MAINTENANCE OF GEOMETRIC EXTREMA

David Dobkin
Subhash Suri

CS-TR-196-88

December 1988

Maintenance of Geometric Extrema*

David Dobkin Subhash Sun
Department of Computer Science Bell Communications Research
Princeton University 445 South Street

Princeton, NJ 08544 Morristown, N.J. 07960

January 3, 1990

Abstract

Let S be a set, f : S x S — R* a bivariate function, and f(z,S) the mezimum
value of f(z,y) over all elements y € S. We say that f is decomposable with respect to
the maximum if f(z,S) = max{f(z,51), f(z,52),..., f(z, Sk)} for any decomposition
S = Ui=kS;. Computing the maximum (minimum) value of a decomposable function is
inherent in many problems of computational geometry and robotics. In this paper, we
present a general technique for updating the maximum (minimum) value of a decom-
posable function as elements are inserted into and deleted from the set S. Our result
holds for a semi-online model of dynamization: when an element is inserted, we are
told how long it will stay. Applications of this technique include efficient algorithms
for dynamically computing the diameter or closest pair of a set of points, minimum
separation among a set of rectangles, smallest distance between a set of points and a
set of hyperplanes, and largest or smallest area (perimeter) rectangles determined by
a set of points. These problems are fundamental to application areas such as robotics,
VLSI masking, and optimization.

1 Introduction

A variety of problems in computational geometry and robotics involve computing the max-
imum (minimum) value of a bivariate function f : § x § — R, defined over a set of
geometric objects. Generally, S is a collection of primitive objects such as points, lines,
rectangles, hyperplanes, or spheres, and f is an elementary function such as L, distance,
area or perimeter. For instance, given a set of points S in the d-dimensional Euclidean
space, the diameter of S is the maximum value of the distance function f(z,y),forz,y€S.
Other examples include the closest pair in a set of points, largest or smallest area (perimeter)
rectangles determined by a planar set of points, minimum distance between a set of points
and a set of hyperplanes, and smallest separation among a set of orthogonal rectangles.
The computational geometry literature contains numerous efficient algorithms for solv-
ing such problems in the static mode, that is, for the case of a fixed input set. Not much is

*A preliminary version of this paper appeared in the Proceedings of the S0th IEEE Symposium on Foun-
dations of Computer Science, 1989, under the title “Dynamically Computing the Maxima of Decomposable
Functions, with Applications”

available, however, in the way of dynamic algorithms. Often one wants to solve a problem
for a sequence of “related” sets of input, rather than just one fixed set of input, in which case
executing a static-case algorithm for each input set separately is likely to be inefficient. A
dynamic algorithm simulates a sequence of related problem instances by allowing insertions
and deletions into an underlying set. The strength of a dynamic algorithm lies in its ability
to “update” the solution after an insertion or deletion, rather than having to recompute it.

Given their versatility, it is no surprise that dynamic algorithms are often significantly
more difficult to obtain than static ones. In fact, despite the fundamental nature of the
problems such as the diameter and closest pair, no efficient dynamic algorithms were known
for them. In this paper, we obtain efficient dynamic algorithms for diameter, closest pair,
and the other problems mentioned in the abstract. But let us first review some of the
previous work on dynamic algorithms.

1.1 Previous Results

A systematic study of dynamization in the realm of computational geometry was enunci-
ated by Bentley and Saxe [2]. They focused on the important class of problems, called
decomposable search problems, and showed that under mild assumptions one can convert a
static data structure into a semi-dynamic one, allowing insertions but no deletions, with
a logarithmic increase in cost. The conversion cost in their scheme is generally quite high
if deletions are also allowed. Bentley and Saxe, however, were mainly interested in data
structures for query-answering (i.e., univariate functions), and consequently their scheme
is not amenable to the kind of problems we are interested in, namely, the pairwise maxima
in a set.

Overmars and van Leeuwen [17] extended the basic approach of Bentley and Saxe to dy-
namize problems related to configurations rather than just points. They developed efficient
algorithms for dynamically computing convex hulls, maximal elements and intersection of
halfspaces. But even these extended techniques do not seem to apply to geometric maxi-
mization (minimization) problems such as diameter and closest pair.

In [16], Overmars considered order decomposable set problems, a class of problems es-
pecially amenable to divide-and-conquer. Among the problems considered by him is the
closest-pair problem in two dimensions. He obtained an O(n) time algorithm for updating
the closest-pair after each insertion or deletion. The best bound for dynamically maintain-
ing the diameter of a planar set of points was also O(n) per insertion or deletion. In fact,
no sublinear-time update procedure was known for any of the problems mentioned in the
abstract.

1.2 Owur Main Results

Our main result is an efficient algorithm for updating the maximum (minimum) value of a
decomposable function f : § x § — R* as elements are inserted into and deleted from S.
Our result holds for a semi-online model of dynamization: when an element is inserted, we
are told how long it will stay. Thus, the semi-online model should be viewed as a “cross”
between the offline and the online models that essentially mixes online insertions with offline
deletions. The exact form of the semi-online model can vary depending on how one chooses
to specify the sequence of deletions. In the model stated above, we have chosen to disclose

the deletion-sequence “on the fly.” In another variation, we may specify the complete order
in which the elements will be deleted. Notice that specifying the order does not disclose
the time step at which a deletion actually occurs since deletions are intermixed with online
insertions. In the paper, we will focus exclusively on the first definition of the semi-online
model, although all our results hold for the second version as well. We point out that our
semi-online model is similar to a model used by Gabow and Tarjan [13] where they obtain
a linear-time algorithm for the disjoint set-union problem under the assumption that the
sequence of “unions” is known in advance but “finds” are online.

We believe that a semi-online model may be an interesting middle ground when one of
the operations is more difficult to perform online than others. In our case, deletion is the
harder operation and, in fact, for most of the problems considered in this paper, efficient
algorithms for handling even the online deletions (without any insertions) are not known.
While the goal of obtaining efficient online algorithms for these problems remains elusive at
this time, our results show that mixing online insertions with offline deletions is not much
more difficult to handle than the insertions alone.

Our central theorem can be stated as follows. Suppose that we are given a set 5, a data
structure D(S), and a decomposable function f such that (1) [Preprocessing] D(S) can be
computed in time P(n), and (2) [Query] for any z, f(z,S) can be determined from D(S)
in time Q(n), where |S| < n. Then we can process a semi-online sequence of n insertions
and deletions and update the maximum (minimum) value of f at an amortized cost of

0 (P(n) logn

n

+ Q(n)log n)

per insertion or deletion. This theorem is presented in Section 2.

We then apply this result to derive sublinear-time update procedures for a variety of
problems in computational geometry, robotics and VLSI masking. These applications are
described in Section 3, and summarized in the table below; d denotes the dimension of the
space.

Problem Amortized Update Time Best Static Time
O(log® n) for d = 2 O(nlogn)

Diameter O(y/nlog?n) ford = 3 0(n®/?logn)
O(n'~ THI¥ log? n) for d > 4 | O((nlogn)?~ TH7)
O(log”n) ford = 2

Closest Pair O(+y/nlog?n) ford =3 O(dnlogn)
O(nl_f‘??*}’lT log? n) for d > 4

Minimum Separation | O(log” n) for d = 2 O(nlogn)

of Rectangles

Minimum Distance | O(n!/?1log®? n) for d = 2 O(n'#

between Points and | O(n?/2log™/®n) for d = 3 0(n®1og? n)

Hyperplanes O(nl-m log? n) for d > 4 | O((n®~ @a#5777 Jog® n)

Largest and Smallest | O(log® n) for d = 2 O(nlog® n)

Rectangles

Table of Results

In Section 4 we consider extensions of the main theorem. We obtain a uniform result
for dynamically solving a number of decomposable search problems, with deletions. We
also discuss the (limited) applicability of our result to non-decomposable problems. Specif-
ically, we show that the largest area (perimeter) empty rectangle in a set of points can be
maintained in sublinear amortized time. Conclusions and open problems are discussed in
Section 5.

