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ABSTRACT

A main memory transaction processing system holds a complete copy of its database in
semiconductor memory. We present and compare, in a common framework, a number of stra-
tegies for recovery management in main memory transaction processing systems. These include
strategies for asynchronously checkpointing the primary (main memory) database copy, and for
maintaining a transaction log. Though they are not directly concerned with recovery manage-
ment, we also consider strategies for updating the primary database, since they affect the perfor-

mance of the recovery manager.

The recovery strategies are compared using an analytic performance model and a testbed
implementation. The model computes two performance metrics: processor overhead and
recovery time. Processor overhead measures the impact of a recovery strategy during normal
operation, i.c., the cost of preparing to recover from a failure. Recovery time is a measure of the
cost of recovery once a failure has occurred. Generally, it is possible to reduce processor over-
head by increasing recovery time, and vice versa. The model captures this tradeoff, the exact

nature of which depends on which recovery strategies are used.

Many of the recovery strategies have been implemented in a testbed, a working transaction
processing system. The testbed allows recovery strategies 1o be combined and tested. It has been
used to verify the performance model and to study other aspects of performance not considered in
the model, such as data contention and transaction response times. The testbed runs on a large-

memory VAX 11/785 using services provided by the Mach operating system.

Our results indicate that the selection of a checkpointing strategy is the most critical deci-
sion in designing a recovery manager. In most situations, fuzzy, or unsynchronized, checkpoint-
ing strategies outperform highly sychronized altemnatives. This is true even when synchronized
checkpoints are combined with efficient logical logging strategies, which cannot be used with

fuzzy checkpoints.



Table of Contents

ADBPRCt cooiniii

Acknowledgements .............

Chapter 1: Introduction .............

Chapter 2: Checkpointing the Database .............

2.1 Checkpointing Strategies .............
2.2 Fuzzy Checkpoints .............

2.3 Black/White Checkpoints .............
2.4 Copy-on-Update Checkpoints ......

2.5 Failure Recovery .............
2.6 Performance Model .............
2.7 Checkpoint Comparisons .............

Chapter 3: Other Recovery Issues ......

3.1 Secondary Database Management
32 Logaing i

3.3 Other Issues .............

3.4 Recovery .

Chapter 4: A Performance Model

4.1 Transaction Processor Overhead .............

4.1.1 Synchronous Overhead .....

4.1.2 Asynchronous Overhead .............

4.1.3 Restart Costs .............
4.2 Recovery Costs .............
Chapter 5: A Recovery Testbed
5.1 Process Architecture .............
5.2 The Log Server .............
5.3 Message Servers .............
5.4 Checkpoint Server .............
5.5 Transaction Server .............
5.6 Implementation .............
5.7 Transaction Management .............
5.8 Memory Management .............

----------

13
14
16
16
18
27
27
32
35
a7
40
41
41
48
33
58
63
63
66
67
68
69
70
70
12



5.9 Log Management .............

5.10 Log Device Management .............

5.11 Checkpoint Management .............

5.12 Backup Management .............

5.13 Lock Management .............

5.14 Low-Level Support .............

5.15 Application Libraries .............
Chapter 6: Model Verification .............

6.1 Parameter Determination .............

6.1.1 Static Parameters .............

6.1.2 Dynamic Parameters .............
6.1.3 Other Parameters .............

6.2 Recovery Overhead .............

6.3 Verification

Chapter 7: Performance Studies .............

7.1 Logging Strategies .............

7.2 Spooling Checkpoints .............

7.3 Response Times

7.4 Backup Strategies .............
7.5 Update Strategies .............

Chapter 8: Conclusions and Future Work
8.1 Hardware
8.2 Multiprocessors

8.3 Concurrency Control .............
8.4 The "Almost" MTPS .............

References

75
9
76
77
77
78
78
80
81
81
84
85
88
89
95
95
105
106
110
116
121
122
123
123
124
126



CHAPTER 1
INTRODUCTION

Year by year, semiconductor memory is becoming cheaper and memory chip densities are
increasing. It is now possible to pack more memory into less space for less money than ever
before. As a result of these trends, researchers have begun to consider transaction processing sys-
tems in which a complete copy of the database resides in main (semiconductor) memory.”
Memory-resident databases can mean greatly improved performance for transaction processing
systems. In current systems, much of a transaction’s lifetime is spent waiting to access data on
disks. Furthermore, much of the complexity of the system itself can be attributed to disk laten-

cies.

In this dissertation, we will consider the design of transaction processing systems for
memory-resident databases. The simplest way to design such a system is to borrow the design of
a disk-based transaction processor. In a disk-based system, a memory buffer is used to hold por-
tions of the database that are currently being accessed or that have recently been accessed by tran-
sactions. A memory-resident system (MTPS) can be viewed as a disk-based system (DTPS) with
a buffer that happens to be large enough to hold the entire database. One problem with this
approach is that it fails to capitalize on many of the potential advantages that memory-residence
offers. For this reason, researchers have begun to re-examine some of the components of a tradi-
tional systems, with an eye towards design for memory-resident databases. Some of the com-
ponents that have been considered are index structures [Lehm85a] and query

processing [Bitt87a, Lehm86a].

T We do not rule out the existence of slow archival storage. One can think of a system as having two databases
(as in IMS/VS Fastpath [Gawl85a] ): one memory-resident that accounts for the vast majority of accesses, and
a second on archival storage [Ston87a].
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Another component that should certainly be re-examined is the recovery manager. The pur-
pose of a recovery manager is to ensure that an up-to-date copy of the database can be recon-
structed in case the existing database is damaged or destroyed. To accomplish this, the recovery
manager maintains a backup copy of the database on a stable storage medium, such as magnetic
disks. Since the backup can only be accessed via expensive I/O operations, keeping the backup
completely up-to-date can be prohibitively expensive. To avoid this problem, recovery managers
normally also maintain a log, a compact record of recent modifications to the database. Before a
transaction can commit (i.e., complete and return a value), a record of its activities must be in the
log. Since the log is available, the backup database need not be kept completely up-to-date. In
case of a failure, an up-to-date copy can be recreated using the backup and the information stored
in the log.

As transactions run and the backup database becomes more out of date, the log grows in
size. Recovery from a failure becomes more time consuming because there is more information
in the log that must be processed in order to bring the backup database up-to-date. To limit the
growth of the log, recovery managers take periodic checkpoints. During a checkpoint, transaction
processing (and hence, logging) is temporarily halted while the backup database is brought up-
to-date by forcing modified data in the buffer back out to the disks. Once a checkpoint is com-
pleted, existing log information is no longer needed (activity recorded there is already reflected in
the backup database). After the checkpoint, transaction processing can resume, with the recovery

manager recording the activity in a now-empty log.

Memory-resident databases will affect recovery management in a number of ways, some of

which are discussed next.

e In a MTPS, the transactions’ data requirements can be satisfied without disk I/O, since a
copy of the database is memory-resident. However, recovery management requires access
to disks (or other non-volatile storage) so that the backup database can be updated. The
recovery manager’s I/O requirements should be satisfied without reintroducing disk latency
into the critical paths of transactions. In particular, this means that the Tecovery manager
should do as little synchronous 1/0 as possible. Such practices as forcing a transaction’s

updates to disk before it commits, or checkpointing the database while transactions wait,
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should be avoided. Halting transaction processing during checkpointing is particularly bad
because of the large amount of data (possibly the entire database) that must be flushed to the
disk during the checkpoint. Thus, a MTPS must update its backup database asynchro-

nously, i.e., without halting transaction execution.

e  The recovery manager’s log is normally kept on disk. Since a transaction must have an
entry in the log before it can commit, log I/O is difficult to remove from transactions’ criti-
cal paths. In a MTPS, log I/O is the only I/O for which a transaction must wait. Therefore,
logging must be done with care if it is not to become a transaction bottleneck. In particular,

steps may have to be taken to reduce the volume of log I/O.

e  The least expensive and most dense form of semiconductor memory is volatile. When vola-
tile memory is used, the entire primary copy of the database is lost in the event of a loss of
power. At recovery time, the recovery manager must restore a complete copy of the data-
base, not just those portions that have been modified since the last checkpoint. Further-
more, the database to be restored and brought up-to-date resides in memory, and not on

disk.

e  The relative contribution of recovery management to the total cost of executing a transac-
tion will increase. As a simple example, consider a "typical” transaction in a DTPS that
costs about 20,000 instructions and makes 20 database references. In a memory-resident
system, that same transaction may cost only half as much. The savings will come from
such areas as reduced disk 1/O cost (if half of the database references would have caused 1/0
activity, that alone is a substantial savings at 1000 instructions per I/O), lower concurrency
control costs (e.g., fewer lock conflicts, deadlocks, and rollbacks), and reduced or elim-
inated buffer management costs. The recovery manager, on the other hand, must still per-
form expensive operations like disk I/O. This implies that in a MTPS the performance of

the recovery manager will be more critical to the overall performance of the system.
In this dissertation, we will focus on recovery management in a MTPS in light of these differ-
ences.

The block diagram in Figure 1.1 illustrates the organization of those portions of an MTPS

that are relevant to the recovery manager. Transactions update the primary (memory-resident)
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copy of the database through the primary database manager. Their activities are recorded in the
log by the log manager. The checkpointer is responsible for updating the backup database copy
(through the secondary database manager) to reflect changes made to the primary by the transac-

tions.

We consider recovery management to include the activities of the checkpointer, secondary
database manager, and log manager. Though not considered part of the recovery manager, the
primary database manager affects recovery management in a variety of ways. In this dissertation,
we will present and compare various strategies for implementing each of these components in a

MTPS. The goals of the strategies are described briefly in the following.

° Checkpointing. A checkpointing strategy determines which parts of the primary database
should be propagated, or flushed, to the backup copy. Since checkpointing is accomplished
asynchronously, the checkpoint strategy also determines how propagation is synchronized

with transactions’ updates to the primary database, which are occurring concurrently.

e Logging. Alogging strategy determines the contents of the log, i.e., how transactions and

their updates are represemited in the log.

° Secondary Database Management. A SDBM strategy determines how the backup database
is stored and how updates propagated (by the checkpointer) from the primary database are

installed.

® Primary Database Management. A PDBM strategy determines how the primary database is

stored and how it is updated by the transactions.

In general, the various strategies will not be independent of one another. For example, the
way checkpointing is synchronized with transaction updates will affect the representation of tran-
sactions in the log. As we discuss and compare the recovery strategies, we will study their inter-

relationships and interactions with other parts of the system.

After presenting the recovery strategies, we will present a model of their performance, that
is, a model of how different strategies affect the performance of the system. There are at least
two aspects of performance. One is the recovery time, the time taken to restore normal operation
after the primary database is damaged or destroyed. A second is the magnitude of the overhead

of recovery management during normal operation of the system, i.e., the cost of preparing for a
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failure. In general, there is a tradeoff between these two costs. The model includes both aspects

of performance and thus provides a useful illustration of the tradeoff.

An interesting feature of a MTPS is that the I/O bandwidth to the backup database disks
should not become a bottleneck for transaction processing, since transactions require no access to
the secondary database. Performance models for disk-based systems often estimate recovery
overhead by counting disk I/O operations, since I/O can be a bottleneck in a DTPS. However,
evaluating "I/O cost" is not a good way of measuring recovery overhead in a MTPS. (This is not
to say that the I/O bandwidth is unimportant. As we will see, it affects recovery time in a number

of ways.)

In a MTPS, the processor is likely to be the critical resource. Thus, our model estimates the
"processor cost” of a recovery strategy. Recovery strategies generate processor costs when they
perform activities such as initiation of disk 1/0’s, data movement (in memory), and locking or
other synchronization with transaction processing activities. The fact that processor costs rather
than 1/O costs are the critical performance factors is another interesting aspect of recovery

management in a MTPS, and is one of the reasons we believe this work to be important.

A number of other recent studies have looked at recovery for memory resident databases, or
have suggested techniques that are applicable to MTPS recovery. A technique for producing
asynchronous checkpoints is described in [DeWi84a]. This paper also suggests the use of non-
volatile memory to hold the log tail (the most recently created part of the log). Recovery
management in IMS/VS FastPath, which supports memory-resident databases, is described
briefly in [Gawl85a]. The recovery mechanism proposed in [Hagm86a] stresses fast, unsyn-

chronized checkpoints and log compression to provide fast recovery from system failures.

Several papers have suggested recovery techniques that make use of dedicated or special-
purpose hardware. [Lehm86b] proposes a recovery processor that operates in parallel with the
database processor to flush data from a non-volatile memory-resident log tail to log disks. The
recovery processor proposed in [Eich86a] merges log information into the backup database copy
to keep it as current as possible. Both proposals rely on the existence of large amounts of non-
volatile main memory, i.e., memory whose contents are not destroyed by a power failure. HALO,

a hardware logging device that logs automatically and is transparent to the system, is described
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in [Garc83a] and [Sale86a].

The study presented here draws on ideas from most of these papers, and from others as well.
Our emphasis is on algorithmic alternatives rather than special hardware. We will not consider
any recovery mechanisms that rely on the existence of non-volatile memory or on special purpose
or functionally segregated processors.” This is not to suggest that such strategies are not feasible
or desirable. However, it is important to understand first the algorithmic alternatives in order to

judge the value of non-volatile memory or additional hardware support.

There have been a number of studies of recovery mechanisms for disk-based databases,
e.g., [Reut84a, Agra85a]. However, we are aware of only two comparative studies of recovery
mechanisms for memory resident databases. A taxonomy of main memory recovery techniques
is presented in [Eich87a] along with an analytic performance model. Unlike those presented
here, most of the techniques considered there involve special hardware and/or non-volatile

memory. This is also true of the study presented in [Sale86a].
The contributions of this dissertation are fourfold.

B We present, in a common framework, a number of recovery strategies. Included are new

strategies as well as others that have appeared in the literature.

) We present and use a modeling methodology which we believe to be well-suited to main

memory database systems.

° Most of the strategies that will be presented have been implemented in a recovery testbed.
The testbed allows experimental verification of the performance model and provides
insights into the behavior of the strategies that would have been difficult to ascertain
without implementation.

@ Our results indicate that there are significant differences in performance among the stra-
tegies. They also show how the differences are affected by changes in the environment and

the workload.

T Note that even if all of main memory is non-volatile, some form of backup is necessary to protect against other
types of failures, e.g., corruption due to software errors.
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The rest of the dissertation is organized as follows. The next chapter provides an introduc-
tion to MTPS recovery by focusing on one of its most critical aspects, checkpointing. We present
a variety of checkpointing strategies and compare their performance using the model. The third
chapter describes recovery strategies for aspects of recovery management other than checkpoint-
ing. These include logging and management of the primary and secondary database copies. We
also discuss how these strategies interact with checkpointing. The fourth and fifth chapters
describe the performance model and the testbed. Chapter 6 describes the validation of the model
using experimental results from the testbed. In Chapter 7 we compare the performance of the
recovery strategies presented in the third chapter, based on data from the model and the testbed.
We also show how these strategies affect the checkpointer’s performance, and study the effects of
changing workload and system parameters on our comparisons. Finally, Chapter 8 contains con-

clusions and a discussion of some issues for further study.



CHAPTER 2
CHECKPOINTING THE DATABASE

In this chapter, as an introduction to recovery in a MTPS, we will focus on one critical
aspect of recovery, namely the maintenance on disk of the secondary copy of the database. We
term this process checkpointing, although checkpointing may be realized quite differently in a
MTPS than in a DTPS. We will describe a number of possible algorithms for asynchronous

checkpointing, and compare them using a simple analytic model.

Several strategies for asynchronous maintenance of a secondary database copy have
appeared in the literature [DeWiB4a, Eich87a, Hagm86a, Lehm87a,Pu86a]. The checkpointing
strategies that we will consider are based on ideas drawn from that work. Our emphasis is on
algorithmic altematives. We have not considered checkpointing strategies that rely on the
existence of special purpose or functionally segregated processors, nor those that require large

quantities of non-volatile primary memory.

The rest of the chapter is organized as follows. We will first describe a variety of check-
pointing strategies that could be used in a MTPS. Afterwards we will give a summary of the
recovery management performance model (which will be discussed in more detail in Chapter 4)

and will use it to compare the performance of the various strategies.

