorithm, though, we must introduce the
notions of ancestor and descendant sets. We say that a node v is a descendant of u if
there is a non-trivial path from u to v in the graph G — that is, there is a sequence of
nodes (4, U3, ...,u,) such that (u,uy), ..., (4,—1,u4,), (u,,v) € A. Conversely, we say
that u is an ancestor of v. We denote the set of all ancestors of a node v to be An (v).

Likewise, De (v) denotes the set of all descendants of v.

Now, suppose that we are considering a particular skeleton layout f;. By assump-
tion, all precedence constraints between the source nodes are satisfied. The task remain-
ing is to try to place the non-source nodes. Given a non-source node v, we may calculate
where v may be placed. First, determine the set S (v) ={s; a source | v € De (s;)} Then,
v must be placed after every node in S(v). Let s be the rightmost node in S (v). We call
s the start node for v, and we write that start (v) = f5(s). If S(v) =3, then start (v) = 0.

Clearly, node v must be placed somewhere after its srart.

A legal placement of the nodes is one where the dilation of every critical path is less
than or equal to its limit. Since the layout must be topological, the rightmost node of any
critical path must be its sink; therefore, the dilation of path p; in a legal placement f is

f) —f (s;), and the following equation must be satisfied:
f@&) = f(s) <lim (p;) (2.5)

Define the end position of sink ¢ as the rightmost position where # may possibly be

placed; we denote ¢ ’s end position by end (). The value of end () may be calculated by

Placement Problems Arising From Automatic Logic Compilation

-29 -

considering every path which has ¢ as a sink, along with equation (2.5):

end(®)= ;o M ¢ Uim () +£(s)

Now, given the input graph G = (V, A) and a skeleton layout f5, we may transform

the problem to an instance of Sequencing on a Single Processor, with release times and

deadlines [Garey2]:

(D
2
(3)

)

For each node v € V, atask 7, of length one.

For each arc (u, v) € A, a precedence constraint T, must end before T, starts.

For each source node s € V, release (t;) = deadline (t;)—1= fs(s). Call 1, a
“‘source’’ task.

For each non-source node v € V, release (t,) = start(v)+1. Additionally, if v is a
critical path sink, then let deadline (t,) = end(v); otherwise, let deadline (t,) = n.

Call 7, a ‘“‘non-source’’ task.

The question is ‘‘Is there a one-processor scheduling of the tasks that satisfies all

precedence constraints and release times and meets all deadlines?”’

The correspondence between the instances of CNP and scheduling is fairly clear:
Task T, starting at time i and finishing at time i+ 1 corresponds to node v being
placed at position i.

Consider tasks T,, T, corresponding to nodes in arc (u, v). Satisfying the pre-
cedence constraint that T, ends before t, begins corresponds with node u being
placed before node v.

Step (3) above forces the source tasks to be computed at certain times, and those
time correspond with the positions of the corresponding source nodes in the skeleton
layout.

Non-source task T, starting at or after its release time corresponds to node v being

placed after its start node.

Placement Problems Arising From Automatic Logic Compilation

-30 -

e Letzbe a sink. Task 1, finishing by its deadline corresponds to having all critical

paths with sink ¢ satisfy their path limits.

e A solution to the scheduling problem corresponds to a legal placement in the linear

arrangement problem.

According to Lageweg, et. al., the problem of sequencing on one processor with
release times, deadlines, and precedence constraints is solvable in polynomial time if the
tasks are of unit length [Lageweg]. Their algorithm modifies release times and deadlines
in such a way that precedence constraints are satisfied if and only if the release times and
deadlines are satisfied. Given this modification, their algorithm at each step schedules a
task having the earliest deadline and whose release time has passed. Their algorithm
solves the problem in running time quadratic in the number of tasks. Thus, our schedul-
ing instance is polynomial, as is the corresponding instance of placing the non-source
nodes into a given skeleton layout. Since the number of possible skeleton layouts is
bounded, there is a polynomial time algorithm for the problem of Constant Number of

Sources.

2.4, Conclusions and Open Problems

In this chapter, we have shown that both the directed and undirected versions of the
problem of Linear Arrangement with Critical Paths are NP-complete, even if the input
graph is restricted to be a tree and the critical paths must be proper. We then proceeded
to show that certain restrictions on the problems made them tractable: (1) for the
undirected problem, if there is a single source node for all paths, all paths are disjoint
from one another (except for the source), and the critical paths may not cross over the
source in the linear arrangement; (2) for the directed problem, if the number of critical

path sources is bounded.

Placement Problems Arising From Automatic Logic Compilation

-31 -

There are a number of problems whose complexities have yet to be determined.
One such problem is the undirected version of Constant Number of Sources. It would be
satisfying to know whether or not the increased flexibility of a non-topological placement
makes the previously-polynomial problem intractable. Another interesting question is
whether the undirected problem with a single path source and disjoint paths is still tract-
able if there is no restriction on the placement that the paths must be ‘‘non-crossing.”
There are some other restrictions that might be tried. For instance, we might allow an
unbounded number of sources (or sinks) but allow each to be used only once. One other

possibility is to have vertex-disjoint critical paths (except for sources and sinks).

Placement Problems Arising From Automatic Logic Compilation

-5 .

Chapter 3
Mincut Linear Arrangement with Critical Paths

Dilation is not the only measure of the ‘‘goodness’’ of a linear arrangement. One
well-known and important measure is cutwidth. For a linear arrangement f of graph

G = (V, E), the cutwidth of the layout is

curwidth (f) = 1 S8 Leut ()]
where cut(i)=|{(u,v)e E:f) <i < f W}

We may consider cuts not at a vertex: at point x, cut (x) = cur (| x]). (See figure 3-1.) If
the graph G represents a circuit, with its edges E representing wires connecting different
components (V), then the cutwidth gives an estimate of how many tracks are needed to
route the wires. The term cutwidth (G) means the minimum cutwidth obtainable over all

possible linear arrangements of G.

The problem of Mincut Linear Arrangement (MLA) asks, given a graph G and an
integer K, if there is a linear arrangement f of G such that curwidth (f) < K. The general
problem of MLA is known to be NP-complete [Gavril]. If K is fixed, then the problem
has an O(nK) algorithm [Gurari]. Also, restriction of mincut to graphs that are trees
makes the problem tractable. Yannakakis has found an O (n log n) algorithm to solve the
problem [Yannakakis]. On the other hand, if we add weights to the edges of a tree, the
mincut problem becomes NP-complete, even if all weights are polynomial in the instance
size [Monien]. The complexity of the directed version of MLA is unknown, but Directed

MLA bears a certain similarity to the problem of Pebbling with no re-computation

Placement Problems Arising From Automatic Logic Compilation

-23 -

cut=1 cut=4 cut=2

figure 3-1(a) Arrangement with sub-optimal cutwidth of 4

V-V e S o

11 10 5 12 9 4 2 1 8 3 6 7
figure 3-1(b) Arrangement with optimal cutwidth of 2

allowed, which is known to be NP-complete [Sethi].

For a Weinberger layout, we would like to minimize both the wiring area needed
and the maximum delay for signal propagation; thus, it makes sense to consider the prob-
lem of linearly arranging a graph, subject to a cutwidth limit and some critical path lim-
its.

Note that the cutwidth for a linear arrangement in the graph realm does not translate
directly to a lower bound on the number of horizontal tracks needed for wiring in the
Weinberger array realm. For example, figure 3-2 shows a layout with cutwidth 5 that can
be wired using only 4 horizontal tracks. The discrepancy occurs because connectivity
represented by multiple edges from a vertex can be implemented in the Weinberger array

by chaining vertices together, thus using only one track.

We use cutwidth as an estimate of the number of tracks needed because it is gen-
erally close to the actual lower bound and because there has been useful previous work

on cutwidth. Future work might look at using a more accurate bound.

Placement Problems Arising From Automatic Logic Compilation

-34 -

gl=a; g2=a+c; g3=(g2:g1)+>b
g4=(g3+g2)-(d+c)

cutwidth =5

gl g2 g3 g4
O— <
O K *
a > P —€ *
c b d

figure 3-2 Example where cutwidth exceeds number
of tracks needed

In this chapter, we look at the problem of Mincut with Critical Paths (MCP). MCP
is similar to LACP in that certain critical paths must have their limits satisfied. However,
MCP entails the optimization of the arrangement’s cutwidth while satisfying the path
limits. Clearly, MCP is NP-complete, since the two sub-problems comprising it are both
NP-complete. We shall also consider the corresponding topological version, called
Directed MCP (DMCP), in which we must have f (1) < f (v) if (4, v) € A. In other

words, a node must be placed after all of its parents and before all of its children.

We start this chapter by considering the directed case. In Section 3.1, we consider
the problem of Mincut Linear Arrangement on directed rooted trees (no critical paths).
We prove that the problem has a polynomial algorithm. Then, in Section 3.2, we give

some thought to the directed mincut with critical paths problem restricted to rooted trees

Placement Problems Arising From Automatic Logic Compilation

-35 -

and one critical path. In the remaining sections, we consider some aspects of the
undirected case. In Section 3.3, we restrict the mincut problem with critical paths to
trees and we assume that all critical path limits equal 1. Finally, in Section 3.4, we
present a heuristic algorithm for Mincut Linear Arrangement, and we consider the com-

plexity of the three steps of the heuristic.

3.1. Directed Mincut Linear Arrangement on Rooted Trees

We restrict the input graph to be a directed rooted tree — that is, there is a single
source node for a graph containing no reconvergence. We want to solve the problem of
Directed Mincut Linear Arrangement. The main idea is to prove that a disjoint layout of
the subtrees is optimal. Then, given that the layout may be disjoint, it is easily shown
that the subtree layouts may be placed by non-decreasing order of their cutwidths. First,
we prove that the subtrees may be placed disjointly.

Lemma 3.1:
Given a directed linear arrangement f of the rooted directed tree T, there must

exist a directed layout f*, with curwidth (f") < curwidth (f), such that for any

non-empty subtree T, vnéa% fv]- ,_,[21% [fFw)l= |Tj| -1.

Proof:
Our proof is by induction on the height of tree T.
Basis: T consists of a single vertex (height 0)

This case is easy. Since T is a single vertex, there are no non-empty subtrees

of T, and the lemma is trivially satisfied.
Induction:

The input is a tree T of height A. Its root node r has arcs to m subtrees. Call
the subtrees Ty, ...,T,,. Assume some directed linear arrangement f of T, where

Vi,...,Vy are, respectively, the rightmost nodes in 7'y, ..., T,,. Without loss of

Placement Problems Arising From Automatic Logic Compilation

-36 -

generalization, we may assume that f(vi;)< f(va)< -+ <f(vp). By

definition of a topological layout, r must be the leftmost node; thus, f (r) = 1.

Since T is a rooted tree, there is a path from r to every node in the tree.
Consider the nodes vi,...,v,. The nodes belong to node-disjoint and arc-
disjoint subtrees; thus, there must be unique, arc-disjoint paths from r to every

one of the nodes vy, ...,v,.

Now, consider any node u € T;. The node v is placed to the left of all the
other vertices v;; therefore, the path from r to any node v;, 2 <i <m, must pass
over u. That is, over any point in the layout of subtree T';, there must be a contri-

bution of at least m—1 due to arcs not belonging to T;.

So, instead of occupying their positions under the layout f, we can create a
new linear arrangement f' by shifting the nodes of T over to the left as far as
possible (keeping subtree nodes in the same relative order). Thus, subtree T,
under f! will occupy the positions 2, 3, . ..,|Ty| +1. Since T; is a complete sub-
tree, with no arcs to or from any node except r, the only “‘outside’’ arcs that can
pass over T'; are those from r to nodes to the right of T';, and there are only m—1
of those. For any position over T, the cut due to only those arcs in T is the
same as for f, since the relative ordering of nodes has not changed. The contribu-
tion to the cut from outside is exactly equal to m—1, which is less than or equal to

what it was before.

Finally, we consider the nodes not from T, that were shifted to the right,
that is, the nodes that in f' occupy the positions [Ty +2,..., f(v;). The only
change in the cut over these nodes is that there is now no contribution from any

arc in T'1, so there is no increase in the cut due to the shifting of nodes.

We may continue successively to shift to the left nodes from T, ...,T,,.
This creates the succession of layouts f2,...,f™=f". All of these f* have

cutwidth (f') < cutwidth (f), and f” has all the subtrees disjoint from one another,

Placement Problems Arising From Automatic Logic Compilation

: 3

which is what we require.

Thus, we can place the subtrees T4,...,7T,, disjoint from one another.
Also, since the subtrees T; are subtrees of T, they all have height less than or
equal to A—1. So, by the induction hypothesis, all subtrees within any T; may

also be placed disjointly.

Now, we show that the disjoint subtrees may be ordered by non-decreasing

cutwidth.

Lemma 3.2:
Assume a directed linear arrangement of the directed tree T. If the subtrees are
laid out disjointly, there exists a directed linear arrangement, with cutwidth less
than or equal to the original’s, such that for any two subtrees T'; and T, sharing
the same parent node, if cutwidth (T1) < cutwidth (T5), then T is placed totally
to the left of T'5.

Proof:

Assume a tree rooted at v, with subtrees of v being T1, T3 ,..., Ty, and
cutwidth (T'1) < cutwidth (T ;). Consider a disjoint layout f where T, lies to the
left of T'y. Let r; be the number of subtrees in the set {T,T>, ..., T,,} that are
placed to the right of any given subtree T;. Since the layout is assumed to be dis-
joint, the maximum cut occurring over subtree T; is cutwidth (T;) +r;. As T, is to
the left of Ty, ro > ry. If the positions of Ty and T, are switched, the new max-
imum cut occurring over Ty is cutwidth(T 1) + ro < cutwidth (T ;) + r,, and the
new maximum cut over Ty is cutwidth(T;)+ry < cutwidth(T2)+r,. But,
cutwidth (T 2) + ro < cutwidth (f); therefore, swapping the two subtrees cannot
increase the global cutwidth of the layout. Thus, we may swap any two subtrees
that are out of order to get a linear arrangement ordered by non-decreasing order

of subtree cutwidths; these swaps maintain the disjointness of the layout.

Placement Problems Arising From Automatic Logic Compilation

-38 -

The above argument works for a tree of any height. Therefore, we may suc-
cessively apply the subtree ordering procedure on all subtrees of height 0, 1, .. .,
height (T). In the end, the layout remains disjoint, and the subtrees are ordered by

non-decreasing cutwidth.

From Lemmas 3.1 and 3.2 above, we see that there is a simple polynomial algo-
rithm for Directed MLA: (1) Start with the leaf nodes as subtrees. The optimal layout
for each subtree is trivial. (2) For each set of subtrees and a parent node, place the
parent to the left, then place the subtrees by non-decreasing order of cutwidth. (3) Con-

tinue until the root node and all its subtrees are placed.

The ordering of the subtrees takes at most £ log k£ time for a node with k subtrees.
Since the procedure considers each node once as the parent of a set of subtrees, the total

time for the algorithm is O (n log n).

3.2. Directed Tree, Single Critical Path

For the problem of Directed Mincut with Critical Paths, a tight restriction is that the
input graph must be a rooted tree. We shall further simplify our problem by allowing
only one critical path, which must be proper. For a rooted tree, the critical path must
start at the root node and end at a leaf node. We call our problem Directed Tree, Single

Path (DTSP).

The problem of Directed Linear Arrangement with Critical Paths on rooted trees is
basically just a restricted version of the problem discussed in Section 2.3; thus, it is poly-
nomial. Also, the Directed Mincut Linear Arrangement problem is solvable for directed
rooted trees, as shown in Section 3.1. With this information in mind, we have hope that
DTSP is tractable. Unfortunately, we have not been able to find a polynomial algorithm

to solve the problem, nor have we found an NP-completeness proof. There are some

Placement Problems Arising From Automatic Logic Compilation

-30-

observations that may be made, however.

Let the critical path be p=vg > vy —-*—Vv,. Assume a linear arrangement
where we know which nodes are exterior, that is, placed to the right of node v;,. From our
earlier proof in Section 3.1, we can easily deduce that we may place the exterior nodes as
disjoint subtrees, which are then ordered by non-decreasing order of cutwidth. We sim-
ply envision all the nodes to the left of v, and including v, to be one conglomerate vertex.

(See figure 3-3.)

figure 3-3 left side nodes as one giant ‘‘vertex’’

The tasks remaining are the following: (1) decide which nodes to place to the right
of node v;; (2) position the interior nodes, that is, the nodes to the left of v,, We don’t
know how to solve question (1); but if we know the answer to question (1), then we may

constrain the answer to question (2).

So, we assume that we know which nodes are interior and which nodes are exterior.
For a subtree T; that does not contain any of the nodes vy, v,,..., v, define T; to be
split if it contains both interior and exterior nodes; otherwise, T; is unsplit. Consider the
placement of subtrees that do not contain critical path nodes. By an argument similar to
that in Lemma 3.1, we can show that an unsplit subtree not containing a critical path
node may be placed disjointly. The point is that we may move whole unsplit subtrees
closer to their roots, placing them disjointly from each other. Further, by an argument
similar to that in Lemma 3.2, we can show that the unsplit subtrees may be placed dis-

jointly and by order of non-decreasing cutwidth. On the other hand, a split subtree rooted

Placement Problems Arising From Automatic Logic Compilation

- 40 -

at a node u must always create a chain of arcs from u ’s parent — call it v — to a node
placed right of v;; thus, it must add at least one to the cut over any unsplit subtree that
branches directly off node v. (See figure 3-4.) Therefore, we claim that for subtrees of a
given node, the unsplit subtrees may be placed completely left of any split subtrees. We
shall not give a rigorous proof of our claim, because, in and of itself, the claim does not
give an algorithm for placing nodes to achieve minimum density; but we give a short

analysis of the situation pictured in figure 3-4.

(a)

(b)

figure 3-4 Ordering of split and unsplit subtrees

Assume that the subtrees Ty, T'5, and T3 contain no critical path nodes. The squig-
gly line indicates that there are arcs from T'; to nodes to the right of v,. Thus, T is a
split subtree, whereas T, and T3 are unsplit. In figure 3-4(a), the maximum global cut
over subtree T, is at least cutwidth(T,)+ 2. The max global cut over T3 is at least
cutwidth (T3) + 1. We see that if T, is shifted to the right of the other two subtrees (fig.
3-4(b)), then the global cut over T'; is lessened by 2. On the other hand, the global cuts
over T, and T3 are cutwidth(T9) + 2 and cutwidth (T3) + 1, respectively; thus, we have

not increased the cutwidth by shifting the split subtree to be to the right of all the unsplit

Placement Problems Arising From Automatic Logic Compilation

-41 -

subtrees.

Our rule for subtree placements leads to a layout with a structure resembling that in
figure 3-5. Unfortunately, this does not completely determine where a split subtree is to
be placed, since it could be placed farther to the right than the local neighborhood of the

parent node.

Critical path=vg 5 v 9 vy oV,

figure 3-5 Allowable locations for split subtrees

The problem of DTSP is polynomial if we bound the value of the path limit X to be
less than or equal to len(p) + C, for some constant C. This result uses the condition
shown above that the nodes placed to the right of v, may be placed in a disjoint subtree
layout, with subtrees ordered by non-decreasing order of cutwidth. Specifically, we only
have to worry about the placement of the interior nodes. Note also that there may be at
most C interior nodes, else the critical path limit cannot be satisfied.

So, the procedure for an exhaustive style search, given that the path limit is at most

a constant amount larger than the path length, is the following:

(A) Choose how many interior nodes there will be — (?) choices. Assume we have
chosen i interior nodes.

(B) Of the m =|V| —len(p) — 1 nodes not in the critical path p, choose i nodes to be
interior nodes — (T) =0 (m°) choices.

(C) Order the i interior nodes — at most i! = O (C!) choices. Note that some of the

choices may be illegal because they violate precedence constraints between ver-

tices.

Placement Problems Arising From Automatic Logic Compilation

-42-

(D) Place the ordered interior nodes into the len (p) ‘‘regions’” between the nodes of the

critical path (in figure 3-5, these regions are the unsplit areas and the locations
between adjacent unsplit areas) — at most (Ien(p)iﬂ - 1) =0 ([len(p)+i—1]")
possibilities (some placements may be illegal).

Totally, the maximum number of possibilities is
& (m\ . len(p)+i—1 Gl i
> (M) it (fr@* 1) ¢ 3 m€ tlenpy+C-11
i=0 i=0

=0 (mC [len(p)+C-1I°*") ,

which is polynomial since C is a constant.

