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ABSTRACT

A remote backup database system tracks the state of a primary system,
taking over transaction processing when disaster hits the primary site.
The primary and backup sites are physically isolated so that failures at
one site are unlikely to propagate to the other. For correctness, the exe-
cution schedule at the backup must be equivalent to that at the primary.
When the primary and backup sites contain a single processor, it is
easy to achieve this property. However, this is harder to do when each
site contains multiple processors and sites are connected via multiple
communication lines. We present an efficient transaction processing
mechanism for multiprocessor systems that guarantees this and other
important properties. We also present a database initialization algo-
rithm that copies the database to a backup site while transactions are
being processed.

1. Introduction

In critical database applications, the halting of the computer system in case of failure is considered
unacceptable. Instead, it is desirable to keep an up-to-date backup copy at a remote site, so that the backup
site can take over transaction processing until the primary site recovers. Such a remote backup database (or
hot standby), normally of the same capacity as the primary database, should be able to take over processing
immediately. Furthermore, when the primary site recovers, the backup should provide it with a valid ver-
sion of the database that will reflect the changes made by transactions processed while the primary was not
operational; this will enable the primary site to resume normal processing. Finally, the overhead at the pri-

mary site for the maintenance of the remote backup copy should be kept low.



A remote backup copy has advantages over other forms of fault tolerance. To illustrate, consider a
common form of local replication: mirrored disks. It can happen that a repairman trying to fix one of a pair
of mirrored disks accidentally damages the good disk, which is physically located next to its faulty mirror
image [5]. Thus, because failures tend to propagate, local replication may sometimes be inadequate. The
remote backup copy technique decouples the systems physically, so that failures are isolated and the-
overall system is more reliable. We have mentioned only hardware failures so far; physical isolation can
also contain failures caused by operator errors or software bugs. For example, an operator may mistakenly
destroy the database by reformatting the disks that hold it. This has actually been reported [5]. However, it
will be much harder for the operator to destroy the database stored remotely and under the control of a
separate operator. Similarly, software bugs triggered by particular timing events at the primary site will
probably not occur at the backup. The backup will have bugs of its own, but these are likely to occur at
different times. Thus, remote backup copies provide a relatively high degree of failure isolation and data

availability, and are actually used in practice [4].

Backup systems can track the primary copy with varying degrees of consistency. An order-
preserving backup ensures that transactions are executed in the same logical order they were run at the pri-
mary. This is the only approach we will consider here.. Non order-preserving backups are sometimes used

in practice [2], but may lead to inconsistencies between the primary and the backup.

Along another dimension, backup systems can run I-safe or 2-safe transactions [7], [10]. 2-safe
transactions are atomic: either their updates are reflected at both the primary and the backup, or they are
not executed at all. A conventional two-phase commit protocol can be used to provide 2-safety [6], [12].
One major drawback of 2-safe protocols is that they increase transaction response time by at least one
primary-backup round trip delay. According to [10], this may exceed one second in practice. These delays

force transactions to hold locks longer, increasing contention and decreasing throughput.

To avoid these delays, many applications use 1-safety only: transactions first commit at the primary
and then are propagated to the backup. A disaster can cause some committed transactions to be lost. These
losses only occur when a disaster hits and are ‘‘economically acceptable’’ in applications with ‘‘very high
volumes of transactions with stringent response time requirements. Typical applications include ATM net-

works and airline reservations systems [10].”" The backup algorithm we will present in this paper is



intended for very high performance applications and only provides 1-safety.
In this paper we make three main contributions:

[1] We formally define the concept of 1-safe transactions and its implications. Commercial systems
claim they provide 1-safe transactions, but they never state precisely what it means to ‘‘lose some
transactions’’. For instance, it is important to specify that if a transaction is lost, any transactions

that depend on it cannot be processed at the backup.

[2] We present a fully decentralized and scalable backup management algorithm that does not rely on a
single control process. All commercial products concentrate the logs of every transaction into a sin-
gle control process and master log. Such a process becomes a bottleneck in larger systems. Further-
more, their solutions are not amenable to parallelization: if the control process is split into a set of

processes, correctness can no longer be guaranteed.

[31 We present an efficient database initialization algorithm. It does not rely on first making a fuzzy
dump and then bringing it up-to-date with the log. Instead, the fuzzy dump and the log playback

occur concurrently, making the initialization simpler and faster.

2. Review of existing systems

Systems for maintaining a backup copy are commercially available. For example, Tandem provides
a Remote Duplicate Database Facility, RDF [14] and IBM markets an Extended Recovery Facility, XRF
[9]. These packages provide a set of utilities for dumping databases, monitoring them, and propagating
modifications to a backup database. It is not our intention here to describe the full packages; we are only

interested in the algorithms used for maintaining and initializing the backup database.

‘We discuss RDF briefly, which is typical of commercial systems. At the primary site; undo/redo log
entries for every transaction are written on a master log. (If several processes or processors are executing
transactions, they all communicate with a logging process that manages the master log.) -As this log is writ-

ten, a copy is sent to a control process at the backup site.

When a transaction commits at the primary site, it is assigned a ticket (a sequence number) that
)
represents its commit order relative to other transactions. This is the order in which transactions must

install their updates at the backup. Note that the notion of a ticket may not be explicitly implemented; it



may be implicit in the position of a commit message in the log. The log entries are received and installed
at the backup by the control process in the same order they were generated. When a commit record for a
transaction T'; is encountered, all transactions with earlier tickets have already been safely received at the

backup, so it is safe to commit T';.

The actual writes are performed by a collection of writing processes. Each writing process is
assigned a part of the database (e.g., a disk volume). The control process distributes the writes to the

appropriate writing processes, which install the updates in the order they receive them.

To initialize the backup database, a fuzzy dump is made at the primary, usually onto tape. While the
dump is in progress, the master log is sent to the backup, where it is accumulated on disk. The tape is car-
ried over to the backup (or transmitted if it is small) and loaded onto the database. Finally, the saved log is
played back against the database, bringing it up to date. The log playback is done through the control pro-

cess and ticketing described above.