2 The Main Theorem

Given a set S and a symmetric bivariate function f : § x § — R*, we consider the problem
of updating the maximum value of f as elements are inserted into and deleted from S.
Equivalently, we compute the maximum value of f for a sequence of subsets of S where
adjacent subsets differ by exactly one element. If z € S is an element and 7' C S a subset,
then we use the (slightly abusive) notation

f@f)=ﬁgﬂaw-

The following definitions formalize the notions of decomposability and computability of f.
o [is decomposable with respect to the mazimum if f(z,5) = max f(z,S;), for any
z € S and § = UiTks;, o

o fis (P,Q)-computable with respect to the mazimum if for all T C S there exists a
data structure D(T') such that

[Preprocessing] D(T') can be constructed in time P(|T'|), and
[Query] for any z € S, f(z,T) can be determined from D(T') in time Q(|T).

We assume that P and Q are monotone nondecreasing functions, with P(n) = Q(n) and
Q(n) = Q(log n). These assumptions are easily satisfied by the type of problems considered
in this paper.

We call a sequence of insert and delete instructions semi-online if the instructions are
received online but the duration of each element is announced at the time of its insertion.
That is, if z is inserted at time ¢ and deleted at time t’, then t' becomes known at time t.
Times t and ¢’ actually denote indices of these updates in the sequence rather than “real”
times. An element is active from the time of its insertion to the time of its deletion. The
active set S; consists of all the elements active at time £.

Given a bivariate function f and a semi-online sequence L of inserts and deletes, the
mazimal history of f with respect to L is the sequence of values

def
Vi = max f(z,9), t=1,2,...,|L]
zlyesl
Similarly, we can define the minimal history of f. Our result is stated in the following
theorem.

Theorem 1 Let f be a symmetric bivariate function that is (P, Q)-computable and decom-
posable with respect to the mazimum (minimum), and let L be a semi-online sequence of n
insert and delete instructions. Then we can compute the mazimal (minimal) history of f
with respect to L in time O(P(n)logn + nQ(n)logn), for an amortized cost of

C(n) = O (w + Q(n)logn)

per insertion and deletion.

The rest of this section outlines a proof of Theorem 1. Our proof consists of an algorithm
and its analysis. Without loss of generality, we consider the maximal history; the proof for
the minimal history is identical. In the following discussion, we assume that the length of
the update sequence, namely, n is known in advance. This is not a substantial restriction
since we can always guess a value for n, say, n = m and when m updates have been
processed, re-initialize the algorithm with n = 2m. It is easy to see that this dces not affect
the asymptotic complexity of our algorithm. We begin with a key definition.

Given a subsequence L' C L, an element z is called a long insertion of L with respect
to L' if z remains active during the entire time-span of L’; that is, z is inserted before the
first insertion of L’ and it is deleted after the last deletion of L'. The main idea behind the
proof is to partition L into a hierarchy of subsequences so as to isolate large groups of long
insertions.

2.1 Hierarchy

We begin by splitting L into a; blocks, each of length |L|/a; = n/a;; the optimal value
of a; will be determined later. A block is just a consecutive sequence of instructions of L.
These a; blocks are processed in their sequential order. Consider one of these blocks, say,
L. Let F; be the set of long insertions of L with respect to L;. The key observation is
that the set F} remains “frozen” during the processing of L; and that |F;| < |L|. In time
P(F,) we compute the data structure D(F}), after which f(z,F}) can be determined in
time Q(|F|) for any element z. To process the instructions of L;, we subdivide L, into a;
subblocks, each of length |L;|/a; = n/ajaz. Each of these subblocks are then processed
recursively.

We continue to subdivide L in this manner, and build a hierarchy of frozen data struc-
tures D(F), D(F;), ..., D(F}). At the ith level of the hierarchy, each block of insert and

delete instructions has size .

M| = i,
Qpaiag -y
where ag = 1 and Ly = L. The left half of Figure 1 illustrates the hierarchy. There are
altogether a; blocks at the ith level corresponding to each block L;_; of the level : — 1. F;
will denote the current frozen set at level i; the intended time step will be clear from the
context.

Suppose that the hierarchy consists of k levels, where an optimal value of k will be
determined later. A block of instructions at the kth level is processed directly, i.e., without

making further recursive calls. These instructions operate on a set Fi4,.

As the processing of various blocks is completed, the hierarchy is updated accordingly.
In particular, when a blocks of level i, say, L; is completed, the topmost k — 1 + 1 levels
of the hierarchy are rebuilt. This involves recomputing the frozen sets and their associated
data structures. We do this by the (upward) recursive subdivision of the next-in-line blocks
at level i. In the following, we explain how to process an insert and delete instruction and
update the hierarchy.

2.2 Updates

We start with the updating of frozen sets. During the processing of Lj, the current block
of instructions at level k, all sets except F4; remain fixed. The set Fj,, and its associated
data structure D(Fj4;) are recomputed after every insertion and deletion of L. Consider
the time step ¢ when Ly is completed. The completion of L; generally implies the completion
of several other blocks of instructions at lower levels of the hierarchy. (Recall that every time
a; blocks of instructions are completed at level j, one block of instructions gets completed
at level j — 1.) Let ¢, for 1 < i < k, be the lowest level in the hierarchy where a block of
instructions is completed at time ¢. Then we need to rebuild the hierarchy at time ¢ for all
the levels between ¢ and k.

Let L; be the block of instructions just completed at the ith level and let L; be the next
block of instructions to be carried out. Suppose further that the parent sequence of L; and
L; is L;_; (at the level i —1). The new frozen set for the ith level, denoted by F;, is the set
of long insertions of L;_; with respect to L:-. Let A(L;) denote the set of elements that are
inserted but not deleted during L;, and let B(L;) denote the set of elements in F; U A(L;)
that are scheduled for deletion during L;. Then it is easily seen that

'

F, = (FUA(L))- B(L)). (1)

The set B(L;) is propagated upward, where its elements are partitioned to form frozen
sets of levels 7, for 7 > 1. L;, the new block of instructions at the level ¢, is split into o;
subblocks. Let L;;; be the first among these subblocks. Then the new frozen set at level
i + 1 consists of precisely those elements of B(L:-) that are not scheduled for deletion by
L;+1. The remaining elements of B(L;) move on to level i + 2, where they are either placed
into the frozen set or passed further to the next higher level, and so on.

This completes the discussion of the updating of the frozen sets in the hierarchy as
blocks of instructions are completed. A straightforward consequence of this hierarchical
scheme is that the frozen sets form a partition of the current active set, as the following
proposition states.

Proposition 1 At any time t, S; = Uf:ll F;. The set S; in fact is a disjoint union of all

the frozen sets.