2.1 Checkpointing Strategies

It is difficult to separate one part of the recovery manager from the others and from the rest
of the transaction processing system. For the purposes of this chapter we will make several
assumptions about the behavior of the rest of the system. It is important to note that there are
alternatives. We are not arguing that those selected are the best; we are simply choosing
representative and reasonable alternatives so we can study checkpointing strategies indepen-

dently. In Chapter 7 we will eliminate these assumptions and consider other choices and how
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they affect the checkpointer.

We assume that two complete backup databases are maintained on disks and that a ping-
pong update scheme is used. Only one of the two copies is updated during a single check-

point, and successive checkpoints alternate between the copies.

The database is composed of records grouped onto fixed-size regions of main memory
called segments. During a checkpoint, only those segments that have been updated are writ-
ten out to the backup database. To implement this, database segments in memory include
two dirty bits. When a transaction modifies a segment, it sets both bits. When the check-
pointer flushes a modified segment to one of the backups, it resets one of the bits. When it
flushes it to the second copy, it resets the second bit. Thus, the checkpointer will only
ignore segments that have been flushed to both copies. When a checkpoint begins, it enters
a begin-checkpoint marker in the log. When it completes, the current checkpoint copy is
noted at a known location on disk we call home. The home block also contains a pointer to
the begin-checkpoint log entry made by this completing checkpoint. At recovery time, the

home block is used to select the most recently completed checkpoint copy.

We assume that transactions use a shadow-copy update strategy similar to that employed by
IMS/VS Fastpath [Gawl85a] and proposed by others [Eich87a). Updates are stored in a
buffer local to the updating transaction until the transaction commits. At that point, updates
are installed in the database by overwriting the old version of the record with the new.
Transactions use REDO-only logging. UNDO logging (i.e., logging old versions) is not
necessary because old versions are not overwritten in the database unless a positive commit

decision is made for the transaction.

We assume that record-level, value, REDO logging is used, i.e., log data consists of the new

versions of modified records.

The checkpointing strategies we will consider vary according to the consistency of the

backup copy they produce. We will consider fuzzy, action-consistent (AC), and transaction-

consistent (TC) checkpoints.

Consider a transaction that updates records R, and R, with two update actions. A TC

backup will reflect transaction activities atomically, i.e., the backup will contain either the old
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versions of R, and R, or their new versions, but not one old and one new.

An AC backup may contain the old version of R, and the new version of R, (or vice versa).
However, each action will be reflected atomically. That is, neither record will be found in a par-
tially updated state. Finally, a fuzzy backup makes no guarantees about the atomicity of transac-

tions or actions.

As we will see, consistent checkpoints are more costly to produce than fuzzy ones. How-
ever, an important advantage of consistent backups is that they permit the use of logical logging,”
as opposed to value logging. With logical logging, operations like ‘‘insert this new record’’ or
“‘update this field of this record’’ are recorded. Any associated changes in the database access
structures are not recorded. Value logging, on the other hand, records all changes made to

memory in the course of the action. We will consider the effect of logical logging in Chapter 7.

2.2 Fuzzy Checkpoints

Fuzzy checkpoints require little or no synchronization with executing transactions. Fuzzy

checkpoints are suggested for recovery in main memory databases in [Hagm86a].

We call our fuzzy checkpointing strategy FUZZY. It begins a checkpoint by entering its
begin-checkpoint marker in the log, along with a list of currently committing transactions. (A
transaction is committing if it is in the process of placing its updates in the database.) Once the
marker is in place, the checkpointer processes database segments. A segment is processed by
carefully examining and clearing the appropriate dirty bit, and flushing the segment to secondary
storage if it was dirty. Locks and other transaction activity are ignored. Once all segments have
been processed, the (in-memory) log tail is flushed to disk and the new current checkpoint is

noted (as described in Section 2.1).

If one is not careful, fuzzy checkpointing may in general lead to violations of the log write-
ahead protocol [Gray78a]. (Such a violation occurs if a transaction’s updates are reflected in a
checkpoint but not in the log.) However, because we are using two ping-pong backup copies, the

problem does not arise. While a checkpoint is in progress, a transaction’s updates may indeed

1 Logical logging is also known as transition [Haer83a] or operation logging.
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appear in one of the backups before they do in the log. Nevertheless, since the checkpoint is
incomplete, all such updates will be ignored at recovery time. It is only when the checkpoint
completes that the updates in it become valid. (If two backup databases are not used, then a fuzzy
checkpointer must copy the data to a main memory buffer before flushing it, adding overhead to

the checkpointer. See Chapter 3.)

One difficulty with the FUZZY strategy is that in general the checkpointer can "see"
updates made by uncommitted transactions. This is not an issue for the comparisons we will
make in this chapter because we have assumed a shadow-copy update strategy, under which tran-
sactions do not install their updates until they have committed. However, under other update
strategies (some of which will will consider in Chapter 3), the recovery manager may have to log

UNDO as well as REDO information to eliminate the unwanted updates if necessary.

A related checkpoint strategy that avoids this problem is the segment-consistent (SC) stra-
tegy. The SC checkpoint behaves like FUZZY, except that segments are locked by the check-
pointer before being processed. Once the segment has been processed, it is immediately
unlocked. The lock prevents the checkpointer from seeing the effects of an incomplete transac-

tion.

We have considered two variations on the SC strategy. They differ in how segments are
processed. One option is to flush the segment immediately to the backup disks, as was done
under FUZZY. The checkpointer locks each segment for the duration of the disk 1/O operation.
We call this type of checkpointer SC/FLUSH.

An alternative is to spool the 1/O. Before flushing the segment, the checkpointer first copies
it to a special buffer and then flushes the copy. The advantage of this alternative is that the seg-
ment can be unlocked as soon as it is copied; there is no need to maintain the lock through the
disk I/O. However, since copying the segment to the special buffer is not free, there is a price

paid in processor overhead. We will call the spooling alternative SC/COPY.
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2.3 Black/White Checkpoints

So far, we have discussed three strategies (FUZZY, SC/FLUSH, and SC/COPY) for produc-
ing fuzzy checkpoints. As was described in Section 2.1, fuzzy checkpoints are inconsistent, i.e.,
they may not reflect atomically the effects of an action or a transaction. One way to produce a
consistent backup is to treat the checkpoint operation as a (long-lived) transaction. The check-
pointer acquires a lock on each segment before flushing and holds the locks until the checkpoint
is complete. Clearly, this method will result in unacceptably frequent and long lock delays for
other transactions. (At some point during each checkpoint the checkpointer will have all of the
dirty database segments locked simultaneously.) An altemative, which produces consistent
backup copies but requires that locks be held on only one segment at a time, is presented
in [Pu86a]. (It can also be viewed as a special case of the "altruistic" locking protocol described
in [Sale87a). ) The strategies we will describe next are variants of the mechanism proposed in

that paper.

The basic strategy described in [Pu86a] proceeds as follows. There is a "paint bit" for each
segment which is used to indicate whether or not that segment has already been included in the
current checkpoint. Assuming that all segments are initially colored white (i.e., paint bit = 0),

checkpointing is accomplished by the strategy shown in Figure 2.1.

WHILE there are white segments DO
find a white segment that is not locked
IF there are none THEN
request lock on any white segment and wait
ELSE
lock the segment
process the segment
paint the segment black (set paint bit = 1)
unlock the segment
END-WHILE

Figure 2.1 - Black/White Checkpoint

The strategy can be used to produce either a TC or an AC backup. To ensure that the
checkpointer produces a TC backup, no transaction’ is allowed to access both white and black
records. (A record is the same color as the segment it is a part of). Any transaction that attempts

to do so is aborted and restarted. Similarly, an AC backup can be produced by ensuring that no
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action accesses both black and white segments. (Note that a transaction may contain a mix of
black-accessing and white-accessing actions.) A transaction is aborted if any of its actions

attempt to access both white and black records.

As for segment-consistent checkpoints, we have considered variations on the basic
black/white checkpoint that differ in whether or not segment I/O is spooled. Since the
black/white strategy can be used to produce TC or AC checkpoints, the result is four possible
variations on the strategy, which we will call TCBW/FLUSH, TCBW/COPY, ACBW/FLUSH,
and ACBW/COPY.

2.4 Copy-on-Update Checkpoints

Copy-on-update checkpointing forces transactions to save a consistent "snapshot” of the
database, for use by the checkpointer, as they perform updates. The advantage of copy-on-update
(COU) checkpointing is that it does not cause transactions to abort, as do the black/white stra-
tegies. On the other hand, primary storage is required to hold the snapshot as it is being pro-
duced. Potentially, the snapshot could grow to be as large as the database itself. The COU
mechanisms we will describe are inspired by the technique described in [DeWi84a], the "initial

value" method of [Rose78a], and the "save-some" method of [Pu86a].

To begin a COU checkpoint, the database must first brought into a state of the desired con-
sistency (either action-consistent or transaction-consistent). A simple way to achieve a TC data-
base state is to quiesce the system: the updates of all currently committing transactions are com-
pleted, while no new transaction are allowed to commit. (Note that running transactions that are
not in the process of committing are allowed to continue. All their updates are private and can be
ignored at this point.) To achieve an AC state, all update actions (e.g., install record) are com-

pleted while new actions are disallowed.

When the database is quiescent a begin-checkpoint record is written to the log, and the log
tail is flushed to non-volatile storage. The consistent database state that exists in primary

memory is the "snapshot" that will be flushed to secondary storage by the checkpointer. Once the

T A read-only transaction is permitted to read both black and white records.
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begin-checkpoint entry is in the log, transaction committing can resume.

The algorithm uses a paint bit per segment in much the same way as the black/white stra-
tegies (the bit determines whether or not the segment has already been included in the current
checkpoint). In addition, each segment has a pointer which will be used to point at the

"snapshot” copy of the segment, if one exists.

Checkpointing is accomplished by the algorithm shown in Figure 2.2. (As before, we

assume that all segments are initially colored white.)

WHILE there are white segments DO
find a white segment (§) that is not locked
IF there are none THEN
request shared lock on any white segment and wait
ELSE
lock §
IF S has a pointer to a "snapshot" copy §” THEN
paint § black
save pointerto S’
unlock §
IF S’ is dirty THEN
flush §” to the backup
free §”
ELSE
process S
unlock §
END_WHILE

Figure 2.2 - COU Checkpointing

The transactions are responsible for saving snapshot copies of segments when necessary so
that the consistency of the snapshot is preserved. When a transaction wishes to update a segment
that the current checkpointer has not reached (a white segment), it first makes a copy of the old
version of the segment if such a copy does not already exist. The segment’s pointer is set to point
at the newly-created copy.

When the checkpointer processes a segment which does not have a "snapshot" copy it has
the same two options as did the black/white and segment-consistent strategies. It can flush the
segment while retaining its lock, or spool the segment so that the lock need not be held for the
duration of the I/O operation. (Note that if segment § already has a snapshot copy §°, the lock on
§ can be released immediately without creating another copy of S. The existing copy §° can be

spooled instead.) Thus there are four variations of the COU strategy, differing in the consistency
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of the checkpoint and the spooling decision. These will be called TCCOU/FLUSH,
TCCOU/COPY, ACCOU/FLUSH, and ACCOU/COPY.

2.5 Failure Recovery

A system failure [Gray78a], results in the loss of part or all of the primary database copy.
After a system failure, the recovery manager has at its disposal a backup copy of the database and
a transaction log on non-volatile storage. In a disk-based system, the log is used to bring the
stable database copy to a consistent state. In a MTPS, the stable database copy and the log are

used to recreate a consistent primary database copy in main memory.

The recovery procedure is to first read the backup database into main memory, and then to
apply the log to the new primary database to bring it into an up-to-date consistent state. Applying
the log to the database means the following. Recall that the location of the begin-checkpoint log
marker of the most recently completed checkpoint is stored in the home block. Thus it is not
necessary to scan the log backwards to find the begin-checkpoint marker. From that point the log

is scanned forwards. The recovery procedure is discussed in more detail in Chapter 3.

2.6 Performance Model

In this section we will briefly describe the model used to compare the performance of the
various checkpoint strategies. The model, and the testbed implementation used to verify the
model, will be presented in detail in Chapters 4 and 5. Here we will give only an overview
before presenting some comparisons. We are presenting performance results at this point to
demonstrate the utility of the model before we describe it in detail in Chapter 4, and because we
have found that the checkpointing strategy is one of the most critical parts of the recovery

manager.

The model computes two performance metrics: processing overhead and recovery time. As
the name suggests, processing overhead refers to the additional processor power (instructions
executed) used for failure recovery preparations while transactions are running. Processing over-
head is the cost over and above the cost of running the same transactions on a failure-free system.

Recovery time is the time required to restore an up-to-date, consistent copy of the database in
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memory after a failure, so that transaction processing can resume.

The modeling methodology involves analyzing the checkpointing strategies to determine
the number of primitive processor operations they require to complete their task. The costs of
the primitive operations are model parameters, and the total overhead is obtained by summing the
costs of the primitive operations involved. The number of primitive operations depends on the
particular checkpointing strategy being used as well as on some simple probabilistic analyses
based on several assumptions regarding transaction data access pattemns, transaction failures,

checkpoint scheduling, etc.

The primitive operations represent the work that the processor must do to accomplish

recovery preparations. They include:

e  Synchronization: most of the checkpointing strategies require synchronization with transac-

tions via locking. C,,. is the cost of acquiring and releasing a lock.

» Storage Management: Cy,. represents the cost of preparing new pages in the log buffer.
Csanoe 18 the cost of acquiring new space for other uses, ie., for database segment

"snapshots" when copy-on-update checkpointing is used.

e  I/O Initiation: C;, is the processor cost of a disk I/O. We assume that the disk controllers
support direct memory access, so that C;, is independent of the amount of data being

transferred.

2 Data Movement: Memory to memory data copies have a fixed cost Cy, fires PIUS @ cOSt C,p,,

times the amount of data copied.

The parameters we have described are summarized in Table 2.1. The table also lists their
default values. We believe that the defaults are realistic, at least for some types of hardware and
applications. Of course, other values are possible. Later we will explore the effects of variations

in some of the more critical parameters.

In addition to the processor model (the primitive operations), there are also simple models

of the database, secondary storage, and the transaction load.

™ The database consists of Sz words of data, grouped into records of size §,,.. Records are

grouped into segments of size S;,,.
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symbol parameter default units
Ciock (un)locking overhead 50 instructions
Clalloc log buffer maintenance 200 | instructions
Caitoc space (de)allocation cost 100 instructions
C; 1/O overhead 1500 | instructions
Conv fised constant data movement cost 10 instructions
Ciroi proportional data movement cost 1 instructions

Table 2.1

e  Segments are the units of transfer to the backup disks. The bandwidth to the backup disks
is expressed by 1/(@pgk+ bpackSse,). Bandwidth to the log disks is given by

1/(@155 + biogSipg), Where S, is the size of a log page.

2 A transaction consists of a collection of actions. A transaction consists of i actions with
probability N,.,(i). Of the i actions, R,,i of them are update actions, e.g. insert, modify.
Each action affects R,,, records and R, segments. Excluding the effects of recovery
management, a transaction fails (aborts) with probability pj;. Excluding recovery manage-
ment costs, successful transactions have a processor cost of C.,,. Transactions arrive at the

system at a rate A.

® The checkpoint interval (time between the initiation of successive checkpoints) is #;,. The
minimum possible checkpoint interval is a function of the I/O bandwidth and the transac-

tion load.

These model parameters are summarized in Table 2.2. The full analysis, along with com-

plete list of model parameters and their default values, can be found in Chapter 4.

2.7 Checkpoint Comparisons

Figure 2.3 shows processor overhead and recovery time for each of the checkpointing stra-
tegies. The data were obtained assuming that the checkpoints duration was as short as possible.
In the figure (and in all other figures), the processor overhead is a per-transaction cost, i.e., the

total overhead cost distributed evenly over all transactions.

Several points are apparent from Figure 2.3. Most obvious is the relatively high cost of the
TC black/white checkpoint strategies compared to the corresponding COU strategies. Most of the

additional cost comes from rerunning transactions that are aborted for violating the black/white
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symbol parameter default units
a pack backup 1/O fixed time 15 milliseconds
b pack backup I/O linear time 0.15 Hseconds
Aoy log 1/O fixed time 4 milliseconds
biog log I/O linear time 04 Hseconds
Sa database size 256 Mwords
Siec record size 32 words
Sreg segment size 8192 words
Sipe log page size 1024 words
A arrival rate 1000 transactions/second
Prail failure probability 0.05 --
N (i) probability of { updates 0.1for0<i<10 -
R, update probability 0.33 --
Rea segments per action 1.1 segments/action
[ 3 - transaction processor cost 10000 instructions
Table 2.2

restriction. It is also apparent that spooling adds substantially to the cost of a checkpoint (e.g.,
compare ACBW/FLUSH with ACBW/COPY). Of course, spooling strategies lock segments for
shorter periods, but this is not reflected in our overhead metric. We will return to the issue of

lock times in Chapter 7.