3.3. Trees, Disjoint Paths with Unit Limits

In this section, we consider the following restrictions on the problem of Mincut with
Critical Paths: (a) the graph is a tree, (b) the critical paths are path-disjoint (i.e., they
share no nodes), and (c) all path limits equal 1. We call our problem TUL (Trees, Unit
Limits). The last constraint forces all critical paths simply to be single edges, otherwise
there is no solution.

LaPaugh and Yannakakis have suggested an algorithm for this problem [LaPaugh2]:
Algorithm 3.1 (Expand/Contract Algorithm)

(1) For each critical path (edge) e, contract the edge e and its endpoints into a single

node v,, to create a new graph G’.

(2) Run Yannakakis’ algorithm for mincut linear arrangement of trees [Yannakakis]

on the resulting graph.

(3) Expand each contracted edge to its original form. Order the endpoint nodes to

minimize the maximum of all cuts at or adjacent to the expanded edge.

Placement Problems Arising From Automatic Logic Compilation

-43 -

(See figure 3-6.)

Vi (4 Vv, Ve
step (1)
1 2 3 4 1 2 3 4

step (2)

; [possibility]

: - m

1 2 vy oy, 3 4 1 2 v, 3 4
cutwidth = 3 cutwidth =2

figure 3-6 Example usage of algorithm 3.1

How well does the algorithm perform? First, define the sarwidth of a graph G to be
the minimum cutwidth obtainable over all linear arrangements of G that satisfy the criti-
cal path constraints. Also, we define a local edge cut for a critical edge (u, v) to be a cut
due only to edges that have u or v as an endpoint. Likewise, a local node cut for node v
is a cut due only to edges that have v as an endpoint. We show that the algorithm finds a
linear arrangement having a cutwidth within 1 of the optimal value. First, we prove that

contracting critical path edges cannot increase the best cutwidth obtainable.

Lemma 3.3:
Let G’ be the graph obtained by contracting the critical path edges of G. Then,
cutwidth (G’) < satwidth (G).

Proof:

For critical edge e, lim (¢) = 1. This means that the two endpoints of e must
be adjacent in a legal layout. Edge e is contracted in step (1) of the algorithm.
Let v; and v, be the left and right endpoints, respectively, of e for some linear
arrangement of G. If we consider the same arrangement, but with v; and v, con-

tracted to a single edge v,, we see that the local node cuts adjacent to v, must be

Placement Problems Arising From Automatic Logic Compilation

- 44 -

less than or equal to the local edge cuts near (v;, v,). (For example, see figure 3-
7.) The contraction of e can not affect the cut anywhere except adjacent to v,;
thus, if K is the satwidth of graph G, the best obtainable cutwidth for graph G’ is

less than or equal to XK.

Vi e Vr

Ve

cuti=4 cut,=5 cut,=4 cut=4 cut,=4

figure 3-7 Local cuts after contraction

Next, we show that expanding a linear arrangement for a contracted graph can

increase the cutwidth by at most one.

Lemma 3.4:

Proof:

Given a linear arrangement f* for a contracted graph G’, let f” be the linear
arrangement derived by expanding the contracted nodes of G’. Then,

curwidth (f”) < curwidth (f') + 1.

Given an arrangement f” of the graph with contracted edges, consider the

result of expanding a node v,, the contraction of edge e = (v, v,). We look at the

local cuts near vy, v,, or v,.

Let L (v;) be the left connectivity of vi — the number of connections from v,

to nodes placed to the left of both v; and v, — and let R (v;) be the right connec-
tivity of v;. Similarly, L(v,) and R (v,) are defined. Before the expansion, the
local node cut to the left of v, is left_cut=L(v;) + L (v,), and the local node cut to

the right of v, is right_cut =R (v;) + R (v,). After the expansion, the leftmost and

Placement Problems Arising From Automatic Logic Compilation

- 45 -

rightmost local edge cuts adjacent to e are still left_cut and right_cut, respec-
tively; however, the cut above e may be different. In expanding v,, the relative
positioning of v; with respect to v, is flexible. If v; is to the left of v,, then the cut

over eis R (v;) + L (v,) + 1; otherwise, the cut overe is R (v,) + L (v;) + 1.

Letd=R(v))+L(v))+R(v,)+ L(v,). It is clear that the optimal local edge

cut over e is
loc_ min(e)=min [R(v))+L(,),R(v,)+L(vpl+1< —;— *3+1 (3.1

On the other hand, the maximum local node cut around v, in the unexpanded

arrangement is
loc_max (v,) = max [L (v)+L (v,), R (v)+R (v,)] 2 % 8 (32)

Equations (3.1) and (3.2) show that in the expanded arrangement, the maximum
of the local edge cuts around v; and v, can exceed the maximum of the local node
cuts around v, (in the unexpanded arrangement) by at most 1. In fact, an increase
in the local edge cut only occurs if both endpoints have identical amounts of con-

nectivity to both the left and right sides (for example, see figure 3-7).

If the local edge cut is increased, the global maximum may also be affected.
But since the critical paths are all path-disjoint, each expansion can only increase
the cut at a point between the endpoints of a critical edge; thus, the global max-
imum cut may be increased by at most 1. So, the arrangement f” derived by
expanding all the contracted nodes in the arrangement f° has a cutwidth (f”)
< cutwidth (') + 1.

O

Theorem 3.1:
For an instance of TUL, algorithm 3.1 gives a linear arrangement that satisfies all

path constraints and has a cutwidth within one of optimal.

Placement Problems Arising From Automatic Logic Compilation

- 46 -

Proof:

The input graph is G. Let f” be the final linear arrangement obtained by
algorithm 3.1. Also, let f* be the linear arrangement of the contracted graph G’,

after step (2) of the algorithm. By Lemma 3.4, we get

cutwidth (f”) < cutwidth (f") + 1 (3.3)

Since Yannakakis’ algorithm finds an optimal layout for trees [Yannakakis],

cutwidth (f") = cutwidth (G”). Combining this with equation (3.3) above gives:

cutwidth (f”') < cutwidth (G") + 1 (3.4)

Finally, by Lemma 3.3, we get that cuswidth (G”) < satwidth (G). This com-

bines with equation (3.4) to give our desired result:

curwidth (f”) < satwidth(G) + 1

We may ask whether or not algorithm 3.1 ever produces a case where step (3) actu-
ally increases the cutwidth value obtained in step (2). Figure 3-6 shows an example
where this may happen. Here, an optimal solution may be derived from the final layout
by simply swapping the positions of nodes "4" and "2". The reason that we found a sub-
optimal solution is that step (2) of the algorithm did not try to partition the subtrees con-
nected to v, so that those with high connectivity to v; were on one side and those with

high connectivity to v, were on the other side.

In fact, Yannakakis’ algorithm may be modified to take care of cases like that
shown in figure 3-6. Before we show how to do this, we give a very short synopsis of

Yannakakis’ algorithm. For a fuller treatment, see [Yannakakis].
Yannakakis’ algorithm: (highlights)

e For a given layout L of a tree rooted at vertex v, compute the cost, a finite

sequence of integers (y;,Mi,...). The first integer in the sequence is the

Placement Problems Arising From Automatic Logic Compilation

sil] =

cutwidth of the layout and the remaining integers denote cuts at other points in
the layout. For example, a cost of (k,k) indicates that the cutwidth is k and that
the max cut occurs immediately to the left and immediately to the right of the
root. Cost can be used to compare two layouts. Relevant to our purposes is the
relationship between a cost ¢ and a cost (k,k). Simply put, ¢ < (k,k) if ¢ is lexi-
cographically smaller than (k,k); otherwise, ¢ 2 (k,k).

e Ata given point in the algorithm, have a root v of a subtree T and layouts, with
their costs, for the subtrees rooted at the children of v. Using the costs, deter-

mine how to place T.

e Start by picking an arbitrary node as the root of the entire tree, then proceed in a
bottom-up fashion, computing at each node the minimal cost of the subtree

rooted at the node (and a layout to achieve the cost).

We consider the situation within the running of the algorithm where a contracted

node v, is the root of a tree. We assume that the subtrees have their layouts determined.

Let the arrangement determined by Yannakakis’ algorithm be called ¢ and let
cutwidth (¢) = K. From the proof of theorem 3.1, the expansion phase can only increase
the cutwidth if the maximum cut occurs both immediately to the left and to the right of
Ve. So, we are only concerned with the cases where the cost ¢ (¢) = (K,K). Also, we only
consider cases where the subtree layouts are disjoint from one another (e.g., sometimes in
case 3a of the main procedure in Yannakakis’ algorithm). To see if the bad case for step
(3) of algorithm 3.1 occurs, we check to see how the edges are partitioned between v; and
Vr. Specifically, it must be the case that L(v;))=R(v;), which would imply that
L(v,)=R©,).

Now that we are sure that the bad case occurs, we can try to correct the situation.
LetLy,...,Lg be the order of the subtrees on the left side, and let R, ...,Rg be the
order of the subtrees on the right side, as given in ¢. (See figure 3-8.) Since the max-

imum cutwidth occurs adjacent to v,, the subtree layouts may not have too large a

Placement Problems Arising From Automatic Logic Compilation

-48 -

cutwidth =K

figure 3-8 Example of bad case

cutwidth. In particular, we must have that ¢ (R;), ¢ (L;) < (i,i).

Our goal is to re-arrange the placement of the subtree layouts. From the costs of the
subtree layouts, we may determine a limit on how close to the root node that subtree may
be placed. Specifically, for subtree T, if m is the smallest integer such that ¢ (T) < (m,m),
then limit (T') = m. We may order all the subtrees by non-decreasing order of their limits,
renaming the subtrees T, ...,T,, where the total number of subtrees is n =2K. (Note
that limit (T 1) = 1, since some subtree must lie right next to the root in ¢.) We also label
each subtree according to whether it has an edge to v; (label /) or v, (label r). For subtree
T;, left 2(i) = 1 if and only if the label for T; is I, else left 7(i) = 0.

Our algorithm is a dynamic programming algorithm that keeps track of the number
of subtrees with each label that are placed on the left and the right of the root. The algo-
rithm places each subtree, one at a time, to the left or the right of all those placed so far.
It builds a table with 3 indices. The first index of the table keeps track of which subtree
we are placing. The second index keeps track of the number of subtrees on the left.
Then, the number of subtrees on the right is simply the first index minus the second
index. The final index tells how many subtrees with label / have been placed on the left
side. (We do not have to keep track of how many subtrees labeled r are placed on the
left, since that value is simply the second index minus the third index.) In the end, if we
are able to partition the subtrees equally to the left and the right and there are more /-

labeled trees on one of the two sides, then the bad case for step (3) of algorithm 3.1 does

Placement Problems Arising From Automatic Logic Compilation

- 49 -

not occur; thus, we may transform a ‘‘bad’’ solution given by Yannakakis’ algorithm to a

‘‘good’’ one.
The formal specification of the algorithm is as follows.
Algorithm 3.2:
(1) Build table ¢[1:n, 0:K, 0:K]:

(@ t[1,1,left 7(1)] =TRUE, since limit(T1)=1
(b) t[1,0,0]=TRUE, since limit(T{)=1
(c) t[1,x, z] =FALSE, except for those cases covered by (a) and (b)
(d for2<i<n,tl[i, j m]=TRUE iff

tli-1, j,m]=TRUE and limit(i)<i—j
tli-1, j=1,m—Ileft 2(i)] =TRUE and limit(i) < j

(2) A solution exists iff #[n, K, x] = TRUE, for some x # % * deg (vp).

We shall omit the detailed proof that algorithm 3.2 will find an arrangement that
avoids the bad case, if one exists. The proof’s structure would be very similar to that for
algorithm 2.1. Given that the algorithm works, the important point is that a linear
arrangement found by the algorithm may be used as a subtree layout to be passed on to

the next step of Yannakakis’ algorithm.

Algorithm 3.2 is easily shown to be polynomial. We may estimate the time needed
by bounding the number of table entries ¢[i, j, m] we must examine. Clearly, i goes
from 1 to n. The value of j is likewise bounded by n. Finally, for any given i, m < j,
since there can’t be more /-labeled subtrees on the left than there are subtrees on the left;
therefore, the number of relevant m is bounded by n. This gives us a bound of O (n?)

table entries that must be examined.

We have not settled all cases produced by Yannakakis’ algorithm, which may

involve situations where algorithm 3.2 is not applicable and the solution obtained after

Placement Problems Arising From Automatic Logic Compilation

X0

expansion of v, is sub-optimal. For example, see figure 3-9, which shows a layout with
cutwidth of 3. Here, the solution obtained by Yannakakis’ algorithm forces the subtree
rooted at v to be split, with nodes on either side of the tree’s root v,. Assume that
e =(v;, v;), v; connects to v, and v3, and v, connects to v, and v4. After expanding v,,
the new cutwidth is 4. In this case, we can rearrange the nodes (e.g., by swapping the
positions of v, and v3) to obtain a new layout with cutwidth equal to 3. However, it is
an open question whether there is a way to modify Yannakakis® algorithm so that it finds
solutions that for all cases remain optimal after the expansion phase. Further research is

necessary.

Vi V2 Ve V3 V4

figure 3-9 Example layout with cutwidth of 3

3.4. A Biconnected Component Heuristic for Mincut Linear Arrangement

The success of Yannakakis’ algorithm for the mincut linear arrangement of trees
suggests a heuristic for the mincut problem on general graphs. Our idea stems from the
fact that if each biconnected component of a graph is viewed as a single node, then the
resulting graph is a tree. We shall present our heuristic and show that it leads to prob-
lems that are known to be or can be proved to be NP-complete. Our algorithm consists
of three steps:

(1) Split the input graph into biconnected components.

(2) Individually lay out each component.

Placement Problems Arising From Automatic Logic Compilation

o 5 5

(3) Integrate the individual layouts into a single layout, maintaining the components
derived from step (2). By maintaining components, we mean that for a given com-
ponent, the relative ordering of the nodes in the final layout is either identical or the

complete reverse of their ordering from step (2).

The first step is, of course, easily done. Unfortunately, in the second step, the prob-
lem of finding an optimal layout for a given component is not clearly easier than the NP-
complete problem of finding an optimal layout for the entire graph. In fact, the whole
graph may consist of only a single biconnected component. In general, though, it should

be easier to find good layouts for the smaller components than for the entire graph.

Finally, there is the third step of the algorithm, which corresponds approximately to
the integration of subtree layouts in Yannakakis’ algorithm. If we are given specified
layouts for the individual components, can we find an optimal way to integrate those lay-

outs? We shall show that this problem is also NP-complete.
First, we formally define our problem.
Mincut for “Tree’’ of Ordered Components: [MTOC]
Instance: Graph G =(V, E).
Set of ordered components C = {Cy, C», ... ,C,}, where each C; is a linear

arrangement for a unique biconnected component of G.

Integer K.

Question: Is there a linear arrangement of G with cutwidth less than or equal to K

that maintains each component C; ?

The problem of MTOC is clearly in NP. Simply guess a linear arrangement for the
vertices, then check to see that the vertices are placed in the relative orders specified in
the components of C and that the cutwidth is less than or equal to K. To complete the
NP-completeness proof, we give a reduction from the problem of Mincur for Edge-

Weighted Trees with polynomial edge weights, which is NP-complete [Monien].

Placement Problems Arising From Automatic Logic Compilation

-52-

Start:

Tree T = (V, E), with polynomial-sized weight w (e) for each edge e € E, with the

question ‘‘Is there a linear arrangement of T with cutwidth less than or equal to K 7"’
Reduction:

Create graph G" = (V',E"):

e FornodeveVletve V.

e Foredgee =(u, v) € E, create w(e) nodes z,!, ...,z © e V.

e Foredge e = (u, v), create 2w (e) edges (u, D), o, 2", v, 2., ..,

W, z"®)e E’.

(See figure 3-10(a).)

ze
w(e)
¢ B =
Vi v vj
z,W @

(a) Transformation of an edge

TR 2,7 v

(b) A component layout

figure 3-10 Reduction from MEWT to MTOC

The resulting graph G’ is a “‘tree”” of biconnected components resembling the
one shown in figure 3-10(a). There is a biconnected component corresponding to
each edge in E. For the component corresponding to edge (i, v), the ordering of the

nodes is u, z.1,. .., z,”©, v. (See figure 3-10(b).)

Placement Problems Arising From Automatic Logic Compilation

-53 -

Correspondence:

First, we note that for a given component, the component layout is an optimal solu-
tion. Each node ze"‘ adds one to the cutwidth, no matter where it is placed; so, totally,
the cutwidth is w(e), and it is achieved by the component layout of figure 3-10(b).
We further note that the relative ordering of the nodes given by a component is
optimal for the final placement, since the only nodes that connect to points outside

the biconnected component are the “‘original’’ nodes v; and v;.

Given a solution to the MTOC problem, we can derive a solution with the same
cutwidth to the MEWT problem by simply replacing the set of nodes z,* (and the
attached edges) by a single edge with weight w (e) (opposite direction transformation
of that shown in figure 3-10(a)). Likewise, if there is a solution to the MEWT prob-
lem, there must be a solution to the MTOC problem. Simply take the solution to
MEWT, transform the weighted edges as described above, then place every node z,*

somewhere between the nodes to which it is connected.

3.5. Open Problems and Future Research

We still have not fully classified the problem of DTSP. We have considered a
number of approaches for deciding which nodes to place to the right of v,. These include
contracting the critical path to a single node and swapping subtrees. However, none of
the methods is satisfactory. It may be that partitioning the problem into the two particu-
lar subproblems we use is not the way to solve it. It may also be useful to characterize
the complexity for other restrictions on DTSP besides the one we considered. For exam-
ple, we may bound the limit of the critical path by limit(p) < len(p) + g (len (p)), for

some function g.

The near-optimality of algorithm 3.1 suggests a heuristic for certain other restric-

tions of the Mincut with Critical Paths problem. We could restrict the class of input

Placement Problems Arising From Automatic Logic Compilation

-54-

graphs to those that are trees after the contraction of certain sets of nodes that are con-
strained by critical path limits to be placed as groups. Examples of such node sets
include the following: (1) a pathv; — - -+ — v, whose limit is equal to its length (= 1-1);
(2) a clique of m nodes that contains a simple critical path with limit equal to m—1 (or

some other set of critical paths forces the nodes to be together — this includes case (1)).

In case (2) above, the local cut due to just the edges of the clique is always the
same, no matter what the ordering of the vertices, so one may order the vertices by non-
increasing order of left_connectivity — right_connectivity. Case (1) has a tighter con-
straint on how the vertices may be placed. In fact, the vertices in the path must be in
consecutive order, although they may be in backwards order. It is quite clear that using
the idea of algorithm 3.1 to contract the entire path into a single node will not ensure that
the expansion phase will only increase the cutwidth by at most 1. See figure 3-11, which
shows the two possible states after the expansion of a contracted path. It would be satis-

fying to find an algorithm that guarantees something more concrete about the solution.

Further research is necessary.

pathp=vy -5vy 2 vy, lim(p)=2
two possibilities:

figure 3-11 Example where expansion must increase
local cut by more than 1

In addition to those discussed above, there are a host of graphs that become trees

when certain subsets are contracted. It would be useful to generalize those structures and

Placement Problems Arising From Automatic Logic Compilation

-55-

find metrics for determining how well a contract/expand algorithm would work on them.

Placement Problems Arising From Automatic Logic Compilation

=56 -

Chapter 4
Cluster Placement in an Array of Gates

In this chapter, we examine the problem of Cluster Placement in an Array of Gates
(CPAG), which we introduced in Chapter 1. Our goal is to position signals to minimize
the area required to implement the circuit, given that the order of the gates is fixed. We
differ from previous work on placement within gate arrays and Weinberger arrays in that

the signals are grouped together in clusters (see Chapter 1).

A legal placement into a grid satisfies the following conditions:
e one column per gate
e no clusters interleave

e sufficient routing area, under the 2-layer Manhattan routing model
The formal statement of our problem follows.
Cluster Placement in an Array of Gates:

Input: Ordered set of gates {G,,G3,...,Gy}, where G; is a set of clusters. Each

cluster is a set of signals (integers).

Objective: Find a legal placement of the signals into an array such that the gates are
placed in order, left-to-right, and the area required to realize the circuit (in
grid terms) is minimized.

Figure 4-1 shows examples of legal and illegal signal placements involving clusters.

We call a placement of the signals a configuration. The circuit realization of a

configuration requires the connection of all signals having the same value. We call the

Placement Problems Arising From Automatic Logic Compilation

<87 =

Gate={ (1 3),(4 5,06 7}

<11 1
> Z E:A interleaved signals
5] ¥ :
- | 4 5
N[3 [.
legal illegal

figure 4-1 Examples of legal and illegal cluster placements

aggregate of all instances of a particular signal value to be a nez. We do not place any

constraints on where wires may be placed, as long as they satisfy our routing model.