The ticket assignment process plays a critical role, since every transaction has to go through it. Hav-
ing this central bottleneck is clearly undesirable. It would be much better to have multiple master logs
created and received by multiple control processes running on multiple machines at each site. Unfor-
tunately, it is now much- harder to know when a transaction can be committed at the backup and what its
ticket is. But before we can illustrate this difficulty and our solution, we must step back and define more

formally an architectural framework and correctness criteria.

3. Architecture

To make our discussion concrete we define an architecture, shown in Figure 1. We will try to place
as few restrictions as possible on this model, in order to make it widely applicable. By site we mean all of
the computer equipment at one of the locations where the database resides. Each site (primary and backup)
consists of a number of stores and a number of hosts. The data actually resides in the stores, which are
assumed to have reliable, non-volatile storage. The stores also have enough processing power to perform
basic database operations (such as accessing and modifying records), to keep logs, etc. The hosts are
responsible for processing the transactions; they communicate with the users, the stores at the local site and

the hosts at the remote site.
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Figure 1. System Architecture

The stores and hosts need not necessarily be disjoint processors. The same processor could perform
both tasks, by dividing its CPU cycles between them. Stores and hosts might actually be implemented as
two layers of software in the same system. For example, Bernstein et al. [1] define a database system archi-
tecture with a transaction manager (corresponding to our notion of host) and a data manager (correspond-
ing to our notion of store). Similarly, the RSS store manager of system R could implement our stores and

the RDS system our hosts.

All of the stores and hosts at one site can communicate with each other through shared memory or
through a local network or bus. The method we will present applies to shared memory architectures (e.g.,
DEC Firefly, Encore Multi-Max) as well as more loosely coupled systems (e.g., a VaxCluster, a Tandem

Dynabus or a set of Camelot workstations connected via an Ethernet).



Running between the two sites are several communication lines, which let hosts at the primary site
send copies of operations being performed to the backup hosts. Control messages are also exchanged over
these lines. The existence of enough bandwidth to propagate the changes is assumed; however, communi-
cation delay is not a critical issue here, since we are assuming 1-safe transactions. We remind the reader

that the capacity of the stores at the remote site must be at least equal to the one at the primary site.

The database model we will use is a simple version of the relational model, but it is realistic enough
to allow us to study the major issues. The database contains a set of tables, and each table contains a set of
records. The tables have unique names and the records have unique record ids. Requests can be made to
create or delete tables and to insert, select, update or delete records. Each of these requests must provide
the appropriate parameters. For example, in order to update a record, one must provide the id of that record
along with the new version of it. The store will, upon request, create and maintain indices on tables, with
any subset of the fields forming the key of the index. Basic transaction processing functions, such as lock-
ing, abort and commit operations, are also supported by the store. Such requests are always associated with
a transaction identifier, which is established with a begin-transaction request during the initialization phase

of a transaction,

The tables are partitioned among the stores. This could be done by hashing names, by table look up
or some other method; the details are not important, but as we will show in section 10, the partition must be

logically identical at the two sites.

Let us take a brief look at how normal processing would proceed at the primary site without the
existence of the backup. A host gets a transaction from a user and assigns it a transaction id (host id fol-
lowed by sequence number). Before a transaction issues the first request to a particular store, it must send
a begin-transaction request to this store. Then the transaction is executed, by issuing the appropriate
requests to the store(s) where the corresponding data reside; the requests contain the transaction id and the
necessary parameters. When all of the requests have been executed, the host initiates a two-phase commit
protocol that ensures that'the transaction is either committed or aborted at all stores. The stores, on the
other hand, execute all of the database operations that are issued to them, produce the necessary logs, set
the appropriate locks, etc. [6]. We are assuming strict two-phase locking is used for concurrency control.

Note also that no global transaction sequence numbers indicating the commit order are generated.



(Generating them would create a bottleneck.)

We assume a fail-stop model [13] for host and store processors. We also assume that each host to
host connection offers a datagram service [15]. Messages are delivered correctly, but not necessarily in

order.

As failures occur at the primary, the system tries to recover and reconfigure. (The details for this are
given in Section 9.) However, multiple failures may slow down the primary site or even stop it entirely.
At this poin‘t, a primary disaster is declared and the backup attempts to take over transaction processing.
The declaration of a disaster will in all likelihood be done by a human administrator. This is mainly
because it is very hard for the backup site to distinguish between a catastrophic failure at the primary and a
break in the communication lines. In addition, the input transactions must now be routed to the backup
site. For simplicity we assume that when a primary disaster occurs the hardware at the backup site is fully
operational. (Certain failures at the backup could be tolerated during a primary disaster, but this will not be
discussed here.) A backup disaster is similarly declared when failures impair the backup site. We assume

that the primary site is operational during a backup disaster.

A site is always in one of three modes: primary, backup or recovering. At most one of the sites can
be in the primary mode at any. time.-Under normal operation, processing of the transactions takes place at
the site operating in primary mode and sufficient information is sent to the site operating in backup mode to
allow it to install the changes made at the primary site. When a primary disaster is declared, the site previ-
ously operating in backup mode starts operating in primary mode and all of the transactions are directed to
it. When the failed site comes up, it enters a special recovering mode, which will allow it to get a con-
sistent, up-to-date copy of the database and (perhaps later) resume normal processing. The same recover-
ing mode is used for creating the backup copy at system initialization. Note that the primary and backup

roles are interchangeable between the two sites.

4. Evaluation Criteria

In this section we describe the requirements for 1-safe transactions more precisely. The transaction
processing mechanism at the primary ensures that the execution schedule PS of a set of transactions T is

equivalent to some serial schedule. Schedule PS induces a set of dependencies on the transactions in 7' .



We say T,—T;, (in PS) if both transactions access a common data item and at least one of them writes it
[8]. Dependencies can be classified into write-write (W-W), write-read (W-R) and read-write (R-W)

depending on the actions that generate them.

The backup site will execute a subset of the actions in PS. Let this schedule be BS. Read actions are
not performed at the backup since they do not alter the database. The write actions that are executed sim-
ply install in the database the value that their counterpart installed at the primary. Because of failures, not

all write actions of PS may appear in BS.

Requirement 1: Atomicity. If one action of a transaction T, appears in BS, then all write actions of T,

appearing in PS must appear in BS. This disallows partial propagation of a transaction. O
Let R be the set of transactions whose writes are inBS,R c T.

