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Abstract:

In this paper we give a probabilistic analysis of the recent algorithm due to Hinrichs, Nievergelt, and
Schorn for solving the closest pair problem. The analysis that we present is made under the algebraic decision
tree model of computation (not requiring the use of floor functions) which distinguishes it from the grid-
method techniques of Bentley, Weide, and Yao. The result that we derive is that — given n points uniformly
distributed in the unit square and then sorted — a simple linear sweep through the points determines the
closest pair in O(n v/Iog n) expected time. We close the paper by discussing the possibility that it might be
possible to dispense with the \/Togn factor completely; that is,the sweep algorithm might actually have a
linear expected running time.
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1. Introduction:

The closest pair problem, that of finding the closest pair from among a set of points given in the plane,
is one of the more elementary ones in computational geometry. A large number of algorithms, approaching
the problem from many different perspectives, exist for its solution. There are ‘practical’ O(n logn) time
algorithms that are relatively simple and easy to program. The divide-and-conquer method given in [BS] and
the sweep-line one given in [HNS] are representative of this type. There is a ‘theoretical’ algorithm, [FH],
that gives a slightly better running time at the expense of added complexity. There are also algorithms that
solve the closest pair problem as a side effect of solving a more complicated problem such as constructing
Vornoi diagrams [PS].

In this paper we shall analyze the probabilistic performance of the sweep-line algorithm given in [HNS].
The purpose is twofold; one practical, the other theoretical. The practical one is to show that, in a proba-
bilistic sense, it is unnecessary to use complicated data structures such as 2-3 or AVL trees in the algorithm.
A simple linear scan, as described in section 2, will suffice.

The theoretical purpose is subtler. Most probabilistic analyses of algorithms in computational geometry
tend to fall into one of two major classes. The first class consists of those problems that are amenable to
solution by grid-method techniques such as those described in [BWY]. The analyses of these algorithms
takes place in a different model of computation - not the standard algebraic decision tree model. The second
class of analyses tries to solve problems by applying previously known results in probabilistic geometry. A
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classic example of this is the observation ([SP], pp. 145-146) that the gift-wrapping algorithm for computing
convex-hulls runs in expected O(n log n) time when the points are chosen uniformly from within a convex n-
gon. This follows directly from a classic theorem proven by Renyi and Sulanke that describes the distribution
of the number of points on the convex hull. Unfortunately there are not all that many old results that can
be directly adapted for use in this manner. To sum up: There are very few probabilistic analyses of the
type so popular in the literature dealing with older, more traditional, algorithmic areas (eg. sorting) where
analyses are attempted on known algorithms. Since probabilistic analyses are our only hope for predicting
actual performance this leaves us with a major gap in our knowledge of the “real-life” behavior of many
algorithms in computational geometry. What we attempt in this paper is such an analysis of a relatively
straightforward algorithm.

2. Analysis of the Sweep Line Algorithm:
(I) Description of the algorithm:

The algorithm we consider here is the sweep line algorithm for computing the closest! pair. Before
presenting our analysis we give a quick description of the algorithm; for a more complete description as well
as a correctness proof and implementation details see [HNS].

Suppose we are given n points p; = (z;,%), = 1...n in the plane. The first step is to sort them
in increasing z order. The notation we use is the standard one for order statistics. The i’th sorted point is
denoted by p(;) = (2(i), ¥(s)) Where

(1) S Z(2) £ -+ S Z(n-1) < Z(n)-
Let é; be the distance between between the closest pair among the first i points, ie. -

b = Join_ lipe) = poyl
The closest pair problem is then seen to be the problem of determining &, (and reporting a pair of points
p, p’' such that ||p — p|| = 6,. It is with the calculation of §, with which we will be concerned. Reporting
the pair is just a matter of updating p, p’ each time we decrease §;.)
It follows from the definition of §; that

6i41 = min(6;, 1222‘. lIPG+1) — Payll)-

Therefore updating §; is just a matter of calculating the minimum among these llPG+1) — pyll- Fur-
thermore if 3k <4, ||pi41) — Pr)ll < &i then for that k, 2(;41) — z(x) < 6;. Thus we only have to check
the distance between p(; ;1) and those points whose z-coordinates are in the interval (Z(41) — 8i 2(i41)), 2
region which we will call the §;-interval (see figure 1(a)).