AC checkpointing can be done almost as cheaply as FUZZY. Though the FUZZY strategy
need not lock pages and never causes transaction aborts, ACBW/FLUSH does not cause too
many aborts. As we shall see shortly, this gap widens as actions become more complex (R,

grows), since more complex actions are more likely to violate the black/white restriction.

Because we are using shadow-copy updates, a ping-pong backup, and value logging,
recovery times are not affected by checkpoint strategy. Under different assumptions, the check-
pointer can affect the recovery time. We will return to this point in Chapter 7 when we consider

the effects of other recovery strategies on performance.

Although recovery times do not vary with changes in the checkpoint strategy, they can be
made to vary by controlling the checkpoint duration. In fact, for a given checkpoint strategy
there is a tradeoff between processor overhead and recovery time that can be controlled by vary-
ing the checkpoint duration. This tradeoff is illustrated in Figure 2.4 for two of the‘checkpoint
strategies, TCBW/FLUSH and TCCOU/FLUSH. The two solid curves represent the trajectory of
TCBW/FLUSH and TCCOU/FLUSH through the processor overhead/recovery time space as the



Chapter 2 20

7500 —
5000 —
Instructions
2500 —
Oias
FUZZY sC sC ACBW ACBW ACCOU ACCOU TCBW TCBW TCCOU TCCOU
FLUSH FLUSH COPY FLUSH COPY FLUSH COPY FLUSH COPY FLUSH COPY
Processor Overhead
150 —
100 —
Seconds
50 —
00—
FUZZY SC sC ACBW ACBW ACCOU ACCOU TCBW TCBW TCCOU TCCOU

FLUSH FLUSH COPY FLUSH COPY FLUSH ©COPY FLUSH COPY FLUSH COPY

Recovery Time

Figure 2.3 - Processor Overhead and Recovery Time




Chapter 2

21
4000 —
TCCOU/FLUSH
TCBW/FLUSH
3000 —| :
CPU Overhead
(instructions i
per
transaction) 2000 — ‘t
1000 —
TCCOU/FLUSH
| | T |
200 400 600 800
Recovery Time (Seconds)

Figure 2.4 - Processor Overhead/Recovery Time Tradeoff

checkpoint duration is varied. The checkpoint duration is smallest at the left end of each curve

and increases to the right. Thus, by increasing the checkpoint duration, it is possible to drive pro-

cessor overhead down at the cost of increased recovery time.
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The dotted lines in the figure represent the same experiment except that the bandwidth from
primary memory to the backup disks has been doubled (by halving a,,., and b,.,). The dotted
lines extend further to the left than their solid counterparts because the higher bandwidth permits
a lower minimum checkpoint interval. Thus, greater bandwidth allows the designer of a

memory-resident database system greater range of processor overhead/recovery tradeoff.

It is also interesting that the increased bandwidth is much more beneficial to
TCBW/FLUSH than to TCCOU/FLUSH. Though the black/white strategy is more costly in the
original experiment (particularly with fast checkpoints), its performance is indistinguishable from
TCCOU at the higher bandwidth. This is because of reductions in the number of transactions that
must be rerun because of violations of the black/white constraints. As the bandwidth increases,
the checkpointer requires less time to update the backup copy. As a result, an incoming transac-
tion is less likely to encounter an ongoing checkpoint and, consequently, a black/white constraint

violation.

Figure 2.5 describes the effect of transaction load, A, on processor overhead for four of the
strategies. The general trend is for decreasing per-transaction cost with increasing load, because
the cost of a checkpoint is distributed over a greater number of transactions as the load increases.
In particular, the spooling strategies (dotted lines) are much more expensive at low loads than
their non-spooling counterparts. However, at high loads they are comparable. This is because at
low loads the cost of spooling dirty segments (which changes little with the load) is shouldered

by fewer transactions in a lightly loaded system.

We have already seen that checkpointing overhead can be controlled by varying the check-
point interval. Figure 2.6 describes the effect of another parameter, the segment size (S,,,),
assuming that the checkpoint duration is as short as possible. (Recall that segments are the units

of transfer to secondary storage.)

The variety of behavior exhibited by the different strategies arises from a combination of
two effects. First, as segments get larger, the total number of segments in the database decreases.
Thus, checkpoints can be produced with fewer per-segment overhead charges. For example,

fewer I/O’s need to be initiated since each I/O moves more data.
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Figure 2.5 - Effect of Varying Transaction Load

Second, larger segments mean more efficient disk I/O and hence faster checkpoints. This
tends to increase per-transaction overhead since relatively fixed components of the‘checkpoint
overhead, such as copy costs, must be shared by fewer transactions. (Note that it also reduces

recovery time for all of the strategies, though recovery times haven’t been plotted here.)



Chapter 2 24

10000 —
*" TCBW/COPY
8000 —
CPU Overhead
TCBW/FLUSH

6000 —| \

(instructions
per e P

transaction) TCCOU/COPY et g

s TCCOU/FLUSH

2000 —

5000 10000 15000
Segment Size (Words)

Figure 2.6 - Effect of Varying Segment Size

Spooling strategies (e.g., the two dotted curves in the figure) are affected most strongly by
this second effect. Their per-transaction overhead costs increase with the segment size as a result.
TCCOU/FLUSH, which does not spool but which still requires a significant amount of data copy-

ing, is affected in the same way though not as strongly. The performance of the non-spooling
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strategies is dominated by the first effect and their overhead costs are lower for larger segments.

Finally, Figure 2.7 looks at the effect of increasing R,,,, the complexity of (i.e., the number
of segments accessed by) a database action. The most strongly affected strategy is the
black/white AC strategy, whose performance suffers because more complex actions are more
likely to violate the two-color restriction, causing transaction rollback and restart. The cost of TC
black/white checkpoints increases for a similar reason: more complex actions mean more com-

plex transactions which are more likely to violate the two-color constraint.

Summary

We have presented a variety of strategies for checkpointing memory-resident databases, and
have used a model to compare their performance. Our results indicate that there are significant

differences in performance among them.

So far, we have considered checkpoint strategies independently of the other components of
the transaction processing system. Later (Chapter 7), we will explore the interactions between
the checkpointer and some of the other components, namely logging and storage management of
both primary and secondary storage. In some cases, more expensive checkpointing strategies
may actually prove to be beneficial because they can be used in conjunction with less costly log-

ging or storage management techniques.
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CHAPTER 3
OTHER RECOVERY ISSUES

In the last chapter we considered checkpointing strategies, strategies for deciding when and

how to propagate updates from the primary database copy to the backup. In this section we will

consider other aspects of recovery. In particular, we will discuss strategies for:

Secondary Database Mangement. We have already discussed checkpoint strategies, which
determine which dirty segments are to be propagated to the secondary database. The secon-
dary database management (SDBM) strategy determines how the dirty segment is actually
installed in the secondary database. There are a number of alternatives, including strategies

for updating single-copy (monoplex) and double-copy (duplex) secondary databases.

Logging. Logging strategies determine what is written into the log, and when log pages are

moved from the log buffer to the log disks.

Restart. Restart strategies describe how the primary database is restored to a consistent,
up-to-date state after a failure. To accomplish its task, a restart strategy has at its disposal
the secondary database copy (or copies) and the log created during the period before the

failure.

In this section we will also consider other parts of the transaction processing system whose

behavior directly affects recovery strategies or recovery performance. In particular we will con-

sider the primary database manager, since the way transactions update the primary database

affects the work of the recovery manager.

3.1 Secondary Database Management

The SDBM strategy determines how the the secondary copy of the database is updated. We

will examine five possibilities here. Two of the strategies we will discuss are duplex strategies,

meaning that two complete copies of the database exist on secondary storage. Duplex strategies
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are necessary if the checkpoint is to be consistent (i.e, if it is produced by a COU or black/white

checkpointer). Monoplex strategies can only be used to support fuzzy checkpoints.

One advantage of duplex strategies over single copy, or monoplex, strategies is their
increased tolerance of media failures. (We will not discuss media failures further here.) As we
will discuss (Chapter 4), having two secondary copies can also eliminate synchronization prob-
lems between the checkpointer and the logger. Of course, the disadvantage of duplex backups is

the extra disk space they require.

In the following we give brief descriptions of each of five SDBM strategies. To simplify
the discussion, we will assume that database segments are numbered 1 to N,,,. Secondary storage
is composed of B segment-sized slots, or blocks, and L; is the ith block. The value of B (i.e., the
amount of secondary storage required) is dependent on the SDBM strategy. (Some of the SDBM

strategies require small amounts of storage in addition to the B blocks.)
Each of these strategies relies on the assumption that if a write to secondary storage fails
(because of a system failure) then the corrupted block is detectable through a checksum or some

other error detection mechanism.

3.1.1 Fixed Monoplex SDBM

Fixed monoplex (FMONO) SDBM is the most straightforward type. Each segment is
assigned a single location in secondary storage, e.g., §; is assigned to L;. In addition, a segment-
sized write buffer (LN_‘ +1) is available on the disks. Thus B =N,,, + 1. The chief advantage of
FMONO backups is that they require relatively little secondary storage space.

Two writes are required to propagate segment §;. First, the segment is written to Ly,_,; (the
write buffer). §; is then written to its assigned location L;. This ensures then an uncorrupted ver-

sion of §; is always available.

Recovery using FMONO is also straightforward. Each segment §; is read from L;. If L; is

corrupted, an uncorrupted version of §; is available in the write buffer.
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3.1.2 Sliding Monoplex SDBM

The sliding monoplex (SMONO) SDBM strategy is a modified version of FMONO in
which secondary updates need only be made once. SMONO backups require B = N;,, + 1 blocks
of secondary storage, plus space for a base register. The base register holds a pointer to one of
the blocks L;. In addition, space is required within each block to store a checkpoint-identifier to

indicate which checkpoint wrote that block most recently.

Segments need be written only once because the block assigned to each segment is changed
each time a new checkpoint is started. Segments are assigned blocks as follows. The base regis-
ter indicates the location currently assigned to §,. Initially, §, is assigned L,. If §; is assigned L;,
S:+1 is assigned L;,;. At the beginning of each checkpoint, the location assigned to §; is "slid" by
one block, i.e., if §, was assigned to L;, its new assignment is L;_;. (The base register is carefully
updated to reflect the new assignment for §,.) Once §, is reassigned, the remaining segments are
again sequentially assigned to the remaining blocks. Thus, the assignments of all segments are

effectively slid by one block with each checkpoint.

The checkpointer must perform a full checkpoint, i.e., all segments are propagated to secon-
dary storage whether they are dirty or not. Segments are propagated in order from §, to Sy, .
The checkpoint is assigned a timestamp when it begins, and the timestamp is stored on each seg-

ment before it is propagated.

By "sliding" the location of each segment with each new checkpoint, the SMONO strategy
ensures the the old version of a segment is still available in case the write of the new version fails.
For example, if, during the second checkpoint, the propagation of §; (to L;_) fails, the old version
of §; is still available in L;.

Recovery using an SMONO backup is relatively simple. Blocks are read in sequentially
starting from the block pointed at by the base register. If a corrupted block is read it is ignored.
As described above, the next block contains the old version of the corrupted block and that ver-
sion is restored instead. If two consecutively read uncorrupted blocks have different checkpoint
timestamps, then the second block is ignored. This condition indicates that the system failed
after writing the first block and before writing the second. Thus the two blocks contain the new

and old versions of the same segment.
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3.1.3 Shadowed SDBM

Shadow (SHAD) SDBM uses B = N, + Nosadows blOCks, Where 0 < Nyggons < Nieg, Plus space
for an indirection table T containing pointers to N,,, blocks. T'[i] indicates the block assigned to
segment §;. A copy of T is also maintained in primary storage, along with two free lists, current
and next. (A free list is a list of blocks that are not pointed at by 7). Only one complete backup
copy of the database exists.

To propagate a segment §; to the secondary database, the checkpointer selects any block
from current and writes the segment to that block. The block formerly assigned to S; (indicated
by T[i]) is added to next and T[i] is updated to indicate the new assignment. After every Nauows
updates, the main memory copy of the indirection table is carefully (two I/O operations) written

to the disks. List current is replaced by next and next is cleared.

Recovery using SHAD involves restoring T and using T[] to locate each segment. In addi-

tion, the initial current must be constructed from the indirection table.

3.1.4 Ping-Pong SDBM

Ping-pong is the SDBM strategy that was assumed for the checkpointing comparisons that
were made in Chapter 2. Ping-pong (PIPO) uses B =2N,, blocks to maintain two complete
secondary copies of the database. Segments L, through Ly, hold one copy of the database, and
the remaining segments hold the other. Segment §; is assigned permanently to blocks L; and
Ly, +i-

A flag is indicating which of the two database copies is "current” is maintained in primary
storage. Secondary storage includes a flag indicating which of the two copies holds the most
recently completed checkpoint.

To begin a checkpoint, the primary flag is toggled. Segments S; are propagated either to L;
or to Ly, +; depending on the flag’s setting. When the checkpoint has completed, the secondary
flag is toggled.

PIPO SDBM requires that each segment in primary memory be equipped with two dirty
bits, one for each of the secondary database copies. This was discussed in Chapter 2 but is now

briefly reviewed. When a transaction updates a segment, both dirty bits are set. When a page is
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flushed by the checkpointer, only the dirty bit corresponding to the current backup database is
cleared since the update will not yet have been reflected in the other backup copy. The second

dirty bit ensures that updates are eventually propagated to both secondary database copies.

To recover using a PIPO, the secondary flag is examined to determine the most recent
backup database copy, and all segments are read in from that copy. The primary flag is set to

match the secondary flag.

3.1.5 Twist SDBM

The TWIST SDBM we will consider is based on a scheme suggested in [Reut80a] for
disk-based databases. TWIST SDBM is essentially a variation of ping-pong in which the notion

of "current" is maintained on a per segment rather than a per database copy basis.

Like ping-pong, a TWIST backup maintains space for two complete secondary database
copies. We will assume that segments are assigned to backup blocks as they are in ping-pong.”
To implement TWIST, each segment carries a timestamp which will be used during recovery to
indicate which of the two blocks for that segment was most recently updated. In addition, a flag
per segment (one bit, in primary memory only) is used to determine which of a segment’s two
blocks should be the target the next time the segment is propagated to secondary storage.

When a checkpoint begins it is assigned a timestamp. During checkpointing, segment §; (if
it is to be propagated) is marked with the checkpointer’s timestamp and is written to the least
recently updated of its two blocks as indicated by its flag. The flag is then toggled. When the
checkpoint completes, its timestamp is carefully stored to a known location (the home block, see
Chapter 2) on secondary storage.

To recover from a TWIST backup, the timestamp (1) of the most recently completed check-
point is retrieved first. For each §;, both L; and Ly,, +i areread. The block with the largest times-

tamp less than 1 is selected and the segment is restored from that block.

+ Of course, blocks are logical entities. We have said nothing about how the blocks should be physically arranged
on the disks. The ideal physical layout may be very different for PP and TWIST style backups. In particular, a
TWIST backup should probably have blocks L; and LNm +; physically contiguous on the disks, since both will

have to be read in and compared during recovery.
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3.2 Logging

Thus far we have considered checkpointing and SDBM strategies. Together, checkpointing
and SDBM provide a secondary database copy which may not be up-to-date. The log, a history
of all recently executed transactions, provides a means of bringing the secondary database up to

date when necessary, i.e., when recovering from the loss of the primary database.

Just as there are a variety of ways to checkpoint and update the secondary database, there
are also a variety of ways to maintain the log. In this section we will consider a number of
options and examine their relationships to checkpointing strategies. We will consider what

should be logged, and how the log information should be maintained.

3.2.1 Log Data

The purpose of the log is to provide a record of all transaction activity so that, if necessary,
the effects of transactions can be recreated during recovery. When a transaction executes, what
should be written into the log so that the effects of the transaction can be recreated? One possi-
bility is to record the location and new value of any part of the database modified by the transac-
tion. Then, the transaction’s effects can be recreated by restoring the new values, overwriting

whatever exists at that location. This type of logging is called state, or value, logging.