Requirement 2: Mutual Consistency. Assume 7, and T, are in R. Then, if T,—T, in BS, it must be the
case that T,—T, in PS. This guarantees that the backup schedule is ‘‘equivalent’’ to the primary, at least
as far as the propagated write actions are involved. (Since no read actions take place at the backup, this

requirement does not apply to R-W or W-R dependencies.) O

Let M be the set of transactions that were not fully propagated to the backup before a failure and
hence were not installed.- In addition to these transactions, there may be other transactions that we do not
want to install at the backup. For example, suppose that when T, and T, execute at the primary, T, writes a
value read by T,. If T, is not received at the backup (i.e., € M), we do not want to install T, either, even

if it was properly received. If we did, the database would be inconsistent.

To illustrate this, say that T, is the transaction that sells a ticket to an airline customer. It inserts a
record giving the customer’s name, date, flight involved, payment information, and so on.- Transaction T},
checks-in the passenger at the airport, issuing a seat assignment. The updates produced by 7T, cannot be
installed at the backup without those of T: there would be no passenger record to update. Thus, we have

the following requirement:

Requirement 3: Local Consistency. No transaction in R should depend on a transaction in M. That is,
suppose there is a transaction T, M and there is a sequence of W-W and W-R dependencies (not R-W) in

PS:



T,—»Ty—T,— - >T,.

Then none of T,, T}, ..., T, is allowed to be in R. If C is the set of transactions that depend in this way on

M transactions, then R (M UC) should be empty. O

Note that R-W dependencies do not cause violations of the local consistency constraint. If T,—T), and the
only dependencies between these two transactions are R-W, then the values installed by T, cannot possibly
affect the values installed by T;,. Thus, one can install at the backup updates made by T, and have a con-

sistent database, even if T, does not reach the backup.

Requirement 4: Minimum divergence. The backup copy should be as close to the primary as possible,
i.e., the backup site should commit as many as possible of the transactions it is given, as long as none of the
above correctness constraints is violated. In other words, if a received (therefore not belonging to M) tran-
saction does not depend on any transaction in M (i.e., does not belong to C), then it has to belong to R, i.e.,
T=RyMyC.

Requirement 5: Possibility for parallelism. Although it is rather difficult to give a measure for parallel-
ism, one can see that an acceptable solution to the problem should exploit the potential for parallelism. For
example, suppose that transactions at the backup site are processed sequentially. If the primary site allows
parallel execution of transactions, it will have a higher throughput than the backup. The backup will inevit-

ably be unable to keep pace with the primary, and the backup copy will become out of date.

In closing this section we make four observations. First, we have implicitly assumed that the pri-
mary and backup schedules PS and BS run on the same initial database state. In section 8 we present a pro-

cedure for initializing the backup database so that this property holds.

Our second observation is that read only transactions do not modify the state of the database and

therefore need not be propagated to the backup site.

The third observation is that most replicated data mechanisms described in the literature (e.g., [1],
[3]) would not allow what we call missing transactions. That is, they would have the property M =@ (2-
safe transactions). As discussed in the introduction, they would use a two-phase commit protocol to
achieve this property. With the weaker constraints we have defined in this section, it is possible to have a

more efficient algorithm. In essence, transactions commit at the primary (using a local two-phase commit



that involves primary hosts and stores), release their locks, and only then are propagated to the remote
backup. At the backup there will be a second local commit protocol to ensure that actions are properly

installed there. The details will be given in the rest of the paper.

Our last observation deals with the semantics of missing transactions. In particular, is it ‘‘valid’’ to
lose transactions that already committed at the primary? Is it ‘‘reasonable’’ to throw away transactions that
were propagated but violate the local consistency requirement? As discussed in the introduction, real
applications do allow missing transactions and can cope with the consequences. A simple example may

illustrate what these consequences are.

Consider a banking application where a transaction T, deposits 1,000 dollars into an account that ini-
tially has no funds, and a transaction T), that withdraws 400 dollars. Both of these transactions run at the
primary just before a disaster. Transaction T is lost, but T, arrives at the backup. (This can happen if the
log records for T, are propagated via a different communication line than that for T,.) To satisfy the local
consistency constraint, 7, is not installed at the backup. The database will be consistent at the backup but
not consistent with the real world. The inconsistencies with the real world will be detected and corrected
manually. For example, when the customer checks the balance of the account (at the backup) and sees zero
instead of 600, he will go to the bank with his deposit receipt and ask for a correction. The bank, knowing
that a disaster occurred, will be willing to make amends for missing transactions. The bank might lose
some money (especially if withdrawal transactions are lost), but this cost can be much smaller than the cost
of providing 2-safe transactions. Furthermore, not all transactions have to be 1-safe. Operations that
involve large sums of money can be performed with 2-safe protocols. (In this paper we do not discuss the
algorithms for such hybrid 1-2-safe processing. The extensions to our algorithm for this are straightfor-

ward.)

Finally, there is the issue of whether T, (the withdrawal transaction that depends on the lost T;)
should be discarded even if it arrived at the backup. Installing T, makes the database inconsistent (e.g.,
there are not enough funds in the account to cover this withdrawal). On the other hand, discarding T,
creates an inconsistency with the real world. We believe it is more important to maintain database con-
sistency. Without it, it would be very hard to continue processing new transactions. Furthermore, T, can

be saved for special manual processing. A bank employee can look at the T, record and decide on the best

10



compensating transaction to run. Since disasters occur rarely, the price to pay for this special processing of

the relatively few transactions that are discarded is probably acceptable.

5. Generating the Logs

The basic idea in our solution is to reproduce the actions of each primary store at a corresponding
backup store. For this, a log of the executed actions must be forwarded to the backup store. The log could
be at the action or the transaction level. We have chosen the former. The log could have undo/redo infor-
mation, or just redo. Our method does not send undo information; this reduces communication traffic.
Each host forwards the log entries for its own transactions. We made this set of choices for concreteness

and for compatibility with our architecture; other alternatives may also be possible.