There are two factors to consider for the space required. First, one would like to
place the signals in as few horizontal tracks as possible. Second, one would like to use
very few extra vertical columns to route (connect identical) signals between gates. All
routing must be done in the vertical channels, or free space, between gates. Extra verti-
cal columns are placed within the channels, as needed, to connect nets with signals that
are not aligned (i.e., not in the same horizontal tracks). The total number of columns
used is num_extra_columns + N. Note that we have abstracted to a single column a gate
from the Weinberger array realm. There, the number of columns required by a given
gate depends on the type of the gate and the layout template being used for that type of
gate. For example, our NOR-of-ANDS in figure 1-2 requires 4 columns. In the heuris-
tics we have implemented, we fix at the start the number of horizontal tracks used (Sec-
tion 4.2 further details this choice); thus, we only have to minimize the number of

columns. For that purpose, we don’t need to know exactly how many columns are used

Placement Problems Arising From Automatic Logic Compilation

-58-

for routing each gate. Finally, the total area required by a configuration is simply

num_tracks * num_columns.

This chapter presents the work we have done on the problem of CPAG. In Section
4.1, we give a short, simple proof that CPAG is NP-hard. In Section 4.2, we present
some of the issues involved in trying to solve the problem of CPAG. We also introduce
the notion of shadow clusters. In Section 4.3, we describe the heuristics that we studied;

and in Section 4.4, we present and analyze the experimental results obtained.

4.1. NP-Completeness Proof

In this section, we show that CPAG is NP-complete. First, we re-state the problem

as a decision problem:
CPAG — Decision Form:

Input: Ordered set of gates {G1,G3, . ..,Gy}, where G; is a set of clusters.
Each cluster is a set of signals.

Integer L.

Question Is there a legal placement of the signals into an array such that the gates
are placed in order, from left to right, and the area required to realize the

circuit (in grid terms) is less than or equal to L ?

The problem of CPAG is in NP. We may guess a given configuration of the signals
and a wiring of the configuration. The wiring guesses if there is a wire on each grid seg-
ment and if there is a contact at each grid point. The size of the grid is bounded by a
polynomial in the number of nets, which is less than or equal to the size of the input. The
bound on the grid size occurs because each vertical channel between a pair of gates cer-
tainly needs less than or equal to 2 * number_of nets — 1 columns, and the total number
of horizontal tracks need not exceed 2 * number of nets + size_of largest gate. We

may then check to see whether the wiring connects all like signals and whether the total

Placement Problems Arising From Automatic Logic Compilation

-59.-

number of columns used times the total number of tracks used is less than or equal to L.
To finish the NP-completeness proof, we prove that CPAG is NP-hard, even if the input

only contains a single gate.

Lemma 4.1:
The problem Cluster Placement in an Array of Gates is NP-hard.
The NP-hardness reduction is from the Mincut Linear Arrangement (MLA) problem,

which is known to be NP-complete [Gavril].

Start: Min , an MLA instance with graph G = (V, E), integer K, with question “‘Is

there a linear arrangement f of G such that cutwidth (f) <K ?”’

Reduction:
Create Arr, a CPAG instance with a single gate G :

(1) For each vertex v; € V, create a cluster C;.

(2) Foreach edge e; € E, create a signal 8j.

(3) Foreach edge e; = (v;, vy), insert s;j into both C; and C;.

(4) Integer L =(K + 1) * 2|E|.
Correspondence:

We wish to prove that there is a solution to Arr if and only if there is a solution to
Min. First, we show that if there is a solution f to Min, then there is a solution o to

Arr.
Proof:
(1f):
Let f' be an inverse function for the linear arrangement f, that is, if
f (v;)=j, then f71(j)=i. We form a solution o to Arr by ordering the clusters,

from top-to-bottom, Cry, Cray s .. Cr1qv)y, i-., in the same order as the

corresponding vertices in the linear arrangement. Let e; = (vi, v). For signal

Placement Problems Arising From Automatic Logic Compilation

<60 =

sj € C;, place s; near the top of C; if Cy is above C; (f (k) < f (i), else place it

near the bottom (see figure 4-2).

(_€=1 v (V1)

€2, (v2)
€3 €4 iy

R — €4
Vie,V2e, V3 VaegVs F=1

figure 4-2 Example reduction from MLA to CPAG

Now, consider the routing for the created gate G;. Recall that we have no
constraints regarding where the wires must be placed. Taking G in isolation,
there is no topological difference between the ‘‘channel’ on the left side of G,
and the ‘“‘channel’’ on the right side of G;. Thus, we get no savings in area by
placing wire segments on both sides of the gate. So, we assume for ease of argu-
ment that we do all the routing of wires in the left channel. There are ‘termi-
nals’’ on only one side of the left channel; therefore, there can be no cycle con-
straints. The width of the channel is simply its density in the 2-layer Manhattan
routing model. From our construction above, it is clear that the local density over
a cluster C; in o cannot exceed the maximum of the local densities immediately
adjacent to C;. To calculate the density between a pair of clusters C; and C j» WE
simply count the number of nets that have signals on both sides. From our con-
struction, this number simply equals the number of edges in f that cross a cut

between the nodes v; and v;. The maximum cut in f is K, so the maximum

Placement Problems Arising From Automatic Logic Compilation

-61 -

channel density in o is also K, and the total number of columns is K + 1.

Since there are 2|E| horizontal tracks, the area required by the placement o
isexactly L = (K + 1) * 2|E|. Thus, o is a solution to Arr.
We now finish the proof by showing that if there is a solution o to Arr, then

there is a solution fto Min.

(Only if):
Let o be a solution to Arr that requires area (o) < L. From the reduction, the
number of signals placed is 2| E|; and since there is only one gate for placing the

signals, the number of horizontal tracks used by o is at least 2| E|. This requires

that the total number of columns used to by o be less than or equal to __ar;rE(F)
L
< =K+1
2|E|

One of the columns for a is used by the signals, so at most K columns are
used for routing. Since, in our routing model, the density is an upper bound on

the width, the density of the channel is less than or equal to K.

Form a solution f to Min by contracting each cluster into a single node,
maintaining the same ordering as in a. The cuts in f may not exceed the local

densities in o, so cutwidth (f) < K; thus, fis a solution to Min.

4.2. Issues for Heuristic Algorithms

There are a number of issues to consider when trying to solve the problem of

CPAG. One is that some signals pass through certain gates without forming transistors.
When we analyze such a gate, we must be sure to save a space for the passing signal.
The method we choose for dealing with this consideration is to introduce the notion of

shadow clusters. A shadow cluster is a cluster consisting of a solitary signal, and this

Placement Problems Arising From Automatic Logic Compilation

-62 -

cluster may interleave with signals from other clusters in the gate because the signal does

not directly interact with the gate. (See figure 4-3.)

G1: {(13),24}); G2: ((12),@}; G3: {B)
Signal ‘3’ passes through gate G, — shadow cluster

I

]

I I

I I

I I I r==1
| 3 3) —3
D N C
baad I | 1]
rFr==" !] 1 I
RN F Lo
L Lo Lo
| | r==12 I I
| 4 4 —4
1 1 I 1 1 1
| AP baad Lo-d

figure 4-3 Example of ‘“‘shadow’’ cluster

For each gate, we add exactly one shadow cluster for each net that passes through
the gate without interaction. This is a simple method, and it may not allow for better
solutions that use extra shadow clusters. In figure 4-4(a), we only allow one shadow
cluster for net ‘5’ in the second gate; but in figure 4-4(b), we allow net ‘5’ to have two

shadow clusters.

Given that we know exactly what signals occur in each gate, we must decide how to
place them. The process of positioning the signals to minimize the area requirement
encompasses the two subtasks of determining how many horizontal tracks to use and how
many extra vertical columns to use. The number of horizontal tracks used may actually
affect the minimum number of vertical columns that must be used to route signals in the
channels between the gates. In our implementation, we simply choose the number of
tracks to be the smallest possible. That is, for each gate, we count the number of signals

(including shadow cluster signals and repeats of signals from the same net) that must

Placement Problems Arising From Automatic Logic Compilation

-63-

r=== r==n1 r===1
L7 <+ 5 +—f—4+5 |
Lo | P RS
: : -1 i . F==3 : : ‘ ;
SERERE S NNEY el |] Tk
I | !] | Sp— |] I Lased | Fpp—
| pleminait |]] [iyt | 1] [plstortess: |
~Flgt1 ! ets S et5 !
R R L SO
} S+ | 3413 v 343 |
| SEFRTESE | I 1 | I — | 1 I | Spip—— |
] | r==-A 1 1 | et |
: - -4 - D 44 —4 4
r---1 F===9 o : r--a F===4 ' :
-t-6—4+—1t6 |, 1-3-1w -t-61—16, -3l
| SO | | SR | Lo-Jd | R | | bead
2 extra vertical tracks 1 extra vertical track (min)
(a) (b)

figure 4-4 On the use of multiple shadow clusters

pass through that gate. The maximum of these counts is the least number of tracks that
may be used by the largest gate, so it is also a lower bound on how many total horizontal

tracks to use.

After determining how many horizontal tracks to use, we may place the signals into
the array. Given a fixed positioning for signals (terminals) at each gate, signals from the
same net must be connected across each vertical channel between a pair of gates. For a
given vertical channel, the goal is to make the connections using as few vertical columns
as possible. The smallest number of columns that can possibly be used is called the
channel’s width. This problem is called channel routing, and it is known to be NP-
complete under the 2-layer Manhattan routing model [LaPaughl] [Szymanski]. But this
means that we probably cannot know in polynomial time what is the least number of

vertical columns required to route the signals across a given channel.

Placement Problems Arising From Automatic Logic Compilation

=84 =

Determining the area required by any given placement of the signals is NP-
complete. We therefore use an estimate of the number of extra columns needed (and
thus, the area, since we know how many horizontal tracks are used). Our estimate is
based on the notion of vertical channel density, which is identical to density for a hor-
izontal channel (recall definition from Chapter 1), except for the directions used. We cal-
culate the density of each channel and take the sum of all the individual densities. This

sum, plus the number of gates, is our estimate of how many vertical columns are needed.

There are inaccuracies with our method of estimation. These inaccuracies arise
because density is a lower bound on the width of only a single channel. For multiple
channels, the total density may sometimes overestimate the need. For example, the total
density in figure 4-4(b) is 2, but the total width is 1; in figure 4-5, the density is 3, but the
width is 2. This overestimation occurs because the routing done in one channel may
negate the necessity to do some routing in another channel. Despite its shortcomings, the
density measure seems to give a good estimate for many applications, including ours.
It’s not clear how much improvement would be obtained by using a better measure of the
width, and the cost in time to calculate and re-calculate such a measure might prove
prohibitive.

Density is our primary measure of the ‘‘goodness’’ of a particular configuration.
We shall also use a secondary measure, namely the total number of alignments. Two sig-
nals from the same net and in adjacent gates are said to be aligned if they are on the same
horizontal track. Placed on the same track, aligned signals may be connected by a
straight horizontal wire segment, without the need for an extra vertical routing segment.
All our heuristics try to minimize the total density and maximize the number of align-
ments. Two examples of previous work that consider the maximization of alignment of

terminals are [Schlag] and [Widmayer].

Placement Problems Arising From Automatic Logic Compilation

-65 -

channel density = 2’\ [‘\channel density = 1

r A r i | r==-"

R R -
1 I | | I I
1 | I | I I
|

~—tr | e s
be: e Ko o I 1
r=—=-" cdetioin | 1

1

—ts) | d
|]] | | 1
1 I | 1 I 1
~—t2l4 ot Lo
b we, oo o Rt i of L - -4

figure 4-5 Example where total density overestimates width

4.3. Heuristics

We have used the following heuristics to solve CPAG: ‘‘Greedy’’, Iterative
Improvement, Partitioning, and Simulated Annealing. Except for the “‘greedy’’ heuris-
tic, all the' methods are predicated on the idea of successive improvements from some

starting placement of the signals.

4.3.1 ““Greedy’’ Heuristic

The ““greedy’’ method proceeds in a row-by-row manner, starting with the top row.
On a given row, we start by placing a signal in a gate that requires the maximum number
of horizontal tracks. Within the present row, we try to align signals in neighboring gates
with adjacent signals from the same net. For example, if a signal *1” is placed in the gate
numbered ’i’, then we try to place a signal ’1’ in gates numbered ’i -1’ and ’i+1°. If this
is not possible and we must place a signal in order to have room to complete the gate,
then we place some other signal; otherwise, no signal is placed. In aligning and placing

signals, the principal rule is that clusters may not be split (except by shadow clusters).

Placement Problems Arising From Automatic Logic Compilation

-66 -

We did not implement the ‘‘greedy’’ method to challenge the other methods. Its
primary use is quickly to generate a fairly good starting configuration for the Iterative

Improvement or Simulated Annealing heuristic.

4.3.2 Partitioning

In Partitioning, we use a Kernighan-Lin [Kernighan] type of procedure to recur-
sively split the array into two pieces, the top and the bottom, using a horizontal cut. First,
we pad the gates with empty clusters of ‘‘size’” 1 so that all gates contain the same
number of signals. Then, we swap clusters between the two pieces, trying to minimize
the cost — the number of connections between the two pieces. For any pair of gates, the
number of connections is simply the number of nets that have signals on both sides of the
cut. This procedure tends to minimize the density at the point of the horizontal cut.
When the pieces are small enough, we use a simple greedy strategy to try to align the sig-
nals.

Since we have padded the gates to be of the same size, we may regard a partitioning
step as a rearrangement of clusters within a fixed-size array. Our partitioning is compli-
cated by the condition that clusters may be of differing sizes; thus, a straight horizontal
cut across the array may ‘‘split’”” some clusters. For example, consider the following
situation: 12 horizontal tracks total, gate 1 has three clusters of 4 signals each, gate 2 has
2 clusters of 6 signals each. Obviously, there is no straight cut that does not split a clus-
ter in one of the two gates. The solution we employ is to use a fuzzy cut — that is, one
that does not necessarily cross different gates at the same place (see the bold line in
figure 4-6(a), which represents a cut within an array). This solution prevents clusters
from being on both sides of a cut, but it may lessen the accuracy of the estimate of den-

sity provided by the count of signals crossing the cut.

Figure 4-6 shows an example usage of the algorithm. Figure 4-6(a) starts with a

random fuzzy partitioning of the eight clusters. The swap that creates the largest

Placement Problems Arising From Automatic Logic Compilation

-67 -

improvement in the number of crossings (cost) is the exchange of clusters C4 and Cg.
After that improvement, no further swap makes an improvement, so we consider a parti-
tioning of the subset of clusters that lie underneath the original cut (figure 4-6(b)). Figure
4-6(c) shows the result of performing the partitioning on the smaller subset of clusters,
followed by a greedy alignment of the signals. Note that in figure 4-6(b), the net I has
signals on both sides of the original cut; but in the final placement of figure 4-6(c), all the
signals of net / are aligned. This is an example where having a fuzzy partition boundary

can cause the estimate of the density to be too large.

4.3.3 Randomized Iterative Improvement

Before giving the algorithm, we shall define what we mean by a move, or a change
in the configuration. Moves are used by both Iterative Improvement and Simulated
Annealing. A move chooses two horizontal tracks 4, and h,. For every gate in some
chosen set {G;, Gs.1, . .., G}, swap the item in track h; with the item in hy. Anitem
may be a terminal or an empty space. Pictorially, an example of a move is given in
figure 4-7 below. Note that our move properly contains the set of single swaps, which is
commonly used in iterative improvement. We chose the more general move because it
increases the size of the neighborhood — the configurations reachable in a single move

— of a configuration, thus making it more likely that we can reach an optimal solution.

Iterative Improvement (/7) starts at a legal configuration and considers the change in
the cost due to some move. Basically, the cost is equal to the total density, but we stipu-
late that splitting a cluster adds infinite cost; therefore, no configuration can have a split
cluster, and all configurations are legal. If the cost decreases or stays the same, then the
move is made and the signal placement is updated. In some forms of iterative improve-
ment, one looks at the effects of all possible moves, then chooses the one that improves

the cost the most. This strategy requires much time for our problem because there are

many possible moves — in all, there are about % * num_tracks? * num_gates® possible

Placement Problems Arising From Automatic Logic Compilation

- 68 -

moves:

(num_zg ates) + num_gates

choices for leftmost and rightmost gates to affect

and num_tracks choices for which 2 tracks to swap.
2

After a move is made, we must pick a best move from the new configuration. Since cer-
tain configurations may not have moves that actually improve the cost, although a series
of moves improves the cost, it may take a huge number of iterations to arrive at an

improved solution. To find a ‘‘local’’ optimum requires even more time.

Also a major concern for the /I heuristic is deciding when to stop. In usual local
improvement, changes are made until no improving move can be found. However, if no
move improves the cost, but some maintain the same cost, it is not clear whether or not to
continue in the hopes that further moves may improve the cost. Our solution is to try
only a bounded number of random moves. We choose our bound to be
5 * num_tracks? * num_gates?, which is a moderate number of steps and gives a fairly
quick running time. We did try a bound of 10 * num_tracks® * num_gates? on a number
of experiments, but despite the doubling of the moves tried, almost no improvement was

found.

One other iterative improvement strategy we considered is based on an idea by Ker-
nighan and Lin [Kernighan]. In this method, we calculate the changes made by a
sequence of moves. From this sequence of moves, we choose the subsequence (starting
from the original configuration) that makes the largest improvement. The idea is that we
may be able to improve the configuration by first increasing its cost, then decreasing it.

In this way, we hope to avoid being trapped in local optima in the search space.

For our implementation, a sequence of 2 * \numtracks + 1 moves is generated at

each iteration. Then we choose the best subsequence, performing all of the moves in the

Placement Problems Arising From Automatic Logic Compilation

-69 -

Gy G, Gi
©C1 : ®C4 : Cq
cut o P
§ o cost=9
@C3 c6
(a) Starting partition
G, G, Gs
@Cl Cs : Cs
cut C
cost=3

2 Cs
/.o
DEW CUL - = = = | = = =¥ o diniteit w4 s o 4

cost=3 @C3 ©C4§

G, G, Gj
@a @cs - Yor
@c;, @cs
: hooNes |
THEW O = e oo o o i o B N 4
cost =2 @Cz @C4 : @

(c) After second pass: swap C, and C3
(perform “‘greedy’’ placement)

figure 4-6 Sample usage of partitioning heuristic

Placement Problems Arising From Automatic Logic Compilation

< T

ey s =9 F==9 =
EXREEEE SR SR T &
! ! Lo L~ J 1 1] 1
I | r=n" r=n" 1 1 | 1
|] | I

c'?’: C3. C3| V3 BN
| | 1 ! 1 1 L__J IS
I | | I | | r-=—1a r==—1

1 I 1]
| : IZ: I2: 1 I I3I
Lol Lo ul I— IR Lowsand

figure 4-7 Example of a move

2*numgates 2xnumtracks?

\}numtr acks

ing the run time to be on the same order as that for the simple iterative improvement

, thus mak-

subsequence. We set the number of iterations at

algorithm.

4.3.4 Simulated Annealing

The final heuristic we tested is Simulated Annealing. The method of simulated
annealing was first presented in [Kirkpatrick]. It has since been the subject of much
research, for example, [JohnsonD] [Greene] [Sechen]. The idea of simulated annealing is
to avoid being trapped in local optima (a shortcoming common to local improvement
strategies) by sometimes allowing moves that actually increase the cost of the
configuration. Ideally, this method mimics the gradual cooling of a physical system from

a high-temperature, high-energy state to a low-temperature, low-energy state.

There are a number of implementation details for any simulated annealing program.
We have already described what we mean by a configuration and a move. An important
question to answer is whether or not to allow moves that create illegal configurations,
something we did not allow in our iterative improvement heuristic. In our problem, an
illegal configuration is one where a cluster is split or a terminal is not placed in the
correct gate. We allow split clusters during the running of the algorithm, since by allow-

ing split clusters, we allow a broader range of possible solutions. In particular, only

Placement Problems Arising From Automatic Logic Compilation

A

permitting legal configurations means that we may be stuck with the initial relative order-
ing of the “‘real’’ clusters. For example, if the clusters are not singular, they cannot be
split; thus, the order of the clusters is fixed. On the other hand, we do not allow terminals

to shift from gate to gate. This condition is enforced by our definition of a move.

The primary goal of our algorithm is to minimize some cost function, which meas-
ures the ‘‘goodness’’ of a configuration. Clearly, the cost function must contain our esti-
mate of the total area used, namely the total density. We also note that a configuration
tends to be better if there are more alignments, since the routing is made easier, so our
cost function may have a term containing the number of alignments. The basic form of

our cost function is

C,
total_alignments + 1

cost = density + C * num_split_clusters +

Note the term in the cost that counts the number of split clusters. Also note that a
configuration is better if there are more alignments, hence the term that is inversely pro-
portional to the number of alignments. We choose C; so that the best solution found so
far will never contain a split cluster; thus, C = initial_density, the density of the initial
configuration. We have arbitrarily chosen C, = initial density. We also tried Cy=1

and Cy =0, which gave comparable or worse results.