Instead of recording the effect of the transaction, we could record a description of the tran-
saction itself. Then, if the secondary database copy does not include the effects of that transac-

tion, it can be rerun to produce them again. This is an example of logical, or operation, logging.

For example, imagine a transaction that transfers money between accounts in a banking sys-
tem. A state log record for such a transaction would include the new balances of the two
accounts involved in the transfer. An operation log record might include a code indicating the
type of transaction (i.e., funds transfer) and any input parameters needed to rerun it (i.e., two

account numbers and the amount to transfer).

Transactions are normally composed of a sequence of sub-operations or actions, e.g.,
insert-record, delete_record, modify_record. Operation logging can be done at the transaction
level, as we have just described, or at the action level. The funds transfer transaction in our

example might consist of two modify_record operations. Instead of making a single log entry for
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the transaction, two log entries can be made, one for each of the modify_record operations. Like
the transaction entry, each action log entry would include any parameters necessary to rerun the
action, e.g., an account number and an amount to add or subtract from the account balance. To
differentiate between these two types of operation logging, we will term the former transaction

logging and the latter action logging.

The log strategy (value, action, or transaction) affects system performance both directly and
indirectly. The log strategy determines the log bulk, i.e., the amount of data written to the log per
transaction. Greater log bulk means more costly logging, since the CPU must spend more time
moving data into the log and flushing the log to disk. Greater log bulk also means that more time
is required to bring the log in from disk at recovery time. In most cases, operation logs result in
less log bulk than value logs. However, when operation logs are used, actions or transactions
must be re-run at recovery time. Thus, recovery of an operation log may be more costly even

though the log has less bulk.

The log strategy is closely tied to checkpointing, and for this reason it affects performance
indirectly as well. Recall that recovery using a transition log involves rerunning transactions or
sub-operations to recreate their effects. If the results of the rerun operations are to make sense,
the database against which they are run must be in a consistent state. In particular, a transaction
log requires a transaction-consistent state and an action log an action consistent state. Thus,
operation logging requires the use of consistent checkpoint strategies. As a general rule, the

greater the consistency required, the more costly the checkpoint is to run.

3.2.2 UNDO Logging

Thus far we have considered the log a repository of information for recreating the effects of
committed transactions, i.e., a REDQO log. In some cases it is necessary to log information so that
the effects of aborted transactions can be erased from the database. Such a log is called an
UNDO log. (Both types of information can also be combined in a REDO+UNDO log.) Whether
or not UNDO logging is necessary depends on how database updates are managed. Primary data-

base updates are discussed later in Section 3.3.
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Like REDO logs, UNDO logs can be value or operation logs. However, operation UNDO
logging is complicated by the fact that an operation (such as a transaction) can fail at many
points, and thus can have many possible inverse operations. We do not consider operation
UNDO logging further and will assume instead that if UNDO logging is needed it is done by

value,

3.2.3 Log Propagation

For reasons of space and efficiency, the log is kept in two parts. The most recently created
portion of the log, the log tail, is maintained in a memory-resident buffer. The remainder of the
log resides on the log disks. The log propagation strategy determines when log data is flushed

from the buffer to disk.

Normally, the log is broken into fixed size log pages. The standard log propagation tech-
nique is to flush a log page when a transaction’s commit record is written to it. (To ensure tran-
saction durability, a transaction cannot externalize until its log record is on stable storage, i.e., the
log disks.) Alternatively, log page flushes can be delayed until the page is full. Pages flushed
using this strategy may contain commit records from more than one transaction. It has thus
eamed the name group commit [DeWi84a,Gawl85a]. We will call the other technique single

commit.

Single commits can introduce inefficiencies since log pages may only be partially full when
they are flushed. Grouping commits reduces the amount of disk traffic, thus reducing the over-
head associated with disk I/O and the bandwidth required to the log disks. For high performance
systems (thousands of transactions per second), these savings (particularly in log disk bandwidth)

become critical. For this reason we will consider only group commit log propagation.

Note that grouping commits may introduce a transaction response time penalty, since tran-
sactions must wait for a log page to fill up before they can externalize, i.e., send an output mes-
sage. However, at high load this is unlikely to be a major factor since log pages will fill quickly.
Furthermore, this delay may be offset by reduced queueing delays at the log disks due to the

lower I/O request rate of the group commit strategy.
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Note that if non-volatile memory is available to hold the log tail, there is no longer any rea-
son to consider a single commit strategy. The response time penalty of group commits is elim-
inated since transactions can externalize as soon as their commit records are in non-volatile

RAM.

3.3 Other Issues

Thus far we have considered the two major components of recovery management, namely
the maintenance of the log and the secondary database. Other parts of the transaction processing
system can affect the performance of the recovery manager as well, though they themselves are
not directly concerned with recovery. In this section we will consider two such areas: primary

database management, and the transaction commit logic.

The primary database manager (PDBM) handles modifications to the primary database copy
requested by the transactions. The are several aspects to PDBM that affect recovery manage-

ment. We will consider two of them:

» Update Timing. Updates can be installed as they are requested, or they can be buffered out-
side the database until the requesting transaction commits, at which point they are installed.
The first type we will call immediate updates, the latter delayed updates. The checkpoint

comparisons made in Chapter 2 assumed delayed updates.

s Update Mechanism. When an update is installed, the new version can overwrite the old, or
the new version can be written to a new location. In the latter case, the current location of
each database object is stored in an indirection table. The first strategy will be called in-

place updates, the other shadow updates. In-place updates were assumed in Chapter 2.

Immediate, in-place updates are relatively inexpensive since new versions do not need to be
buffered and there is no indirection table to be maintained. However, UNDO logging must be
used (in addition to REDO logging) so that the database can be restored to its original state in

case a transaction aborts.

It is not necessary to propagate the UNDO log to the log disks unless the UNDO informa-
tion might be needed at recovery time. This can only happen if the effects of partially completed

transactions are seen in the secondary database copy, which in tum can only happen if fuzzy
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checkpointing is used. Therefore, unless fuzzy checkpointing is used, the UNDO log can be
maintained separately from the REDO log, with only the REDO log being propagated. With
fuzzy checkpoints the logs can be merged into a single REDO+UNDO log since all of the infor-

mation must be propagated.

Shadow updates suffer somewhat from the fact that the database is constantly shifting.
Some mechanism, such as an indirection table, must be used to indicate which parts of the data-
base are currently valid and which are shadows. The table or other mechanism is part of the data-
base, which means that it must be checkpointed and its modifications must be logged. In the case

of value logging, this results in additional log bulk.

Like PDBM, the transaction commit logic can affect the recovery manager. We distinguish
between two types of transaction commits, namely standard commits and pre-commits. The prin-
cipal difference between the two strategies is in when they release database locks. When using
pre-commits, a transaction releases its locks as soon as its commit record is in the log, even if that
part of the log has not yet been flushed to the log disks [DeWi84a]. With standard commits,

locks are held until the commit record has been propagated to the log disks.

Pre-commits are a useful tool for reducing data contention since they reduce lock durations.
However, when pre-commits are used, locking checkpointers can not rely on locking to prevent
violations of the log write-ahead protocol. The checkpointer may "see" a transaction’s updates
and propagate them to the secondary database before the transaction’s commit record-is on non-
volatile storage. Thus if monoplex backups are used in conjunction with a pre-commit strategy, it
is necessary for the checkpointer to explicitly synchronize with the log manager. Specifically, the
checkpointer must delay a segment’s propagation until all log entries affecting the segment have
been propagated to the log disks. Note that fuzzy checkpointers used in conjunction with mono-
plex backups must use explicit log synchronization whether or not pre-commits are used, since

transaction locks are ignored.
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3.4 Recovery

Thus far we have devoted most of our discussion to recovery preparations. In this section
we will consider the steps taken to restore normal transaction processing once a failure has

occurred.

After a system failure, the recovery manager has at its disposal a backup copy of the data-
base and a transaction log on non-volatile storage. In a disk-based system, the log is used to
bring the non-volatile database copy to a consistent state. In a MTPS, the non-volatile database

copy and the log are used to recreate a consistent primary database copy in main memory.

One possible recovery strategy, a straightforward extension of the disk-based strategy, is to
bring the backup database to a consistent state using the log and then to load the backup database
into primary memory. However, this results in a large amount of unnecessary disk I/O. A faster
strategy is to first read the backup database into main memory, and then to apply the log to the

new primary copy. We will assume that this latter method is used.

The method of reading the backup database depends on the SDBM strategy; the various
techniques were described in Section 3.1. Applying the log means applying each relevant log
entry in the order in which they appear in the log. In the case of value logging, an entry is
applied by restoring the stored value to the specified location in the database. For transition log-
ging, application means rerunning the transaction or action with the parameters stored in the log

entry. This leaves us with the question of which log entries are "relevant”.
Log entries can be divided into four classes:

1)  Committed: entries for transactions with commit records in the log.

2)  Aborted: entries for transactions with abort records in the log.

3) Indeterminate: entries for transactions with neither a commit nor an abort record in the log.

These transactions were active (or had recently finished) at the time of the failure.
4) Begin and end checkpoint markers.
A relevant log entry is one:

° that was logged by a transaction that later committed.
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e  who’s effect is not already recorded in the secondary database. We will call such entries

uninstalled.

Note that applying a value log entry to the database is an idempotent operation. If a value
log entry is already installed, installing it again does not lead to an incorrect state (though it is a
waste of processor time). However, installation of operation log entries is not, in general, idem-
potent. When operation logging is used, it is important that only uninstalled log entries be

installed, and that they be installed exactly once.

The determination of which log entries are uninstalled is checkpoint-dependent. However,
in all cases, entries logged by transactions whose commit records are logged before the beginning
of the most recently completed checkpoint are installed in that checkpoint, and thus can be
ignored. In the following, we consider only log entries from transactions which committed after

the checkpoint began.

° Copy-on-Update Checkpoints: COU checkpoints quiesce activity at the beginning of the
checkpoint and force transactions to save the database state as it exists at the beginning of

the checkpoint. All log entries after the the begin checkpoint marker are uninstalled.

® Black/White Checkpoints: Each checkpoint has a target color, the color it paints database
segments once they are propagated to the backup. Log entries also have a color, indicating
whether they apply to black or white data. Log entries of the target color are uninstalled
and must be installed. Entries of the other color are already reflected in the backup. Note
that if there is a begin-checkpoint log entry for an incomplete checkpoint (no end-
checkpoint marker exists) in the log, all log entries after that point are uninstalled, regard-

less of their color.

- Fuzzy and Segment-Consistent Checkpoints: These types of checkpoints do not provide a
mechanism for determining which log entries are already installed. However, this is not a
problem since both types of checkpoints are used only with value logging. All log entries
made by transactions that commit after the beginning of the checkpoint are treated as unin-

stalled.

Thus far we have determined which log entries are uninstalled. To decide whether or not to

apply a log entry, we must also know whether the transaction that wrote the entry later
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committed. Since a transaction’s commit entry is the last entry it makes in the log, a simple for-

ward (chronological) order log scan will not provide the necessary information at the proper time.

There are many solutions to this problem. One possibility is to scan the log twice, once
backwards to determine which entries belong to committed transactions, and once forward to
apply them. Other strategies use only a single pass and maintain auxiliary data structures to
achieve the same effect. When modeling the recovery time in the next chapter, we will assume

that a one-pass strategy is used. We will not consider other aspects of the log scan in detail.



CHAPTER 4
A PERFORMANCE MODEL

In this chapter we present a performance model for recovery managers. The model is an
analytic tool that can be used to predict the performance of various combinations of recovery
strategies. A brief summary of the model was presented in Chapter 2. The model parameters

described here are a superset of the parameters presented in Chapter 2.
A recovery manager is active while transactions are being processed as well as after a

failure has occurred. Thus there are two aspects to a recovery manager’s performance:

° the degradation in transaction processing performance because of resources consumed by
the recovery manager in preparation for a failure

] the time required to resume transaction processing once a failure has occurred.

As we shall see later, a recovery manager manager provides a tradeoff between these two aspects.
The model that we will describe computes three recovery metrics:

» Transaction Processor Overhead: transaction overhead is the amount of processor power
(i.e., number of instructions executed per transaction) dedicated to recovery preparations

during normal transaction processing.

® Recovery Processor Cost. the recovery processor cost is the amount of processor power

required to restore normal transaction processing after a failure has occurred.

®  Recovery I/O Cost. the recovery I/O cost is the time required to retrieve data from stable

storage (e.g., the log disks and backup disks) during failure recovery.

These metrics are simpler to compute than higher-level metrics such as transaction
throughput, and yet are closely related to them. The first metric is indicative of performance
degradation during transaction processing. A higher transaction overhead results in lower tran-

saction throughput because the processor is the critical resource in a memory-resident system.
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The second and third metrics are indicative of performance after a failure. If the processor’s
speed is known, they can be used to determine the recovery time, i.e., how quickly transaction
processing can be restored. (The performance comparisons presented in Chapter 2 considered
transaction processor overhead and recovery time.) In the remainder of this chapter, we will

develop expressions for each of these three metrics.

4.1 Transaction Processor Overhead

The transaction processor overhead is the work done by the processor to prepare for failure
recovery. Such preparations occupy time that could otherwise have been spent processing tran-
sactions, thus a recovery manager with a high transaction processor overhead is detrimental to
transaction processing performance. In this section we will describe a procedure to determine,

given the strategies used in the recovery manager, the transaction processing overhead.

We will divide the overhead into three components. The first of these is the cost of making
a checkpoint, i.e., of sweeping through the primary database propagating segments to the backup.
We will call this the asynchronous cost (because checkpointing is accomplished asynchronously).
The second will encompass costs incurred as each fransaction is run, in particular the cost of
maintaining the log. This will be termed the synchronous cost. The final component is the res-
tart cost, the cost of rerunning transactions that must be aborted because of recovery management
activities. In the rest of this section we will develop expressions for these costs, and then com-
bine them into a single expression for the transaction processing overhead. The combined cost is

the overhead metric used in the performance comparisons presented in Chapters 2 and 7.

4.1.1 Synchronous Overhead

Synchronous overhead will be computed on a per-transaction basis. As we will see, a
transaction’s overhead cost depends on whether the transaction is successful (commits) or unsuc-
cessful (aborts for any reason). We will develop separate expressions for Cop gnes and Crai synch»

the overhead costs of successful and unsuccessful transactions.

A model parameter, pg;, gives the probability that a transaction will abort voluntarily, e.g.,

if an incorrect account number is supplied. Using ps;, we can combine the expressions for
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successful and unsuccessful transactions into a single expression for synchronous overhead:

Coynch = PfaitCrait_synch + (1 = Prait)Cok_synch

Any transaction, whether it ultimately commits or voluntarily aborts, may be involuntarily
aborted and restarted one or more times because of recovery constraints, i.e., for attempting to
access both black and white data when a black/white checkpointer is being used. Such recovery-
induced restarts consume processor resources and thus contribute to the total transaction over-
head. However, we will not consider this cost in our computation of Cjy,. Instead, we will con-
sider it separately in Section 4.1.3. In the remainder of this section we will develop expressions

for Cak_synch and Cfai!_.rynch-

4.1.1.1 Successful Transactions

The principal component of the synchronous overhead is the cost of maintaining the tran-
saction log. Log maintenance includes log buffer management (e.g., determining when buffers
are filled and where the next log entry should go), flushing buffers to the log disks, and the cost of
copying log data into the buffers. The synchronous overhead may also include an additional cost,

the copy-on-update cost. We will write
Co.l’_s_ynch == Clag 2 Ctau

and consider each component cost separately. Table 4.1 lists the model parameters that will be
used in the expression for Cy; g, including many of the parameters that already appeared in

Tables 2.1 and 2.2. Table 4.1 also shows the default parameter values used in Chapters 2 and 7.

Central to the calculation of C,; sy iS the model of transactions. A transaction consists of
a collection of database actions (e.g., reads and writes). The number of actions can vary from
transaction to transaction. A function N, determines the number of actions per transaction in the
model’s load. N, (i) gives the fraction of the transaction load having i actions. N, is specified as

a model parameter.