Given these design choices, we now describe in more detail how the primary site generates the logs.
The stores at the primary site keep track in a redo log of the actions they are performing on behalf of a tran-
saction. As will be explained later, even read operations have to be recorded. Each redo log entry should
contain enough information to enable the corresponding stores at the backup site to repeat the same opera-

tions on their copy. This information should contain the following data:

S;: the store performing the operation
Hj: the host controlling the transaction
T,: the transaction id
act. action descriptor (e.g., update)
tbl: the name of the table involved
key: the record id of the record being updated
val: the after image of the record being updated
Note that not all entries contain all of the above data. For example, the log entry for a delete need not

contain an after image, and for create-table no key nor value is necessary.

‘When a host receives a transaction, it issues a begin-transaction request to the stores (at the primary
site) that will participate in the processing of the transaction. Processing proceeds as usual, with local locks
being used for concurrency control and with the stores constructing the redo log. Note that in many cases
stores keep a log anyway (for local crash recovery), so the log for the remote backup represents no extra

overhead. However, other alternatives are also possible. For example, a host could construct its own redo

11



log or get it from the stores as actions are acknowledged.

When a transaction completes, the host initiates a (local) two-phase commit protocol. Upon receipt
of a commit message, a store produces a local ticket number by atomically incrementing a counter and get-
ting its new value. Intuitively, if a transaction gets a ticket ¢ at store S;, the transaction ‘‘saw’’ state (—1 of
the store. If the transaction has only read (not written) data at that store, the ticket of the transaction
becomes the value of the counter plus one, but the counter is not incremented (since the state of the store
did not change). For example, if the counter has the value 25, the committing transaction gets ticket 26. If

the transaction wrote at this store, the counter becomes 26; otherwise, it stays at 25.

The store creates a commit entry in its redo log, with the following data:

S; identifies the store involved

Hj: identifies the host controlling this transaction
T, transaction id

act: action descriptor, in this case ‘‘commit’’
ticket: the local ticket number

The stores return the portion of the redo log for T, (including the ticket number) to the host, as an
acknowledgement to the commit message they received and release locks held. The host controlling T’
makes sure that T, has committed at all of the primary stores; it then batches together all of the redo log
entries for T, it received from the stores, and sends them across the network to a remote host. The choice
of the remote host may be static (i.e., host i at the primary site always sends to host j at the backup site) or

it may be determined dynamically, perhaps on the basis of load information.

Each transaction id may be associated with several ticket numbers, one for each store in which
actions of this transaction were executed. As will be explained in the next section, these ticket numbers are
used to ensure that the changes are applied to the backup copy in the same order as in the primary. Afier
the processing of the transaction at the remote site has finished, the host that controlled the transaction at
the primary site is informed, which in turn informs the stores that they may safely erase the relevant portion
of the redo log from their storage. Note that so far transaction processing is similar to what it would be
without a backup copy. The only difference is the local generation of a ticket number and the forwarding of

log records to a remote host. We believe these activities do not impose a significant overhead on normal

12



transaction processing, which is consistent with our goals.

There are two alternatives with respect to when the user submitting a transaction gets a response. If
the response is sent to the user after the transaction has committed at the primary site, then, in case of disas-
ter, the transaction may be lost if it does not commit at the backup. If the user gets a response after the tran-
saction has committed at the backup, then it is guaranteed that the effects of a transaction will not be lost in
case of disaster. Note that transactions are 1-safe in both cases; only the user’s information about the fate of

a transaction is different.

6. Installing Actions at the Backup — Why the Simple Approach Does Not Work

The next problem we address is installing the actions at the backup site. At this point, it is tempting
to propose a very simple solution: As each backup store receives the redo log entries, it simply installs
them in ticket order, without regard to what other backup stores may be doing. This simple solution could
be viewed as the generalization of the approach used by commercial systems for the case where there is no

master log.

In this section we will show that there are problems with this approach. But before doing this, we
point out that at least the simple approach does guarantee mutual consistency (Requirement 2). To see this,
suppose we have two transactions T, and T}, such that T, — T, at the backup site. Let z be a data item that
caused this dependency. If actions are installed at the backup in local ticket order, the ticket number of T,
is smaller than that of T, at the particular store. This implies that at the primary T, got its ticket before T,,.
When T, got its ticket, it held a lock on z, which was not released until T, committed. The lock was incom-

patible with the lock on z requested by 7. Thus, 7,—T, at the primary.

One problem with the simple approach is that it does not ensure that transactions are installed atomi-
cally at the backup (Requirement 1). Thus, in addition to executing writes in ticket order at each store, it is

necessary to execute a local two-phase commit protocol among the stores that participated in a transaction.

Even with a two-phase commit protocol, local consistency (Requirement 3) may be violated. To
illustrate this, we need an example with three transactions and three stores (Figure 2). At the primary site,
the following events occur: T, writes data at store §; getting ticket number 8 (§;). (We follow the ticket

number by the store id to prevent confusion.) Transaction T}, then reads this data, getting ticket 9 (§;) and

13



writes at store S ,, receiving ticket 3 (§,). Later on, T, reads this data and writes at both S, (ticket 4) and

S5 (ticket 7).

A disaster hits and T, is lost. Transactions T, and T, do make it to the backup. At backup stores
BS, and BS; all writes are received so there are no gaps in the sequence numbers. Thus, it would appear
that a transaction like T, could commit. All of the data it wrote is available at BS , and BS3. Furthermore,
all data written at those stores before T, is also available. Unfortunately, since T, is lost, at BS there is a
gap: sequence number 8 (§,) is missing. Thus, T}, with sequence number 9 (§;) must be aborted. If this
happens, then there will be a gap at BS,: sequence number 3 (for T,) is not really available. Hence, writes

with higher sequence numbers cannot be installed, so 7, must also be aborted.

The difficulty caused by this type of cascading aborts should be apparent by now: before a transac-
tion can be installed at the backup, we must make sure that the transactions it depends on have committed

at the backup. This involves synchronization with other stores. Thus, updates cannot be installed blindly

by each backup store, even if they are in correct sequence’.

Figure 2. Cascading Aborts

"Even if we send the redo actions batched by store rather than by transaction, the problem is not fixed. In this case, all actions
with smaller tickets are always received, but the streams of redo logs may not be synchronized. Using the above example, the actions
of T, may be received at BS, but not at some other store, say BSs. Transaction T, is not able to commit, so it is as if its actions at BS;
were missing. The cascading aborts are again the same.