Given our value of C;, it might be possible to perform an entire annealing where
the only legal configuration encountered is the starting configuration. The best solution
in this case is the starting configuration; however, the final configuration might have a
much better density, with perhaps as few as one split cluster. In such a case, we fix up
the final configuration so that it is legal, then we anneal some more without allowing any

split clusters.

The start configuration is determined by the ‘“greedy’’ method described briefly in
Section 4.3.1 and our starting temperature is 5 * initial _density. The two other important

values, cooling ratio and epoch length were picked by trial and error. Our cooling

Placement Problems Arising From Automatic Logic Compilation

P

schedule is simply new_temp = cooling_ratio * old_temp, with the cooling ratio being
set to .98. We found the value of .98 to be sufficiently large to give an adequate solution,
but not so large as to make the computing time too long. From our experiments, we set
the epoch length (the maximum number of steps at a given temperature) to be
25 * (numﬂ_gates)z * num_tracks (see Section 4.4), and we go to a new temperature if we
have already accepted num_gates * num_tracks moves at the present temperature. This
last condition is to prevent us from spending too much time at high temperatures, which

according to Johnson, et. al., [JohnsonD] does not accomplish much.

One final consideration is the ‘‘freezing’’ criterion, or when to stop the annealing
because there doesn’t seem to be any improvement. We used a basically ad hoc
approach of counting the number of consecutive temperatures at which no improvement
occurred. If this number reached 200, then we assumed the configuration to be frozen.
Two other possible stopping strategies are (1) using a different threshold value for freez-
ing than 200 and (2) stopping the annealing at a certain temperature, when there should
be few accepted moves, and performing an iterative improvement phase. In Section 4.4,
we shall summarize the results of using these other two approaches. One other possibil-
ity with which we did not experiment is to stop if a given temperature accepts below a
certain fraction r of tested moves. This would have required us to keep track of what
moves from what configurations had been tried for the present temperature. Also, we
were not sure what value of r to use, since moves that maintain the same cost are always
made, and we have no good idea how many zero-cost moves exist for an ‘‘average”

configuration.

4.4. Experimental Results

This section presents the experimental results of running tests on the heuristics
described in Sections 4.3.1 - 4.3.4. The computation times are for a Sun 3/260 worksta-

tion.

Placement Problems Arising From Automatic Logic Compilation

- 73 -

We ran our heuristics on a number of test files. The tests were all generated by a

test generation program. The options were:

LIMIT on size of clusters (DEFAULT 5)

LIMIT on number of nets used (DEFAULT 99)

LIMIT on number of clusters per gate (DEFAULT 20)
Explicitly state the number of gates (DEFAULT random < 20)

Following is the generation algorithm we used. All values are generated by a random

number generator.

for each gate G

Determine the number of clusters for gate G.
for each cluster C in G
Determine the size of C — call it size.
Generate size different signals for cluster C.
(The nets are determined by signals generated in the above step.)

We shall summarize the results for 6 different input files. Below is a synopsis of the

6 files.
Input | #of | #of #of # of
Features
L=ﬁle # | nets | gates | tracks | clusters

1 37 5 35 v) very few gates
2 15 9 26 45 Many tracks vs. nets
3 15 13 16 44 All clusters small
4 30 8 27 27 No shadow clusters required,

All clusters large
5 30 10 29 37 All clusters large
6 30 15 40 104 Largest example

Table 4-1 Characteristics of the input files

For input file 3, the term small means that all clusters contain only one or two sig-

nals. The term large for files 4 and 5 mean that all clusters contain either four or five

Placement Problems Arising From Automatic Logic Compilation

s 3=

signals (for our tests, we constrained clusters to contain at most five signals each).

Before we compare the performance of the different heuristics, we summarize our
choices for some of the values used by the Simulated Annealing approach. First, we con-
sidered a two different values for the epoch length. Up to a point, the longer the epoch
length, the better the solution should be. Johnson, et. al., suggest an epoch length propor-
tional to the size of a configuration’s neighborhood [JohnsonD]; thus, one of the epoch
lengths we tried is the one we term long — 2 * numgates2 * numtracks®. We also tried
an epoch length, denoted short, that is smaller for an instance with an average number of
horizontal tracks: 25 *numgates? * numtracks. In table 4-2 below, we give the results of
running Simulated Annealing for the short epoch length and the long epoch length. For
these runs, the value of C, was set to start_dens and we terminated when we found 200
consecutive non-improving temperatures. The values given for the 10 runs for each input
at each epoch length are the following: the best density solution found, the median den-
sity solution, and the total CPU time for the 10 runs. A median value of x-y indicates that
x was the 5" best density found and y was the 6™ best density. Below, we see that the
results are similar for the short and long annealing, but the long annealing is taking much
more CPU time. In fact, the short annealing is performing better. This is probably
because the longer epoch value requires a longer time to freeze, since the longer epoch
time allows more uphill moves at high temperatures. We might extend the freezing con- |
dition to more than 200 consecutive non-improving temperatures, but the run-time seems
to be increasing too fast already. Also, it may be that we are decreasing the temperature
too fast. Slowing down the cooling process should improve the performance; but once
again, it also adds to the computation time. Both inputs 1 and 2 are fairly small, so a
large input would probably take an excessively long time on the long annealing, so we

shall use the short epoch length annealing as a comparison with the other heuristics.

A second value that must be determined for the simulated annealing heuristic is C,

the cost weighting factor for the term involving signal alignments. Table 4-3 below

Placement Problems Arising From Automatic Logic Compilation

-75 -

Best Dens Med Dens CPU hrs

Input
short | long | short | long | short | long

1 5 7 6-7 8 30 79
2 44 45 50 51 61 166

table 4-2 Effects of differing epoch lengths on 2 inputs
shows the results of using three different values of C,, annealing until we find 200 con-
secutive non-improving temperatures. For each value of C, and each input file, anneal-
ing was run ten times. The values are (1) start_dens, (2) I, and (3) 0. The effect of the
alignment factor on the result of the annealing seems to be small. We shall use the

C, = start_dens annealing to compare Simulated Annealing with the other heuristics.

Best Dens Med Dens CPU hrs
MDD @ OO
1 5 6 6 | 67| 67 7 (30 (30| 29
2 44 | 44 | 45 | 50 | 52-53 | 51 | 61 | 48 | 39
3 8 8 8 9 8 9 |68 |91 |79

Input

table 4-3 Results with different alignment factors

One final consideration that we make for the Simulated Annealing heuristic is the
freezing criterion. The three possibilities we examine are (1) stop after 200 non-
improving temperatures, (2) stop after 400 non-improving temperatures, and (3) stop at
temperature .025 (then use an iterative improvement fix-up). The value of .025 was
chosen because at that value, uphill moves will almost never be accepted. In table 4-4,
we give the results of running Simulated Annealing for the three different freezing cri-
teria. The results are for 10 runs on each combination of input file and freezing criterion.
Method (3) does not perform quite as well as (1) or (2). Since the value of 200 non-
improving temperatures appears to perform as well as the value of 400 does, we shall use

method (1) annealing in our comparisons with the other heuristics.

Placement Problems Arising From Automatic Logic Compilation

2 76

Best Dens Worst Dens CPU hrs
MO & D] |G
1 5 5 6 | 67 | 6-7 8 30 | 41 8
2 44 | 44 | 45 | 50 | 50 | 52-53 | 61 | 106 | 22

Input

table 4-4 Effects of different freezing criteria

Finally, we are ready to compare the heuristics. Table 4-5 below summarizes the
density results obtained in the running of four different heuristics on the five small input
files. The heuristics tested are Randomized Iterative Improvement (II) after a greedy
start, Kernighan-Lin style Iterative Improvement (K-L II) after a greedy start, Fuzzy Par-
titioning (FP) followed by an iterative improvement fix-up, and Simulated Annealing
(SA). The number of runs for each heuristic was chosen so that the total running time for
the heuristics was approximately equal; thus, Simulated Annealing has the fewest data

points. The numbers in parentheses indicate the number of runs for each heuristic.

Input Mean / Best Density Total CPU Hrs.

I (KLII| FP | SA
(50) | (50) | (50) | (10)

1 9/6 9/6 8/6 6/5 20 18 22 30
54/47 | 55/48 | 54/44 | 50/44 | 33 35 34 61
10/8 10/8 9/8 9/8 30 29 27 68
45/40 | 45/40 | 44/36 | 41/37 | 20 20 24 17
62/53 | 64/55 | 60/49 | 61/55 | 60 68 63 50

File I K-LII FP SA

wm|] W N

Table 4-5 Comparison of the different heuristics

Clearly, one of Fuzzy Paritioning or Simulated Annealing always found the best of
the densities obtained. In terms of the best density solution found, Fuzzy Partitioning
outperformed Simulated Annealing on two of the input files, and Simulated Annealing
did better on only one of the input files. On the other hand, Simulated Annealing gives

the best mean density on all inputs except input 5.

Placement Problems Arising From Automatic Logic Compilation

<77

Figure 4-8 shows the range of solutions obtained by the four heuristic algorithms on

input file 4.
(1) : (K-LII) : (FuzzyPa) : (Sim.Ann.)
55 — : E :
Ta L nls .
- A : ma : :
Total A :] Dok MK X : .
A 3 DUEﬁ Pox m; y Do
Density — 45- 5 : m% - gme
33 A% - g .
% = R ¢ K00 X .
& o0 O : %X : o« o
— AM £ Im XK : . o
X X
X
X X [.
35— *
R 2 T Soi5 R T T 1 T T 1
35 45 9% 45 35 45 35 45
Number of Alignments

figure 4-8 Ranges of solutions for input file #4

The other input files produce similar graphs. All of the heuristics’ solutions exhibit
the same kind of distribution. For input file 4, the spreads from best density to worst den-
sity are 11 to 14 for the heuristics; the spreads on the number of alignments are 11 to 14.
In both cases, Simulated Annealing is the only heuristic with a spread of 11; a smaller
spread is expected, since there are only 10 data points rather than 50. Also interesting is
that for all the heuristics, the median value for the number of alignments is about 41.
This similarity may be in part accounted for by the fact that the three heuristics Iterative
Improvement, Kernighan-Lin II, and Fuzzy Partitioning all concluded with an iterative
improvement phase. On the other hand, Simulated Annealing is basically an iterative

improvement algorithm at low temperatures, when uphill moves are rarely accepted. The

Placement Problems Arising From Automatic Logic Compilation

-78 -

principal difference in the solution distributions is the mean value for the total density.
For II and K-L II, the mean density is 45; for Fuzzy Partitioning, the mean is 44; for

Simulated Annealing, the mean is 41.

On the average, the mean density value for Fuzzy Partitioning exceeded the mean
density value for Simulated Annealing by about ten percent. This suggests that for small
instances, if we want to run only one heuristic and we want to run it only once, we should
pick Simulated Annealing. On the other hand, if we are given a specified amount of time
to find a good solution, Fuzzy Partitioning should perform about as well as Simulated

Annealing for small instances.

The results for the largest file, input file #6, finally show what seems to a marked
superiority of the Simulated Annealing. In figure 4-9, we present the full range of experi-
mental results obtained for ten runs each of Iterative Improvement and Fuzzy Partitioning
(total CPU time about 90 hours for each of the heuristics), seven runs of the Kernighan-
Lin II (total CPU time about 490 hours), and two runs of the Simulated Annealing (total
CPU time about 400 hours).

The major concern with the annealing heuristic is the CPU time required, which
makes comparisons between the heuristics difficult. We did not tune our code for any of
the algorithms, so the processing times could easily be three or four time higher than
necessary; using parallel processing could also lower the running time. On the other
hand, input file #6 isn’t really that large, yet annealing is already taking days for each
run. Our results so far suggest that our present method of annealing will not be efficient
for solving very large input files. More research is necessary to determine if this is in

fact the case.

Placement Problems Arising From Automatic Logic Compilation

=70

(1) (K-L1I) (Fuzzy Pa.) (Sim. Ann.)
: (]
150 — : 0O
A :
; O
_ A 0O X
r'n O (] o - X
A : O : %
Total 1304 a4 A : : x
A § L
Density A : : X
] . . x x .
110
LR NG R o o S T R T T 1
295 315 270 290 295 315 295 315
Number of Alignments

figure 4-9 Ranges of solutions for input file #6
4.5. Open Problems and Future Work

Perhaps the most obvious optimizations can be made to the actual code used to
implement the various heuristics. Our run times are much longer than recent figures
given by Sechen and Lee for row-based placement by simulated annealing. They report
completion in less than 24 hours of computation on a Microvax for circuits of up to 3000
cells [Sechen]. One example of an un-optimized step in our implementation is our fairly
straightforward calculation of density at each step of the simulated annealing. Keeping
more information about the current extents of each signal at every gate, we might be able
to calculate density updates in half the time we presently use. Also, parallelization offers
some hope for improvement, since the move updates may be done simultaneously, as

may the density updates for all the channels.

Placement Problems Arising From Automatic Logic Compilation

-80-

There are also variations on the heuristics that may be tried. We might try a dif-
ferent cost function, perhaps utilizing a better estimate of the array’s width than density.
The problem is that such a metric would probably be harder to calculate than density, so

the runtime might increase.

Another possible variation is to use partitioning as a basis, but not use a ‘‘fuzzy’’
version. We may, instead, make cuts at the same place at every gate. Then, we might
conceptually have to “‘split” a cluster across the boundary cut, which makes keeping
track of clusters harder; but there may be some improvement over the estimate used by
the “‘fuzzy’’ partitioning.

On a more basic level, we might allow more than one shadow cluster per gate. This
could be done by a pre-processing step that decides if any extra shadow clusters should
be used and where they should be placed. We could also let our heuristic determine extra
shadow clusters by allowing moves to change an empty space to a shadow cluster, or

vice versa.

Finally, we might allow the number of horizontal tracks to vary. One way to do this
is to specify more horizontal tracks than the minimum allowed, padding the extra tracks
with empty spaces. In calculating the total number of horizontal tracks used, we may

disregard any tracks that contain only empty spaces.

Our testing is incomplete in certain regards. First, we would like to test more input
instances, perhaps with some of those being ‘‘real’” instances coming from the front end
of an automatic logic compiler. The more instances tested, the more accurate the results
are likely to be. Along the same lines, we would like to test larger instances, to see the
performance of the heuristics on bigger examples. In this regard, we were hampered by
the long running time of the algorithms, especially the Simulated Annealing. Finally, we
have by no means exhausted the variety of approaches to solving the placement problem.

In the next chapter, we shall mention one of the methods that we did not implement.

Placement Problems Arising From Automatic Logic Compilation

-81-

Chapter 5

Terminal Placement in a Single Channel

In Chapter 4, we considered some local improvement heuristics for Cluster Place-
ment in an Array of Gates. The heuristics tried to decrease the total density of the array
of gates, taken as a whole. It is possible to fashion heuristics that try to optimize the
placement of signals in one channel at a time. One way to do this is first to specify the
placement of the signals in the first two gates, then successively use the placement at the
i™" gate to drive the placement of the signals at the i+1% gate. For example, Terai uses
this strategy to improve the placements for terminals in a gate array [Terai]. Bui and Lee
mention this method as an approach to solving the problem of cell positioning in a stan-
dard cell circuit layout [Bui]. Also, Kobayashi and Drozd consider the problem of termi-
nal placement in a channel with cells of fixed extent, each cell consisting of movable
(possibly repeating) terminals [Kobayashi].

In this chapter, we consider some problems arising from the above successive
optimization heuristic. The main problem we consider is how to place the signals (or ter-
minals) in a single channel to minimize the density. We call this problem Single Chan-
nel Placement (SCP). We know, of course, from the NP-completeness proof for Cluster

Placement in an Array of Gates that this problem is NP-complete.

Since the main problem is hard, we consider some subproblems that arise in trying
to solve the main problem. Some earlier work has been done by Atallah and Hambrusch
for the problem of terminal placement into a fixed set of positions, with no clusters.

They showed that the problem of achieving the optimal density is solvable in polynomial

Placement Problems Arising From Automatic Logic Compilation

-82-

time for the following cases: (1) the top terminals have fixed positions and all the bottom
nets have the same number of terminals; (2) all top nets have the same number of termi-
nals and all bottom nets have the same number of terminals [Atallah1]. In the same
paper, Atallah and Hambrusch showed that the problem of density minimization for
multi-terminal nets (no clusters) is NP-complete, even if the positions of the upper termi-
nals are fixed. They also have results for the related problem where the ordering of ter-

minals is known and the only allowed movement is rotation of the terminals [Atallah2].

First, in Section 5.1, we consider some restrictions on the number or order of clus-
ters and signals within the gates; and we give the complexities of some of these cases.
We then add the further restriction that the top terminal positions are fixed; we call this
new problem Bottom Terminal Placement (BTP). In Section 5.2, we shall prove that
given a limit on the channel length, the problem of BTP is NP-complete, even if res-
tricted to the case where there are no clusters. In Section 5.3, we present one way of try-
ing to solve BTP that is based on considering clusters as ‘‘single points,”” thus dividing
the placement problem into smaller subproblems. Finally, in Section 5.4, we present an
algorithm for terminal placement in a channel. We show that the algorithm achieves the
optimal density, and we present the motivation for the algorithm, which is to minimize

the channel width under a jogless routing model.

Note that in the rest of the thesis, we shall flip the orientation of channels so as to be
horizontal, with terminals lying along the top and bottom instead of along the left and
right. We do this because it is usual to consider horizontal channels when dealing with

channel routing and placement problems.

5.1. Some Restricted Cases for Single Channel Placement

There are special cases of the Single Channel Placement problem that are solvable
in polynomial time. In this section, we briefly outline the state of knowledge of the prob-

lem under four possible restrictions:

Placement Problems Arising From Automatic Logic Compilation

(A)
(B)
©
(D)

-83-

Clusters are relatively ordered
Signals within clusters are ordered
At most / clusters, / a constant

At most p signals per cluster, p a constant

Case 0: None of the restrictions hold

This is just a subcase of the general problem for which the proof of NP-

completeness still holds.

Case 1: (C) and (D) both hold

This case is polynomial, since there are a bounded number (at most [* p) of ter-
minals in each gate. One algorithm is simply to try all possibilities. This type of
idea has been used for multi-column pin alignment for cascode-switch trees

[Schlag].

Case 2: (B) and (C) both hold

This case is polynomial, since there at most /! possible orderings of the clusters
of each gate, and each such ordering forces a strict ordering of the signals. The
remaining problem can then be reduced to one of deciding the alignments
between the top and bottom rows of a channel, where the terminals of both rows
are relatively ordered. This problem was solved in [Gopal], which gives an

O (T?) algorithm, where T is the number of nets.

Case 3: (A) and (B) both hold

This is polynomial, since the terminals in both gates are totally ordered; thus, the

algorithm by Gopal, et. al., mentioned above solves the problem.

Case 4: Only (D) holds, with p >3

This case is NP-complete. The reduction (practically identical to the one in Sec-
tion 4.1) is from Mincut Linear Arrangement restricted to planar graphs with

maximum vertex degree 3, which was shown to be NP-complete by Monien and

Placement Problems Arising From Automatic Logic Compilation

-84 -

Sudborough [Monien].

Remaining cases:

The exact complexities for the remaining combinations of restrictions are

unknown.

As a note to case 4 above, there is a simple algorithm that achieves density 2 for the

case when p =1 — that is, each cluster consists of a single signal — and we want a

minimum-length channel. It is easy to see that for arbitrary-length channels, a density of

1 can be achieved. The algorithm for minimum-length channels follows.

Placement of Singular Clusters:

1)

2

3)

Q)

Initially, all clusters start unassigned.

For each signal, have a top excess set and a bottom excess set, both initially empty.

Until there are no unassigned clusters on the top:
For unassigned top cluster ¢, if there is an unassigned cluster b from the bottom such
that ¢ and b contain identical signals, then form the pair (z,). Clusters ¢ and b are

now considered assigned.

If ¢ cannot be paired, then place ¢ in the top excess set for the signal contained in ¢. ¢

is now considered assigned.

Until there are no unassigned clusters on the bottom:
For unassigned bottom cluster b, there cannot be any top cluster available to pair
with, so place b in the bortom excess set for the signal contained in b. b is con-

sidered assigned.