Proof. Let Lj be the block of instructions being processed at time t and level k. Consider
the “genealogy” tree of L,. This tree is a directed path whose nodes are blocks of instruc-
tions Lo, L1,...,Lk_1, Lk, where L;;;1, a block at level i 4+ 1, is a child (subblock) of L;,
a block at level i. Then it is easy to see that an element z is placed in the frozen set of
the lowest level j for which the condition “z is a long insertion of L;_; with respect to L;”

holds. Thus, an element of S, belongs to exactly one frozen set at time t, which completes
the proof. 1

Next, we describe how to update the maximum value of f as a new insertion or deletion
is processed. We introduce the notation

def :
Wi(F) = max max f(z,F;), (2)
so that W;(F;) is the maximum value of f achieved between the elements of F; and any F},
for j < i, at time t. Our algorithm computes the history of f by maintaining the values of
Wi(F;)’s.

Proposition 2 At any time t, V; = ISr‘x_lsahx+1 Wi F).
Proof. By Proposition 1, if the maximum value of f at time t is achieved by the pair of
elements z,y € Sy, then both z and y belong to some frozen sets. Suppose that z € F; and
y € F;, where i < j. Then, Wy(F;) = f(z,y). 1

Our algorithm maintains the values of W(F;)’s as insertions and deletions cause the
frozen sets to be changed. The set F; is updated every time a block of instructions L; is
completed at level i. The new value of W;(F;) is calculated as indicated by its definition in
(2). In particular, the value of W;(Fk+1) is updated after every insertion and deletion. In
the following subsection, we show that these updates can be implemented within the time
bound stated in Theorem 1.

2.3 Analysis

For notational convenience, we write

3 n
C agm@z - @ioy
so that |Fi| < |Li-1] = ni. The following proposition establishes the complexity of
updates at the kth level.

Proposition 3 Following an insertion or deletion at time t, we can update D(Fj4,) and
Wi(Fiy1) in time O((k + 1)[P(nk41) + nis1Q(n))])-

Proof. Let z be the element inserted or deleted at time step t. If the instruction is to delete
z, then our decomposition scheme ensures that z currently belongs to Fj,,. We therefore
update Fj4; by either adding or deleting z, and then compute the new data structure
D(Fj41), at the cost of P(niy;). If the instruction is to insert z, then the new value of
Wi(Fi41) is computed as!

Wi(Fir41) = max {Wi_1(Fe41), f(2,5:)}-

!Notice that Fisy on the left-hand side of the equation represents the set at time ¢ while the one on the
right-hand side represents the set at time t — 1 (i.e., before the insertion or deletion of z).

Since S; is the union of all frozen sets and f is decomposable, we have the following equality:

f(Z, St) o= 15?&1 .f(zr Fl)
We can determine the value of f(z,S;) by querying data structures D(F;)’s, for i =
1,2...,k + 1, at the cost of at most Q(n) each. Thus, updating D(Fi41) and Wy(Fiy,)
following an insertion takes O(P(nk+1) + (k + 1)Q(n)) time.
If the instruction is to delete z, then the new value of W;(Fi4) is computed as

Wi(F1) == max f(z,5).
z€F 4y
In this case, we compute f(z,S;) for each of the elements of Fiyy. Since |Fiy1| < niyy
and each f(z,S;) can be computed in time (k + 1)Q(n), the cost of updating D(Fi41) and
W,(Fi41) following a deletion is O(P(nk41) + nks+1(k + 1)Q(n)). (Notice that if z is not
involved in the previous maximum va'ae of W(Fi41), then this work is unnecessary; the
value of W;(Fi41) remains unchanged.) This completes the proof. |

Next, we analyze the cost of maintaining D(F;) and W;(F;) at an arbitrary level of the
hierarchy. Since F; remains fixed during an ith level block of instructions L;, the updates
to D(F;) and Wy(F;) occur only once per block of instructions L;.

Proposition 4 Following the completion of a block of instructions L; at time t and level
i, we can update D(F;) and W,(F;) in time O(P(n;) + n;Q(n)).

Proof. Observe that computing the data structure D(F;) only takes time P(n;) once the
new frozen set has been determined. We show that F; and W;(F;) both can be updated in
time O(n;Q(n)). Our algorithm maintains the following invariant:

(*) Each element z € F; stores with it the set of values f(z,F;) for j = 1,2,...,1.

The invariant is initialized for an element at the time of its insertion; Proposition 3 takes
into account the cost of computing f(z, F;) for j = 1,2,...,k + 1. Thus, associated with
each element z € S; is a linear array that stores these k + 1 values. Given these values, we
can compute Wy(F;) in time O(kn;). Since we later choose k < logn (see Proposition 5),
this cost is dominated by O(n;Q(n)); recall that Q(n) = Q(log n). We break up the analysis
into two cases depending upon whether or not 1 is the lowest level in the hierarchy where a
block of instructions is completed at time ¢.

First, assume that 1 is the lowest level in the hierarchy where a block of instructions is
completed at time t. Suppose that after the completion of L;, the next block of instructions
to be carried out at level 1 is L;. Furthermore, let L;_; (at level i — 1) be the parent block
of instructions for both L; and L;. Then the new frozen set for the ith level, denoted by
F, is computed as

F, = (R UA(L)) - B(L),

where A(L;) is the set of elements that are inserted but not deleted during L;, and B(L;) is
the set of elements in F;U A(L;) that are scheduled for deletion by L;. (Recall equation (1)
from the previous subsection.) Since L is semi-online, we can determine the set B(L}) by

simply looking at the deletion-times of all the elements in F U A(L;); this is where the
semi-online property of L is crucial. So, the new frozen set F can be found by making a
single pass through F; U A(L;). Inductnrely, assume that the invariant (*) holds for both F;
and A(L;). Then, in the new set F;, every element z has the correct set of values f(z, F;)
for j < i. We complete the invariant by computing f(z, F, ") for all z € F;, which can be
done in time O(n,Q(n)) by querymg the data structure D(F). Finally, we also compute
the values f(z, F;) for all z € B(F,), at the total cost of O(n;Q(n)). These values are used
for updating the Wt values of frozen sets of the higher levels, which will be constructed by
partitioning B(F;). This completes the discussion of the case when i is the lowest level for
which a block of instructions has just finished.

Next, assume that i is not the lowest level where a block of instructions is completed. We
can illustrate all aspects of the update procedure but simplify the discussion by assuming
that i — 1 is the lowest level in the hierarchy to have a block of instructions completed at
time t. By the first half of the proof, after constructing the new frozen set at level i — 1,
the algonthm propagates a set of elements B to level i; using the earlier notation, this set
is B(F._,). Let L; be the first subblock of instructions to be carried out at the level 7 after
time t. Then the frozen set of level # consists of precisely those elements of B that are not
scheduled for deletion by L;. Thus, the new frozen set F; can be determined in time O(n;),
again using the semi-online property of L. To compute the new value of W,(F;), observe
that we know the set of values f(z, F;) for all z € B and j < i, implying that the set of
values f(z, F;) is correctly known for all z € F; and j < i. We complete the invariant by
computing f(z, F;) for all z € F; in time O(n;Q(n)). The elements of B not placed in F; are
propagated upward to level i + 1, where a similar construction takes place. This completes
the discussion of the case when i is not the lowest level to have a block of instructions
completed at time ¢.

The total time spent in either case is O(P(n;) + n;Q(n)). This completes the proof of
the proposition. 1

We are now ready to prove the time bound stated in Theorem 1. Let T; denote the time
needed to process a block of instructions L; at level i. To simplify our analysis, we assume
that functions P(n) and Q(n) have been suitably scaled to incorporate the constant factors
absorbed by the “big Oh” notation above. Recalling that |Li| = nk41, Proposition 3 gives

Tk < i1 (k 4+ 1)[P(nk41) + me41Q(n)]. (3)

The bounds for T;, i = k- 1,...,2,1, are given by Proposition 4:

Teo1 < (P(ni) + ne@(n) + Th)a
Tz < (P(ni-1) + nec1Q(n) 4+ Tho1) k-1
: (4)
T P(n2) + n2Q(n) + T2)az

<
To < (P(m)+mQ(n)+ T

(See the right half of Figure 1.) The expression for T;_; has the following components:
the term P(n;) 4+ n;Q(n) represents the cost of updating D(F;) and W,(F;); T; represents

the cost of processing a block of instructions at the level ¢; and the final term a; is the
number of subblocks L; into which a block of level i — 1 is split. The final time complexity
of our algorithm for processing the sequence L is expressed by Tp.