14



As we have seen, installing actions in ticket order at each store guarantees mutual consistency.
Unfortunately, there is potentially a major drawback in terms of efficiency. Let us illustrate with an exam-
ple. Suppose that T, and T, access disjoint data sets at some primary store and ticket (T') = ticket (T5) — 1.
At the backup, the writes for T'; cannot be installed until those for T'y are installed (this is what ticket order
means). Thus, 7', must wait until 7'y commits (which as we have seen involves waiting for other stores to
tell us what they have done), and then wait further until the writes of T, are actually executed. This is
clearly inefficient, especially if stores have a capacity for executing writes in parallel e.g., have multiple
disks. Even with one disk, efficient disk scheduling of T';’s and T,’s writes is not possible. Remember
that T; and T, do not depend on each other, so their commits are independent and their writes could

proceed in parallel.

To avoid these delays, it is necessary for each store to determine if transactions depend on each other
or not. If Ty and T, write a common item, then clearly they depend and T, must wait for T; to commit
and write. However, if T’y and T, write disjoint sets there may still be a dependency! These dependencies
can only be detected if read sets of transactions are also propagated to the backup. To illustrate, suppose
that at a primary store T'; wrote item y and that T', read y and wrote z. There is a dependency Ty — T, so
T, cannot commit at the backup unless T, does (local consistency, Requirement 3).- The corresponding
backup store will not be able to detect the dependency from the write sets ( {y} and {z} ). If the read sets

are sent, the dependency will be seen, and T'; can be delayed until T finishes.

In summary, we have seen that actions cannot simply be installed in ticket order at the backup stores.
The system must guarantee that a transaction only commits when all the transactions that it depends on
have committed at the backup. In addition, a transaction should not be delayed waiting for transactions it
does not depend on, something that would happen if actions were done in strict ticket order. The mechan-

ism we describe in the following section achieves these goals.

Finally, note that sending undo/redo logs (as opposed to simple redo logs as we are assuming) does
not really eliminate the problems we have sketched here. If undo logs are included, it is possible for
backup stores to install updates in local ticket order disregarding the state of other stores. If later it turns
out that some transaction does not commit, its updates can be undone. However, the commit decisions

must still be made at some point, and still involve making sure that all transactions that a transaction
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depends on have committed. Itisnota goodidea to delay all commit decisions until a disaster hits because
[1] the undo logs would become too large, and

[2] processing of new transactions at the backup after the disaster would be delayed until the commits
complete. This may take a long time, since the cascading aborts mentioned above will lead to exten-

sive searches in the logs.

Thus, we would still need a commit protocol to run as transactions are received, and it would be similar to
the one we will describe for redo logging only. As we have stated, redo logging sends less data to the

backup, so in the rest of the paper we will only deal with it.

7. Installing Actions at the Backup — Our Approach

In this section we present our method for installing the redo logs at the backup, prove its correctness
and discuss its performance. In what follows, the notations T, and T (s,) are equivalent and are both used

to denote the transaction with ticket number s,. The store is usually implied by the context.

No real processing of transactions takes place at the backup site, in the sense that no computation is
performed for a transaction. The backup site is given the actions that were performed on the primary copy
(in the form of a redo log) and has only to install the changes in a manner consistent with our correctness
criteria. The backup host does not have much work to do. It gets a redo log from a primary host and then
partitions the log by store and sends each part to the appropriate store. This can be viewed as the first phase
of a (local) two-phase commit protocol. The stores install the changes (in the proper order, see below) and,
when they are finished, they send an acknowledgement to the host. When the host receives acknowledge-
ments from all of the stores, it executes the second phase and also sends an acknowledgement to the pri-
mary host (as mentioned in section 5). The two-phase commit protocol is used to make sure that the
changes of a transaction are installed atomically, so that the backup copy is never left in an inconsistent

state.

In section 6 we saw that updates in strict sequence order reduce parallelism. The intuition behind our
solution is to detect exactly those cases where waiting is necessary and to let all other cases take advantage
of parallelism. This is achieved through locks on the data items accessed by the transactions, which are

granted to the transactions in ticket number order. Write (exclusive) locks are requested for items that are
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to be updated. For other items in the read set, read (shared) locks are requested. - Additionally, a read lock
on every table ‘“‘name’’ accessed is requested, in order to ensure that the table is not deleted while access-

ing one of its records; if the table was created or destroyed, this lock must be exclusive.

For a concrete example, suppose that T, has a smaller ticket number than 7, at one of the stores. If
they access a data item in conflicting modes, our mechanism ensures that the lock is granted to T, the tran-
saction with the smaller ticket number. Transaction T, cannot get the lock until 7}, releases it, i.e., until T,
commits. If, on the other hand, there is no dependency between the two transactions, then they will not ask

for conflicting locks, so they will be able to proceed in parallel.

‘We now describe the locking mechanism at the backup in detail. When a redo log for transaction T,
with ticket number s, arrives at backup store BS; , it is placed in a queue of transactions ordered by ticket

number. In this queue, T, can be in a number of states:

LOCKING : the transaction arrives and requests locks for all of the records and tables
it accesses. Then it waits until all transactions with smaller ticket
numbers have entered (or gone past) the SUBSCRIBED state (so that
conflicts can be detected). Only then does it enter the SUBSCRIBED

state.

SUBSCRIBED : the transaction is waiting until it is granted the locks it requested. The
transaction may then proceed to the PREPARED state.

PREPARED: an acknowledgement for the first phase of the two-phase commit proto-
col has been sent to the backup host.

COMMITTED : the message for the second phase has been received for this transaction.

All updates have been made public and all locks have been released.

When T, arrives, BS; sets the state of T, to LOCKING and starts requesting the locks required.
Transaction T, asks for a lock on data item z by inserting itself in a list of transactions asking for a lock on
z; the list is sorted by ticket number. Each store has a counter that keeps track of the local ticket sequence,

showing the ticket of the last transaction that entered the SUBSCRIBED state at this store.