First, place the clusters that are in the excess sets. For both the top and bottom
rows, start at column 1 and proceed to the right, never skipping a column. Place one
excess set at a ﬁtﬁe, and for each excess set, place its clusters consecutively. Of
course, top excess sets are placed on top, and bottom excess sets are placed on the

bottom. The result of this step is a tight packing of terminals on both the top and the

Placement Problems Arising From Automatic Logic Compilation

-85 -

bottom (e.g., see figure 5-1(a)).

(5) Finally, place the paired clusters. For each signal, we define its extent to be the
range of columns in which it is placed. For each pair, simply insert a column within
the extent of the corresponding signal and place the clusters in that column. If the
signal’s extent is a single column, simply insert a column adjacent to that single
column. If the signal’s present extent is empty, then simply add a column after the
present rightmost column in the channel. Update the extent to include the added

column.

Top Clusters: (1), (1), (1), (2), (3), (3), (3), 3), (3), (4), 4)
Bot Clusters: (1), (1), (2), (2), (2), (3), (3), (3), 4), (4)

(a) Placement of excess sets

(Paired signals are circled)
extent of 1 extent of 3
RN oNoNORERoRoNOBENONC
L] t l I r I
! L Ba:
r2 2002000 06
extent of 2 extent of 4

(b) Possible final placement and routing

figure 5-1 Example usage of algorithm for singular clusters

Placement Problems Arising From Automatic Logic Compilation

-86-

The final placement can be routed using at most 2 horizontal tracks, since the origi-
nal extents of excess signals on the same side do not intersect and since the paired signals
do not require any extra tracks. Figure 5-1(b) shows a possible final placement and rout-

ing.

5.2. Top Terminals Fixed, No Clusters, Length Bounded

Although Atallah and Hambrusch showed that the problem of density minimization
for multi-terminal nets (no clusters) is NP-complete, even if the positions of the upper
terminals are fixed [Atallahl], they left open the question of whether the problem
remains NP-complete if all lower positions within the fixed-length channel are allowed
(rather than some specified subset). We consider the following problem, which is a form

of the Bottom Terminal Placement problem:
Length-Constrained Placement (LCP):

Instance: Integers d, L. A set of nets. A fixed placement of the top terminals
(which doesn’t necessarily include all the nets); and for each net i, k;

lower terminals. Terminals are placeable at any integer positions.

Question: Can the positions of the terminals be fixed such that the channel density is

less than or equal to d and the channel length is less than or equal to L ?

LCP is clearly in NP. One may simply guess a placement of the terminals and
check in polynomial time that the channel length and density requirements are met.
Similarly to Atallah and Hambrusch’s proof in [Atallahl], we give an NP-hardness

reduction from a restricted form of 3-Partition.

Start: A 3-Partition instance &, with set A consisting of 3q elements, a size s (a) for

each a € A such that B/4 < s(a) < B/2, a target integer B, and Y s(a)=¢gB.

acA
Additionally, we require that |B| = poly(q). Since 3-Partition is strongly NP-

complete, the problem is still NP-complete with the restriction that B is

Placement Problems Arising From Automatic Logic Compilation

-87-

polynomial in the size the input [Garey].
The question is ‘‘Is there a partition of A into ¢ (equal-size) disjoint subsets
such that sum of each subset’s elements’ sizes equals B ?”’
Reduction: Construct an instance A of LCP with 2¢B +2q + 10 terminals in 6q +4
nets.
e For every i, 1 <i <3q, create net N;, which requires exactly s(a;) lower
positions and no upper positions, for a; € A. [¢B terminals]
e Forevery j, 1 <j <gq, create net §;, which requires exactly B —2 upper posi-
tions and no lower positions. [g(B—2) terminals]
e For every k, 0<k <g, create nets Oy; and Oy, both of which require
exactly 2 upper positions and no lower positions. [4(g+1) terminals]
e Create 2 nets & and €, each requiring exactly 2 lower positions and one
upper position. [6 terminals]
e letd=2andL =¢B +2q+6.

The fixed placement of the upper terminals is as follows:

B-2 B-2 B-2
7 i T — —
€0 001902002001 &1 & -+ 8, 0110150120118, 8, -+ & s 8 8y -+ 8,0, 10, 85,5,1 &4
[S T T T SR |) e el

The question for A is: ‘‘Can we place the bottom terminals so that the channel den-

sity is d and the channel length is L ?*’
Correspondence between & and A:

From the above construction of A, we see that the channel density cannot be less
than 2, since the top row itself has a density of 2. Also, the top has exactly
L =gB +2q + 6 terminals, filling up the entire length of the channel, so every bottom ter-

minal must be placed directly underneath one of the top terminals. Since the density at

Placement Problems Arising From Automatic Logic Compilation

-88 -

any column is at least 1, because of the top terminals, the bottom terminals may add at
most 1 to the density of the channel. No bottom net may have terminals on both sides of

any top terminal Gy, since the density at 6y, for0 < k < g, is 2.

The bottom terminals for net €y must be placed in the first two bottom positions,
else the net €9 would have to cross the positions of net Gg;, thus creating a column with
density at least 3. Similarly, the bottom terminals for net €, must be placed in the last

two positions on the bottom.

For the remaining ¢B nets of the form N;, there are exactly gB bottom positions
legally available, namely those under the terminals & s 1 £j <g, and the free ones under
the terminals Oy, for 0 <k <gq. The allowable free positions are split into g regions of
B consecutive free positions, each region being separated from its neighboring region by
two unavailable positions (those under the terminals G, for 1 <k < g-1). Each net N;
may only have terminals in a single region, since otherwise there would be an extra net

passing through some position for some Gy, in which case the density must be at least 3.

If the elements are 3-partitionable in &, then we may place the bottom terminals N;
in A according to the set partition of &. In the latter problem, a region of B consecutive
free positions is equivalent to a set in the former problem. If we have a solution to A,
then we know that each region must contain exactly 3 different N; (since
B/4 < s(a) < B/2); thus, since each net is contained in only one region, there is a
corresponding solution to ®. We thus see that the given instance m of 3-Partition is

equivalent to our constructed instance A of LCP.
O

Note that the proof above works even if the top terminals are relatively ordered
rather than fixed in position — the upper terminals exactly fill up all positions on the top

row, so there is only one way to position the terminals if they are relatively ordered.

Placement Problems Arising From Automatic Logic Compilation

-89 -

5.3. Transformation to a Smaller Problem

Now, consider using an algorithm that performs the placement of terminals in one
gate at a time. Using the fixed placement from some gate i, we place the terminals in
gate i+1 by trying to minimize the width of the channel between gates i and i+1. Let
gate i correspond to the top row of the channel and gate i+1 correspond to the bottom
row. We shall consider the conceptually simpler case where the top terminals are non-
repeating. From the Weinberger array realm, this situation occurs if we only allow one

line for each net to propagate from one gate to the next.

A natural algorithm structure for solving the above problem is first to decide the
ordering and extents (list of occupied columns) of the clusters on the bottom, then to
order and place the signals within each individual cluster. The problem of ordering the
clusters on the bottom is akin to the problem of Mincut Linear Arrangement of the clus-
ters, but there is the added complication of the fixed terminals on the top and determining
the extent of each cluster. Still, the same sort of methods used for MLA (e.g., Rowen
tries such methods as simulated annealing and iterative improvement [Rowen]) should

perform reasonably well.

Suppose we have decided by some method the ordering and extents of the clusters.
Then, for each cluster on the bottom, the set of terminals opposite the cluster’s extent is
fixed. We may independently solve the smaller subproblems of placement within each
extent. By considering the set of terminals opposite a cluster as a unit, or pseudo-cluster,
we can then garner some information on the range of the densities achievable for the
channel. For example, figure 5-2(a) shows a possible ordering of clusters, given a fixed
terminal placement of the top. Figure 5-2(b) collects each pseudo-cluster and its match-
ing cluster, combining them to form a cluster/pseudo-cluster pair. The intervals represent
the ranges of the nets within the channel. A ““cut’’ at a position between two pairs is the
number of intervals that cross that position. We call the maximum cut between any

cluster/pseudo-cluster pairs the exterior density, and it is a lower bound on the achievable

Placement Problems Arising From Automatic Logic Compilation

channel density.

6 7

top:

bottom:

1
1
1
]
1
1
1
1
]
1
]
1
]

(a) Sample ordering of clusters

YR § P .
2 F . ;

il e
cut=4 cut=3 cut=2
(b) Ranges of nets, cuts between cluster pairs

figure 5-2 Calculation of density lower bound

By a simple example, we can show that the exterior density may greatly underesti-

mate the global density. Assume that the exterior density is %l. Figure 5-3 shows a
cluster/pseudo-cluster pair of length /. On the top row, % terminals with connections

only to the right are placed to the left of % terminals with connections only to the left.

The bottom row consists of / terminals with connections to both the left and the right. In
this bad case, the density is 2/ at a cut in the center of the pair. This figure is

significantly larger than the exterior density. This indicates the importance of choosing

Placement Problems Arising From Automatic Logic Compilation

-91-

well the orderings and extents of the clusters.

TOP TERMINALS

BOTTOM TERMINALS

cut=21/

figure 5-3 Example interior placement

An interesting question is, given a cluster/pseudo-cluster pair, how close to the best
achievable density can we get? In this problem, every net can have at most one terminal
on the top (by assumption) and at most one terminal on the bottom (since clusters are sets
of signals). In Section 5.4, we shall present an algorithm for placement within a
cluster/pseudo-cluster pair. We show that the algorithm achieves the optimal density for

the pair.

5.4. An Algorithm for Terminal Placement

In this section, we present an algorithm for the problem of terminal placement

within a fixed-length channel under the following conditions:

Placement Problems Arising From Automatic Logic Compilation

-92.

e Exact positioning of the top terminals of the channel.

e Bottom terminals are totally flexible within the channel.

e A net may have at most a single top terminal and a single bottom terminal.
e Nets may enter from the left and exit to the right of the channel.

The fixed-length channel represents a cluster/pseudo-cluster pair. The top terminals
are fixed, and the bottom terminals are the (non-repeating) signals from a single cluster.
A net enters from the left if the net connects to a terminal to the left of the
cluster/pseudo-cluster pair; a net exits to the right if it connects to a terminal to the right.
We shall show that a placement obtained by our algorithm will achieve the optimum
channel density, although we have not been able to prove whether or not the placement

allows us to achieve the optimal width.

First, we define some terms that we use. A net is said to be advancing if it exits to
the right of the given channel but does not enter from the left. Likewise, a net is trailing
if it enters from the left of the given channel but does not exit to the right. If a net both
enters from the left and exits to the right, we call it a passing net; if a net neither enters
from the left nor exits to the right, it is a stationary net. A single net is one that only has
a single terminal within the extent of the channel. A multiple net has two terminals, a top
one and a bottom one. A multiple net whose terminals are both placed in the same
column is called a matched net. Conversely, a multiple net whose terminals are placed in
different columns is called split. Finally, we define a net’s extent to be the interval from
the leftmost column occupied by the net to the rightmost column occupied by the net.
For this purpose, trailing nets and passing nets are assumed to occupy a position in an
extra leftmost column; advancing nets and passing nets are assumed to occupy a position

in an extra rightmost column.

As a final note, we shall sometimes use the net’s name in referring to a terminal.

We shall try to make clear which usage is meant.

Placement Problems Arising From Automatic Logic Compilation

-93.-

5.4.1. The Algorithm
We now present our algorithm.

Algorithm 5.1:

(1) For each multiple net, match up the terminals, placing them in the same column.

(2) For each single advancing bottom net in turn, place its terminal in the rightmost
available bottom position.

(3) For each single trailing bottom net in turn, place its terminal in the leftmost avail-

able bottom position.

(4) For each single passing bottom net in turn, place its terminal in any available posi-
tion.

(5) Fix up the placement to achieve the optimal density by performing swaps of bottom
terminals. The only allowed swaps are (a) a single advancing net for a matched
trailing or passing net’s bottom terminal (see figure 5-4) or (b) a single trailing net

for a matched advancing or passing net’s bottom terminal.

—

a b b a

figure 5-4 Example of a swap

Before we give the procedure for step (5), we consider the placement produced by
the first four steps of algorithm 5.1. The important features, which are clear from the
construction of the placement, are that all multiple nets are matched and that all single
advancing bottom nets are placed to the right of all single trailing bottom nets. We may
divide the placement into 5 different areas, according the positions of 4 defining nets, as

shown in figure 5-5. Here, L, is the leftmost single advancing bottom net, R , is the

Placement Problems Arising From Automatic Logic Compilation

-94 -

rightmost single trailing bottom net, L, is the leftmost matched advancing or passing

net, and R, is the rightmost matched trailing or passing net. The areas are defined as

follows:

Area 3:

Area 1

.

Area 5:

Area 2:

Area 4:

The region lying between the two nets R iy and L. Note that by steps (2) and
(3) of algorithm 5.1, R i, must lie to the left of Lgy,. If Ry does not exist, then
Area 3 extends all the way to the left end of the channel. Likewise, Area 3

extends all the way to the right end, if L, does not exist.

The region lying to the left of all four of the defining nets and to the left of

Area 3.

The region lying to the right of all four of the defining nets and to the right of
Area 3.

The region lying to the right of Area 1 and to the left of Area 3. Note that this
region may include up to two of the defining nets, if L, lies to the left of R gy .
If L, lies to the right of R gy, then Area 2 consists of exactly the column con-
taining R .

The region lying to the right of Area 3 and to the left of Area 5. It’s structure
parallels that of Area 2.

A

Area 1 Area 2 Area 3 Area 4 Area s

figure 5-5 The 5 areas after the first 4 steps of alg. 5.1

Placement Problems Arising From Automatic Logic Compilation

-05-

Our procedure for decreasing the density is as follows:
Step (5) of Algorithm 5.1:

e Calculate the densities dens; , ..., denss in all five areas.

Let d = max [dens | denss denss).
e While (dens, > d and R g, lies to right of L)

Swap the positions of the bottom terminals for the nets R s, and Ly,
Update R, and L., thus expanding Areas 1 and 3, contracting Area 2. Up-

date the values for dens ,, dens ,, denss, and d.
e While (dens4 > d and L, lies to left of R)

Swap the positions of the bottom terminals for the nets Ly, and Ryug.
Update Lg, and R, thus expanding Areas 3 and 5, contracting Area 4. Up-

date the values for dens 3, dens 4, dens s, and d.

Now, we wish to show that the fix-up step number (5) in the algorithm finds an
optimal placement, in terms of density. First, we make some observations about what
types of terminals may be placed in the various regions during and at the end of the run-
ning of algorithm 5.1. We only consider bottom terminals, since the top terminals are

fixed.

(A) All single passing bottom nets must be placed within area 3.
By step (2), (3), and (4), the single passing nets must start between the set of single
trailing nets and the set of single advancing nets. Step (5) allows single trailing nets
to move only to the left and allows single advancing nets to move only to the right,
so the single passing net terminals always remain to the right of R i, and to the left
of L 4.

(B) No multiple trailing net has its bottom terminal placed to the right of its top termi-
nal.

By step (1), all multiple nets start matched. The only possible movement of a

Placement Problems Arising From Automatic Logic Compilation

-96 -

terminal occurs in step (5), where a multiple trailing net’s bottom terminal is
swapped with a single advancing net’s terminal. But this movement always moves

the muliple net’s bottom terminal to the left.

(C) No multiple advancing net has its bottom terminal placed to the left of its top termi-
nal.

Reasoning parallel to that for item (B).

The following two lemmas show that the density may not possibly be decreased in
areas 1, 3, or 5. Analyzing the density of area 5 is sufficient to characterize the density of
area 1, since the two regions are equivalent under a flip of the placement about a vertical

axis.
We define the following terminology:

P = the set of passing nets, includes single and multiple nets
SAB = the set of single advancing bottom nets
MA = the set of multiple advancing nets

MT = the set of multiple trailing nets

Lemma 5.1:
At any step in the running of algorithm 5.1, the density within area 35, if the area

exists, can not be decreased.
Proof:

If area 5 does not exist at the start of the algorithm, it will never exist, since
the extent of area 3 never contracts. On the other hand, if area 5 exists at the start
of the algorithm, an area 5 will always exist, since the extent of area 5 never con-

tracts. We shall now assume that area 5 exists.

We consider what types of terminals and nets may occur within area 5 at any
time during the running of algorithm 5.1. Since the top terminals are fixed, the

density due solely to the single top terminals is also fixed; therefore, we only

Placement Problems Arising From Automatic Logic Compilation

X

calculate the density due to nets that have bottom terminals. Also, by definition,
R ¢, must lie to the left of area 5; therefore, all single bottom nets within area 5
are advancing. Thus, the density of area 5, at some point x, due only to nets hav-
ing bottom terminals is (using ‘‘left’” to mean at or to the left, “‘right’’ to mean at

or to the right)
densityp,;(x) =| P| +| subset of MA left of x| +| subset of SAB left of x| +
| subset of MT with top terminal right of x|

Note that the passing nets in P always add to bottom density at x. Also, the
indicated multiple advancing nets in MA must add to the bottom density, since the
top terminal is fixed at a position at or to the left of x. A multiple trailing net may
either be matched or split. Since by definition, the rightmost matched trailing net
R,z must be to the left of area 5, any multiple trailing net of MT within area 5
must be split. By (B) above, a split multiple trailing net has its top terminal
placed to the right of its bottom terminal; therefore, if the net adds to the density

at x, it always must, since the top terminal is fixed.

Finally, there are the single advancing bottom (SAB) nets within area 5.
Consider a specific SAB net named 7 that is placed to the left of x. Since 7 is to
the left of x, it adds to the density at x. In an arbitrary configuration, f may be
placed to the right of x, thus not adding to the density at x. The question is
whether or not there exists a configuration with 7 placed right of x such that the
density at x is reduced. Consider the bottom nets placed to the right of x, since if ¢
is moved to the right of x, then something originally to the right of x must be
moved to the left of x. The bottom terminals placed to the right of x may be one
of the following: a matched stationary net, a matched advancing net, or a single
advancing net. The terminals may not be matched passing because R, is left of

x. Note that there are no empty bottom positions to the right of ¢, since step (2) of

Placement Problems Arising From Automatic Logic Compilation

-98 -

the algorithm places single advancing bottom nets as far right as possible. Also,
none of the nets may be split, since if the bottom terminal of a split net lies to the
right of x, then it could only have been split by step (5) of the algorithm. This
means that L, lies to the right of x, which contradicts the original assumption
that x lies in area 5. Replacing ¢ by any of the three possible kinds of nets will not

decrease the density at x; thus,the density within area 5 can not be decreased.

O
Lemma 5.2:
At any point in the running of algorithm 5.1, the density within area 3 is locally
optimal.
Proof:
Using arguments similar to that for lemma 5.2 above, we can show that for

some point x within area 3,
densityp,(x) =| P| +| subset of MA with either terminal left of x| +
| subset of MT with either terminal right of x|

From (C), if the bottom terminal from some net in MA is at or left of x, then so is
the top terminal; thus, that net must affect the density at x. Likewise, from (B),
we may deduce that any net in MT that affects the density at x will affect the den-
sity at x for any placement of the bottom terminals. On the other hand, the pass-
ing nets in P will affect the density at all positions. Also, by definition of the
areas, all single advancing bottom nets lie to the right of area 3 and all single
trailing bottom nets lie to the left of area 3; therefore, they cannot add to the den-

sity at x. Thus, the density within area 3 is locally optimal.
O

Theorem 5.1:

The placement produced by algorithm 5.1 achieves the optimal density.

Placement Problems Arising From Automatic Logic Compilation

-99 .

Proof:

Each swap in step (5) may possibly decrease the local density within area 2
or 4. The algorithm stops when the densities within areas 2 and 4 are both less
than or equal to the maximum density within the areas 1, 3, and 5. Since, by lem-
mas 5.1 and 5.2, the local densities within areas 1, 3, and 5 are locally optimal,
the termination of the algorithm under such a condition means that the global
density of the channel has been optimized. Note that in the extreme case, one or

both of the areas 2 and 4 disappear completely.

An example solution placement (along with an optimal wiring) is shown in figure
5-6. After steps (1) - (4), the order of the bottom terminals is 8, 6, 3, 7, 5, 9O (see figure
5-6(a)). The nets 8 and 5 define area 4. In step (5), terminals 8 and 5 are swapped, since
doing so reduces the density. The new area 4 is defined by the nets 6 and 3. Since the
density in area 4 is now equal to the density in areas 3 and 5, there is no need to swap ter-

minals 6 and 3, and we are finished (see figure 5-6(b)).

5.4.2. Considerations of Channel Width

The motivation for algorithm 5.1 was not just the minimization of the channel den-
sity, but also the minimization of the channel width. We realized that finding the width
is a difficult task under most routing models, so we decided to consider the conceptually
simple 2-layer, Manhattan, jogless model. In a model that is jogless, we may not have
jogs — that is, each net’s wires may occupy a portion of at most one horizontal track.
So, wiring such as that in figure 5-7(a) may not be used. Also, the situation shown in

figure 5-7(b) cannot occur, since it is indicative of a jog.