Proposition 5 The set of inequalities ({) admits the solution
To = O(P(n)logn + nQ(n)logn).

Proof. We proceed from top to bottom, balancing the terms P(n;) + n;Q(n) and T; at
each step to find optimal values of a;’s and T;’s. The choice of

a; = (n‘,)lf(k—Hz) (5)

enables us to prove by induction that the following is an admissible solution to the set of
inequalities (4):

T; < (2k =1+ 1)(P(ni+1) + nit1Q(n)) (m+1)1/(k-i+1)

We notice that at i = k, this agrees with equation 3, establishing the basis case of the
induction. Next, we observe that

@;P(ni41) < P(n;), (6)
which follows from
a;ni+1 = N4 (7)

and the assumption that P(n) grows at least linearly with n. For the inductive step, we
verify that if the solution holds for T; then it also holds for T;_;.

Tia (P(ni) + niQ(n) + Ti) oy
a; (P(n;) + niQ(n)) + aiT; ‘
= ai(P(n:) + n:Q(n)) + @i(2k —i+1)(P(nit1) + ni41Q(n)) (ni41) /4D

Pl ,) () e

< ai(P(n) + Q) + ai(2k—i+1) (—o 4 B2 (2
{0k 4 N1/ (k—i+1)
= (o + SO (Pl + (o)

(2K — § 4+ 1)(mg)/=i+D)
. (a‘- -)(P(n,-)+n.-ocn))

= (ai + au(2k — i+ 1)) (P(m) + mQ(n)) (5)
= (k= (= 1)+ 1) (P(n) + mQ(n)) (m)!/*- 604D (5)

This completes the induction step. The time complexity of the algorithm follows by
setting k = (logn — 1) in the expression for Tp:

To = O(P(n)logn + nQ(n)logn)

10

This completes the proof of the proposition. |

This also completes the proof of Theorem 1. Observe that our proof sets a; = 2,
for i = 1,2,...,k, thus demonstrating that maintaining the frozen structures in a binary
hierarchy yields the best time bound. In the next section, we discuss applications of this
theorem.

3 Applications of the Main Theorem

In this section, we explore applications of Theorem 1 to a variety of problems that involve
computing the extremum value of a decomposable bivariate functions. The underlying
universe is a collection of primitive geometric objects such as points, lines, rectangles,
hyperplanes, spheres, and the function f is some elementary measure such as distance,
area or perimeter. We apply Theorem 1 to compute maximal or minimal histories of these
functions with respect to a semi-online sequence, thus obtaining efficient dynamic algorithms
for various problems. In all cases, our method gives a substantial improvement over any
previous known results.

3.1 Diameter

Let S C E9 be a set of n points in d dimensions and let f(z,y) be the L, distance (p21)
between the points z and y. The diameter of S is defined as

Diameter(S) = max f(z,y).

Our result is a sublinear-time algorithm for updating the diameter of a point-set in
any dimension. (Since it is easy to obtain a constant or logarithmic time bound for one
dimension, we concentrate on higher dimensions; also see Final Remarks.) The distance
function f is clearly decomposable with respect to the maximum. The (P, Q)-computability
of f is established by the following proposition.

Proposition 6 With respect to the mazimum, the distance function f is

1. (nlogn, log n)-computable in dimension d = 2,
2. (n3/2 log n, n'/?logn)-computable in dimension d=3, and
3. (n?-P4, nl-Palog n)-computable in dimensions d > 4, where B3 = 1/(d(d + 3) + 4).

Proof. Our data structure consists of the furthest-point Voronoi diagram of S, preprocessed
to allow efficient point location. The maximum distance between a query point ¢ and the
set S is computed by determining which cell of the Voronoi diagram of S contains g. If the
cell belongs to the point s € S, then f(g,S) = f(g,s). In two dimensions, the furthest-point
Voronoi diagram of n points can be computed and preprocessed in O(n log n) time, following
which a point-location query can be answered in time O(logn) (see e.g. Edelsbrunner,
Guibas and Stolfi [11] and Lee [14]). This proves the proposition for d = 2.

In three dimensions, the furthest-point Voronoi diagram of n points can be constructed
and preprocessed in O(n?) time, after which point-location queries can be answered in time

11

O(log? n) (see e.g. Chazelle [4], Edelsbrunner [10] and Seidel [19]). We balance the cost
of constructing a Voronoi diagram against the cost of searching it by partitioning S into
7/ logn subsets of size \/nlogn each. We construct the Voronoi diagram of each of the
subsets and preprocess it for point-location. The total cost of preprocessing is

0(}%/5-1 (Valogn)?) = O(n*logn).

A point-location query is answered in O(n'/?logn) time by searching each of the \/n/logn
Voronoi diagrams, at the cost of O(logz n) each. This proves the proposition for d = 3.

In dimensions d > 4, the best bounds for constructing and searching Voronoi diagrams
are given by Chazelle and Friedman [6]. They show that n hyperplanes in d dimensions can
be preprocessed in O(n%(4+3)/242/]og n) time, following which a point-location query can
be answered in O(logn) time. To obtain the bounds stated in the proposition, we balance
the preprocessing and query costs, by splitting S into nl-B4 subsets of size nP¢ each. This
completes the proof. |

Theorem 1 and Proposition 6 lead to the following result.

Theorem 2 The history of the diameter in d dimensions can be computed at an amortized
cost of C(n), where

C(n) = O(log’n) for dimension d=2,
C(n) = O(vnlog’n) for dimension d =3,
C(n) = O(n'"Pélog?n) for dimensions d > 4, where f4= ET&——F%)T{

To contrast Theorem 2 with previous results, we note that the online version of the
two-dimensional case was considered by Overmars [16]), and he obtained O(n) bound on
the update time per insert or delete. A comparison of our bounds with the best static-case
time bounds is presented in the table of results given in the introduction. Indeed, our bound
for computing the entire history of the diameter during a sequence of n inserts and deletes
is quite close to the best upper bounds known for solving a single instance of the problem
by a static algorithm.

3.2 Closest Pair

Let S C E? be a set of n points in d dimensions and let f(z,y) be the L, distance (p > 1)
between the points z and y. The closest pair of S is a pair of points s;,s2 € S such that

f(s1,82) = zmieﬂs{f(z,y) | 2 # y}-

v

The closest pair of n points in E? can be computed in time O(nlogn) for any fixed
dimension d (Bentley and Shamos [3]), which is optimal in the worst case. We present algo-
rithms for maintaining the closest pair in sublinear time in all dimensions. The function f is

clearly decomposable with respect to the minimum. Its (P, Q)-computability is established
by the following proposition.

12

Proposition 7 With respect to the minimum, the distance function f is

1. (nlogn, log n)-computable in dimension d=2

2. (n*?logn, n'/?log n)-computable in dimension d = 3, and

3. (n?-P4, n!-B¢log n)-computable in dimensions d > 4, where By =1/(d(d+3)+4).
Proof. The proof is identical to the proof of Proposition 6, except that we use the closest-
point Voronoi diagram instead of the furthest-point Voronoi diagram. §

Theorem 1 and Proposition 7 yield the following result.