The locking procedure is summarized in Figure 3. After all of the locks for T, have been requested,
T, waits for the counter to reach s,—1, if it has not already done so. This recursively implies that T, will
wait for all transactions with smaller ticket numbers to enter the SUBSCRIBED state. (Note that some or
all of these transactions may be further ahead, in the PREPARED or COMMITTED state. The important

thing is that they must have reached at least the SUBSCRIBED state before T, can do so.) When this
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+ happens, T, enters the SUBSCRIBED state itself. If T, writes data at this store, then it increments the
counter by 1. The increment in the counter may in turn trigger T (s, + 1) to enter the SUBSCRIBED state
and so on. For example, if the current value of the counter is 25, then if transaction T, with ticket 26 is in
the LOCKING state, it enters the SUBSCRIBED state and increments the counter to 26, which may cause
the transaction with ticket 27 to enter the SUBSCRIBED state and so on. If T, were read only for this store,

it would proceed to the subscribed state without incrementing the counter to 26.

In the SUBSCRIBED state T, waits until all of its lock requests reach the head of their corresponding
lists. (A read request is also considered at the head of a list if all requests with smaller ticket numbers are
for read locks.) When this condition is met, T, enters the PREPARED state and informs its host. Afier

commit, all of T, ’s requests are removed from the corresponding lists.

When a failure occurs at the primary site, the backup is informed that primary processing will be

switched to it. The (former) backup tries to commit all of the transactions that can commit and aborts the

state(T,) = locking ;
t = ticket (T,) at this store ;
FOR each object z accessed by T,

add lock request (includes T, s ticket) to z list ;
WAIT UNTIL (counter >=t - 1);
IF T, writes at this store THEN

counter = counter + 1 ;
state(Ty) = subscribed;
FOR each object z accessed by T,

WAIT UNTIL T, request is at head of z list;
state(T,) = prepared;
send acknowledgement to coordinating host;
WAIT UNTIL commit message for T, is received;
FOR each object z accessed by T,

BEGIN

IF T, wrote z THEN
install new z value;

remove T, lock request from z list;
END;
state(T) = committed

Figure 3. Store pseudo-code for backup transaction processing
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ones that cannot. It then enters the primary mode and takes over processing,

Observation: the atomicity constraint holds.

Argument: Atomicity is enforced by the local two-phase commit protocol at the backup. (I

Observation: the mutual consistency constraint holds.

Argument: Since locks are granted in ticket order at the stores, updates inducing dependencies are

installed in ticket order. As discussed at the beginning of section 6, mutual consistency is observed. [J

Observation: the local consistency constraint holds.

Argument: Suppose T, - T, - T, — -+ — T, and T, has not arrived yet at the backup site (we remind
the reader that the dependencies are non R-W). Further, assume that T, — T}, occurs at store §;, T, — T,
at §,, and so on (note that these stores are not necessarily different). Since the dependency is non R-W, the
ticket number of T, is higher than that of T,. According to our processing rules, T, cannot enter the SUB-
=SCRIBED state at BS ; and will be unable to commit. At BS,, T, will lock the objects that caused T, — T,
and will not release them until it commits, thus preventing T, from entering the PREPARED state. Tran-

saction T, in turn prevents 7; from committing and so on. Thus, local consistency holds. O

Unfortunately, the mechanism that enforces the mutual consistency and local consistency constraints
also causes the minimum divergence constraint to be violated. If T, is missing at a store, then all transac-
tions with higher sequence numbers will not commit, regardless of whether they conflict with T or not. In
case of failure, a few transactions may be unnecessarily aborted. However, one can argue that this disad-
vantage will not be serious in practice, because the number of transactions unnecessarily aborted will be
rather small and limited to transactions that executed just before the catastrophic failure. Given a max-
imum transmission delay T, for the transactions to reach the backup site and a maximum processing rate

R .., we can bound the number of transactions missed by the backup in case of failure by Tax* R max-

It is possible to devise a mechanism that strictly enforces the minimum divergence constraint, but we

believe that its overhead would be too high. To enforce the constraint, each transaction T; would have to
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arrive at the backup site with a list of transactions it depends on. Transaction T; would only be delayed at
the backup if the transactions on its list were missing. To construct these lists, the primary site would have
to keep track of the last transaction that accessed every lockable database object. This storage and process-
ing cost would be incurred during normal operation. In contrast, our solution pays the price of a few
aborted transactions only when a disaster hits. (The minimum divergence constraint could also be satisfied

by a mechanism that uses two-phase commit between the two sites.)

There is not much we can formally prove regarding parallelism, but we can convince ourselves that
the proposed mechanism is not a processing bottleneck at the backup site. Transactions are received by the
backup hosts in parallel. At each store, locks are requested concurrently by multiple transactions. If the
transactions with consecutive ticket numbers at one store access disjoint data sets, then they can acquire
their locks at that store in parallel. The only part that is executed serially is the increment of the counter,
which is relatively fast. Note that this increment is not a global bottleneck, since the increment at one store
is independent from the increment at another store, even for the same transaction. On the other hand, if the
transactions access common data items at a store, a certain amount of parallelism is lost, because they will
acquire their locks sequentially. However, at the primary site, these conflicting transactions also executed -

sequentially, so the backup is not introducing new delays.

8. Imitialization of the Backup Database

After considering operation under normal conditions, with one site in primary and one site in backup
mode, we must now consider the system with one site in the primary mode and one in the recovering mode.
This will be the case at system initialization and when a previously failed site recovers. The basic idea we
will use is similar to a fuzzy dump [11], but there are some differences. In a conventional fuzzy dump one
gets a dump of the database and a log of the actions performed while the dump was in progress. In order to
restore the database, the dump is installed and the log is replayed against it. No transaction processing
takes place while the restoration is performed. The correctness criterion for the restoration process is
defined clearly: the database must be brought to the consistent state existing at the time the last transaction
recorded on the log committed. Our application is complicated because there are multiple logs and because
transaction processing cannot be suspended during recovery. This makes both the implementation and the

correctness proof trickier.
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The basic idea is for the primary site to scan the entire-database and transmit it to the recovering site,
along with the changes that occur while this scan is taking place and may therefore not be reflected in the
scan. These changes are essentially a redo log and are transmitted over the communication lines used for
normal operation. The scan data will probably take too long to be transmitted over the communication
lines, so that an alternate path between primary and recovering site may be established. This path is usually
a tape that is written at the primary site and carried to the backup. The order in which scan messages are
received at the recovering site is irrelevant for our method, so that some scan messages may be sent over
the communication lines while others are written on tape. Our scheme allows the use of multiple tapes to

expedite the process.