The fraction of actions that are updates is given by R,,. The (expected) number of update

actions per transaction can then be calculated using

Nypacr =R TiNae§)
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SYMBOL DESCRIPTION DEFAULT UNITS
Srec record size 32 words
Stass log entry overhead 4 words
Sep operation log entry size 32 words
Sipg log page size 1024 words
Sseg segment size 8192 words
N (i) probability of i actions 0.10<i<10
Nogact update actions per transaction calculated | actions/transaction
Ry frequency of update actions 0.33
Rye segments per action 1.1 segments/action
R records per action 1 records/action
N, records updated per transaction calculated | records/transaction
Ng, segments updated per transaction calculated | segments/transaction
Nicsi REDO log entries per trans. calculated entries
Nosnr UNDO log entries per trans. calculated entries
N REDO log items per trans. calculated items
N irame UNDO log items per trans. calculated entries
D,.4 REDO log bulk per trans. calculated words
D UNDO log bulk per trans. calculated words
Cons_pired constant data movement cost 10 instructions/word
[ 875 linear data movement cost 1 instructions/word
Cy 1/O initiation cost 1500 instructions
Clattoc log maintenance cost 200 instructions
Csatios segment (de)allocation cost 100 instructions
Clock locking (synchronization) cost 50 instructions
Clogopen per-entry log cost 50 instructions
Clogend per-transaction log cost 100 instructions
Nogsais segments copied-on-update calculated | segments/transaction
Pfail probability of voluntary abort 0.05
Table 4.1

43

Each update action affects R, records and R,,, segments (R,,, 2 R,,). Thus a transaction updates

Nri = RypaNypac: TECOTdS and Ny, = R 0N 0 SEgMeENLS.

A transaction’s log overhead cost C,, is directly related to the number of log entries and to

its log bulk, the total volume of log data it produces. A log entry consists of a header and zero or

more items of data. (For example, in a REDO/UNDO log, an entry might consist of a header plus
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two items, the old and new versions of a modified record.) S,,., is the size of a log header.

The size of each log item, the number of items per entry, and the number of entries per tran-
saction, all depend on the logging strategy:
e  For VALUE logging, each transaction logs the new version of each updated record. In
addition, the transaction must log any incidental modifications to affected segments (e.g.,
modification of a primary index to indicate the new location of a record). Finally, each

transaction logs a commit record to indicate the end of its log activity.

- If action operation (AOPER) logging is used, transactions log the type and input

parameter(s) of each action executed (e.g., insert record), plus a commit record.

e  For transaction operation (TOPER) logging, each transaction makes a single log entry,

describing the type of transaction executed and any input parameters to the transaction.

Table 4.2 presents the expressions for Nyen, Nyiems» and D,.4,, the number of entries, items,

and total log bulk per transaction for the various logging strategics. We assume that

e Incidental modifications made to segments affect a single word, e.g., a pointer is modified

to reflect the new location of an updated record.
° The size of a commit record is roughly the size of a log header (§,.,,).

& S,p is the size of the input parameters for a transaction or an action.

L’Ogging S'HIP-BY D redo N, rent N, ritems
VALUE Nt (Steng + Sree Y+ Ny (Spene + 1)+ Spope | Npu+1 | Ny + Ny,
AOPER Nopact ( Stens + Sop ) + Stent Nogocs + 1 Nypect
TOPER Stent + Sop 1 1

Table 4.2

If an in-place update strategy is used, transactions must log UNDO data as well. Letting
Noyents Noiems» and D4, Tepresent the number of entries, items, and total bulk of the UNDO com-

ponent of the log, we can write
Doungo = Npy (Sient + Srec ) + NeuSiems

Nuens =Ny,
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Nuirem =Nm +N.s'u

If updates are not made in-place, D4, = Nyen = Niems = 0.

Once the log bulk is determined, we can compute the log cost, C,,, which has several com-

ponents:

Transactions must move their log data into the log. The cost of moving a single item is

taken to be
Cmv fixed + Cmove(Size_of _item)

Since each transaction 10gS Nems + Nuems items, whose total size (including the log

headers) is D,,, + D4, the data movement component of the log cost is taken to be
Cmv_ﬁud(Nrium % Nuirem) + Cmovc(Dna‘a + Dundo)

Log buffer management and buffer flushing costs are charged in proportion to the number
of log pages a transaction fills. The log page size is S, so the cost due to flushing and

buffer management is

Dredo Dredo +Dunda

e

Cio
Sipg

Sfps

This expression assumes that only the REDO portion of the log is flushed to disk, i.e., the
UNDO entries are kept in a separate log. For some combinations of recovery strategies
(e.g., FUZZY checkpoints combined with immediate, in-place updates) the UNDO entries

must go to disk as well. In those cases, an extra factor of

D ndo

Ci
S Ipg

must be added to C,,, to account for the cost of flushing the UNDO log bulk.

A constant per-entry overhead cost is used to account for such activity as determining
where the entry should be place on the log page, and synchronization of multiple loggers.

This adds a cost of

Cl'ogapen (Nnm * Nmn!)
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B A per-transaction overhead cost adds an additional Cj, g4 10 the l0g cost.

We now have a complete expression for C,,, but have still to consider C,,. C.,, represents
additional costs incurred by transactions when copy-on-update checkpointing is used. If the
checkpoint strategy is not copy-on-update, C,, =0. The additional costs come from two activi-
ties. One is the cost of making "snapshot" copies of database segments for use by copy-on-
update checkpointers. For each segment that needs to be copied, space must be allocated and the
segment moved. If N,,,.,.., is the number of segments copied-on-update by a transaction, the cost

of making the snapshot copies is given by

N, coutrans ( C.mﬂor: + Cmv _fixed e Cmovesseg )
We will develop an expression for N,,qns in Section 4.1.2.

The second activity is arises because the checkpointer needs to bring activity to a
transaction- or action-quiescent state before a new checkpoint can begin. Each operation (action
or transaction) must check, before running, whether or not it is allowed to proceed immediately.
Since this is a synchronization operation, we assess a cost C,,; for this check. If the checkpoint-
ing strategy is ACBW, each update action must check before proceeding. Since there are N,

update actions per transaction, the total COU cost for a transaction is
Ccou = N coutrans ( Csaﬂac + Cmv_ﬁ.ud + Cmovesng ) + Nupacxclock
For TCBW checkpoints, only one check is made per transaction. The total COU cost for TCBW

transactions is

Ccau = N coutrans ( C.ra!iac + an _fixed + Cmovesug ) +N, upac.rciack

4.1.1.2 Unsuccessful Transactions

In this section we develop an expression for Cpi gnes, the overhead cost of an unsuccessful
transaction. Like Cui synch» Crair synes CODSiSts of logging and copy-on-update costs. We will
develop new expressions for C,, and C,, and will combine them as before using
Cfait_synch = Ciog + Coou- For simplicity, we will assume that failed transactions abort after complet-

ing half of their actions.
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The log cost expression for unsuccessful transactions is the same as that for successful tran-
sactions; however the log bulk of unsuccessful transactions is different. If delayed updates are
used, D,.4p, Nyens» and N,;...s are zero for unsuccessful transactions since no database modifications
(or log entries) are made until the commit point. If immediate updates are used, the REDO log
bulk is usually half that of a successful transaction (not including the commit/abort entry). Table
4.3 describes the the REDO log bulk for unsuccessful transactions (assuming an immediate

update strategy).

Logging Strategy Dyeas Niyens Nritems
N S n +Sre +N.msz Nm NW+NM
VALUE e e ¥ ) S | 1 |
2 2 2
N €St 5, N N
AOPER upact ( lent ec ) . Stem upact +1 upact
2 2 2
TOPER' 0 0 0

1) Under TOPER logging, transactions make a log entry only when they commit, so 1,4, = 0.

Table 4.3

If in-place, immediate updates are used, unsuccessful transactions also have UNDO log

bulk. The UNDO log bulk for an unsuccessful transaction is half that of a successful one.

The log cost expressions for unsuccessful transactions are nearly the same as those for suc-

cessful ones. There are two exceptions:

e  The log bulk expressions of Table 4.3 rather than Table 4.2 are used in the calculations.

e  Anunsuccessful transaction is charged additional overhead for undoing its effects by copy-
ing its UNDO log information from the log buffer back into the database. The cost of mov-
ing the data is given by

N m‘tem.rcmv _fixed +D mdacmon
Of course, unless in-place updates are used, D4, and N, are zero and so is the additional
undo cost.

Copy-on-update costs are as for successful transactions except that only half as many seg-

ments are copied:

Ncoutram'

2

Ceou = Ciatioc + Comy fixed T Cmavesseg )
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The quiescing cost is half that of a successful transaction if ACBW checkpointing is done,

since only half as many actions are executed. For TCBW, the quiescing cost remains one.

4.1.2 Asynchronous Overhead

The asynchronous overhead is the cost of making a database checkpoint. Whereas Ciy,, is
a per-transaction overhead metric, Cayns Will reflect the cost of the entire checkpoint, which
spans many transactions. Later, we will combine Cy,;; and Cgyn into a single per-transaction
metric by determining the time required to complete the checkpoint and dividing C,n, among
all of the transactions that run during that interval. The new model parameters that we will use in

determining Cyy,, are shown in Table 4.4.

symbol description default units
Ny number of segments calculated segments
Cisn check log seq. number cost 50 instructions
N number of segments propagated calculated | segments/checkpoint
Neoio number of segment I/O’s calculated | segments/checkpoint
Nz segments copied-on-update calculated | segments/checkpoint
tf:;," minimum checkpoint interval calculated seconds
iy checkpoint interval t:-'c‘g' seconds
A pack backup I/O constant time -- seconds
bpack backup I/O linear time . seconds/word
Nihadow | number of backup shadow blocks 10 blocks
A transaction arrival rate 1000 | transactions/second
Poisces number of hot/cold regions 1
A(D) fraction of database in ithregion | 1.0 =1)
D(i) fraction of updates to ithregion | 1.0 =1)
Sa database size 256 Mwords
Table 4.4

Making a checkpoint may involve locking, copying, and initiating the 1/O of database seg-
ments (depending on which checkpointing strategy is being used). For now we will make use of
Nenks Nowkio» and N, Without determining their values. Later, we will develop an expressions for

them.
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The principal checkpointing cost is the cost of propagating the dirty segments:
Cas-ynch = CioNonkio

To this is added a variety of other costs depending on which checkpointing and SDBM strategies

are being employed.

® For non-FUZZY checkpoints, the checkpointer must lock each database segment. This
adds a cost Of CiyexNie,

@ If the checkpointing strategy requires explicit log synchronization (e.g., fuzzy checkpoints
to a monoplex backup), the checkpointer must check the log sequence number of each pro-

pagated page at a cost of Cj,, N

° If a copy-style checkpoint strategy is used, the checkpointer must copy segments to a spe-
cial buffer before propagating them. Unless the checkpoint strategy is also copy-on-update,
this adds a cost Of CpoveSsegNew- In the case of copy-on-update checkpoints, the check-
pointer need not re-copy segments that have already been copied by transactions. Thus the

added cost for copy-on-update checkpointers is 0nly CpoyeSses (Neat = Neowsor)

° If copy-on-update checkpoints are used, the checkpointer must release the segment copies
produced by the transactions once they have been propagated to the backup. This adds a

cost Of NiousorCsatioc-

Except for values for Nyue, Neousor, and N, We have a complete expression for Cogppen. TO
get expressions for the three remaining quantities, we must know ¢, the checkpoint interval.

The checkpoint interval is the time between the beginnings of checkpoints.

The checkpoint interval can be made arbitrarily long by inserting a delay between the com-
pletion of one checkpoint and the beginning of the next. (For this reason, t,, is a model parame-
ter.) Thus a checkpoint interval can be divided into two sub-intervals, the active interval, during

which checkpoint activity is actually occurring, and the inactive interval (the delay).

The checkpoint interval cannot be less than the active interval, and the duration of the
active interval will be calculated from the model parameters. Thus, 7, cannot be made arbitrarily
small. The duration of the active interval, (%, depends on how quickly the transactions dirty

database segments and how quickly the checkpointer can clean them by propagating them to the
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secondary database. We will next calculate 17"

We will assume that the checkpointer is I/O-bound, i.e., the duration of the active check-
point interval is the time necessary to flush the dirty segments to the backup disks. The number

of segments that can be written to the backup disks in time ¢ is

1

Ny(t)= ————
( ) Q pgck + b backsug

Transactions update N,, segments each. We assume a piecewise-uniform update probability
across the database. This means that the database can be split into n,;,.,, pieces such that all seg-
ments in a piece are equally likely to be updated. The size of each piece and the probability that
an update will be to a segment in that piece are given by the functions A(i) and ®(i). We will let
A(i)N,,, and @(i) represent the size (number of segments) and update probability, respectively, of

the ith piece. N, is the total number of segments in the database, given by

Obviously, we will require that

TAG) = 3 D) =1
=1

i=1

i

A segment update will miss an arbitrary segment in the ith piece with probability

1— 1
AN vy

We will take the probability that a transaction T will not update an arbitrary segment in the

ith piece to be

DN

1
[1 " A0ON.,

(The expected number of segments from the ith piece updated by T is ®(i)N,,.) Over a time inter-
val 1, A transactions are processed. Then the probability that at least one of these will update the

segment is
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The expected number of segments dirtied during a time ¢ is thus

OUINN
1- 1
A(i)N,,g] ’|

The expected number of pages the checkpointer must flush to the backup disks during the

Mpicces
Ndiny(l) = E A(i)Nug [I -
=1

i

checkpoint interval of duration ¢, written Ny, (¢), is a function of the number of dirty pages and of

the SDBM, as described in the following:
» FMONO backups: each dirty segment flushed twice.
® SMONO backups: N;,, (i.c., all) segments are flushed, regardless of how many are dirty

° SHADOW backups: each dirty segment flushed once, but the indirection table must be

updated carefully (i.e., twice) for every Ny pages that are flushed.
e  TWIST backups: each dirty page flushed once.

= PIPO backups: Each of the two backup copies sees updates only during every other check-
point. Thus the currently active copy sees as many dirty pages as a monoplex backup
would see during a checkpoint interval of twice the duration. Each dirty page is flushed

once to the active backup.

These relationships between Ny, and Ny, are summarized in Table 4.5.

backup policy Npusn(t)
FMONO 2N girry (1)
SMONO! Ny +2
SHADOW I he 2 Nainy ()
shadaw_
PINGPONG' Ny (20) +2
TWIST Ngiry (1)

1) The two extra segment flushes charged to SMONO and PIPO backups are for the one-time (per checkpoint)
careful updating of the base (SMONO) or current backup (PIPO) pointers on disk.

Table 4.5

We find 12, by setting Ny, (1) = N, (") and solving for ¢7*. When this equality holds,
the system is flushing dirty segments at the same rate they would be expected to be created by the

transactions. The equality results in an expression with the general form atfi + log (17) + b =0,
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where a and b are constants. We solve this expression numerically to arrive at a value for /%",

Once the checkpoint interval is known, we can get the desired expressions for Ny, Neakio»
and N, Fortunately, we have done must of the work during our calculation of rﬁ,". Unless
PIPO backups are used, the expected number of segments to checkpoint is simply the number dir-

tied during the checkpointer interval, so
Nowk = Nairgy(ticp)

In the case of PIPO backups, segments dirtied during the last two checkpoint intervals must be

checkpointed, so
Nenk = Nairy (2ticp)

We have also already determined the expected number of segment I/O operations performed by

the checkpointer:
Newio = Nﬂmh(ticp)

This leaves us with N,,..., the expected number of segments copied on update during a
checkpoint. Recall that a segment must be copied-on-update the first time it is updated after a
checkpoint begins but before the segment has been examined by the checkpointer. Thus, copies-
on-update can only occur during the active interval. To simplify our calculations, we will assume
that the checkpointer proceeds at a uniform rate through the database while it is active, i.e., that it

examines the nth segment at time

il min
ta(m) = L= g
seg

after the beginning of the checkpoint.
We will compute p,,,(n), the probability that the nth segment visited by the checkpointer
will first have been copied-on-update. We observe that this is the same as the probability of a

segment being updated at least once (dirtied) in time #.,(n). Since we have already calculated

Ny (1), we will express this as

Nairey (11 (n))

Peou(n) = Nug

We can now write the desired expression for N .
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N,

i

N coutor = E Peou(n)
1

n=

Note that earlier, in Section 4.1.1, we made use 0f Nyyyans, the number of pages copied on
update per transaction, without determining its value. To get an expression for N, ..., We will
spread the cost of copying-on-update evenly over all transactions. Since we expect Az, transac-

tions during a checkpoint interval, we will write:

N _ Ncauta:

coutrans — M
p

4.1.3 Restart Costs

Restart costs are incurred when a transaction must be aborted and restarted due to activities
of the recovery manager. The only recovery strategies that cause transactions to restart are the
black/white checkpointing strategies. Unless black/white checkpointing is used, C,.un=0.
Parameters that will be used in determining the restart costs of non-black/white checkpoints are

shown in Table 4.6.

symbol description default units
- raw transaction cost 10000 | instructions
Lowy retry frequency 0.25

D restart recovery-induced restart prob. | calculated

Nyies | number of attempts to complete | calculated

Table 4.6

As noted in [Agra85a], the entire cost, up to the point of restart, of executing a transaction
aborted by the recovery manager must be considered part of the overhead of the recovery
mechanism. Assuming as before that aborted transactions abort halfway through, restarting a

transaction incurs a cost of

trans
5 + Cait pymci

in addition to the overhead of the restarted transaction. If a transaction requires N,,,, attempts to

complete (including the successful attempt), we take the restart cost to be:
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C ans
Cre.s'mrr = (Nm'cs - 1)[ ‘?2 + Cfaii'_.rync{|

We are left with the task of computing N,,.,. We will consider transaction-consistent black/white

(TCBW) checkpoints first, followed by action-consistent black/white checkpoints.