Theorem 3 The history of the closest pair in d dimensions can be computed at an amor-
tized cost of C(n), where

C(n) = O(log*n) for dimension d=2,
C(n) = 0(n'/?log’n) for dimension d =3,
C(n) — O(nl—ﬁd],ng n) fOf dimensions d > 4, where ﬁd = F(-&-:!é—m

3.3 Minimum Separation of Rectangles

Let S be a set of n disjoint axes-parallel rectangles in the plane. Given a pair of rectangles
s = [21,22] X [y1,¥2] and &' = [z}, 23) X [91,¥s), the separation of s and &' is defined as the
minimum y-distance between them if [2q,22] N [z;,25) # 0, and as the minimum z-distance
if [y1,¥2] 0 [y3,¥2) # 9; the separation is assumed to be infinite if the rectangles do not
overlap on either coordinate.? Let f(s,s') denote the separation of the rectangles s and s'.
The minimum separation of S is defined as

MinSeparation(S) = mfiéls {f(s,s") | s # &'}

Minimum separation problem arises in VLsI layout design, where masks used in the fabrica-
tion of integrated circuits are frequently expressed as a collection of axes-parallel rectangles.
The separation function f is decomposable with respect to the minimum, and its (P, Q)-
computability is proved by the following proposition.

Proposition 8 The separation function f is (nlogn,log n)-computable with respect to the
minimum.

Proof. We show how to preprocess a set S of n rectangles in time O(nlog n) so that the
minimum vertical separation between a query rectangle ¢ and any rectangle of S can be
computed in O(log n) time; the minimum horizontal separation is computed by a similar
data structure.

2The assumption of infinite separation in the case of non-overlapping projections is not limiting. By
observing that the minimum distance between two non-overlapping rectangles is achieved between two
vertices, it is easy to extend our results to the case where the separation is defined as the minimum distance
between any two points of the rectangles.

13

We construct a balanced binary tree H whose leaves represent the 2n abscissas of the
rectangles of S, sorted in the nondecreasing order. For a nonleaf node w, let S(w) denote
the set of rectangles whose abscissas are represented by the descendant leaves of w. We
store with w a sorted list of the ordinates of the rectangles of S(w). Let z; and z, denote
the left and right abscissas of the query rectangle g, and let y; and y, denote the top and
bottom ordinates of g. There is a canonical decomposition of H into O(logn) subtrees
rooted at, say, w;,ws,...,Wmn such that U:i;" (w;) is precisely the set of rectangles whose
horizontal-spans have a nonempty intersection with [z;, z,]. The rectangle with a minimum
y-separation from g is found by searching the lists stored at w;’s by the ordinate-keys of g,
namely y; and y3.

The tree H and the sorted lists stored with its nodes can be constructed easily in
O(nlogn) time. The canonical decomposition of H with respect to g is found in O(logn)
time by tracing the paths from the root to the leaves with the maximum z-coordinate
lsss than z; and the minimum z-coordinate greater than z,. A naive method of searching
the O(logn) sorted lists stored with w;’s takes O(log?n). We can save a factor of logn
by making use of the technique of fractional cascading. This allows each of these binary
searches to be performed in constant time, after the first binary search has been conducted
at the full cost of O(logn) (see Chazelle and Guibas [7] for details). This completes the
proof. 1

Theorem 1 and Proposition 8 imply the following result.

Theorem 4 The history of the minimum separation of a set of disjoint azes-parallel rect-
angles can be computed at an amortized cost of O(log? n).

3.4 Points and Hyperplanes

We consider the following problem, which is a generalization of a problem posed by Hopcroft
in the context of collision avoidance. Given a set of points S and a set of hyperplanes T
in E4, determine the minimum distance between a point of S and a hyperplane of T. In
Hopcroft’s original problem, we only need to detect if there is any incidence between the
elements of S and T (the case of minimum distance being zero). The current best solution
for the latter in E? is an O(n'*!) time algorithm due to Cole, Sharir and Yap [8]. We
develop dynamic algorithms of sublinear time complexity for the generalized problem in all
dimensions.

Let f: (SUT)x(SUT) — R* be the distance function between points and hyperplanes,
defined as follows. f(z,y) is the distance between elements z and y if z is a point and y a
hyperplane, or vice versa. Otherwise (when z and y are either both points or hyperplanes),
f(z,y) = +oo. It is easily seen that f is symmetric and decomposable with respect to the
minimum. The (P, Q)-computability of f is established by the following proposition.

Proposition 9 With respect to the minimum, the point-hyperplane distance function f is

1. (n3/2 log”2 n, nl/? logl"2 n)-computable in dimension d = 2,
2. (n%/3 log'/® n, n?/3 log‘/ 3 n)-computable in dimension d = 3,

3. (n?*~?P4, n'-%Bd)ogn)-computable in dimensions d > 4, where B4 = 1/(d(d + 3) + 4).

14

Proof. We show that given a set S of n points (resp. hyperplanes) in E4, we can compute a
data structure in time P(n) so that given a query hyperplane (resp. point) ¢, the minimum
distance between g and the set S can be determined in time Q(n), where P(n) and Q(n)
are as stated in the proposition.® The two problems, namely computing the point closest to
a query hyperplane and computing the hyperplane closest to a query point, are equivalent
under the standard point-hyperplane duality (see e.g. Chazelle [4]). Thus, we only need
to describe our data structure for the “primal” case: a set of points and the hyperplane
queries. We use known results on neighbor-searching in Ed,

In two dimensions, we use the following result obtained independently by Cole and
Yap [9] and Lee and Ching [15]: A set S of n points in E? can be preprocessed in time
O(n?) so that, given a query line ¢, the point of S closest to £ can be determined in time
O(log n). We balance the preprocessing and query costs by partitioning S into Vn/lgn
subsets of v/nlogn points each. We then preprocess each of the subsets to construct the
data structure of [9] or [15]. The total cost of preprocessing is

O(J% (v/nlogn)?) = 0(n*?1og!/? n).

To answer the query “which point of S is closest to the line £?,” we search the V/n/logn
structures, at the cost of O(logn) each. This proves the proposition for the dimension d = 2.

In three dimensions, we use a similar result of Chazelle [4]: A set S of n points in)
can be preprocessed in time O(n®) so that, given a plane h, the point of S closest to h
can be determined in time O(log?n). To obtain our bounds, we partition the set S into
(n/logn)*? subsets of size n!/31og?® n each. For dimensions d > 4, the data structure
of Chazelle and Friedman [6] achieves the preprocessing and query costs Ofnif9+3)/242)
and O(log n), respectively. To obtain the bounds stated in the proposition, we balance the
preprocessing and query costs by splitting S into n!—2P4 sybsets of size n?%¢ each. This
completes the proof. |

Theorem 1 and Proposition 9 lead to the following result.

Theorem 5 The history of the minimum distance between a set of points and a set of
hyperplanes in d dimensions can be computed at an amortized cost of C(n), where

C(n) = o(n'/? log®?n) for dimension d =2,
C(n) = O(n*3log"*n) for dimension d =3,
1

C(n) = O(n'~% log?n) for dimensions d > 4, where B4 = ddTa 14

Results similar to Theorem 5 are also possible for computing the minimum distance
between points and spheres in two and three dimensions.

SRecall that in our algorithm we use this data structure to perform queries on the frozen sets. In the
present situation, a frozen set will maintain two different data structures: one for the points and one for the
hyperplanes.