In a jogless routing model, the channel density is a useful estimate of the channel

width, although density is more accurate for a routing model which allows jogs. The

Placement Problems Arising From Automatic Logic Compilation

- 100 -

_..
(S
w
I
W

R S S 9

|
o
. &
& o
]
5 &6 3. . T 8 9

(b) After step (5)

figure 5-6 Example result of running algorithm 5.1
factors that may throw off the estimate are the vertical constraints. A vertical constraint
forces a certain net’s horizontal segment to be above or below other net’s segment. For
example, see figure 5-7(b). Here, nets / and 2 have terminals in the same column, with /
being on the top row and 2 being on the bottom row. Net I’s segment must be above net
2’s segment; otherwise there would be a collision of the vertical segments for the two
nets (or we would be forced to use jogs). Algorithm 5.1 was designed to keep to a
minimum the number of vertical constraints while at the same time minimizing the den-
sity. Step (1) of the algorithm, which matches up all multiple net terminals, is the step
responsible for keeping the number of vertical constraints small, since matched nets can-

not form vertical constraints.

Placement Problems Arising From Automatic Logic Compilation

- 101 -

(a)

This vertical segment

- T forces a jog

(b)

figure 5-7 Examples of wiring using jogs
To keep track of all the constraints, we may construct a vertical constraint graph, or
VCG [Hashimoto]. A VCG is a directed graph containing a node v; corresponding to
each net i. An arc goes from node v; to v; in the VCG if there is a vertical constraint that
the segment for net i must be above the segment for net j. For example, the VCG in

figure 5-8(b) corresponds to the placement of terminals shown in figure 5-8(a).

One point that requires mention is that if the VCG contains a cycle, then there is no
way to route the channel without using jogs. A cycle requires that some net i occupy a
track above the track occupied by itself; but this requires that i occupy a portion of at
least two different tracks, which violates our condition that no jogging is allowed. We
can show that the placement produced by algorithm 5.1 never contains a cycle in the

VCG, hence there will be a legal wiring that does not use jogs.

Lemma 5.3:

The VCG corresponding to the placement produced by algorithm 5.1 does not

Placement Problems Arising From Automatic Logic Compilation

- 102 -

5 3 6 7 8 9
(a) Placement with density 5, width 6

Vi Va IV4 ®Vg

Vs Vi VT

Vg Ve

(b) Corresponding vertical constraint graph

figure 5-8 Example Vertical Constraint Graph

contain a cycle.

Proof:

After step (1), all multiple nets are matched. Since a cycle requires nets to
be split, there is no cycle in the VCG graph. The only step where multiple nets
may be split is step (5). However, in each swap, the bottom terminal of the multi-
ple net is replaced by a single bottom net’s terminal. This single bottom net is
never forced to be above any other net, so no cycle can be formed be formed in

the VCG.

In fact, the form of the VCG is very highly constrained. A net may have at most
two terminals, one on top and one on bottom, so each vertex in the VCG may have at

most one incoming edge and one outgoing edge. Also, the maximal length for a chain in

Placement Problems Arising From Automatic Logic Compilation

- 103 -

the VCG is three: A chain can only be formed if there exists a split net. By the algo-
rithm, the top terminal of a split net must match with either a single advancing net or a
single trailing net. This stops the progress of this chain in the forward ("above") direc-
tion. The bottom terminal of a split net had to have swapped with a single bottom net,
which must have been originally aligned with a single net; thus the progress of this chain

is halted in the backward direction.

In order to achieve the best possible width, horizontal wire segments must be able to
share the same track. Since we are using a jogless routing model, we may modify the
VCG to account for nets sharing a track. Figure 5-9(a) shows a modified VCG that
corresponds to the placement and wiring of terminals shown in figure 5-6(b). The set of
squiggly lines is a maximal matching of the VCG nodes, and they correspond to the shar-
ing of horizontal tracks used by segments in the wiring of the channel. Note that given a
solution by algorithm 5.1, at most two nets may share any given track, since all nets that

require a horizontal segment are advancing or trailing.

Sometimes, we are not able to achieve a width equal to the density, because certain
nets cannot share. This type of situation can be observed in a modified VCG in figure 5-
9(b), which corresponds to the terminal placement given in figure 5-8(a). For this place-
ment, net 5 may only share with net 9. This forces net 4 to share with net 8, in turn forc-
ing net 3 to share with net 7. Nets sharing the same track also share their vertical con-
straints, though; so, net 6 cannot share with net J, otherwise a cycle
(vi > Vvs = vg~vy —V7~V3 = Vg ~Vy) is produced. Therefore, the density of five

cannot be achieved, and the width of the placement is six.

Note that the terminal placements of figure 5-6(b) and figure 5-8(a) are identical
except that the terminals for nets 6 and 3 have swapped positions. The differing widths
for the two placements illustrates the danger of making a seemingly innocuous switch.
The problem arises because the matching given by the VCG in figure 5-9(a) is the unique

maximal matching that does not create a cycle. In figure 5-9(a), there is a “‘path’” from

Placement Problems Arising From Automatic Logic Compilation

- 104 -

V2
Vi Vg
Vs 4]
Vs V4
V7 V3
(a)
Vi
Vs Vo
Vg V4 Va
V7 Vi3
Ve
(b)

figure 5-9 Track sharing in a VCG
Vg to v3; therefore, net 6°s horizontal segment must lie above net 3’s horizontal segment.
When the terminals are swapped, the constraint is added that net 3 must lie above net 6,
thus disallowing the original maximal matching. If there were no path between the two
nodes, then swapping is safe if all matches in the matching are still allowed. Specifically,
this requires that no node is shifted to the wrong side of the net with which it shares a

track.

Unfortunately, we have not been able to show whether or not a solution found by
algorithm 5.1 always allows a routing that achieves the optimal width. There are indica-

tions that certain configurations of terminals that are never allowed by the algorithm may

Placement Problems Arising From Automatic Logic Compilation

- 105 -

safely be omitted by an optimal placement of the terminals, but we have not been able to

prove that the indications are true.

5.5. Open Problems and Future Research

For the problem of Single Channel Placement, there are still a number of problems
of unknown complexity that involve restrictions on the order of clusters or signals and on
the number or sizes of clusters within a gate. It would be satisfying to classify those

problems.

For the problem of Bottom Terminal Placement, we might determine experimen-
tally how well our suggested heuristic performs. Of course, much of that depends on
good heuristics for the problem of ordering the clusters, which is quite similar to the

problem of ordering gates.

Also, we would certainly like to know if algorithm 5.1 finds an optimal-width place-
ment for the problem where the top terminals are placed in fixed positions and each net
may have at most a single top terminal and a single bottom terminal. Section 5.4 shows
some progress toward this goal for a jogless routing mode, but it does not answer the
question fully. If algorithm 5.1 is not optimal, we would then try to develop another
algorithm. There is also the question of how well algorithm 5.1 performs under a model
that allows jogs. The complication under a model where jogs are allowed is that nets are
no longer bound to have their horizontal segments all lie in a single track, thus enlarging

the set of allowable solutions.

Finally, we might in the future implement the algorithm of placing terminals in one
channel of the array at a time. It would be interesting to compare its performance against
that of the heuristics studied in Chapter 4, although we expect the more global heuristics
of Chapter 4 to perform better than the one-channel-at-a-time heuristic, which may find a

good placement for early channels, only to force bad placements for later channels.

Placement Problems Arising From Automatic Logic Compilation

- 106 -

Chapter 6
Decreasing Lower Bounds by Channel Widening

So far, we have considered only density as a basis for estimating the amount of
space needed by a particular channel assignment. Although channel routing under the 2-
layer Manhattan model is NP-complete, some heuristics route most instances using a
number of tracks very close to the density [Rivestl] [Yoshimura]. It has been noted,
however, that some instances require many more tracks to route than would be indicated
by the density [Brown]. This has led to a new lower bound called flux, which was intro-
duced by Baker, Bhatt, and Leighton [Baker]. They showed that the channel width is

upper bounded by a function that is linear in both density and flux.

In Chapter 5, we discussed some issues regarding the minimization of the channel
density. In this chapter, we consider a later stage in the placement and routing of a single
channel. Suppose that we have performed the density optimization, and we have verti-
cally aligned our terminals the way we want them. To maintain our vertical alignment,
we may not switch the order of terminals on either the top or the bottom, and we may not
place an empty space in the top without placing an empty space in the corresponding
position on the bottom (or vice versa). This means that we cannot change the density,
which can only be changed by altering the order or alignment of terminals. It may still
be possible to lower the width of the channel, though. If we have the flexibility to do so,

we may add an empty column (place empty spaces in corresponding positions on both

t The results in this chapter are due to joint work with Fook-Luen Heng, Andrea S. LaPaugh,
and Ron Y. Pinter.

Placement Problems Arising From Automatic Logic Compilation

- 107 -

the top and the bottom), thereby reducing some channel width metric other than density.
Flux is an interesting metric to use because it captures the idea that routing space may be
reduced by maneuvering signals via empty columns; adding empty columns can decrease

flux.

In Section 6.1, we distill the essential properties of flux to describe a general class
of channel width metrics; then we give an example of a metric, smooth-flux, which
belongs to this class. Smooth-flux is derived from flux, but it has desirable properties not
held by flux. In Section 6.2, we present an algorithm that solves the problem of decreas-
ing a channel width metric to some target value, using as few extra columns as possible.
This is followed by a proof that the algorithm finds an optimal solution. In Section 6.3,
we consider the computational complexity of the lower bound metric smooth-flux. In
Section 6.4, we analyze the timing requirements for our algorithm. We conclude with

some extensions of our problem and some suggestions for future research.

6.1. Smooth-Flux

To define flux, Baker, Bhatt, and Leighton [Baker] consider horizontal cuts within
the channel, where a horizontal cut isolates from all other terminals those terminals
placed on a given row between two given points. Horizontal cuts may either be on the
top or bottom row. Flux bounds the number of tracks needed to connect (to each other
and to terminals outside the cut) the terminals in a horizontal cut. This is in contrast to a
vertical cut, used in calculating density, which isolates the all terminals to the left of

some point from those to the right of that point.

We formally define flux as follows. A trivial net is one comprised of exactly two
terminals, both of which lie in the same column — a trivial column. The flux fis the
largest integer for which some horizontal cut spanning 2f?* nontrivial columns splits at

least 2f2 — f nontrivial nets. A net is unsplit by a cut if all of this net’s terminals lie

Placement Problems Arising From Automatic Logic Compilation

- 108 -

either inside the cut or outside the cut; otherwise, the net is split. (See figure 6-1.)

A horizontal cut, with flux =2 —\ /An unsplit net

V oy
Top row: 6 1 2|3|1|4 2 6 7 8 9 5 5|1011 1213

Bottomrow: 10 10 1|3 |13 8§ 9 2 Ql 111 7 6
LTrivial column Empty Space

Figure 6-1 Flux terminology

Unfortunately, flux is somewhat anomalous, making it inappropriate as a measure to
be minimized. Specifically, flux is not monotonic; that is, we may add an empty column
and actually increase the value of the flux (see figure 6-2). This anomalous behavior
occurs due to the coarse granularity between allowed cut sizes in calculating flux — all

cuts are of size 2i2, for some integer i.

For our purposes, we want a metric that is well-defined and fairly easily computed
for any given window, where a window is a cut that isolates a set of contiguous horizon-
tal positions from all other positions. Notice that a horizontal cut is a window that con-
tains only positions on the top of the channel or on the bottom of the channel. In general,
a window may contain positions from both the top and bottom of the channel. For a win-
dow w, define [(w) to be the leftmost terminal or empty space (or column) in w and r (w)
to be the rightmost. When we speak of decreasing the metric for a window w by adding
empty columns, we consider the total number of columns spanned by w to be variable;

but / (w) and r (w) are fixed. The following conditions must be satisfied by our metric:

Placement Problems Arising From Automatic Logic Compilation

- 109 -

Start
1 2 3 <+ 5 6 7 8 9 10
Column #: F } f ! f } I { f !
Top row: 1 1 2 A3 4 5 6 6
Place empty columns here
Bottom row: 2 5 - - 3 4
Starting flux = 1, since there is no cut spanning 8 = 2% 2%
nontrivial columns that splits at least 6 = 2% 2% — 2 nets.
(And there are no cuts that span > 2* 32 = 18 columns.)
End
Top row: 1 1 2 3 4 5 6 6
Bottomrow: 2 5 3 4

This horizontal cut spans 8 columns and splits 6 nets,
so the ending flux = 2.

Figure 6-2 Example where adding empty columns
increases the flux

(1) No sub-window of w may have its metric value increased by the addition of empty

columns; that is, we require the metric to be monotonic (in window size).

(2) We must also be able to calculate how many extra columns must be added to a
given window in order to lower the metric value for that window to a given target

value.

Placement Problems Arising From Automatic Logic Compilation

- 110 -

(3) We must be able to compute the window’s critical extent — the region within the
window in which the extra columns must be added in order to achieve the target

value.

The above conditions do not absolutely rule out the possibility of a window whose
extent is not contiguous, but we do not know of any channel width metric that bounds the

width for non-contiguous windows.

There may be a number of metrics that satisfy our conditions above. However, the
following metric, derived from flux, is the only one we know of that does satisfy the con-
ditions, can be decreased by adding empty columns, and provides a useful lower bound
for channel width. We shall define a revised flux metric, smooth-flux, which may be cal-

culated for any horizontal cut.
Define:
C = the horizontal cut (window) under consideration.

n = the number of nontrivial columns in C.

e = number of empty spaces (positions not containing a terminal)
within C.

S = number of split nets within C (does not include trivial nets).
U = number of unsplit (one-sided) nets in C.
R = number of redundant terminals in C =n—-e—-S-U

Note that R counts the repeated terminals for the nets in S and U.

Definition:
Smooth-flux of the cut C, smooth—flux (C), equals the smallest possible that satisfies

the following equation:
we + o(w+]) + (-1)U+R) = S (6.1)

The smooth-flux of a channel is the maximum of the smooth-flux values of all the

Placement Problems Arising From Automatic Logic Compilation

-111-

windows within the channel. Note that equation (6.1) is basically identical to the equa-
tion defining flux, except for the inclusion of the term (@—1)(U+R). Solving the qua-

dratic inequality above, we find the smooth-flux to be

_ —(e+U+R+1) + \(e+U+R +1) + 4(U+R+S)
B 2

7 (6.2)

Or, since S+e+U+R =n,

_ =(n=S+1) + N(n=S+1)’ + 4(n—e)
2

f

This measure bounds from below the number of tracks needed to route all the split nets in
C. The following analysis holds for either a horizontal cut on the top or a horizontal cut
on the bottom. The argument, similar to that in [Brown] and [Baker], bounds the number

of split nets that may be routed into the correct column by using a particular track.
track 1:

Two split nets may connect via track 1 to points outside the cut,
adding 2 more columns available for routing (see nets / and 6 in
figure 6-3). Also, e split nets may be routed into the e columns
under the free spaces in C (see net 7 in figure 6-3). Finally, we
might connect all unsplit nets and all redundant terminals. This
would add U + R more columns available for routing split nets on

all remaining tracks (see nets / and 2 in figure 6-3).

track 2 :

For each available column, we may possibly connect together the
terminals of a split net. There are (from step 1 above) at most
e +2+ U +R columns available. In addition, 2 more split nets
may be connected to points outside the cut, thus freeing up two

more columns.

Placement Problems Arising From Automatic Logic Compilation

-112 -

(to7)

6 free columns after track 1 routing

Figure 6-3 Example routing on track 1
etc.

So, on track i, we may connect at most e + 2i + U + R split nets, except on the first
track, on which we may connect at most e + 2 split nets. Thus, the maximum number of
split nets connected on @ tracks is:

© (0] [0
Ye+ 22+ Y (U+R)=
i=1 =l i=2

we + o(w+1) + (o-1)({U+R)

Since all split nets must be connected, this number must be greater than or equal to the

total number of split nets, S, hence smooth-flux constitutes a lower bound.
We may compute the number of extra columns needed to lower the smooth-flux
value from to ¢ by simply using the definition. That is, we may substitute ¢ for ® and

re-write equation (6.1) above to find the total number of free columns needed:

e S =t(t+1)—(-1)({U+R)
t
The number of columns we must add is simply e” —e. Since the smooth-flux value
for a window v does not depend on the positions but rather on the number of split nets,
free columns, unsplit nets, and redundant terminals, we may place the extra empty

columns anywhere strictly between [(v) and r (v).

Placement Problems Arising From Automatic Logic Compilation

-113 -

As to the question of whether or not adding an empty column to a window v can

raise the smooth-flux, the answer is no.

Lemma 6.0:

For any placement of terminals within a channel, adding an empty column can
not increase the channel’s smooth-flux.
Proof:

To see that this is the case, consider any new window v” created by the addi-
tion of empty columns. Clearly, v’ is equivalent to an original window v, plus
some empty space(s). By equation (6.2) and since the only change is an increase

in e, smooth-flux(v") £ smooth-flux(v).

Therefore, we may ignore the new windows if we wish to lower the value for

smooth-flux.

6.2. The Flux Reduction Algorithm

Our problem is the following: Given an instance of a channel with top and bottom
terminals, an appropriate channel width metric, and an integer 7, how many empty
columns must we add to reduce the channel width metric to 7, and where do we place the
empty columns?

In this section, we define some additional terms, present our algorithm, and give an

example of the use of the algorithm.

6.2.1. Formal Problem Definition
We begin by restating the problem we wish to solve in the following, equivalent terms.

SATISFACTION OF WINDOW DEMANDS [SWD]

Input: Problem instance P consisting of

Placement Problems Arising From Automatic Logic Compilation

114 -

e asetof windows W ={wy wa,..., wp}.

e each window w e W has an extent (I(w), r(w)), where /(w) and r(w) are
positive integers, [/ (w) < r(w). Of the two endpoints, /(w) is the start of the

extent and r (w) is the end of the extent.
e each window w € W has a demand &(w).
Objective:
e We are allowed to place columns at positions within the windows’ extents. We

may place a column at any non-integer position. No two columns may be

placed in the same position.

e If at least &(w) columns are placed within the extent of w, we say that the

demand of w is satisfied.
Question:

e Where do we place columns so that the demand of every window in W is

satisfied and so that we use as few columns as possible?

The correspondence between SWD and the problem of decreasing a channel width
metric by adding columns is readily seen. Here, Wepgnner is @ window derived from an
instance of the problem of decreasing the channel metric to a certain value by adding
empty columns; Wepammer is @ horizontal cut on either the top row or the bottom row.

Then, wewp is the window corresponding t0 Wpgnner in the instance of the SWD problem:
window wswp © Window Wehannel
extent (wswp) € critical extent of Wehannel
demand 8(wswp) < number of columns needed by W pannei

We note that the size of an instance may expand in going from the channel realm to the
SWD realm, since the windows are not explicitly given in the former problem. In Section

6.4, we show that this expansion is at most quadratic.

Placement Problems Arising From Automatic Logic Compilation

-115-

We note that we may re-write SWD as an interval graph problem. The transformed

problem is an instance of Weighted Clique Cover:
e Create vertex-weighted graph G, = (V, E, wt).

(1) For each window w, create node v,, € V.

(2) For each node v,,, let the node’s weight be wz (v,,) = d(w).

(3) For each pair of windows w, u whose extents overlap, create an edge

(v,» vu) € E between the corresponding vertices.

e Objective:

Assign non-negative values to the cliques of G,,; so that for a given node v € V, the

sum of the values on all cliques containing v is greater than or equal to wz(v).

Minimize the sum of the values over all cliques.

We know of no previous work on the general Weighted Clique Cover problem;
however, the case where every vertex’s weight equals 1 is simply the problem of Parti-
tion into Cliques, or finding a minimal-sized set of cliques that covers the set of vertices.
The problem Partition into Cliques is known to NP-complete for general graphs
[Garey2]. For the class of comparability graphs (a more general class than interval
graphs), the problem is solvable in polynomial time [Golumbic]. Our contribution is a

solution of the Weighted Clique Cover problem with arbitrary vertex weights for interval

graphs.

6.2.2. Terminology for SWD

Before we proceed, we shall define some terms that we need in order to describe our

algorithm and its proof.

Define:

e Interval I:

Placement Problems Arising From Automatic Logic Compilation

- 116 -

for integers j and k, with j < k, a segment (j, k) such that there are endpoints of
windows at both j and &, but there are no window endpoints at any position
between j and k. We denote [(I)=j, r(I)=k.

e Critical Interval :
an interval / such that /(I)=1(u) for some u € W and r(I) =r(v) for some
v € W. Intervals u and v may possibly be identical.