For each primary store §;, a primary host H; and a backup host BH; are selected to copy the §; data-
base. Host H; will scan the database at S;, passing it to BH;, which in turn installs that data at the
corresponding backup store BS;. First /; informs §; that initialization is starting. Then §; records the
current ticket number s, and returns it to /7;, which in turn sends it (through BH;) to BS;. Backup store BS;
sets its ticket number to s,, creates a legal but empty database and starts accepting redo logs with ticket
numbers higher than s,; redo logs with lower ticket numbers are simply ignored because their effects will

. be reflected in the scan copy. Store BS; remains-in-the recovery mode until initialization completes. If the
primary fails while the backup is in recovery mode, nothing can be done: the backup database is still use-

less.

Under the control of H;, store S; starts scanning the portion of the database residing in it. At the same
time, normal processing continues and redo logs are sent to the recovering site. The scanning of the data-
base is like a long lived transaction which reads the entire database. For each object scanned (table or
record), a scan message is sent to the backup with enough information for it to create the object. The scan

process is described in detail in Figure 4.

Note that the locks are held only while an object is scanned. Records are locked one at a time; groups
of records do not have to be locked together. (When the scan process tries to lock an object that is already
write locked by a transaction, the scan process does not get blocked: it reads the before image of the

record). Tables or records created by transactions with ticket numbers greater than s, do not have to be
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FOR each table DO
BEGIN
get a table read lock ;
send a scan message for table creation ;
FOR each record DO
BEGIN
get a read lock on the record ;
send a scan message with the image of the record ;
release the lock held on the record ;
END
release the lock held on the table ;
END

Figure 4. The scan process

scanned, since they will be transmitted anyway in the redo log of the transaction that created them. How-
ever it will not be harmful if they are transmitted by the scan process too. The same holds for objects that
have been updated after time s,; it does not matter whether we send the object value that existed at time s,

or at some later time.

The backup store will receive data of two types: messages from the scan process and normal redo
logs from transactions. The backup store processes both types of messages, using the simple rule of always
trying to have the most recent copy for every object. In particular, when a redo log arrives (ticket number

greater than s,), it is processed as usual, except for the following:

[1] If a record update action is to be performed but the record does not exist yet, the update is treated as
an insert. (This assumes that the update log entries contain the full after image of the modified

record.)

[2] If a record (or table) insert arrives but the record (or table) already exists, the values in the insert
replace existing ones. That is, the end result should be as if the record (or table) did not exist and the

insert were normally executed.

[3] Deletes do not actually delete the record (or table). They simply mark it as deleted, but it is still
reachable through the primary key index. If a delete arrives, and the object does not exist, a dummy

record is inserted with the record key and a flag indicating it is deleted.
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‘When scan messages arrive at BS;, they are treated as insertions of the record or table. However, if
the object already exists (even in deleted form), the scan message is ignored. This is because the scan mes-
sage may contain obsolete data (i.e., data which have been superseded by a later version). Note that even if
the scan message contains a later version than the one already existing no problem arises, because this later

version will be installed when the redo log for the transaction that wrote this later version arrives.

The motivation for the above rules is as follows: during the initialization phase, there will be two
types of objects, those accessed by transactions and those not accessed at all. If the object is not accessed,
then we want the scan to give us the image of this object as it exists in the primary store. However, if the
object is modified by a transaction, then we really did not need the scan for the object since the normal pro-
cessing will deliver the new image. Our rules ensure that a useless scan does not get in our way. For exam-
ple, consider a record z that exists at ““time’’ s, in §;. The scan starts and sends the image of z. Some time
later a transaction deletes z. If the delete arrives at BS; before the scan, we could end up with a copy of z
that should not exist. But since the delete creates a dummy record, the scan message will find it,-and the
scan copy will be discarded. After initialization, the deleted objects can be removed, so they do not

represent a serious storage problem.

There is a subtle point regarding the time at which we may resume normal processing at the backup
site; i.e., exit from the recovery mode. It is not sufficient to wait until the scan process finishes, say at
“‘time’” 5,. Let us illustrate this with an example. Suppose that T; writes data items a and b, which satisfy
some consistency constraint (e.g., @ + b = const). First the scan process holds a read lock on a and
transmits its before image (with respect to T;). Then T; gets write locks on both a and b, updates them,
commits and releases the locks. The scanner gets a read lock on b, transmits its after image and then
finishes (say b was the last unscanned object). Suppose that scan messages for a and b arrive at the backup
ahead of the redo log message for T;. Assume further that the T; message never makes it because of a
failure. If we let the backup site resume normal processing at this point, we end up with an inconsistent

copy (we are left with the before image for a and the after image for b).

To avoid this type of problem, we use the following rule. Suppose that the scan process finishes at
the primary store §; when the ticket number is s,. Then it is safe to resume normal processing at the

corresponding backup store BS; after
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(a) all ransactions through T'(s,) have commitied at the backup store, and
(b) all of the scan messages for this store have been received and processed.

The entire backup site can resume normal processing once all of its stores are ready for normal pro-

cessing.

Observation: the above two conditions are sufficient for correctness.

Argument: Suppose the scan starts at primary store §; at *‘time’’ s, (i.e., after transaction T(s,) ran), and
ends at time s,. Let Z, be the state of S; at time s, and let T,, be the set of transactions that committed at

the primary during the scan.

At the backup store BS; we start with an empty database state and install a set of transactions T .
that includes all transactions in T'g,,,. The resulting schedule is SCH .. Concurrently, we process all
scan messages and arrive at a database state Z,. Note that T, may contain more transactions than those

in Ty 4,. This is because transactions that committed after time s, at §; can arrive before 7'(s,).