15

3.5 Largest and Smallest Rectangles

Given a set of points S in the plane, we consider the problem of maintaining the largest
(or smallest) axes-parallel rectangle whose opposite corners lie at points of S. Every pair
of points in S determines a unique rectangle of this kind. Let f(z,y) denote the area of
the rectangle determined by the points z,y € S. The function f is decomposable with
respect to the maximum (as well as the minimum). In order to obtain a data structure
with required (P, @)-computability features, we utilize a result of Chazelle, Drysdale and
Lee [5], concerning the LL-diagram of a set of points.

Let S = {p1,P2,..-,Pn} be a set of n points in the plane. Let Z;min and ymin denote the
minimum z- and y-coordinate among the points of S. Let

Z(S) o= (_m:zmin] X ("‘cosymin]-

The LL-diagram of S is a partition of Z(5) into a set of regions {V(p1),V(p2),...,V(pa)},
where
V(p:) = {p€ Z2(S)| f(p,p:) 2 f(p,p;) forall j=1,2,...,n}.

(The LL-diagram in the original paper of Chazelle et al. [5] is defined for a region somewhat
larger than Z(S); however, we find the above definition more convenient for our application.)
Observe that only the maximal points of S can have nonempty regions in the LL-diagram
of §; recall that a point p is maximal if no other point in the set dominates p simultaneously
on both the coordinates. Chazelle et al. [5] prove the following result.

Proposition 10 ([5]) The LL-diagram of a set of n points can be computed in O(nlogn)
time.

We introduce some notation. The z-ordered tree of S, denoted X(S), is the complete
binary tree whose leaves are the points of S sorted by their z-coordinates. The y-ordered
tree, denoted Y(S), is defined similarly. Given a node w € X(s), S(w) denotes the set of
points associated with the leaves of the subtree rooted at w, and M(w) denotes the set of
maximal points of S(w). We find it convenient to assume that the elements of M(w) are
listed by increasing z-coordinates, and thus decreasing y-coordinates; consequently, we also
refer to M(w) as a mazimal chain.

Given a query point ¢ = (z(¢),y(g)), the mazimal chain of S with respect to ¢, denoted
M(q,S), is the set of maximal points of S in the region [z(g),+o0) X [y(g), +00). Finally,
we use N[z(gq),X(5)] to denote the canonical representation of the points of S having z-
coordinates greater than z(g):

N{z(q),X(5)] = {w1,w2,...,wn}, m < [logn],

where w;’s are nodes of X(S) such that JiZ]* S(w;) is precisely the set of points whose
z-coordinate is greater than z(g). We can obtain the canonical representation by removing
from X(S) the edges of the path between the root and the leaf containing the maximum

z-coordinate smaller than z(g). We are now ready to prove the following proposition.

Proposition 11 The rectangular area function f is (nlog? n,log® n)-computable with re-
spect to the mazimum.

16

Proof. We describe a data structure for computing the largest area rectangle determined by
the query point ¢ and the points of S, where g forms the lower-left corner of the rectangle.
The other three cases are treated similarly. Our data structure has three levels:

1. The top level of the data structure consists of the z-ordered tree X(S5).

2. The second level contains, for each node w € X(S), the y-ordered tree Y (M(w))
storing the maximal chain M (w).

3 The third level contains, for each nonleaf node v € Y (M(w)), the maximal chain of
the set of points associated with the leaves of the subtree rooted at v. The L L-diagram
of the set of points in this maximal chain is also stored with v.

Given a query point ¢ = (z(g),y(g)), We assemble the maximal chain M(g,S) by concate-
nating O(log? n) precomputed chains that are stored with the nodes of our data structure.
The corresponding L L-diagrams are used to compute the largest area rectangle. The details
are as follows.

We start by computing the canonical representation N(z(q),X(S5)] = {w1,w3,...,Wm},
where we assume that the descendants of w; have z-coordinates smaller than those of w;
for i < j. We process w;’s in the decreasing order of index, and compute two numbers I;
and h; fori=m,m-1,...,1,as follows:

Im41 = y(Q)y hmt1 = y(Q)i
I; := the minimum y-coordinate in M (w;) greater than h;4,,
h; := the maximum y-coordinate in M(w;) greater than h;4;.

(If I; and h; do not exist, we artificially set them to l;4; and h;;;.) Observe that M(q,S)
is the union over all i of M(w;) restricted to the range [l;, h;]. We now use the y-ordered
trees of our data structure to retrieve M (w;) restricted to [I;, h;]. Let

N[l;, Y (M(w))) = {wi, wiz, - - ., Wik, }

be the canonical representation of points of M(w;) having y-coordinates greater than I;.
Then, the chain M(w;) restricted to [I;, k] is simply the concatenation of the maximal
chains M (w;;) stored with w;;’s for j = 1,2,...,k;. The LL-diagrams of these chains are
available by precomputation.

Thus, the maximal chain M(g,S) is obtained as the union of O(log? n) precomputed
subchains M (w;;). The largest rectangle formed by ¢ and some point of M(w;;), with ¢
at the lower-left corner, is found by determining the region of the LL-diagram of M(w;;)
containing g. The final answer is obtained by choosing the maximum over all M (w;;).

The total cost of answering the query is O(log®n): assembling the maximal chain
M(q,S) takes O(log? n) time, O(logn) time per node w;; and locating the query point
g in the O(log?n) LL-diagrams takes O(log® n) time, O(logn) per diagram. To estimate
the preprocessing cost, observe that, for a node w € X(S), computing M(w) and the asso-
ciated L L-diagram takes O(mlogm) time, where m = |S(w)|. By building the L L-diagram
from bottom to top, the LL-diagrams for all descendants of w in the tree Y(M(w)) can
also be computed within the same time bound. Since each point s € S belongs to O(logn)

17

subsets S(w), the overall cost of building the data structure is O(nlog?n). This completes
the proof. I

Theorem 1 and Proposition 11 lead to the following theorem.

Theorem 6 The history of the largest area rectangle in a two-dimensional set of points can
be computed at an amortized cost of O(log* n).

Theorem 6 also holds for the minimum area rectangles. For the perimeter function,
observe that the perimeter of the largest (resp. smallest) rectangle determined by points
of S is twice the L, diameter (resp. the L; distance between the closest pair) of S. Thus,
extremal rectangles under the perimeter measure can be computed at an amortized cost of
O(log? n) by using Theorems 2 and 3.

4 Extensions

The applications cited in Section 3 illustrate the wide applicability of Theorem 1. Indeed,
other applications are possible; for instance, we can replace points, lines and rectangles with
more complicated objects such as convex polygons with a fixed number of sides. Rather
than discuss more of these applications, we consider generalizations of our technique to
other kinds of problems. In particular, we consider two extensions of Theorem 1. The
first utilizes the hierarchy of Section 2 to obtain a uniform result for decomposable search
problems. The second applies the technique to a non-decomposable problem.

4.1 Decomposable Search Problems

A search problem consists of a query function f, a query element g, and a set S. The answer
to the query is denoted by f(g,S). The query function f is called decomposable if, for any
query element ¢ and decomposition § = 51, 53,... Aoy

f(Q:S) &= B{f(""’Sl)!f(z’Sz)v' 4 '1f(9?sk)}’

where O is an elementary operator such as min, maz or +. The function f is called
(P, Q)-computable if, for all S C S, there is a P(|S']) time computable data structure that
computes f(g,S5’) in time Q(|S’]) for all g.