Transactions can only violate the black/white restriction, and thus can only be restarted,
while the checkpointer is active. The checkpointer imposes an order on the database segments,
namely the order in which it examines them. So we can think of the segments as being labeled
from 1 to N,,, by the checkpointer. Figure 4.1 shows the labeled segments and a transaction T
which requires access to three of them.

What is the likelihood that T will have to be restarted for violating the black/white restric-
tion of a TCBW checkpointer? It is the same as the likelihood that the checkpointer will be exa-
mining a segment after segment 3 and before segment N,,, —1 when T runs. If we assume for
simplicity that:

. the checkpointer proceeds at a uniform rate through the database

e  the active segment (the segment currently being examined by the checkpointer) does not
change during T’s lifetime (This is a simplifying assumption which is reasonable as long as
most transactions are short-lived.)

then the probability of restart for T is simply

(Nseg v 1) ~3
N.reg

In general, if the difference between a transaction’s highest- and lowest-numbered segments is D,
the restart probability p,. e iS

D
N, seg

If we assume that the checkpointer chooses its next database segment at random from
among those it has not examined, then the ratio above, for a transaction accessing i segments, is
simply the expected distance between the largest and smallest of i points chosen at random on
(0,1). Knowing that the probability of i such points being less than x (where 0<x < 1) is x/, we

can determine the expected positions of the greatest (T) and least (B) of points to be:
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Nseg-1

Nseg

Database Segments

Figure 4.1 - Transaction Data Access and Restart

= i o 1
ir_i+1 B_i+1

Their difference gives us the desired expression for p,.garn:
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How many times must a transaction be restarted before it can run without violating the
color restrictions? The retry frequency, f,..,, specifies how frequently the system will attempt to
rerun a transaction that is to be restarted. It is expressed as a fraction of the checkpoint interval.
Alternatively (given our assumption of uniform checkpointer progress), we can say that the sys-
tem attempts to restart aborted transactions each time the checkpointer completes another f,,,,N,.,

segments.

In the worst case, if a transaction is restarted once it will have to be restarted as many times

as the restart interval f,.,,,N,,, occurs in D, or

D

————| times
fretryNug

In the best case a single restart is sufficient. Taking advantage of our "uniform progress" assump-
tion again, we will use half of the worst case number of retries. Thus the expected number of
attempts per transaction (including the successful attempt), is given by

D]
frﬁr_yN.ug

pr:.rmrt

1+2

A transaction with i actions accesses iR,,, segments. As we have already seen, for a transaction

accessing iR;,, segments we expect:

D _iRspa—l
Nui | Mgl

We now have an expression for the number of attempts per transaction when the check-
pointer is active and when the transaction accesses i segments. We make this independent of i by

considering N,(i), the likelihood of an i-action transaction and arrive at an expression for N,,,,:

= . Prestart iR“'—"" -1 -I
Nm‘u - ?Vacr(l) l:l * 2 "ﬂevy(iRSPﬂ 43 l) J

When the checkpointer is inactive, N, = 1. Since the checkpointer is active for a period 7, out

of every checkpoint interval ;,,, we modify our expression for n,,,., to account for this:

N;ﬂ"_‘=1+2

Noce ()P restart iR:pa oyl -|
2 Freiry(@Rpa+ 1) |
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For ACBW checkpoints we develop a similar expression. A transaction must be restarted if
any of its update actions violate the black/white restriction. An action touches R,,, segments, sO

during the active checkpoint interval an action will not violate the restrictions with probability

_ Rspa =1 - 2
Rpatl Rge+l

Transaction consist of N, actions, so a transaction will not violate the restrictions with proba-

g <N
K+ 1
The restart probability is then given by

g |V
Prestart = 1= Rspa +1

When ACBW checkpointing is used, a restarted transaction cannot complete successfully

bility

until all segments affected by the violating action are the same color.” As we did for TCBW, we
will use half of the worst-case number of restart intervals f,,,,N,., that will occur in this time. For

ACBW, this is given by

Ko~ 1
Repa+1

The number of attempts to complete is then given by

1
2 rerry

NM =1+ ‘g; Prestart I:Rspa - l.l

ticp 2fr¢rry Rspa + lJ

We have now developed complete expressions for the three overhead costs. It is convenient
to merge these into a single per-transaction overhead metric, C,,. We can do so by dividing the
asynchronous cost over all transactions that ran during the checkpoint interval. Since there are

At transactions during the interval, we can write

T We are ignoring here the increase in retry count that can be expected if more than one of a transaction’s actions
violate two-color rule.
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C

asynch
Ciot = Coynch + Crestan + .
1

4.2 Recovery Costs

The overhead metric, C,,,, provides an indication of how recovery management affects tran-
saction processing. In this section we will develop expressions for the two remaining metrics.
Together they are indicative of the performance of the recovery manager once a failure has

occurred. Table 4.7 shows new parameters that will be used in the recovery cost calculations.

symbol description default units
Alog log I/O constant time - seconds
biog log I/O linear time - seconds
Lioback database restoration I/O time calculated seconds
Tiolog log replay I/O time calculated seconds

C cpulog log replay processor cost calculated | instructions

Ccmd, database restoration processor cost | calculated | instructions

Lerash rollback time calculated seconds
N log log pages to recover calculated pages
N, pe log entries per trans. calculated entries
Nappi applicable entries per trans. calculated entries
Csoin log entry scan cost 100 | instructions
Cact raw action cost 1500 | instructions
M processor speed 20 MIPS
Table 4.7

Failure recovery encompasses a wide variety of activities. The failure must be detected, the
disks spun-up (if power failed), and communications and primary memory must
restored [Hagm86a]. We will consider only the restoration of an up-to-date, consistent, primary
database copy in our model, since it is this part of the recovery process that is directly affected by

the recovery strategies that we have discussed.

The recovery process involves both processor and I/O activity. We will develop two
metrics, one for each of those resources. ,,..,,,» the recovery I/O cost, is the amount of time

required to read in the necessary information from the backup and log disks. Cp.,,, the recovery
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processor cost, is the amount of processor power required to request the I/O activity and to pro-

cess the data once it is brought in. We will start with ;,,...,, and then consider C,.,,.

4.2.1 Recovery I/O Costs

Recovery I/O activity includes copying a secondary database copy into main memory and
reading in enough of the log to allow the new primary copy to be brought up to date. Thus we

will write
Tiorecov = tioback t tiolog

Where fopace and t,;,, are the backup database and log I/O times. ;5,0 is relatively straightfor-
ward to compute. Unless a TWIST backup strategy is used, there are (roughly) N,,, segments of

size S, to be restored from the backup disks. This can be accomplished in time

tioback = Nng (a back t bbac&Sseg)

If TWIST backups are used, both copies of each segment must be copied. Assuming that each

segment’s copies are stored contiguously on the backup disks, this requires
tiovack = Nieg (@ pack + 20 pack Sseq)

Determining #;,,,,, the time to read in the log, is somewhat more complicated. The first
question to answer is how far back in time the log must be scanned so that the new primary copy
and be brought properly up to date. As we have already discussed, any log entry after the begin-
ning of the most recently completed checkpoint may be applicable and must be read in from the
log disks.

Assuming that a failure is equally likely at any time during a checkpoint interval (of dura-

tion 7;.,), we expect the end of the most recently completed checkpoint to have occurred a time

liop.

2

before the crash. The beginning the checkpoint was a time 72" before that. Thus we expect to

have to scan log pages written during the period
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before the failure.
How many log pages were written during the interval #.,.?7 We have already calculated
D,.s, and D4, the per transaction REDO and UNDO log bulk, for successful and unsuccessful

transactions. N, the expected number of log pages to be read in at recovery time is given by

Dreas Dredo (unsuce)
Niog = teraswh|(1 —me'r)—r“e‘s“(ﬂ + (Dpait + Novies — 1)—msm—mc
ipg Ipg
if transactions wrote only REDO data to disks, or
Do + Do (suce) D4 y + Dundo (unsuee)
Nlos = crmhll(l “pfaii') _ (SMC)SI * (Pfaii' + Nm'e.r -1) el onmee Sr e
‘PE Pg

if both REDO and UNDO data went to the log disks. We can now write
Lislog =Niog(a log + b!ogslpg)

for the log I/O time.

4.2.2 Recovery Processor Costs

Next we would like to develop an expression for the processor cost of restoring the primary
database copy. Like the I/O cost, the processor cost can also be split into costs for restoration of

the primary database and replay of the log. We will write
Crecor = Ccpuback + Ccpulag

Restoration of the backup involves initiating an I/O for each segment that must be read in
from the backup copy, and allocating space for it in primary memory. Since there are N,,, seg-

ments in the backup, the cost for restoration of the primary copy is
Ccpubadc = Vseg (Cio + Ciattoc)

The log replay costs can be broken down into four components:
. Each 1/0O request (N,,, of them) costs Cj,.
® Memory management costs Cy,y,. per log page.

@ Each entry in the log must be examined to determine whether or not it must be applied to

the database, at a cost of C,,,, for each entry.
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e If an entry must be applied, an additional cost is incurred depending on the type of data in
the log. In a VALUE log, an applicable entry contains the new version of a record along
with incidental updates, all of which must be copied into place in the database. This costs

Comy_fized + CmoveSrec 10 cOpY the record, plus

Mo + Cruove)
Nru ( mv_fixed move

to copy the incidental updates. (Incidental update items are one word each. See Table 4.2.)
Applicable operation log entries describe actions or transactions which need to be rerun

against the database. The cost is Cy OT Cyrans €ach.

To get a complete expression for C,.u,, We must determine the number of entries and the
number of applicable entries in the log. Earlier (Tables 4.2 and 4.3) we determined the number of
REDO and UNDO log entries for successful and unsuccessful transactions. Using the transaction
failure and restart probabilities, which are known, we can write an expression for N,,, the
expected number of log entries per transaction (assuming UNDO log information has been logged
to disk):

Nent = (1= Prai(Nvent (suce) + Nuens (suce)) + Prait Nyens unsuce) + Nuent (unsuce))

To account for restarted transactions, we add an additional
WNivier = 1) (N tomnce) + Nisassz Goninece))
toN,,. If only the REDO portion of the log is sent to disk, then
Nowe = (10 = Prais W rens ey + PriltN vess uawcicy + Worias — 1N g (unseece)

There are Az, transactions in the part of the log that must be examined, so the total number of

entries is AlgrasnNent-

REDO entries from unsuccessful transactions and UNDO entries (if any) from successful
transactions need not be applied to the database. The commit/abort entries also need not be
applied. Thus the number of applicable entries per transaction is given by

Nappl = (1 _pfaﬂ)(Nrsm(mc) = 1) +pfaii(Nu¢m(mmc) ki 1) + (Nln‘u = 1)(Nu¢n!(wucc) B 1)

if UNDO entries are logged to disk, else
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Nappt = (1.0 = Prait)Nrent (sucey — 1)
The total in the 10g 18 N A ach-

The number of applicable entries must be modified slightly if a black/white checkpoint stra-
tegy is used. With black/white checkpointing, log entries that do not match the target color of the
most recently completed checkpoint are not applicable at recovery time (their effects are already
reflected in the database). A transactions ran while the last checkpointer was active. Assum-
ing that half of these transactions will be "in front of" and the other half "behind" the checkpoint,

we subtract

tmin

icp
N, appi;‘T

from the total number of applicable log entries when black/white checkpoints are used.

We now have a complete expression for C,, and thus for C,,,,. As a final note, we men-
tion that if the processor speed available at recovery time is known, we can combine the pieces of

Crecov aNd t5y,0y INMO a single metric, the recovery time #,,,,., using the expression

C, o
puback cpulog
trecov =ml‘iﬂbﬂck » T + max tiofag ’ T

where M is the processor speed. This assumes that restoration of the backup must be completed
before the log can be replayed, and that during &ach phase processor and 1/O operations can occur

concurrently.



CHAPTER 5
A RECOVERY TESTBED

In this section we will consider the design and implementation of the recovery testbed. The
testbed is an implementation of a transaction processing system. Its purpose is to allow us to test
and compare recovery strategies, and to provide verification for the recovery model. In effect, the
testbed is many transaction processing systems in a common framework. Various recovery stra-

tegies can be put together in different combinations into a working system.

Though the testbed is truly a transaction processing system, and not a recovery manager
with "simulated" input from other parts of the system, some parts of the testbed are more highly
developed than others. Our emphasis is on recovery, and the implementation reflects this. Many
parts of the testbed directly related to recovery are implemented several ways. Other parts of the
system, such as network support, access pafhs, ad-hoc query capabilities, etc., are present in a
more primitive form or not at all. This is not to suggest that such components are unimportant to
a transaction processing system. In fact, other researchers have already begun to consider some

of them in the context of memory-resident databases, e.g., [Lehm86a].

The testbed is implemented on a VAX 11/785 with a 128 Mbyte main memory and running
the Mach [Acce83a] operating system. It contains very little machine-specific code, and in fact
its use of special facilities provided by Mach is limited as well. (We will describe the testbed’s
use of operating system support later.) In the remainder of the section, we will present the archi-

tecture of the testbed and discuss its implementation.

5.1 Process Architecture

The testbed consists of a collection of processes (called tasks in Mach) operating on shared
data structures, including the database itself. Each process acts as a server, accepting work

requests and returning results. There are four types of servers that make up the testbed.
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1)

2)

3)

4)

The transaction server (TS) accepts transaction requests from the transaction request queue
and runs the requested transactions against the primary (main-memory) database. Running

a transaction has a number of effects on system data structures:
- the primary database may be modified
» a record of the transaction’s execution is placed in the log buffers

% a transaction response message (containing any data to be returned by the transaction)

is created

As log buffers are filled, requests are placed into the log request queue to have them flushed
to disk and cleared for reuse. To ensure the durability of a transaction, its response message
should not be sent until its log record is safely on disk. Therefore, rather than sending the
response upon completion of the transaction, the TS attaches the response message to the
log buffer containing the transaction’s record. The response is sent by the log server once it

has successfully flushed the page to which it is attached.

The log server (LS) accepts log requests and flushes the appropriate log buffers to disk, as
described above. If any transaction responses are attached to the log request, they are
placed in the appropriate transaction response queues after the buffer is successfully

flushed.

Message servers (MS) place transaction requests into the transaction request queue and take
responses from a transaction response queue. There can be any number of message servers.
All deposit requests into the same transaction request queue, but each has its own response
queue. A transaction’s response is always delivered to the response queue of the message

server that requested the transaction.

The checkpoint server (CS) is responsible for flushing modified portions of the primary
database copy to the backup disks. The CS makes periodic sweeps though the database to
accomplish this.

Figure 5.1 shows the servers and their shared data structures. The "critical path” of a tran-

saction through the system is illustrated by the double lines. In the following sections we

describe each of the servers in more detail.
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5.2 The Log Server

We begin with the log server, as its function is the most straightforward. The system log is
used to maintain a record of each transaction executed by the system, so that the effects of tran-
sactions can be reconstructed if necessary in case of a failure. The log itself consists of two parts,
a memory-resident buffer and a disk-resident buffer. The memory-resident buffer holds the log
tail, the most recently created part of the log. The principal job of the log server is to flush the log

tail to disk, thereby freeing up space in the memory-resident buffer.