We want to show that Z, is identical to Zg, the state resulting from running SCH . on Z,. This

can be done by considering each object z in the database.

e Case I. Object z was not modified by any transaction in T'p,k. Since Ty.q, © Track (property (a) above),
z was not modified by any transaction at the primary site during the scan. Hence, the scan message for z
will contain the value of z in Z,, i.e., Zy(z). This value will be installed, so Z,(z) = Zy(z). This is

- exactly the value of Zp(z).

e Case II. Object z was modified by some transaction in T ... Let T; be the last transaction in SCH p,.
to have modified z, writing value z;. That is, Zg(z) = z;. Next, let us look at the moment when z; is
installed by T; at BS;. If the scan message for z arrives after this time, it is ignored. If it arrives before

this time, T; overwrites z. In either case, Z,(z) = z;. Thus, Z4(z) = Zp(2).

We have shown that after SCH p,,; is run, the state of BS; is as if we had started with the initial state
Zy. Given the correctness of normal processing, the subsequent states of BS; will also have this property.
This means that after conditions (a) and (b) hold, our implicit assumption about initial states holds (see

Section 4). O
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9. Coping with Single Host or Store Failures

We give a brief discussion of what can be done in case a host fails (not a disaster). If a primary host
H; fails, a replacement host RH; is selected at the primary site. Host RH; is in charge of committing or
aborting pending H; transactions. In addition, RH; is responsible for sending missing redo logs to BH;. In
order to achieve this, RH; contacts all of the stores at the primary site and asks for transactions that were
controlled by H;, have committed, but are still in the redo logs. If BH; does not have the redo logs for some
of these transactions, RH; sends them to BH;. As in normal processing, when an acknowledgement is
received that a transaction has successfully committed at the backup site, RH; informs the primary stores to

purge the corresponding log entries.

If a backup host BH; fails, a replacement host RBH; is selected. Host RBH; contacts all of the
backup stores and obtains the status of all transactions in progress that were originated by BH;; RBH, -
becomes the coordinator for these transactions and tries to commit them.  Host RBH,; is also responsible for
the transactions that ran while BH; was down and before RBH; took over. Host RBH; contacts H; and gets a
list of pending redo logs that have not been acknowledged by the backup. H; retransmits all pending logs

until they are acknowledged.

-Stores can also fail, but-we have-assumed that they have reliable storage and their own recovery
method. If a store fails in a way that cannot be handled by its" recovery mechanism, it is considered a disas-

ter, and the general recovery scheme described in the previous section is used.

10. Extensions

It is possible to break up the data residing in a store into chunks and apply our proposed solution,
generating ticket numbers per chunk instead of per store. For example, each relation could be a chunk.
This has the advantage of gaining parallelism, by reducing the critical sections: there is less contention for
getting the ticket numbers at the primary stores, less contention for the state flipping (from LOCKING to
SUBSCRIBED) at the backup stores, etc. In addition to this, the impact of a missing transaction in case of
failure is reduced. Let us illustrate with an example. Suppose disaster strikes and transaction T, does not
make it to the backup site. All transactions accessing data items in the same chunks as T, that have been

received properly at the backup but have higher ticket numbers than T, have to be aborted. The less data
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that the chunks accessed by T, contain, the fewer aborted transactions. On the other hand, more ticket

numbers have to be processed both at the primary and the backup site, which will add some overhead.

Another optimization can be made in the scanning process. As we saw in section 8, some of the mes-
sages sent by the scanning process are ignored at the backup site. We can decrease the number of such
messages if we keep track of what has been scanned at S;. For simplicity assume that each record has a
scan bit that indicates if it has been scanned. (This might actually be implemented with a cursor showing
how far the scan process has gone.) As each record is scanned, the bit is set. If a transaction modifies a
record that has not been scanned, the after image for that record need not be sent, since the scan process
will send the after image of the record later. However, the redo log entry containing the ticket must be sent,

so that the ticket sequence will not be broken.

Yet another interesting problem is the partition of the data among the stores. In this paper we took
the partition to be identical at both sites. This is the most natural case (since the backup system will prob-
ably be a replica of the primary). However, it tumns out that arbitrary partitions are not possible, at least
within our framework. Consider the following case: backup store BS;; contains data from primary stores S;
and §;. Suppose that ticket (T,) < ticket (T,) at §; and ticket (T) > ticket (T,) at S; (at one of the primary
stores there is no dependency between.the two transactions).. It is possible that all of the data accessed by
T, and T, resides on BS;;. Which ticket number will be used to determine the order in which the transac-
tions will enter the SUBSCRIBED state at BS;;? This leaves only the possibility of a finer partition at the
backup site. But it turns out that even this is not practical. Suppose the data on primary store §; is split into
backup stores BS;; and BS;, at the backup. Transaction T, accesses data only on BS;; and has
ticket (T,) = k. Transaction T, accesses data only on BS;, and has ticket(T,) =k + 1. Transaction T, will
never appear in store BS;,. This means that transaction T, will never execute, because it cannot enter the
SUBSCRIBED state unless T, has previously done so! Thus, the partitions of data at the two sites have to

be identical.

The method for recovery we suggested in section 8 assumes that the primary database is lost during a
disaster. If this is not the case, it may be possible to bring the failed primary up-to-date by sending it the
redo logs for the transactions it missed, instead of a copy of the entire database. The recovering primary

also has to undo transactions that did not commit at the backup before redoing the missed transactions. The
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«use of'redo logs for recovery may or may not be feasible, depending on the time it takes for the failed site
to be repaired. If this time is long, the logs will grow too big. The relative performance of the two methods
also depends on the size of the logs. Our method is general and works even when the primary loses its copy
entirely, without excluding the use of the other method. For example, one could combine the two strategies
as follows: when a failure of the primary is detected, the backup takes over transaction processing and tries
to keep the logs for as long as it can, in case the primary recovers soon and still has its copy. When its
capacity overflows, it starts discarding the logs; when the failed site recovers, the method proposed in sec-

tion 8 will be used.

11. Conclusions

We presented a method for keeping a remote backup database up-to-date for disaster recovery. The
method ensures that the backup copy will be consistent with the primary and that in case of failure the
backup copy will be (at most) a few transactions behind the primary. The method is relatively straightfor-
ward and and can be implemented using well known concepts and techniques, such as locking and logging.
The overhead imposed at the primary site is relatively small, and there is no central processing in our

mechanism, i.e., no component that must “‘see’’ all transactions. This means that the system can scale

= upwards:-more communication lines, hosts and stores can be ‘added without having backup management

interfere.
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