We want to compute f during a semi-online sequence of insertions and deletions. The
query at time t is to be answered with respect to the set of elements active at time t, Sy;
we assume that the set is initially empty. We prove the following theorem.

Theorem 7 Let f be a decomposable query function that is (P,Q)-computable. We can
process a semi-online sequence of n inserts and deletes at an amortized cost of

0 (P(n) log n)

n

such that, at any time t, a query f(q,St) can be answered in time O(Q(n)logn).

18

Proof. We process the sequence L by constructing the same hierarchy as that used in
proving Theorem 1. The present problem is simpler in that we are merely concerned with
maintaining the frozen sets at all levels; no function value needs to be computed after each
insertion or deletion. The cost per insertion and deletion, therefore, follows immediately
from Theorem 1, except now there is no Q(n)logn term. Recall that the hierarchy uses
log n levels, with one frozen set F; per level such that, at any time ¢,

Sg = FlUFzUUF'logﬂ

Since f is decomposable, we can compute f(g,S) by searching all the frozen sets, at the
cost of Q(n) each. This establishes the bound for answering a query, and completes the
proof. 1

We illustrate Theorem 7 by giving two examples: the Post-Office problem and the
Extremal Query problem.

Post-office Problem: Preprocess a set of points S in E“ so that, given a query point g, the
point in S closest to g can be determined efficiently.

Eztremal Query: Preprocess a set of points S in E4 so that, given a hyperplane h that is
free to rotate about a (d — 2)-dimensional flat contained in h, the point of S first hit by h
can be determined efficiently. (All points of S are initially assumed to lie on one side of h.)

Theorem 7 allows these problems to be solved dynamically. The data structures em-
ployed are the same as those used to solve the static versions of these problems. In particu-
lar, for the Post-Office problem, we use the Voronoi diagram, preprocessed to allow efficient
point-location. The time bounds are P(n) = O(nlogn), Q(n) = O(logn) in two dimensions
and P(n) = 0(n*/?logn), Q(n) = O(n'/?logn) in three dimensions (cf. Subsection 3.2)
For the Extremal Query problem, we use the convex hull of S. Given a set S of n points in
two or three dimensions, the convex hull of S can be preprocessed in time O(nlogn), follow-
ing which an extremal query can be answered in time O(log n) (see e.g. Edelsbrunner [10]).
Thus, Theorem 7 leads to the following results.

Theorem 8 We can process a semi-online sequence of n inserts and deletes, and answer
Post-Office queries, at an amortized cost of O(log2 n) per operation in two dimensions, and
O(nlf'z log? n) per operation in three dimensions.

Theorem 9 We can process a semi-online sequence of n inserts and deletes, and answer
Eztremal queries, at an amortized cost of O(log? n) per operation in dimensions d<3.

In the three-dimensional Post-Office problem, we can alternatively obtain the query time
of O(log®n), at the expense of making insertions and deletions cost O(nlogn). Extensions
of Theorems 8 and 9 to higher dimensions are possible along the lines of Theorems 2 and 3.

Although similar bounds have been obtained by others, our method has a few key
advantages. First, Theorem 7 offers a uniform bound for decomposable search problems with
deletions. Second, our method works for semi-online sequences rather than offline. Third,
our method may be easier to implement than, for instance, the method of Edelsbrunner
and Overmars [12], which uses a more complicated segment-tree based approach.

19

4.2 Non-decomposable Problems

We consider the problem of computing the largest empty rectangle determined by a set of
points. The problem is as follows.

Largest Empty Rectangle: Given a set of points S in the plane, compute the
largest axes-parallel rectangle whose two opposite corners are at points of S and
that does not contain any point of S in its interior.

Observe that Theorem 6 is not applicable here because the largest empty rectangle
problem is not decomposable. In particular, if f(z,y) denotes the area of the rectan-
gle determined by the points z,y € S, then we are not interested in just computing the
maz f(z,y), rather the maximum among those rectangles that do not contain any other
point of S. To this end, let f(g,S) denote the largest empty rectangle determined by ¢ and
some point of S. Then, even for a decomposition into two sets, S = S; U S, the equal-
ity f(g,S) = maz{f(g,51), f(q,S2)} does not always hold. This is so because a rectangle
determined by ¢ and S; may very well contain points of S;. Nevertheless, we show in the
following that by using a shallower version of our hierarchy, we can compute the history
of the largest empty rectangle at a sublinear amortized cost. In the static case, the best
algorithm for computing the largest empty rectangle takes O(nlog? n) time (see Aggarwal
and Suri [1]).

Given a point ¢ € Z(S), the rectangle formed by ¢ and p € S is empty if and only if p
does not dominate any other point of S; recall from Subsection 3.5 that Z(S) denotes the
region (—00,Zmin) X (—00,Ymin]. Therefore, in the following, we focus our attention on the
minimal points of S; a point p € S is called minimal if p does not dominate any other point
of S. The following proposition states the analogue of Proposition 11 for the largest empty
rectangle.

Proposition 12 Let S be a set of n points in the plane. We can compute a data structure
in time O(nlog?n) so that, given a query point q, determining the largest empty rectangle
formed by q and some point of S takes O(log® n) time.

Proof. Our data structure is identical to the one used in Proposition 11, except that
instead of storing maximal chains and their LL-diagrams, we store minimal chains and
their LL-diagrams.Given a query point ¢ = (z(q),y(g)), we assemble M(q,S), the minimal
chain of S with respect to ¢, as the union of O(log?n) precomputed chains. The largest
empty rectangle formed by ¢ and some point of S is determined by querying O(log?n)
precomputed L L-diagrams, each at the cost of O(logn). The details are identical to those
in the proof of Proposition 11 and we shall not repeat them here. |

Although f is not decomposable, Proposition 12 can be used to compute f over two

sets, as follows.

Proposition 13 Let S; and S, be sets of ny and n; points, respectively, where n; < nj.
After O(nalog®nsy) time preprocessing, we can compute f(g,S1 U Sz), area of the largest
rectangle formed by a query point ¢ and some point of S; U Sz, in time O(m log® na).

20

Proof. We store S, into the data structure of Proposition 12; this takes O(n; log? ny)
time. Given a query point ¢ = (z(g),y(¢)), we compute M(g, S;), the minimal chain of 5,
with respect to g, and the LL-diagram of M(g, S;); this takes O(n; logn,) time. Next, we
compute N|[z(g), X(S2)], the canonical representation of points in S; having z-coordinates
greater than z(g). Let N[z(g),X(S2)] = {w1,w2,.. wm} Recall tha.t M(q,S2), the
minimal chain of S, with respect to g, is a subset of Uiz M(w;). We “superimpose”
M(q, S;) onto the minimal chains M(w;), i = 1,2,...,m. Thxs involves chpp'mg portions
of M(w;)’s and M(q, S;) that are hidden from ¢ by the other.

This refinement splits i=7" M (w;) into O(n; + logn;) fragments. We glue these frag-
ments together by marching from left to right to obtain a chain that consists of precisely
those points of S; with which g can form an empty rectangle. (In general, the set of points
in this chain will be a proper subset of M (g, Sz).) Since M (w;) are stored also as y-ordered
trees, we can use the canonical representation by y-coordinates to represent the final chain
as the union of O(n; loe? n;) precomputed minimal chains. The largest empty rectangle
formed by ¢ and some point of Sz, with ¢ at the lower left corner, can be found by search-
ing the LL-diagrams associated with these O(n; log? nz) minimal chains, and choosing the
maximum. The largest empty rectangle formed by ¢ and some point of S; is determined
by a direct computation with each of the points left in M(q, S)) after the refinement. The
time for constructing and merging the minimal chains is O(n, log? ny) and the time to do
rectangle computations is O(n; log® nz). This completes the proof. |

We use this proposition to prove the following result.