°p(l):
where I is an interval. This is the set of windows whose extents contain the
extent of interval / ,i.e.,w € p(I) if I(w) <I(I) and r(w) 2 r ().

od>J:
where I, J are intervals, means that p(/) 2 p(J); we say that] ‘‘dominates’” J.

® N(x):
where x is either an interval or a window, is the number of columns placed
within x’s extent, for some assignment of columns.

e Column Assignment:

a possible solution to a problem instance. It tells how many columns are placed
in each critical interval (we show later, in Lemma 6.1, that we do not have to
place columns in noncritical intervals). An assignment is given as a sequence of
numbers A = M), N 2), ..., NIy)}, where I', I, ..., Iy are all the criti-
cal intervals, from left to right.

e (Total) Cost:

The (total) cost of a column assignment A is ¢ (A), the total number of columns

M
used by A ’s constituents, namely ¢ (A) = ¥, ().
k=1

Placement Problems Arising From Automatic Logic Compilation

- 117 -

6.2.3. The Algorithm

Here is our algorithm to solve SWD. The idea is to place columns in the critical
intervals. Later, in Lemma 6.1, we prove that we don’t have to place columns in noncrit-
ical intervals. We start with the leftmost critical interval and proceed with each critical
interval in turn. As we consider a critical interval, we place enough columns in it so that
the window demand is satisfied for any window whose extent includes the present critical
interval, but whose extent does not include any critical intervals yet to be considered.
Greedy algorithm:

Let W={wi,..., w,} be the set of windows, where w; = (I(w;), r (w;));
{8(w;) |1 <i <n} is the set of window demands.
Calculate
I={I4,..., Iy} setof critical intervals, where I; = (;, r;) and [; < [;,;.
Initialization:
Wo=W
Up=9D
NG o) =0, where I is a dummy variable
So(w)=08(w) ,forallwe W
fori=110 Mdo
Vi={ve W|ve p(;) and vé p(l;) forj > i}
Ui =ply)- Vi
Initialize Ng(/;) =0
end

for i =1to M and while W;_; is nonempty do

(1) Update window demands at i*" iteration,

Si_l(w) ,if we Ui—l
8iW) =1\ max { 0, 8-y (w) ~NGUi_1) } . if we Uiy

Placement Problems Arising From Automatic Logic Compilation

- 118 -

(2) Compute ng(I;), the number of columns to be placed in /;,
e =gy, (5}

(3) Update the current set of windows,

Wi = Wi—l - V,‘
end

We shall denote the column assignment produced by the greedy algorithm as

G :{T‘G([l),. - ,TIG(IM)}'

6.2.4. Complexity of the Greedy Algorithm
We now analyze the run-time for the greedy algorithm.
(A) The initialization:
Sort the endpoints of windows in W and scan the sorted endpoints from left to

right in order to compute /. This takes O(n log n) time.
M

Let P denote the total size of all p(/;), ie., P =Y]p(;). It takes O(P) time to
1

compute V;, U;, and p(/;), fori =1 to M.
(B) The main loop:
Steps (1), (2), and (3) all take O(P) time.
Thus, the complexity of the Greedy algorithm is O(P + n logn) time. Clearly, P is
bounded above by M * n. M is the number of critical intervals, which must be less than
n, so P=0 (n 2 In the worst case, P is of order n2; therefore, the running time of the

algorithm is O(n?).

Placement Problems Arising From Automatic Logic Compilation

- 119 -

6.2.5. Example Usage of the Greedy Algorithm

Below is an example of the usage of the greedy algorithm. We show the input and

the running of the algorithm for an example where the number of critical intervals is

three.
Input:
W= {wl » W2, W3, W4}
. Extent
Window Son Bl Demand
w1 1 3 3
Wa 2 4 6
Ww3g 3 7 8
W4 5 8 4
(See figure 6-4)
1 2 3 4 5 6 7 8
Positions: f f . : } ! f i
w1 w3
Windows: WI2 | W 4_I
Lot ol

Critical Intervals: I Iy 'I‘ I3 T

Figure 6-4 Example Input to Greedy Algorithm

The critical intervals are [= (2,3), I, =(3,4), and I3 = (5,7).
Iteration 1: (i=1)

Wo={wy, wa, w3, wy}

Demands are 8;(w) =3, 8;(w;) =6, d;(w3)=8, §;(wy) =4

We find that V, ={w;},U; ={w,} and so ng(/1)=3. We place 3

columns within /1, then we continue with the algorithm.

Placement Problems Arising From Automatic Logic Compilation

- 120 -

Iteration2: (i=12)

Wi ={wsz, w3, wg}

Demands are 8;(w;) =3, 82(w3) =8, 82(wy) =4

We find that V5 ={w,},U;={w3} and so Ng(/2)=3. We place 3

columns within /,, then we continue with the algorithm.
Iteration 3: (i=3)

Wo={ws, wy}

Demands are 83(w3) =5, d3(wy) =4

We find that V3 ={wj3, ws}, U3 =3 and so ng(/3)=5. We place 5

columns within /3, then we are finished since i = M.

Totally, we have used 11 columns (which is optimal), and the assignment is

% 8,5

6.3. Proof of Optimality

6.3.1. Three Properties

We want to prove that our greedy algorithm finds an optimal solution to SWD.
First, we present three properties of solutions for the SWD problem, which we use impli-

citly in our proofs.
Properties:
(1) Given a problem instance P, a solution must exist if all window demands are finite.

(2) We only need to specify in which interval to place a column. The actual numerical

position is unimportant.

Placement Problems Arising From Automatic Logic Compilation

- 121 -

(3) Given 3 consecutive intervals Iy, I, and I3, if w e p(/;) and w € p(/3), then
w e p().

Proof:

Property (1) is added for completeness, to show that a solution to our prob-
lem exists. We may simply place exactly 3(w) columns in the extent of all win-
dows w € W. This may be done since there are an infinite number of positions

within any window.

Property (2) comes from the fact that we do not restrict where we may place
a column. Placing a column at a particular position will only affect one interval;
and for a given interval, any two columns placed within the interval will affect
exactly the same set of windows, namely p(/). So, from now on, we shall only

specify the interval in which we are placing a column.

Property (3) ensures that a window may not “‘skip over’’ the extent of an
interval. By hypothesis, [(/1) <I(I;) and r(I3) 2r(I;). Since by definition of p,
Iw)<Il(I))<l(Iy)andr(w)2r(I3)2r(l;),we pa).

6.3.2. Critical Intervals

So far, we have constrained the solution set so that columns must be placed only in
intervals, and there is a limited number of intervals — at most 2% W| -1, since there are
only 2*|W| window endpoints. But we can even further limit the intervals that we must
consider to the set of critical intervals. The upper bound on the number of critical inter-

vals is | W], since there are only | W| window start points (or end points).

Lemma 6.1:
For any instance of the Satisfaction of Window Demands problem, there is an

optimal solution for which columns are placed only in critical intervals.

Placement Problems Arising From Automatic Logic Compilation

-122 -

Proof:

First, observe that the operator ‘‘>’" defines a partial ordering on the set of
intervals, by the definition of ‘‘>’" and since the operator ‘2"’ defines a partial

ordering on a set of sets.

Second, assume we are given two intervals / and J, with I > J. If a column
is placed in J, we may shift it to ; and following the shift, the column still affects
all the windows that it originally affected. The reason for this is that a column
placed in interval J affects only those windows that intersect J, namely p(J). If

the column is moved to interval I, it now affects the set of windows p(/) 2 p(/).

Given the two observations above, we conclude that we only_nced to place
columns in maximal (with respect to ‘*>"") intervals. The rest of this proof shows
that all maximal intervals are critical intervals.

Assume that an interval J = (j, k) is not a critical interval. Let /=i, j) be
the interval immediately to the left of J, and let K = (k, m) be the interval
immediately to the right of J. There are 2 cases to consider:

CASEQ: k=I1(v), forsomeve W; k#r(u), foranyue W

Any point x in window v satisfies x > [(v) =k, so v does not intersect inter-

val J; that is, v € p(J). On the other hand, [(v) =k <m <r(v), since there

are no window endpoints between k and m; thus, v € p(K).

Consider any window w € p(J). By definition, /(w) < j <k <r(w). But

since k # r(w) and since there are no window endpoints between k and m,

k < m <r(w). Inother words, w € p(K).

So, we see that p(K) 2p(/); orK > J.

CASE®@: j=r(v), forsomev e W; j#l(u), foranyue W

With arguments similar to those for case @, we can show that v € p(/), but

v & p(J). Also, forany w € p(J), w € p(). So, we find that / > J.

Placement Problems Arising From Automatic Logic Compilation

-123 -

The only intervals that do not fall into either class @ or class @ are those that
are critical intervals. And since intervals in class @ and @ are dominated by adja-
cent intervals, the only intervals that are not dominated are critical intervals; thus,
all maximal intervals must be critical intervals. We have already shown that we
only need to place columns in maximal intervals, so we conclude that we only

need to place columns in critical intervals.

6.3.3. Performance of the greedy algorithm

We now wish to show that the column assignment produced by the greedy algo-

rithm satisfies all window demands.

Lemma 6.2:
The assignment G ={Ng{1),...,Ng{y)} constructed by the Greedy Algo-

rithm satisfies all window demands.

Proof:

Consider a window w whose extent includes critical intervals /; through 7,

ie . rs_1 SIw) <l <r, £r(w)<l4y. (See figure 6-5)

Critical Intervals ,]s‘1| 1 I | L l | |It+1|

window w
Figure 6-5 Window extending from / to /;
Observe the following :

(i) weV, ,sincewe p(l;) but w e p(l;41)

(i) The number of columns placed in w is

t
New)=ngls) + - -+ +Ngly) = xncUi).
k=s

- 124 -

(iii) From step (1) of the greedy algorithm,
8s(w) = 851 (W),
since w € p(l;_1) 2 Us
Similarly,
dw)=8;_1(w), forl1 <k <s
Therefore,

;W) =8s_1(w)= -+ =8p(w) =8(w)

From (i) above, w & Vj , fork #1. So from step (1) of the greedy algo-

rithm, the window demand for w from the s+1* to the ™ iteration is

Sr+1(w)=max { 0, 0x(w) —nclx) },

since we ply) - Vy=Uy, fors<k <t
ie.,
Sps1(w) 28 (w)—=ngUy), fors<k <t (6.1)
Combining equation (6.1) and (iii) gives
S w) +NgUi-1) + -+ +NgUy) 2 8s(w) = 8(w) (6.2)
But from step (2) in the greedy algorithm,
G = ey {8)] 28,w), (6.3)

Therefore, (ii), (6.2), and (6.3) give

' 4
New)= Y Nclp) 2d(w) , forallwe W.
k=s

Hence, all window demands are satisfied.

Placement Problems Arising From Automatic Logic Compilation

- 125 -

6.3.4. Transformation of solutions

The following lemma shows that the greedy construction of solutions is justified.
We shall use it later to derive one optimal solution from another optimal solution, in

order to obtain one in the form we need.

Lemma 6.3:

For any two solutions,
H={n1),..nUn) }
H ={n'{1),...NUn)]

where there is a t <M s.t. n(I;))=n’(;) for 1 £j <rand N{f) < n'{,) lie, H
and H'’ agree for the first z—1 intervals, and H” has more columns at the 1™ inter-

val],

We can find another solution,
H” s { T]”(Il),..,,‘ﬂ”([M) }
such that

n“dp=n'U)=nd;) ,forj<t
N’y =nd,)
cost(H”)=cost(H")

Proof:

Intuitively, we may take solution H" and ship the extra number of columns,
N’ (I,) —=n(,), in interval I, to interval I;,; without changing the cost and validity

of the solution. We can show this by constructing H” as follows:
n“U)=n'd;) ,forj<t

n“dy=nd,)

Placement Problems Arising From Automatic Logic Compilation

- 126 -

N Uer1) =" Te1) +0'T) —MU)

N =n"y) , fork > t+1
There is no change in cost:

M
cost(H”)= ¥0" ;)

i=1

t-1 M
=¥)+ +n T+ @) -nU)+ X T
j=1 k=t+2

M
=y n'U;) =cost(H)
i=1

Validity of H” :

We may classify a given window to be one of three different types, depend-
ing on the window’s position relative to critical intervals I; and /;,;. The three
types are
(1) rw)<l)

Window w lies entirely to the left of interval /; ;.

2) Iw)zrdy)

Window w lies entirely to the right of interval /,.

(3) Iw)sld)srdi)srw)

Window w contains the extents of intervals /; and /..

(See figure 6-6).

We shall now show that for any window w, " (w) 2 8(w); therefore, H” is
also a solution. Recall that n(w) 2 8(w) and n’(w) = 8(w), since H and H" are
both solutions. We assume that window w contains all critical intervals from /,

to Iq, p < g, and no other critical intervals.

Placement Problems Arising From Automatic Logic Compilation

127 -

Tel . I] II I[1 I
Critical Intervals: | i ;o e M
: i | .
Type 1 window: | : ‘Type 2 window
....... : :
i |
Lo o e i S S & J
Type 3 window

Figure 6-6 Three different types of windows
Type 1 window:
nN"w)=n"Uy)+ --- +1n"U,) ,forg<t
=n'Up)+ -+ +1n 1) +nUy)
=N, + -+ +nlyp)=nw) 2 d(w) , since n’(I;)=n(;) forj <z
Type 2 window:
nN"w)=n"U,)+ -+ +1n"U,) ,forp >t
[case ()] =n'Up)+ - +N'UT)=n"w)28w) ,ifp > 1+l
[case (iD)] =M Uis) + N T —NUD)+ M UTi2) + -+ U)
=1’ (w) + (positive value) >n'(w)20(w) ,ifp=1+1
Type 3 window:
N"w)y=n"@)+ - +n"U)+n" T + -+ +17)
=N'Up) + - +NE) N U)) +0 @) —nU) + -+ +1y)

=n"(w) 2 8(w)

Placement Problems Arising From Automatic Logic Compilation

- 128 -

6.3.5. The Main Result

Finally, we are ready to prove our main result.

Theorem 6.1:

Proof:

The column assignment G ={Ng(1),...NcWUy) } constructed by the Greedy

Algorithm is an optimal solution.

Assume there is another solution H such that
i=M

i=M
cost(H)= ¥, W) < X, NG = cost(G)
i=l i=1

Then by Lemma 6.3, we may transform H into another solution H' =

{n’UI1),...m" Uxy) } such that cost (H") = cost(H) and H” matches G for as long

as possible. Thus, we know that

n'dp=ncl; ,forj<t

and, since cost (H') < cost (G),

n') <ng(,) , for some t

Consider the column assignment for critical interval I; [step (2) of greedy

algorithm]:

N = 2y, (8w

Let v € V, be a window that achieved the maximum, i.e. Ng(l;) = 8,(v). Let the

intervals intersected by v be I, . . . I, for some x < t. Then, by reasoning analo-

gous to that in the proof of Lemma 6.2,

t
d(v) =8,(v)= ¥ ngU) =ng()

j=x

Placement Problems Arising From Automatic Logic Compilation

-129 -
Then,

t
ne)= T @)

J=*

t
=¥ e +(M'd) - ney))

j=x

<Ng(v)=38() , since n'(;) —ng) <O0.

But this means that v’s demand is not satisfied by H’, which contradicts the vali-
dity of H” as a solution. By Lemma 6.2, G is a solution. We have shown that
there is no solution with cost less than that for G; thus, we conclude that G is an

optimal solution.

6.4. Notes on the smooth-flux metric

There are a couple of observations that help reduce the time complexity to lower the
smooth-flux to a given target value. One simple point, which applies to any other
appropriate metric, is that we only have to consider a window if its metric value is
greater than the target value. If the value is less than or equal to the target value, we may

just leave that window alone.

An important point in lowering the smooth-flux is that we may disregard any win-
dow w that contains an empty space in either its leftmost or its rightmost column. To see

why this is so, consider the largest subwindow w’ of w such that:
e w’ contains all the terminals contained in w

e w’ contains terminals in both its leftmost and rightmost columns (see figure 6-7).

Placement Problems Arising From Automatic Logic Compilation

- 130 -

Positions: —t } I f f t } o]
Terminals: 4 1
L}
'; A
-------------- J /
Window w’: largest subwindow . Window w: Starts and ends
of window w that starts and ends ~ : : with spaces

with terminals

Figure 6-7 Important subwindow
From w to w’, the values for U, R, and S remain unchanged, but the value for e has

decreased. From equation (6.2), the change in smooth-flux with respect to e is:

o _ e (e+U+R+1) }
de 2 e +U+R+1) + 4U+R+3)

Since (e+U+R+1) € \(e+U+R+1yY + 4U+R+S), %SO; so if we decrease e, f

increases. In other words, the smooth-flux value for w’ is greater than or equal to the
value for w. And since any empty column we place within w” will also lie within w, we

may decrease the smooth-flux of w by decreasing the smooth-flux of w”.

Now, we shall compute the time complexity of calculating the starting value of
smooth-flux for a problem instance. Let N be the maximum of the number of top row
terminals and the number of bottom row terminals. As a preliminary step we order each
row of terminals by position; this takes O(N logN) time. Since we only need to consider

the windows that begin and end with terminals (but we need to consider both top win-
dows and bottom windows), there are at most 2 * (‘;) =N (N-1) relevant windows.

We scan through the relevant windows by continuously fixing the left endpoint (at some
terminal’s position) and varying the right endpoint (at another terminal’s position).

While doing this, determine the values n, S, U, and R [e = n—(S+U+R)] for each

Placement Problems Arising From Automatic Logic Compilation

-131-

window. The update time for each window is constant, since a window with only one
terminal is immediate and all other windows only have to increment or decrement each
value by at most 1 from the values for the previous window. With these values, we can

compute the smooth-flux for each window. Totally, this takes O(N 2) time.

For a given channel and a target value 7, the total time required to reduce the

smooth-flux of the channel to T is ON*), since there are O(N 2y windows.

6.5. Extensions and future work

Noting that we know of only one example of an appropriate, non-trivial metric for
our algorithm, it would be interesting to find other useful metrics that belong to the same
class. Also, there are a number of possible extensions and modifications for our problem

of reducing a given cost metric. Here are two very closely related problems:

(1) The extra columns may be constrained to be placed within a set of allowable
line segments. This situation might arise if the terminals are divided into com-
ponents that are rigid. In such a case, we may expand or contract the amount of

space only between components.

(2) We may be given a fixed number of extra columns, with the task of placing

these columns in order to reduce the cost metric as much as possible.

The problem (1) above can be solved by our own greedy algorithm, with the
modification that for each allowable segment, instead of considering only the critical
intervals, we only consider placing columns in the maximal (with respect to *‘>’’) inter-
vals that intersect the allowable segment. Problem (2) can be solved by applying our
greedy algorithm and using a binary search on the target value for the cost metric. Since
the value for smooth-flux, like the value for flux, is bounded by O(+/n), where n is the
total number of nets, we only need to consider at most O(log n) target values. The total
number of windows is bounded by N 2 where N is the maximum number of terminals on

the top or bottom rows; the number of critical intervals is bounded by N. From our

Placement Problems Arising From Automatic Logic Compilation

-132 -

earlier figure of O (M * N) for the greedy algorithm, where M is the number of critical
intervals, the total running time is O (N * logn). It is not clear that this is the optimal
method for solving (2), though. More research might yield a better algorithm. It may
also be possible to decrease the running time of the greedy algorithm by finding a better

data structure for the p(/)’s.
An interesting extension of our problem is the following open problem:

(3) Instead of adding columns, we may add arbitrary spaces on the top or bottom
row, as long as the total number of columns does not exceed a given limit. This
situation might represent a channel where the terminal ordering is fixed, but the

terminals are otherwise flexible.

Problem (3) is similar in flavor to the problems examined in [Gopal] and
[LaPaugh3]. This extension adds substantial complexity when smooth-flux is considered

because trivial nets can be created.

Placement Problems Arising From Automatic Logic Compilation

-133-

Chapter 7

Conclusions

We have presented and discussed a wide range of problems concerned with certain

placement and routing aspects of an automatic logic compiler.

The problem of ordering the gates to be implemented has led us into the realm of
graph theory, where we translated our problem into the task of finding a good linear
arrangement of a graph’s vertices. Here, each vertex represents either a gate or an input
signal. We considered two goals for our circuit — minimize the propagation delay and

minimize the area.