The LS and TS interact through several shared data structures: the memory-resident log
buffer and the log request queue. The log buffer consists of a collection of log pages which are
filled with log data by the TS. In addition, there is a queue associated with each log page. When
the TS writes a transaction’s log record into a buffer page (actually, when it places the commit
record for the transaction onto a page), it places the transaction’s response message on the queue

for that page.

At certain times, such as when a page is full, the TS determines that the log page should be
flushed to disk. To accomplish this it places a request in the log request queue, indicating which
page is to be flushed. The LS takes requests from the queue and flushes the appropriate pages to
disk. Normally, the I/O is done asynchronously with respect to the TS, i.e., the TS does not wait
for the LS to flush the pages it has requested.

Once the I/O is complete, the LS examines the queue associated with the page that was just
flushed. If there are any transaction response messages in the queue, the LS places them into the
response queues of the message servers that originated the transactions. (Transaction response
messages are tagged with a response queue identifier for this purpose.) Once the responses have

been sent, the LS marks the buffer page as clean so that it can be reused by the TS.

The second task of the log server is the management of the disk-resident buffer. As they
have been described thus far, the actions of the LS cause the disk buffer to grow monotonically as
the system runs. The purpose of checkpointing is to limit the amount of log that must be
replayed at recovery time. By interacting with the CS, the LS can determine which log pages are

no longer needed for recovery and can free their space for reuse.
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Interaction between the CS and the LS takes two forms. The CS maintains a record of its
activity by placing entries in the log request queue. The CS makes a log entry at the beginning
and end of each checkpoint sweep. The LS uses this information to determine which log pages
are no longer needed. Typically, once a checkpoint completes, the LS can discard log pages
created before that checkpoint began and can reclaim their space. However, this is somewhat
dependent on the checkpointing algorithm used by the checkpointer. The LS maintains the disk-
resident portion of the log as a circular buffer, with new pages added in response to requests from

the TS, and old pages discarded as checkpointing progresses.

It is also possible for the CS to request "clearance” for a log page from the LS. The LS pro-
vides clearance if the log page in question has been successfully flushed to the log disks. If this is
not the case, clearance is delayed (as is the checkpointer) until the log page is disk-resident.
Depending on the checkpoint strategy, the CS makes use of the clearance facility to ensure that
the log write-ahead protocol is not violated when a dirty segment is propagated to the backup

database.

5.3 Message Servers

Message servers are responsible for feeding transaction requests to the TS and for handling
the response messages from those transactions. There can be any number of message servers,
each with its own response queue. A transaction’s output message is routed (by the LS) into the
response queue of the MS that requested it. The TS has a single transaction request queue into

which all message servers deposit their requests.

Several different types of message servers have been implemented. They differ in how they
produce transaction requests. Interactive message servers (IMS) prompt a user for transaction
requests. Generative message servers (GMS) use random number generators to create requests.
Generative servers are used to drive the recovery performance experiments that we will describe
in Chapter 6. Both types of servers display and then discard response messages. Normally, all
responses are displayed on the same output device (the terminal from which the testbed was ini-
tiated). If the X windows system is available, a simple facility is implemented which permits

each message server to display its response messages in its own window. The windowing
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facility, which can also display messages from the other servers (i.e., TS, CS, and LS) is useful
primarily as a debugging tool.

Each interactive server operates synchronously. An IMS does not prompt for a new request
until a response has been received for the current one. Generative servers operate asynchro-

nously, continuously producing new requests and serving responses as they become available.

Other types of message servers are possible but have not been implemented. For example, a
file message server could read pre-computed transaction requests from a file, or a network mes-
sage server could accept requests generated (somehow) at remote machines. By employing

several message servers, the TS can be fed requests from multiple sources.

5.4 Checkpoint Server

The checkpoint server is responsible for migrating changes in the primary database copy to
the backup, which resides on disk. The CS operates by periodically sweeping through the data-
base and copying dirty data to the disks. The minimum elapsed time per database sweep, called
the checkpoint interval floor, is a parameter supplied to the CS. Should the actual sweep take less
time than the interval floor the CS pauses for the remainder of the interval before starting a new

sweep.

The exact method used to update the backup, and the method of synchronizing copying
with database updates made by the TS, are determined by the checkpoint and backup algorithms
selected for the CS. However, all of the algorithms have a few points in common. The CS
transfers data to (and from) the backup in fixed-size blocks called segments. The checkpointer’s
access to database segments is read-only, except that some checkpointing algorithms require that
the CS toggle a bit in the segment to indicate that it has been visited during the current sweep.
Most of the checkpointing algorithms require that the CS lock segments before accessing them.

These locks can conflict with database accesses by transactions running in the TS.

The checkpoint server keeps the LS informed of its progress by making entries in the log
request queue. The CS enters a begin-checkpoint marker in the queue before the each sweep
begins, and an end-checkpoint marker as soon as the sweep is completed. As we have already

described, these markers are used by the LS to determine which log pages are no longer needed
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for recovery.

Finally, some checkpointing algorithms require that database update activity be temporarily
quiesced before the CS begins each database sweep. The CS accomplishes this by raising a flag
which is monitored by the TS. The TS cooperates by quiescing its update activity, and raises a
flag of its own once it has achieved a quiescent state. At this point the CS normally enters its
begin-checkpoint marker into the log request queue and lowers its flag to indicate to the TS that

update activity can proceed.

5.5 Transaction Server

The transaction server task performs the "useful work" of the transaction processing system.
It executes transactions against the primary database in response to requests taken from the tran-
saction request queue. In effect, the purpose of the rest of the system is to keep the TS as busy as

possible while ensuring that transaction updates will not be lost in the event of a failure.

Though the TS is a single Mach task, it actually consists of a number of transaction servers,
each of which is capable of serial transaction execution. We will term each sub-server a transac-

tion executor, or TE. Transaction executors are implemented as coroutines within the TS task.

The purpose of having multiple TEs is so that the TS can continue to process transactions
even if the currently executing transaction is forced to wait on a lock’. As long as an unblocked
TE is available, the TS can continue to do useful work. However, unnecessary concurrency can
hurt performance. Switching from TE to TE, though fast, consumes processor resources. As the
number of active TEs increases, the likelihood of lock conflicts (which leads to more context

switching) increases as well.

For this reason, the number of active TEs should be kept as small as possible while still
ensuring that the TS is kept busy. To accomplish this, TEs are created in two flavors, priority and
standby. Standby TEs are normally inactive. In case all active TE'’s are blocked, a single standby
TE is activated to process a transaction. The standby TE is deactivated once its transaction has

completed.

T Concurrency is also useful for promoting fair sharing of resources when there are long-lived transactions.
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Normally, the TS consists of a single priority TE and one or more standby TEs. Transac-
tions are processed serially by the priority TE until a lock (in most cases, a lock set by the CS) is
encountered, at which point a standby is activated. Thus the TS makes use of low-overhead serial

transaction execution as much of the time as possible.

Once a TE has a transaction request to process, it simply calls the application-defined tran-
saction specified in the request. (Transactions are pre-defined, compiled, linked, and loaded
together with the testbed.) A transaction terminates voluntarily by making a commit or abort
request, or involuntarily if a conflict (e.g., a deadlock) arises during its execution. The TE
ensures that involuntarily aborted transactions will be automatically restarted (though not neces-

sarily by the same TE) by placing the unfulfilled transaction request in a restart queue.

5.6 Implementation

Thus far we have discussed the behavior of the testbed. In this section we will describe its
implementation. The testbed is structured as a collection of libraries, many of which are used by
two or more or the testbed servers. At the lowest level, libraries provide for server synchroniza-
tion and basic data structures. Libraries also exist to manage log and backup disk storage, to per-
form transaction management, and to implement a simple set- and record-based data model. The
application code (i.e., the transactions) is also a library. The application library is compiled
together with the testbed to produce a working system. Figure 5.2 shows the various libraries and
their relationships (an arrow from A to B indicates that A uses facilities provided by B). In the

remainder of the section we will provide an overview of the major major parts of the testbed.

5.7 Transaction Management

The transaction management library provides facilities for beginning, committing, aborting,
and ending transactions. Transaction commit and abort commands are available for voluntary use
by application transactions, i.e., when a transaction finishes its application-defined tasks, it
requests that its work be committed. Transactions may also be involuntarily aborted by the

actions of other parts of the system (e.g., a deadlock will result in an aborted transaction).
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The duties of the transaction manager include:

© maintenance of data structures representing the each transaction current state, the location

of its request and response buffers, etc.
e  making abort and commit notations in the log through calls to the log manager.

N undoing, through calls to the memory manager, the effects of partially completed transac-

tions should they abort

e  discarding (also through calls to memory management) old versions of updated data no

longer needed when a transaction commits

5.8 Memory Management

The memory manager implements a simple data model consisting of records and sets. A
record is a collection of fields, which may be of fixed or variable length. Each record has a type,
which determines the number of fields in the record and their lengths. The possible record types

are determined by an application-specified record catalogue.

A set is a collection of records, each of which has a unique identifier. All of the records in a
set are of the same type. The sets, and their respective record types, are determined by an

application-specified set catalogue.

The memory manager supports retrieval, update, insert, and deletion of records. It also sup-
ports retrievals and updates of individual record fields. (Only fixed-length fields can be updated
individually.) The record and field access commands are used by the application-defined transac-

tions to manipulate the database.

Database access uses copy semantics, i.e., the caller receives a copy of the requested data,
rather than a pointer into the database itself. An alternative would be pass a pointer to the appli-
cation code. While this would save the expense of copying the requested data, it requires safe-
guards to ensure that the application does not disturb data other than that it was granted access to.
One possibility is to build safeguards into the language in which the application is coded. These

alternatives are discussed further in [Garc87a].
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Figure 5.3 shows the memory organization maintained by the memory manager. A set’s
records are stored in a collection of fixed-size memory blocks called segments. (As we have
already described, segments are the units of transfer from the primary database copy to the
backup.) A set is represented by a table of pointers to the set’s segments plus a record table con-
taining a direct pointer to each of the set’s records. The set’s record and segment tables are not
part of the database, i.e., modifications to the tables are not logged or migrated to the backup.
After a failure, the tables are regenerated from scratch once the set’s segments have been restored
from the backup. Since record tables are regenerated after a failure, they can contain absolute
(rather than segment-relative) record addresses despite the fact that segments are relocatable after

a failure.

Each segment consists of a header plus free space for holding records. Each record is stored
in a contiguous region of the segment. These regions may vary in size since records can contain
variable-length fields. All records in a segment are connected by a singly-linked list anchored in
the segment’s header. The list is used to distinguish records from free space when the segment is

restored after a failure.

Currently, record updates are done using shadows to eliminate the need for UNDO logging.
(The in-place update strategy has not yet been implemented.) A record that is to be updated is
not overwritten. Instead, space is allocated for a new copy. The old copy (the shadow) is
unlinked from the record list in its segment, effectively removing it from the database. However,
its space is not freed, and a pointer to it is saved in a shadow table maintained for the set. The
shadow is not freed until the updating transaction commits. In case of an abort, the shadow is

relinked into the record list, and its record table entry is restored from the shadow table.

The memory manager attempts to keep the record and its shadow in the same segment, but
this is not a requirement. Segments are kept partially empty so that there will usually be room for
both the shadow and the new version when an update occurs. The fraction of empty space that
the memory manager attempts to preserve on each segment for this purpose is a parameter to the

memory manager.

The memory manager maintains a variety of information in segment headers that is useful

to other components of the system. Each segment has a color bit and a pair of dirty bits which
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are used for checkpointing algorithms. Each segment also has a log-entry number indicating the

most recent log entry affecting the segment.

In addition to its own duties, the memory manager requests related activities from other
parts of the system. The memory manager automatically requests database locks on behalf of the
calling transaction. In the case of database modifications, it also arranges for a log record of the

update to be generated (if the locking strategy requires it).

5.9 Log Management

The log management library is responsible for maintaining the log tail, the memory-resident
portion of the log. The log tail is maintained as a circular buffer of log pages. Each page consists
of a data region and a header which includes a queue for the response messages of transactions

whose log entries are on the page.

Log users, e.g., the memory and transaction managers, interact with the log manager using
the open and close commands. The open command allocates space of a given size on the current
log page. If there is insufficient room on the current page, a request is placed to flush the page to
disk, and a new page is opened. Once the log has been opened, the log user can write any data it
desires into the allocated space as long as the total volume of data written is no more than the

amount requested. Only a single user can have the log opened at any one time.

The log manager also needs to be informed of the beginnings and ends of transactions and
checkpoints, and log management commands exist for each of these purposes. The transaction-
ending command is accompanied by the response message of the terminating transaction, which
is stored on the response queue of the current log page. Checkpoint commands cause checkpoint

information to be passed through the log manager to the log device manager.

5.10 Log Device Management

The log device manager maintains the disk-resident portion of the log. Its principal task is
to move log pages to disk in response to requests from the log manager. The log device manager
is also capable of retrieving log pages from the disks in reverse or forward sequential order. In

addition, each log page header contains an ID field (supplied by the log manager) and the device
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manager can retrieve a page given its ID number.

The log disk is maintained as a circular buffer. The space occupied by old pages is freed in
response to a firewall command. The firewall command is accompanied by a log page ID. It
causes the log manager to discard from the log disk all pages with lower IDs. Firewall com-

mands are normally issued by the log manager at the completion of a database checkpoint.

Log "devices" can either be files or Mach/Unix raw devices. Raw devices are preferable, as
they permit I/O directly from the log buffer to disk. File system I/O requires the log pages be first
copied to the file system’s buffer cache before being written to disk. In addition, the device
manager must issue an additional system call to ensure that the log page is written immediately
from the buffer cache to disk. The file system provides no functionality useful to the device

manager in return for these costs.

5.11 Checkpoint Management

The checkpoint management library implements the various checkpointing algorithms by
making calls to the memory, log, and backup device managers. All of the checkpoint algorithms
involve sweeping through the database and processing segments. This is accomplished set (see
Section 5.8) by set, i.e., all of the segments of one set are processed before moving on to the next.
Processing a segment means different things depending on which checkpoint algorithm is begin

used. The various checkpoint algorithms are described in section two.

A secondary function of the checkpointer is raising the checkpoint progress flag. This flag
is used by the transaction executors to determine when to attempt to retry transactions that have
been aborted as a result of interactions with the checkpointer. (Only the black/white checkpoint-
ing algorithms cause transactions to be aborted.) The flag is raised each time the checkpointer
finishes processing a certain number of segments; the exact number is a checkpoint parameter.

(The flag is lowered by the TEs.)
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5.12 Backup Management

The backup manager maintains the disk space used to store the secondary copy (or copies)
of the database. Each database segment has a unique backup ID. Backup IDs are managed by the
backup manager. Each time the memory manager creates a new segment, the backup manager is

requested to issue it an ID.

The task of the backup manager is the migration of segments to (and from) the backup
storage according to the particular backup algorithm that is being used. (Part of the specification
of a backup algorithm is a mapping from backup IDs to disk locations.) Backup algorithms are
described in Chapter three. Currently, only the fixed monoplex and pingpong (duplex) algo-

rithms are implemented in the testbed.

The backup database includes a special segment that is used to store information pertaining
to the backup. The contents of the special segment depend of the type of checkpointing that is
used to create the backup. The special segment is updated in response to begin- and end-
checkpoint commands issued to the backup manager. Typically, the special segment includes
such data as the ID of the log page that was current when the checkpoint began and an identifier

for the checkpoint.

As with log devices, the backup device can either be a file or a raw device. If available, the

raw devices are desirable from a performance standpoint.

5.13 Lock Management

The lock manager provides locking capability for database segments and records. Locking
is used by the checkpoint server (except with fuzzy checkpoints) and by the transaction executors
via the memory manager. The lock manager provides shared and exclusive lock modes, deadlock
detection, and lock escalation (shared to exclusive). Currently, lock acquisition time is reduced

by pre-allocating lock data structures (i.e., "lock table" entries) for lockable objects.