There is a geometric fact (proven in [HNS]) that is integral to Hinrichs, et al.’s implementation of their
algorithm: if

3k <i such that ”p(,-+1) -p(y,)” < 6

! In our description of the algorithm and in its analysis we will assume that closest is calculated under
the standard Euclidean (Lz) Metric. This is more for ease of analysis than any other reason. We will see
later that the analysis holds under any standard metric.
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Figure 1. The minimum pair among all points preceeding py is (p1,p2) so 8s = ||p1 — p2||. In figure 1(a)
the shaded region has width #s and is what we called the éz-interval. While checking all the points in the
dg-interval we find that ||ps — ps|| < 65 and thus 8s = ||ps — ps||. We now find the &y interval by scanning
rightward from ps until we hit the first point (ps) whose z-coordinate is within 8 of pjg.z. This gives us
figure 1(b).

and we sort the points in the §;-interval by their y-coordinates then p(;) has to be one of the four points
immediately above, or one of the four points immediately below, the point P(i+1). Thus, if the points in
the §;-interval are stored in a balanced tree sorted by y-coordinate we can calculate 6;4; in O(logn) time
by retrieving the eight points. All that remains is to describe how to update the §;-interval , ie. update
the y-sorted balanced tree which contains the points in the é(;41)-interval. This is not difficult. First we
insert p(;41) into the balanced tree in O(logn) time. Then, using the fact that we already have the points
sorted in increasing z-order (and have stored somewhere the index of the leftmost point in the §;-interval )
we scan rightward deleting points from the tree until we enter the §;,,-interval (see fig. 1(b)). Since each
point is deleted at most once during the execution of the algorithm we see that the total time for deletion is
O(nlogn). Furthermore, since all other operations are O(log n) time per step we find that the entire second
stage of the algorithm can be implemented in O(nlogn) time.

The purpose of this paper is to show that, probabilistically, the performance of the second stage of this
algorithm — scanning through the sorted points while updating &; — will be much better than the worst case
analysis suggests. In fact, we will show that it is possible to totally dispense with complicated balanced tree
data structures and still get very good behavior. That is, if we compare P(i+1) to all of the points in the
b;-interval the algorithm will still run very fast. We give a short but full listing of code for this version of
the algorithm in figure 2.

More formally: given n points p;, ... p, independently indentically distributed uniformly in the unit
square we set

N; = number of points in the §;-interval .
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Figure 2. A Pascal listing of code that implements left:=1; delta := dist(p[1], p[2]);
the linear scan for the closest pair. It is assumed that for i:=1to (n-1)do

the points are sorted by z-coordinate in the array pl] begin

and that there is some distance function dist. Left and while (p[i+1].x - pfleft].x) < delta
1 point to the leftmost and rightmost points in the ;- left := left + 1;

interval . The while loop updates the points in the for j:=leftto ido

;-interval . The inner for loop updates the current if dist(p[j], pli+1]) < delta
value of §; by comparing p[i + 1] to all of the points in delta := dist(p[j], p[i+1]);
the 6;-interval . end:

We will prove that
nlogi

E(N,’) =0 ( -

1

Since the amount of work performed while updating §; to §;41 is N; we see that the expected total amount
of work performed by the algorithm is

E(iN;) =0 (\/logn i ﬁ) = O(ny/logn).

The remainder of this section will be devoted to proving this result.

(II) Probabilistic assumptions and notation:
We will assume that we are given n points p; = (z;,y) which are LI.D. uniformly in the unit square
([0,1]%). The p;-s are then sorted by z-coordinate and renamed pi) = (2(i), Y(i)) where
P)Z S P2 S - < Pao1)Z < Pay-2
We need to define the following random variables:
Xy = piy-®
b = ISIIIEI}S’."P&) = pyll-

The number of points in an e-interval will be denoted by
L(X,a) = number of p; in the a strip to the left of X
=|{pj | X —a <pj.z < X}
Two immediate consequences of these definitions are that
Vi VG‘, L(X(,',{,l), a) S i. (1)
ViVX Va < B, L(X,a)< L(X,B). (2)
We are now in a position to define? the number of points in the §;-interval .
N; = L(X(i41), &),

2 A technical quibble. This definition is not valid if there are two points that have the same z-coordinate

but two points sharing the same z-coordinate is a zero probability event which we can ignore.
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and our goal is to analyze E(N;) = E(L(X(i+1), 6;) There is a major difficulty with any such analysis: If a is
a constant then it is not difficult to see that
io
E(L(X(i+1), @) | X4y =2) = - (3)
(where E(A|B) is the expected value of A given that event B occurs). This is because conditioning on

X(i+1) =  is equivalent to having the i points p,), ... p(;) be LLD. uniformly distributed in the rectangle
R={(s,1)|s €[0,2),t€[0,1]}

of area z. Thus L(X(;41),@) | X(i4+1) = z is a random variable with a binomial distribution on i items and
parameter a/z. Its mean is therefore ia/z.
This does not imply that

EB(L(XG41,8) [Xgsy =2, 8=0) = =
because conditioning on §; = a totally changes the distribution of the points. It restricts all pair of points
from being less than a distance a of each other and also requires that there is some pair that is ezactly
such a distance from each other. A good portion of our analysis will be devoted to developing a method of
sidestepping this problem.