To model the concept of propagation delay, we specify certain critical paths in the
graph representation, each critical path corresponding to a signal propagation path
through the gates. The dilation of a critical path estimates propagation delay caused by a
signal’s traveling between gates. Since we assume that the structures of the gates are
known, we have a good idea of the propagation delay through each gate. Thus, we may
place a limit on a critical path’s dilation; if the dilation is less than or equal to the limit,

the corresponding signal path satisfies the propagation delay limit.

While the problem of Linear Arrangement with Critical Paths was already known to
be NP-complete in the general case, we proved that it is still NP-complete even if the
input graph is restricted to be a tree and the critical paths are restricted to be ‘‘proper’’.
Likewise, we showed that the problem is NP-complete for ‘‘trees’” if the input graph is a
directed acyclic graph and the linear arrangement is constrained to be topological. We

were able to show, however, that certain restrictions on the undirected and directed

Placement Problems Arising From Automatic Logic Compilation

- 134-

problems are solvable in polynomial time. Specifically, the undirected version becomes
polynomial if we restrict all critical paths to share a common root node and to be node-
disjoint (except for the root), and the paths may not cross over the root in the linear
arrangement. The directed version is polynomial if we bound the number of critical

paths or the number of critical path sources (or sinks).

To the goal of delay propagation minimization, we added the goal of area minimiza-
tion. Since our target arrangement in the graph realm is a linear arrangement, we
translated area minimization to the problem of cutwidth minimization. We realized that
the problem of cutwidth minimization is NP-complete, even without the critical path con-
straints, so we confined our efforts to heuristics and restrictions on the problem of Mincut

Linear Arrangement with Critical Paths.

We presented a heuristic for the cutwidth minimization problem on undirected
graphs, without critical paths. The heuristic, based on finding and integrating together
good layouts for the biconnected components, was shown to have two NP-complete
steps. We then showed that the directed version of the cutwidth minimization problem
on trees, without critical paths is solved by a simple algorithm. For the problem where
the input graph is restricted to be a tree and the critical paths are node-disjoint and con-
sist of only a single edge, we found an algorithm that finds a solution within one of
optimal. We also studied a restricted case of the directed version of the cutwidth minimi-
zation problem with critical paths. The problem restricts the input graph to be a directed
““tree’” and allows only one critical path. Although we were not able to find an algorithm
to solve the problem, we were able to characterize how a solution might look. Also, we

showed how to solve the problem if there were a certain bound on the critical path limit.

At this point, we assumed an ordering of the gates, and we stepped away from the
realm of graph theory to ponder the goal of placing circuit elements within an array of
elements in order to minimize the area needed to realize the circuit. We showed that this

problem is NP-hard, even if there is only one gate. So, we concentrated on heuristic

Placement Problems Arising From Automatic Logic Compilation

-135 -

algorithms to solve the problem.

We presented some issues concerning how to solve the problem of Cluster Place-
ment in an Array of Gates. These include deciding how many horizontal tracks to use,
how to account for signals that pass through but do not otherwise affect a gate, and how
to estimate the number of vertical columns required to route the circuit. We then
described the following heuristics, which we chose to study or use: Greedy, Fuzzy Parti-
tioning, Randomized Iterative Improvement, Kernighan-Lin Iterative Improvement, and
Simulated Annealing. The Greedy algorithm was used to find starting configurations and
was not meant to be competitive. Finally, we presented the results of running the four
competitive heuristic algorithms on six different input files. The data were not absolutely
conclusive about the relative merits of the different heuristics, but they did indicate that
Simulated Annealing will take too long for large problem instances; the other heuristics

perform adequately, but with shorter run times.

Next, we considered the effect of limiting the size of the array and fixing the posi-
tions for some of the terminals. Specifically, what happens if there are only two gates
(rows)? We proceeded to show that for certain restrictions on cluster or signal ordering
and size, the problem has a polynomial-time algorithm. Next, we added the further res-
triction that the terminal positions on the top gate (row) are fixed. This restriction may
arise from an algorithm that finds placements for an array in one channel at a time. We
extended a result by Atallah and Hambrusch to show that the problem is NP-complete for
the case where all clusters have size one and the bottom terminals may be placed any-
where within the length of the channel. Then, we described an heuristic algorithm that
provides a lower bound on the channel density and divides the problem into smaller sub-
problems. For each such subproblem, each net may have at most one top terminal and
one bottom terminal. We presented an algorithm for the subproblem that finds a place-
ment that achieves the optimal possible channel density. We were not able to say if the

placement can also achieve the optimal possible channel width.

Placement Problems Arising From Automatic Logic Compilation

- 136 -

The final problem we tackled is the question of how flexibility of a channel in the
horizontal direction may be translated into a saving of space in the vertical direction.
Specifically, we assumed a fixed vertical alignment of the terminals in a channel. The
only change that may be made is the adding of empty columns into the channel. In this
situation, density may not be changed, so we use another lower bound, related to flux, to
estimate the change in channel width due to adding columns. We presented an algorithm
that computes how many columns to add and where to place them in order to reduce the

value of our lower bound to a given target value.

7.1. Future Work

There are a number of tasks that remain to be done. One direction is to extend our
work in certain ways. For example, we considered separately the two goals of finding a
good linear arrangement of the gates and placing the terminals within an ordered array of
gates. It is possible to consider the two subproblems at the same time; thus, an iterative

improvement algorithm might look like this:

Start with an ordering of the gates. A move is defined as in Chapter 4, but in addi-
tion, let a move be able to swap the positions of a pair of gates (or maybe let the

gates be “‘split’” apart, with the appropriate penalty in the cost function).

Using a strategy of moving clusters and gates, we may even create a multi-

dimensional array.

One possible extension of our work is to find a better measure than cutwidth to
bound the area required. A problem with cutwidth on a linear arrangement is that it does
not take into account that each gate has a height. A better measure places a weight on
each node. The weight for a node equals the total number of signals that form a transis-
tor in the gate corresponding to the node. The definition of cut would then be revised to

take into account the node weights. The problem of mincut linear arrangement of trees

Placement Problems Arising From Automatic Logic Compilation

- 137 -

with node weights is solved by a minor modification of Yannakakis’ arrangement algo-
rithm for trees [Yannakakis]. One other possible change concerns multiple arcs emanat-
ing from the same node. Since in the Weinberger array realm, only one track is needed
for a given signal, at a cut we need to count only one of the arcs emanating from a given

node. The rest may be ignored.

Another possible extension of our work is to consider our problems in the context of
other technologies and routing models. We have been assuming that the wiring in the
channels is done in a 2-layer Manhattan style. Current technologies have multiple metal
layers, as well as polysilicon and diffusion. Since a metal layer may overlap with any
other layer, more than two layers can be allowed for Manhattan channel routing,
although the routing is typically restricted to two metal layers. Also, work has been done
on channel routing models that do not restrict wire segments on a certain layer to be
always vertical or always horizontal. These models include the following: knock-knee,
which allows wires on different layers to share a corner [Rivestl] [Preparata]; unit-
vertical-overlap, which allows wires on different layers to overlap in the vertical direc-
tion for a single unit segment [Gao]; and unrestricted, in which wires may overlap arbi-

trarily [Hambrusch] [Brady].

We have considered a number of heuristics analytically and experimentally. To
further study these heuristics, we would integrate them into an automatic logic compiler.

We could then compare the results obtained with those for established compilation tools.

In conclusion, this dissertation has studied problems of linear arrangement and ter-
minal placement. Not surprisingly, the more general cases of these problems were deter-
mined to be NP-complete, and we have settled for solving restricted cases. While it is
interesting and useful to know the complexity of restricted cases, it is necessary to have
methods to find good solutions for the general problems. An avenue of future research in
this area is to develop algorithms to find near-optimal solutions for the problems. In par-

ticular, it might well be possible to find such algorithms for the problems of Mincut

Placement Problems Arising From Automatic Logic Compilation

- 138 -

Linear Arrangement and Linear Arrangement with Critical Paths. The mixed problem of
Mincut Linear Arrangement with Critical Paths might be a bit hard for such a method;
and the problem of terminal placement in an array of gates, with or without clusters,
seems much too intricate for a near-optimal algorithm. For the latter problem, it would
seem best to try to find a heuristic that performs as well as Simulated Annealing, but

doesn’t take so much time.

Placement Problems Arising From Automatic Logic Compilation

[Atallah1]

[Atallah2]

[Brady]

[Brayton]

[Brown]

[Bryant]

[Bui]

[Burstein]

[Chinn]

[Gao]

- 139 -

References

Atallah, Mikhail J., and Susanne E. Hambrusch, ‘‘On Bipartite Matchings of
Minimum Density,”’ Journal of Algorithms, vol. 8, 1987, pp. 480-502.

Atallah, Mikhail J., and Susanne E. Hambrusch, ‘‘Optimal Rotation Problems in
Channel Routing,”” Dept. of Comp. Science, Purdue Univ., Tech. report CSD-
TR-467, January 1984.

Baker, Brenda S., Sandeep N. Bhatt, and Frank Thomson Leighton, ‘‘An
Approximation Algorithm for Manhattan Routing,”” SIGACT, ACM, 1983, pp.
477-486.

Brady, M., and D. J. Brown, ‘‘Optimal Multilayer Channel Routing with Over-
lap,”* 4th M.I.T. Conf. on Advanced Research in VLSI, M.LT. Press, 1986, pp.
281-298.

Brayton, Robert K., Gary D. Hachtel, Curtis T. McMullen, and Alberto L.
Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, Boston, 1984.

Brown, Donna J., and Ronald L. Rivest, ‘““‘New Lower Bounds for Channel
Width,”* Proc. CMU Conference on VLSI Systems and Computations, 1981.

Bryant, R. E., ““MOSSIM: A Switch-Level Simulator for MOS LSI,”’ Proc. of
the 18th Design Automation Conference, July 1981, pp. 786-790.

Bui, Thang Nguyen, and Sing-Ling Lee, ‘‘On the Mincut Bipartite Arrangement
Problem,”” Proc. of the International Conf. on Computer-Aided Design, IEEE,
1987, pp. 466-469.

Burstein, Michael, ‘‘Hierarchical Channel Router,”’ Proc. 20th Design Automa-
tion Conference, IEEE, 1983, pp. 591-597.

Chinn, P. Z., J. Chvatalova, A. K. Dewdney, and N. E. Gibbs, ‘‘“The Bandwidth
Problem for Graphs and Matrices — a Survey,’” Journal of Graph Theory, 6 ,
1982, pp. 223-254.

Gao, S., and S. Hambrusch, ‘“Two-Layer Channel Routing with Vertical Unit-
Length Overlap,” Algorithmica, vol. 1, no. 2, Springer-Verlag, 1986, pp. 223-
232.

Placement Problems Arising From Automatic Logic Compilation

[Gareyl]

[Garey2]

[Gavril]

[Golumbic]

[Gopal]

[Greene]

[Gurari]

[Hambrusch]

[Hashimoto]

[Hollis]

[JohnsonD]

[JohnsonS]

- 140 -

Garey, M. R., R. L. Graham, D. S. Johnson, and D. E. Knuth, *‘Complexity
results for bandwidth minimization,”* SIAM Journal Appl. Math., 34 , 1978, pp.
477-495.

Garey, Michael R., and David S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W. H. Freeman and Company, San
Francisco, 1979.

Gavril, Fanica, ‘‘Some NP-Complete Problems on Graphs,”’ Conference on
Information Sciences and Systems, The Johns Hopkins University, 1977.

Golumbic, M. C., ““The complexity of comparability graph recognition and
coloring,”’ Computing, 18 , 1977, pp. 199-208.

Gopal, Inder S., Don Coppersmith, and C. K. Wong, ‘‘Optimal Wiring of Mov-
able Terminals,”’ IEEE Trans. on Comp., C-32 , no. 9, IEEE, Sept. 1983, pp.
845-858.

Greene, Jonathan W., and Kenneth J. Supowit, ‘‘Simulated Annealing without
Rejected Moves,”” IEEE Transactions on Computer-Aided Design, CAD-5 ,
No. 1, IEEE, January 1986, pp. 221-228.

Gurari, E. M., and 1. H. Sudborough, ‘‘Improved Dynamic Programming Algo-
rithms for the Bandwidth Minimization Problem and the Min Cut Linear
Arrangement Problem,’’ Technical Report, Dept. of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL, 1982.

Hambrusch, S., ‘‘Using Overlap and Minimizing Contact Points in Channel
Routing,’” Proc. 21st Annual Allerton Conf. on Comm., Control, and Comp.,
1983, pp. 256-257.

Hashimoto, A., and J. Stevens, ‘‘Wire Routing by Optimizing Channel Assign-
ment within Large Apertures,”’ Proc. 8th Design Automation Workshop, 1EEE,
1971, pp. 214-224.

Hollis, Emest E., Design of VLSI Gate Array ICs, Prentice-Hall, Inc., 1987.

Johnson, David S., Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Sche-
von, ‘‘Optimization by Simulated Annealing: an Experimental Evaluation (Part
I),”” unpublished manuscript.

Johnson, S. C., ‘‘Code Generation for Silicon,”” Proc. Tenth ACM Symposium
on Principles of Programming Languages,”” ACM, 1983, pp. 14-19.

Placement Problems Arising From Automatic Logic Compilation

[Kemighan]

[Kirkpatrick]

[Kobayashi]

[Lageweg]

[LaPaughl]

[LaPaugh2]

[LaPaugh3]

[Lin]

[Mata)

[Mayo]

[Monien]

[Ohtsuki]

[Ousterhout1]

«141

Kernighan, B. W, and S. Lin, ‘‘An Efficient Heuristic Procedure for Partition-
ing Graphs,”’ The Bell System Technical Journal, February 1970, pp. 291-307.

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi, ‘‘Optimization by Simulated
Annealing,”” Science, 220 , May 13, 1983, pp. 671-680.

Kobayashi, Hideaki, and Charles E. Drozd, ‘‘Efficient Algorithms for Routing
Interchangeable Terminals,”’ IEEE Transactions on Computer-Aided Design,
CAD-4, No. 3, IEEE, July 1985, pp. 204-207.

Lageweg, B. J., J. K. Lenstra, and A. H. G. Rinnooy Kan, ‘‘Minimizing max-
imum lateness on one machine: computational experience and some applica-
tions,”’ Statistica Neerlandica, 30 , 1976, pp. 25-41.

LaPaugh, Andrea S., ‘‘Algorithms for integrated circuit layout: An analytic
approach,”’ Ph.D. dissertation, M.I.T. Lab. Computer Science, Nov. 1980.

LaPaugh, Andrea S., and Mihalis Yannakakis, personal communication, 1987.

LaPaugh, Andrea S., and Ron Y. Pinter, *‘On Minimizing Channel Density by
Lateral Shifting,”” Proceedings of the International Conf. on Computer-Aided
Design, September, 1983.

Lin, William W., Susan S. Yeh, and Andrea S. LaPaugh, ‘‘A Weinberger Array
Generator,”’ Princeton University technical report CS-023, January 1986.

Mata, Jose, ‘‘A Methodology for VLSI Design and a Constraint-Based Layout
Language,”’ Ph.D. dissertation, Princeton University Dept. Computer Science,
October 1984.

Mayo, Robert N., John K. Ousterhout, and Walter S. Scott, editors, ‘1983 VLSI
Tools: Selected works by the original artists,”’ Report No, UCB/CSD 83/115,
University of California at Berkeley Computer Science Division, March 1983.

Monien, B., and I. H. Sudborough, ‘‘Min Cut is NP-Complete for Edge
Weighted Trees,”” Proc. 1986 International. Conf. on Automata, Languages,
and Programming, 226 , Springer Verlag’s Lecture Notes in Computer Science,
1986, pp. 265-274.

Ohtsuki, T., ed., Layout Design and Verification, volume 4 of Advances in CAD
for VLSI series, North-Holland, 1986.

Ousterhout, J. K., ““Crystal: A Timing Analyzer for mNOS VLSI Circuits,”’
Third CalTech Conference on Very Large Scale Integration, ed. Randal Bryant,

Placement Problems Arising From Automatic Logic Compilation

[Ousterhout2]

[Papadimitriou]

[Preparata]

[Rivest1]

[Rivest2]

[Rowen]

[Sabety]

[Sauris]

[Schlag]

[Sechen]

[Sethi]

[Simonson]

-142 -

Computer Science Press, Inc., 1983, pp. 57-69.

Ousterhout, J. K., G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor,
““Magic: A VLSI Layout System,’’ Proceedings of the 21st Design Automation
Conference, 1984, pp. 152-159.

Papadimitriou, C. H., ‘“The NP-completeness of the Bandwidth Minimization
Problem,”’ Computing, 16 , 1976, pp. 263-270.

Preparata, F. P., and W. Lipski, ‘‘Optimal Three-Layer Channel Routing,”
IEEE Trans. on Computers,”’ C-33, 1984, pp. 427-437.

Rivest, Ronald L., A. Baratz, and G. Miller, ‘‘Provably Good Channel Routing
Algorithms,”” 1981 CMU Conf. on VLSI Systems and Computations, Oct. 1981,
pp. 158-159.

Rivest, Ronald L., and Charles M. Fiduccia, ‘‘A "Greedy" Channel Router,”’
Proc. 19th Design Automation Conference, ed., IEEE, 1982, pp. 418-423.

Rowen, Christopher, ‘‘Multi-Level Logic Array Synthesis,”” Stanford Univer-
sity Computer Systems Laboratory, Tech. Report No. 85-279, July 1985.

Sabety, Theodore M., David E. Shaw, and Brian Mathies, ‘‘The Semi-automatic
Generation of Processing Element Control Paths for Highly Parallel Machines,”’
Proc. 21st Design Automation Conf., IEEE, 1984, pp. 441-446.

Suaris, Peter R., and Gershon Kedem, *‘Standard Cell Placement by Quadrasec-
tion,”” Duke Univ., technical report CS-1986-34, 1986.

Schlag, Martine D. F., Ellen J. Yoffa, Peter S. Hauge, and C. K. Wong, ““A
Method for Improving Cascode-Switch Macro Wirability,”” IEEE Transactions
on Computer-Aided Design, CAD-4 , No. 2, IEEE, April 1985, pp. 150-155.

Sechen, Carl, and Kai-Win Lee, ‘‘An Improved Simulated Annealing Algorithm
for Row-based Placement,’’ Proc. of the ICCAD, IEEE, Nov. 1987, pp. 478-
481.

Sethi, Ravi, ‘‘Complete Register Allocation Problems,’’ SIAM Journal on Com-
puting, 4, 1975, pp. 221-248.

Simonson, Shai, ‘‘Routing with Critical Paths,”’ Univ. of Illinois at Chicago,
technical report, 1987.

Placement Problems Arising From Automatic Logic Compilation

[Siskind]

[Southard]

[Szymanski]

[Terai]

[Ullman]

[Weinberger]

[Widmayer]

[Yannakakis]

[Yoshimura]

A -«

Siskind, Jeffrey, Jay R. Southard, and Kenneth W. Crouch, ‘‘Generating Cus-
tom High Performance VLSI Designs From Succinct Algorithmic Descrip-
tions,”” 1982 Conference on Advanced Research in VLSI, M.1.T., 1982, pp. 28-
39.

Southard, Jay R., Antun Domic, and Kenneth W. Crouch, ‘‘Report on the Lin-
coln Boolean Synthesizer,”’ Digest of International Conf. on Computer-Aided
Design, IEEE, Sept. 1983, pp. 192-193.

Szymanski, Thomas G., ‘‘Dogleg Channel Routing is NP-Complete,”’ /EEE
Trans. on Computer-Aided Design, CAD-4 , no. 1, January 1985, pp. 31-41.

Terai, Masayuki, ‘‘A Method of Improving the Terminal Assignment in the
Channel Routing for Gate Arrays,’’ IEEE Trans. on Computer-Aided Design,
CAD-4 , no. 3, July 1985, pp. 329-336.

Ullman, Jeffrey D., Computational Aspects of VLSI, Computer Science Press,
Inc., 1984.

Weinberger, Amold, ‘‘Large scale integration of MOS complex logic: a layout
method,”’ IEEE Journal of Solid-State Circuits, SC-2 , no. 4, Dec. 1967, pp.
182-190.

Widmayer, P., and C. K. Wong, ‘‘An Optimal Algorithm for the Maximum
Alignment of Terminals,”” Information Processing Letters, 20 , North-Holland,
1985, pp. 75-82.

Yannakakis, Mihalis, ‘“‘A Polynomial Algorithm for the Min Cut Linear
Arrangement of Trees,”” Proc. 24th Annual Symposium on Foundations of
Comp. Science, ed., IEEE, 1983, pp. 274-281.

Yoshimura, T., and E. S. Kuh, ‘‘Efficient Algorithms for Channel Routing,”’
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
CAD-1,no. 1, Jan. 1982, pp. 25-35.

Placement Problems Arising From Automatic Logic Compilation