Theorem 10 The history of the largest empty rectangle in a two-dimensional set of points
can be computed at an amortized cost of 0(n*?log?n).

Proof. We build a hierarchy similar to that used in proving Theorem 1, but this time we
restrict ourselves to only two levels. We set

2/3 1/3

ap=n and az=n
which means that the sequence L is split into n2/3 blocks of length n'/® each, and each
block L, is further split into n!/® subblocks of length 1 each. The frozen sets at the two
levels have sizes |Fy| < n and |F3| < nl/3, Each frozen set is organized into a data structure
of Proposition 12. We maintain the following invariants:

1. For each point z € F,, the value of f(z,F, U F3) is known.
2. The area of the largest empty rectangle determined by two points both in F; is known.

Upon the insertion of an element z, we use Proposition 13 to compute f(z,S5;) in time
O(n? /31og® n), where S; = F{UF, is the current active set. The new largest empty rectangle
is the winner of the old rectangle and the rectangle achieving f(z, F{UF;). Upon the deletion
of an element z, we just choose the maximum rectangle from the existing Fy U F; this is
available from the two invariants above. Thus, the new maximum after a deletion can be
reported in just constant time if we keep track of the largest empty rectangle formed by
points of Fy U F;.

21

The time for maintaining the invariants is estimated as follows. Since a block of in-
structions at the second level consists of just one instruction, F3 is recomputed after ev-
ery instruction. Computing the new data structure for F, takes O(n!/3log? n) time, by
Proposition 12, and computing f(z, F} U F3) for all z € F; takes O(n?/3log® n) time, by
Proposition 13. Thus, the cost of maintaining the two invariants at the second level of the
hierarchy is O(n?/® log® n) per insert and delete instruction.

Updates to F occur every n!/? instructions. To restore the invariant for Fy, we need
to compute the largest empty rectangle determined by two points both in Fy. This can
be accomplished in O(nlog® n) time by an easy modification of the static-case algorithm of
Chazelle, Drysdale and Lee [5]. Thus, the amortized cost of maintaining the invariant at
the first level also is O(n?/3log® n). This proves the theorem. I

5 Final Remarks and Open Problems

We have presented an efficient method for updating the extremal value of a decomposable
function after the insertion or deletion of an element. The various applications cited in the
paper demonstrate the usefulness of our result. The main appeal of our approach lies in
its generality, and we expect to see further applications and extensions of our technique.
Our work continues on generalizations of Theorem 1. In particular, we are pursuing the
following research directions that arise from relaxing the restrictions of the current model.

First, instead of bivariate functions, we may consider multivariate functions, which
correspond to geometric ob jects determined by multiple points. Let f(z1,z2,...,2) denote
the area (perimeter) of the polygon whose vertices are z;, 23, ..., Zk- Then maintaining the
largest or smallest k-gon in a dynamic set of points is equivalent to computing the extremal
history of f during a sequence of inserts and deletes. The problem appears to be difficult
even for small values of k, say, k = 3. Questions can also be asked about the maintenance of
other structures such as the minimum spanning circle or the largest empty inscribed circle;
these also are ordinarily determined by three points.

Second, we may consider histories of more complex predicates than just maz or min.
For instance, consider the discrete minimum spanning circle problem. This problem asks
for the smallest circle centered at one of the data points that contains all other points in its
interior. Determining such a circle reduces to the computation of min,maz, f(z,v).

Our results clearly hold for the offline model, where the entire sequence of inserts and
deletes is known in advance. In fact, we conjecture that in the offline model the amortized
time complexity of Theorem 1 can be made worst-case. The semi-online model appears
to be strictly more powerful than online, even in one dimension. Specifically, given a
sequence of n inserts and deletes, we can show that computing the history of diameter in
one dimension requires {}(nlogn) time for the online model, but in the semi-online model
it can be computed in O(n) time. To what extent can our results be extended to the online
model remains the foremost open problem.

22

Acknowledgment

Research of the first author was supported in part by NSF Grant Number CCR87-00917
and a Guggenheim Fellowship. We thank an anonymous referee for valuable suggestions.

References

[1] A. Aggarwal and S. Suri, Fast algorithms for computing the largest empty rectangle,
(extended abstract) Proc. of 3rd Annual Symposium on Computational Geometry, 278-
290, 1987.

[2] J. Bentley and J. Saxe, Decomposable searching problems I. Static-to-dynamic trans-
formation, J. of Algorithms, 1, 301-358, 1980.

[3] J. Bentley and M. Shamos, Divide-and-conquer in multidimensional space, Proc. of
Eighth ACM Symposium on Theory of Computing, 220-230, 1976.

[4] B. Chazelle, How to search in history, Information and Control, 64, 77-99, 1985.

(5] B. Chazelle, R. Drysdale and D. T. Lee, Computing the largest empty rectangle, SIAM
J. of Computing, 15, 300-315, 1986.

(6] B. Chazelle and J. Friedman, A deterministic view of random sampling and its use in
geometry, Proc. of 29th IEEE Symposium on Foundations of Computer Science, pp.
539-549, 1988.

[7] B. Chazelle and L. Guibas, Fractional Cascading: I and II, Algorithmica, 1, 133-191,
1986.

(8] R. Cole, M. Sharir and C. Yap, On k-hulls and related problems, SIAM J. of Comput-
ing, 16, 61-77, 1987.

[9] R. Cole and C. Yap, Geometric retrieval problems, Information and Control, 63, 39-57,
1984.

[10] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, 1987.

[11) H. Edelsbrunner, L. Guibas and J. Stolfi, Optimal point location in monotone subdi-
vision, SIAM J. of Computing, 15, 317-340, 1986.

[12] H. Edelsbrunner and M. Overmars, Batched dynamic solutions to decomposable search-
ing problems, J. of Algorithms, 6, 515-542, 1985.

[13] H. Gabow and R. Tarjan, A linear-time algorithm for a special case of disjoint set
union, J. of Computer and System Sciences, 30, 209-221, 1985.

[14) D. T. Lee, Two dimensional Voronoi diagram in the L, metric, J. ACM, 27, 604-618,
1980.

23

(15] D. T. Lee and Y. Ching, The power of geometric duality revisited, Information Pro-
cessing Letters, 21, 117-122, 1985.

[16] M. Overmars, Dynamization of order decomposable set problems, J. of Algorithms, 2,
245-260 1981.

[17]) M. Overmars and J. van Leeuwen, Maintenance of Configurations in the Plane, J. of
Computer and System Science, 23, 166-204, 1981.

(18] F. Preparata and M. Shamos, Computational Geometry, Springer Verlag, New York,
NY, 1985.

[19] R. Seidel, A convex hull algorithm optimal for points in even dimensions, Report 81-14,
Computer Science, University of British Columbia, Vancouver, 1981.

[20] A.C. Yao,On constructing minimum spanning trees in k-dimensional space and related
problems, SIAM J. of Computing, 11, 721-736, 1982.

24

Level k

Level k-1

Level 2

Level 1

k k k+1
4 T Toy = (P(ne) +mQ@(n) + To) - o
Fk-1 Lk 1

’-Ta—l = (P(nl)_i'an(n)“‘le)'ai

I:2 L2
* T T, = (P(nz)*an(n)*T:)'<“t:
F1 L1
? T To = (P(n))+mQ(n)+Ty) o
L= L
0

Figure 1. Hierarchical Decomposition of the sequence L.