(III) Order Statistics:

Since the p; are LID. uniformly in the unit square their z-coordinates, p;.z, are uniformly distributed
in [0,1]. Thus X(;), the sorted z-coordinates, are the order statistics of n uniformly distributed random
variables on [0,1]. The probability density of X(;) is well known (see [De], p. 17, for a derivation) and is
given by

n! ie n—i
Joy(z) = m z 1(1 —z) z €[0,1].

Using the standard properties of the Beta and Gamma functions we can immediately calculate all of the
moments of X(;) as in the following lemma:

Lemma 1.
nl(k+i—1)!

5X0) = T Dt By

Proof.

1 o
E(xf')) =(3—_—1_)-:.£(:—1.__1)I./0 $k+i—1(1 _ x)n-—t ds
1

n:

:mﬁ(k-l-i,n—i'l' 1)
_ nl(k+i-1)

T(i= 1) (n+ k)
This has the immediate corollary:

Corollary 1: )

1
n+1l’

i(i+1)
(n+1)(n+2)

Var(X()) = E(X;)) — B (X)) =

E(X(zi)) =

i(n+1—1i)
(n+2)(n+1)*



This in turn leads us directly to

Corollary 2:

Pr (X ¢[3653. 3638]) < - )
Proof. By Chebyshov’s inequality and Corollary 1
Pr (Xasn) €[4, 658]) = Pr (|X(-'+1) —EXn)l > 2—((%%)
= (:': 1)

(IV) Problem formulation and analysis:
In this section we will derive asymptotics for E(N;) = E(L(X(i41),6i)). We will prove

E(N.‘) —— E(L(X(H_l}, 5,)) =0 (\/ @) . (5)

Proof: The proof is complex and will be split into three parts. In the first we will show that we can effectively
restrict X(;41) to a bounded subinterval D; =[4 {43}, § £21]. In the second we will use this restriction to
D; to bound E(L(X(i41),8;) | X(i+1) = z). Finally, in the third, we will combine the results obtained in the
first two parts to prove the theorem.

Theorem 1:

(i) Writing out the standard formula for conditional expectation (see, for example, [GS]) we find that

1
E(L(X(i41), ) =j{; E (L(X(i41), ) | Xi41) = 2) fip1)(z)dz

5./359 E (L(X(i+1),6) | X(i41) = 2) fusn)(2)dz (6)
+Pr(Xy1) € Di) - ;&%ﬁ]L(za 6i)-

From (1) and (4) we see that

Pr (X & D;) - max L(z,6) < k. o,

z€[0,1] 1+1
We can therefore rewrite (6) as
E(L(X(i41),&)) <4+ ;%%’FE(L(X(HU, &) | X(iy1) = 2). (7)

(ii) Our approach will be to bound (7) by a judicious choice of a in the equality

E (L(X(H-l):‘si) IX(,-.H) = I) = E‘.(L(X((,-,-.]_l), 6,') |X(,-+1) =z, 5,' S O’) " Pl"(6§ _<__ «a Ix(t'-l-l) = .'L')

(8)
+EE(L(X(,'+1),6,') IX{,-.H) =z, 5.‘ > 0:) . Pl‘(5,’ > o IX(,-_H) = .‘.l:).

Thus we must bound Pr(§; > @|X(i41) = z). We can do this by recalling that conditioning on
X(i+1) = z is equivalent P(1), -- -, P(i) being uniformly distributed in the rectangle

R ={(s,t)|s€[0,2),t€]0,1]}.
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What follows is just a standard area argument: We define By as the a/2 ball around P(k)

B, =B (p(k), ) {q Hq P(k)” < 2}

we see that
b>a & BrnB =0, Vik: 1<k<i<i.

Since the p(y) are LI.D. uniformly in R we find that

(6 > IX(,.H) = -".') < H Pr(p(k) é U B | B nB, = 0 1<l<m<k) (9)
1<ji<k

Since R is a rectangle and B; € R we see that B; N R includes at least a quarter of the area of B so
o2
BinR) <&
area(BiNR) < TR

This, together with the fact that area(R) = z, gives

- (k - 1)ma?®
Pl‘(jp(k) i U B; | BN B, =0, 1$I<m<k) <1l- e
1<5 <k
Plugging this back into (9) yields
e jma?
Pr(é; > a IX(,-_H) =z)< E (1 ~ Toz ) s (10)
Since z €[4 {3, 3 £338] we have z < 2i/n (for i > 3) and thus
jea’n
Pr(6; > a| X4y =2) < H (1 ity ) (11)

i=1

where ¢ = 7/32. Taking logarithms and using In(1-=2)= —z+ O(z?) we find

s
Pr(é; > a | X(i41) = z) <exp (E In (1 - c_;rfur ))
i
i<i

o (12)
=exp (_:(_t_t.)c& e O(in2a4))
=e~iene’ (14 O(in*a* + na?)) .
Setting o’ = 1/21% yields
' ~21Ini In’ In"¢
Pr (6.')0! IX(,-.H)'—“:L') <e 140
i
1 (13
~o(1).
We combine this result with (1) to bound the second term on the right hand side of (8):
; 1 1
E (L(XUH),&,-) |X(,'+1) =z, 6> a') - Pr (5. > G'IX(H_I) = z) <:i0 (:—2-) =0 (-;) 3 (14)
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All that is left is to bound the first term of (8). As a first step notice that if 6; < o' we can use (2) to
derive
E (L(X(i41),6) | X(i41) = 2, 6 < @') S E(L(X(41), @) | X4y =2, 8 < o). (15)

Since L(X(i41),’) is a a nonnegative random variable
E(L(X(i+1), @) [ Xy1) = 2, 6 < @) - Pr(6i < @ | Xi41) = 2) S E(L(X(i41), @) | Xipy = 2).  (16)

From (3) and the fact that > s we know that

ia’ Enlni
E(L(X (1), @) [ X(iy1) = 2) = — <[ £ (17)
Equations (15), (16), and (17) taken together imply that
i , nlni
E(L(X(H_l), 6;) IX(i+1) =z, 6<a)- Pr(é; < a |X(,-+1) =z)=0 7 : (18)

We conclude this section by noting that (14) and (18) are just the two terms on the right hand side of (8)

with o = o' so

nlni
E (L(X(,-.H),é;) |X(,-+1) = 1:) =0 ( ; ) : (19)

(iii) We are now in a position to finish the proof of theorem 1. In (i) we proved that
E(L(X(H—i)! 6.)) <4+ ;Iéaﬁx E(L(X(,'_H), 6,') |X(,‘+1) = :) (7)

where D; =[4£38 3 6401 In (ii) we showed that, for z € D,
1) 2 (R+1

nln
E (L(X(H_l),é,-) |X(,-+1) = :t) =0 ( ; (19)
where the constant implicit in the O() notation is independent of i and n. Thus
nini
max E(L(X(i41),6) | X(i41) = 2) = O ( :
and we are done.
Q.E.D.

Conclusions, simulation results and directions for future research:

We proved that — given n points uniformly distributed in the unit square and then sorted — a simple
linear scan through the points of the type described in section 2(I) will determine the closest pair in expected
O(n /Iog ) time. In our analysis we assumed that distance was defined by the L, metric but a few simple
observations show that the analysis continues to be valid under the L., and L, metrics. First, notice that
the analysis of order statistics given in section 2(III) is valid under the L., and any L, metrics because it
takes place in a one-dimensional space. Next, notice that the only two properties of L, that we used in 2(IV)
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n Z; Ni

500 688.7

600 820.4

700 909.7

800 1039.8
900 1209.5
1000 1303.3
1500 19124
2000 2815.5
2500 3352.3
3000 3898.9

Table 1. For each value of n 100 random sets of n random points were generated. Each set was sorted and
2~ N; was calculated by running the algorithm of figure 2. The value in the second column is the average
value of 5~ N; over all 100 point sets.

were that |[p(x) — pi+1)|| < & implies that p(x) is in the §;-interval , and that equation (3) is correct. Both
of these properties are invarient under a switch to the Lo, or L, metrics so the analysis remains the correct.

An interesting open question is whether or not it is possible to improve the result obtained in Theorem
1. It is not difficult to derive from equation (12) that

E(6|Xusy=2)=0 (—-‘/1;—_;) ;

If 6; were concentrated at its mean then we could modify the analysis leading to equation (18) to yield

E(N;) = E(L(X(i41),6:)) = O (\@ :

This would give the second stage of the algorithm expected linear time and in fact, simulations run on
random points do seem to show linear time behavior. Unfortunately, the complications (discussed in section
2(I1)) that are introduced by conditioning on §; > a seem to preclude an extension of our analysis in that
direction.

Finally, we ran the algorithm of figure 2 on random point sets. For each value of n in table 1 we ran the
algorithm on 100 sets of n random points and averaged the observed values of 3" N;. Our results show good
performance but they can not provide us with any evidence that the expected running time of the algorithm
is actually linear; for n small enough for simulations to be practical \/Togn is too small to distinguish from

a constant.
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