Normally, a lock requester is blocked and queued in case of a conflict. However, locks can
be requested in non-blocking mode. This causes the lock manager to return immediately in case
of a conflict, with a status code indicating that the lock was not achieved. Blocking requests are

used by both the TS and the CS. Non-blocking lock requests are used by the CS only..
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5.14 Low-Level Support

The testbed makes use of a modified version of the CThreads [Coopa] coroutine library to
implement TEs within the transaction server. The CThreads library provides a support for non-
preemptively scheduled coroutines within a Mach task. The library has been modified in several

ways for use with the testbed:

- New primitives have been added to allow synchronization of coroutines with Mach tasks.
For example, if a TE (coroutine) attempts to lock a segment locked by the checkpoint server
(a task), only the locking TE is blocked, and not the whole TS task. Similarly, if a CS lock

request conflicts with an existing lock, the CS task may block.
“ A two-level scheduling strategy is used to implement priority and standby coroutines.

e  New primitives have been added that permit, in conjunction with the X windowing system,
each coroutine (or task) to open its own window on the display. This is very useful in

debugging a multi-threaded system.

The testbed makes use of Mach’s virtual memory primitives to implement its shared data
structures, namely the database and various request queues. The Mach kemel schedules (preemp-

tively) the server processes and provides block and restart primitives.

Currently, disk storage for the log and the secondary database copy is accessed though
Mach’s raw device interface. Normal files can be used as well, though there is a performance

penalty associated with doing so.

Finally, Mach system calls are used to gather performance (timing) information on the

testbed’s servers.

5.15 Application Libraries

In order to perform useful work, the testbed must be combined with an application library.

An application library consists of several parts:

e  Database Catalogue: The catalogue is a description of the records and sets that will make
up the database. Record descriptions include the name and length (which may be variable)
of each field in the record. A type is specified for each field as well, but this is used only in

displaying records. Set descriptions include a name and the record type of the sets
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members.

e  Transactions: The application can include any number of transactions. Transactions can
perform arbitrary computations on local data and can request database access (read, update,
insert, delete) and transaction (abort, commit) services from the testbed. Transactions are
supplied with input and output buffers when they are called. The input buffers contain any
parameter values required by the transaction. Output buffers can be used to hold the tran-

sactions’ return status or any other results of the computation

e  Message Catalogue: The message catalogue is much like the database catalogue, but it
describes transaction input and output message buffers rather than database records. Mes-
sage descriptions are very much like record descriptions. Each specifies the number of
fields in the buffer and their lengths. Each transaction can have its own input and output

buffer descriptions, or the same descriptions can be used by several different transactions.

The application library (transactions and catalogues) is precompiled, linked, and loaded with the

remainder of the testbed to produce a working system.
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MODEL VERIFICATION

Thus far we have described a performance model and a testbed implementation for MMDB
recovery strategies. It is difficult to investigate the full spectrum of recovery strategies and
changes in the environment (e.g., transaction load) with the testbed because of limitations of the
hardware and the amount of time required for such studies. However, varying recovery strategies
and the environment is a relatively simple matter with the performance model. For this reason,
we will use the testbed to verify the performance model, and then use the model to make most of
our comparisons. We will verify the model by comparing the measured performance of the
testbed to the models predictions over a variety of recovery strategies. The purpose of these com-
parisons is to increase confidence in the accuracy of the model’s predictions. The verification

experiments are also useful and interesting in their own right.

All of the verification experiments described in this chapter were performed in a similar

environment:

» The testbed ran on a VAX-11/785 equipped with 128 Mbytes of memory and running

Release 1 of the Mach operating system.

e  The disk-resident portion of the log and the backup database were kept (1 partition each) on

two RAB81 disk drives.

e  The log and backup partitions were accessed using the "raw" I/O facilities provided by

Mach, i.e., the file system is bypassed.

In the remainder of this chapter, we will discuss the model verification. It will be presented

as a three-step process:
1)  Determination of the parameter values to be used in the model.

2)  Measurement of recovery overhead in the testbed.
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3) Comparison of the measured values to those predicted by the model.

In the rest of this section we will describe each of the steps in more detail.

6.1 Parameter Determination

To verify the model against the testbed, it is important to use model parameter values which
accﬁrate}y reflect the characteristics of the testbed. The parameter values we used were derived

from several sources:

s Some model parameters are also testbed parameters or can be obtained from a static
analysis of the testbed or application code. Parameters such as segment, log page, and

record sizes fall into this category.

# Other parameters describe dynamic attributes of the testbed. The testbed has a variety of
built in instrumentation that allows some of these parameters to be measured while the
testbed runs. Parameters describing I/O throughput and the number of segments accessed

per action are example of parameters in this group.

e  The final group of parameters consists mostly of the primitive operation costs. They are
difficult to measure in the running testbed and do not lend themselves to accurate static

analysis. Instead, they are measured with special test programs.

6.1.1 Static Parameters

Parameters such as the segment and log page sizes are compiled into the testbed and are
independent of the application code it is supporting. The values of these parameters in the
testbed that was used for the verification experiments are shown in Table 6.1. In the table, the
record-per-action count is one because the three update actions provided by the testbed (update,
insert, delete) modify a single record each. The log entry overhead is the size of the most com-

mon log entry header used by the log manager. Other log entry headers are slightly smaller.

The remaining static parameters describe application-dependent features such as record
sizes. The application used to drive the testbed simulates a credit card data processing environ-
ment. It is based loosely on an application used to drive a recent set of benchmarks of IMS/VS

FastPath [Vigu87a).
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description model name | value | units

segment size . . 1024 | words

log page size Sipg 1024 | words

log entry overhead Stent 6 words

records per action Rypa 1 record
Table 6.1

An application defines the various collections (or sets) of records in the database and tran-
sactions to access those records. The credit card application defines four sets and eight different
transactions. The sets include:

e  Account Set. one record per account. Record fields include account number, credit limit,
used credit, expiration date. 40,000 accounts; expected record size is 13’ words.

° Customer Set: one record per customer. Records hold customer information such as name,
address, social security number, and account number; 40,000 customers, expected record
size is 50 words.

e  Hot Card Set: one record for each stolen card reported. Records hold the account number,
number of attempted uses of the stolen card, and the report date. Initially, 100 cards
reported. Expected record size is 20 words.

° Store Set. one record for each point of sale (retail store). Record fields include store name
and number and counters for various types of credit card activity at the store; 5000 stores,

expected record size is 20 words.
Eight types of transactions are also defined:

e  BAL (Balance Check). Returns information about an account, including customer name and
current balance.

* CCCK (Credit Card Check): Checks the validity of an account and increments a counter at

the store from which the transaction originated.

¥ This and all record sizes include four words of system header information.
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° CLCK (Credit Limit Check). Checks that there is sufficient credit available for a purchase.

Also increments a counter in the originating store’s record.

» CHCUST (Change Customer): Modifies customer description, e.g., change of address.

e  DEBIT (Account Debit). Modify account information to reflect a purchase. Also incre-
ments a counter in the seller’s record.

e  FOUND (Cancel Lost Card): Re-validate a card that had been reported missing.

e  LOST (Report Lost Card): Invalidate a card that is reported missing.

. PAY (Make Payment). Make a payment on an account.

Table 6.2 gives the application profile, including transaction frequencies and the size of a
transaction’s input parameters. It also includes a call profile; a description of each transaction’s
access to the data sets. An R stands for read access, M for record modification, I for record insert,

and D for record deletion.

Set Name
type input size || % of requests | Account | Customer | Hot Card | Store
BAL 1 17 R R
CCCK 2 20 R R RM
CLCK 3 20 R RM
CHCUST 44 1 RM
DEBIT 18 20 RM RM
FOUND 1 1 R RD
LOST 16 1 R RI
PAY 4 20 RM

Table 6.2

We generate values forR,,,, S, Sy, and N, from the application profile. Recall that N, is
a function that describes the number of actions per transaction. N, (i) gives the probability that a
- transaction will have i actions. We determine the N,,(i) using the actions listed in table 6.2
(Read, Modify, Insert, and Delete are actions) weighted by the frequency of occurrence of the dif-

ferent types of transactions. The result is shown in Figure 6.1
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Figure 6.1 - Distribution of Number of Actions per Transaction

The update fraction, R, is the frequency-weighted fraction of the actions that are updates
(anything but Reads). The operation log entry size, S,,, is taken to be the weighted average of the
transaction input sizes (since the operation log entry must contain the information necessary to
re-run the operation). Finally, the record size, S,,., is taken to be the average record size of the
four sets, weighted to reflect frequency of access. The actual values used are summarized in

Table 6.3.

parameter description value
Ry update fraction 0.34
Se operation log entry size 8
Srei record size 18
Table 6.3

6.1.2 Dynamic Parameters

A number of parameters are measured by the running testbed. These parameters and their

values are summarized in Table 6.4.
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parameter description value
Sa database size’ 4000000
a pack throughput constant® 0.1
D bact throughput constant® 0.0
A transaction input rate’ various
Rpe segments per action 1.05
Prait transaction failure rate® 0.0

1) The database size varies with time because of updates to variable-length fields, the shadow update strategy,
and record insertions and deletions. The testbed reports the mean number of segments after each checkpoint.

The value used is approximately that number times the segment size.

2) Throughput to the backup disks is measured by the testbed at close to ten segments per second. Recall that,
in the model, segment throughput is determined by the parameters @ p and b ;. using the expression

1
Bpack + VvackSuey

We have not determined the variation in throughput with segment size, so for verification purposes the linear
coefficient (b pg.i) is zeroed and the constant term is set at 100 milliseconds to achieve ten segment per second
throughput.

3) Input (throughput) rates vary from under thirty to over seventy transactions per second over the various test

points, since each point represents a different combination of recovery strategies.

4) Transactions in the testbed’s workload fail occasionally because of bad input parameters (e.g., the same card
is reported FOUND twice). The failure rate is normally less than a tenth of one percent, s0 Py is taken to be

ZET0.

Table 6.4

6.1.3 Other Parameters

The remaining parameters, all primitive operation costs, cannot be easily measured within
the testbed. They were measured instead with specialized test programs. Each test program con-
sists of a loop which repeatedly calls the portion of the testbed responsible for implementing the
primitive action. For example, to measure C,,, the test program repeatedly acquires and releases
a database lock. The results of these measurements are summarized in Table 6.5. All measured
values are averages over 500,000 iterations (primitive operation executions). Times are given in

microseconds.
Note that in the performance model, processor costs are measured in "instructions”". An

instruction can be thought of as an arbitrary unit of consumption of processor resources. For the

purposes of verification, we take an instruction to be one psecond (i.e., a 1 MIP processor). Of
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course, this means that the absolute magnitude of the overhead predicted by the model is mean-
ingless unless this scaling factor (the number of instructions per second) is known.! However,

relative measurements (comparisons of overhead) are the same regardless of the scaling factor.

measured | model

parameter description value value
Cocne segment allocation’ 267 125
Clattoc log buffer allocation 1053 1000
Ciz log sequence number? 81-148 100
Ciock lock request® 285 300
C; T/O request 5207 5000
Comyfized | movement constant cost “60 60
Cosie movement linear coef. 1.5 15
G/ m— log entry cost 222 200
Copvnd log per-trans. cost 283 300

1) The measured value includes segment allocation and deallocation. Since these costs are charged separately
by the model (allocation is part of the synchronous cost, deallocation of the asynchronous cost), we take
Caiioc to be half of the measured value.

2) Log synchronization costs varied depending on the state of the log page that is being waited on. The lower
number is achieved when the page is no longer in the main-memory log buffer. If the page has been flushed 10
disk but also remains in the buffer, the cost is higher. We chose a synchronization cost in between these

values.

3) The lock request cost was measured for the most common case in which there are no other locks on the re-

quested object.
Table 6.5

The data movement cOStS (Cpove aNA Cpypreq) Tequire some additional explanation. Data
movement costs were measured for a variety of block sizes. The results are shown by the solid
curve in Figure 6.2. In the figure, the data copy time less 60 usec is plotted against the block size.
Based on this curve, we chose Cpyfizes =60 and Cp,. = 1.5. ([Recall the model takes the cost of
moving w words of data 10 be Cpyzeq + WCpov.) The dotted line shows the predicted value (less

60 psec).

T Actually, the scaling factor is used explicitly in the model. However, it is usedwnly to determine whether the
recovery processor overhead is sufficiently great to make the recovery time processor-bound (see Chapter 4).
We will only consider the transaction processor overhead in the verification. The model parameter representing
the scaling factor is M, the processor speed.
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Figure 6.2

We have yet to determine a value for C,,,,, the raw (without recovery) cost of running a
transaction. This cost is measured by running the testbed with all recovery facilities turned off
(i.e., no logging or checkpointing). This measurement was made using the same transaction mix

as was used in the verification experiments.

The testbed reports total processor time (broken down into system and user time) for each
of its four principal processes. In addition, the transaction server process reports the total transac-
tion count. Table 6.6 shows the results of a thirty minute run with no recovery operations. (All

times are reported in seconds.)

user-mode | system-mode total transaction

server time time time count
transaction 1269.41 34.45 1303.86 158781
message 339.08 121.14 460.22 NA
log 0.00 0.00 0.00 NA
checkpoint 0.00 0.00 0.00 NA

1) The message server time includes additional overhead for determining transaction response time (i.e., times-
tamping transaction request and response messages). As a result, the message server time is not as low as it
might otherwise be. However, since message and network costs are normally high in transaction processing
systems, we have chosen not to attempt to reduce further the message server overhead.

Table 6.6
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The raw transaction cost is taken to be the transaction server time divided by the total tran-

saction count. The resulting value for C,,,, is approximately 8200 pseconds.

6.2 Recovery Overhead

We are now in a position to present the model verification experiments. The testbed’s per-
formance was measured in a dozen experiments. Each measured the performance of a different

combination of checkpointing and logging strategies.
The testbed configurations had a number of features in common across all of the experi-

ments:

e  non-spooling checkpointers

@ asynchronous logging

e  transaction group commit and pre-commit

° immediate, shadowed primary database updates

. a ping-pong backup strategy

® checkpoints run as quickly is possible, i.e., no delay between completion of one checkpoint
and initiation of the next.

Each experiment measured the total processor time of each of the servers, the transaction
throughput, and the total true transaction count. Throughput is measured in true transactions per
second over 60 second (real time) intervals by counting the number of true transactions com-
pleted during the interval and dividing by 60. Each experiment covered 30 minutes (intervals).

The true transaction count does not count restarted transactions as new transactions.

Server times are given as pseconds of processor time per true transaction. Server times are
computed by dividing the total processor time used by the server (over the 30 minute experiment)
by the total true transaction count. Processor time was measured using operating system process
task timing facilities (via calls to the system routine "getrusage"). The results of these experi-

ments are presented in Table 6.7.
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Experiment transaction | checkpoint log message | transaction
checkpoint  log data | throughput server server server server count
FUZZY VALUE 727 9658 275 802 2908 130877
SC VALUE 71.2 9723 460 827 2935 128247
ACCOU VALUE 65.7 10140 1335 744 2899 118338
ACBW VALUE 5 9580 586 739 2981 128665
TCCOU VALUE 63.8 10613 1315 740 2891 114863
TCBW VALUE 41.61 18687 925 1128 3075 74885
ACCOU AOPER 66.4 10295 1230 511 2928 119474
ACBW AOPER 73.1 9619 493 553 2886 131557
TCCOU AOPER 66.6 10186 1250 525 2907 119967
TCBW AOPER 4238 18591 836 700 3251 76298
TCCOU TOPER 72.6 9103 1147 482 2941 130731
TCBW TOPER 46.31 16990 786 566 3052 83382
Table 6.7

6.3 Verification

The total transaction overhead was computed by summing the times for the transaction, log,

89

and checkpoint servers (Table 6.7) and subtracting the raw transaction cost, C,,,,,. Total overhead

was also computed by the model for the same strategy combinations, and using the measured

throughput for each combination as the value of A (see Table 6.7). Figure 6.3 shows the com-

puted and predicted overhead costs for each of the experiments.

Although there are some minor disagreements over the relative ordering of strategies with

very similar overhead costs, the model generally predicts lower overheads for those recovery stra-

tegies that showed the lowest costs experimentally. However, the figure shows two areas in

which the model had greater difficulty in conforming to the measured values:

e  Measured overhead costs for the four copy-on-update checkpoint scenarios showed a

greater increase over faster strategies than did the predicted costs.

e  The model significantly underestimates the overhead in the three experiments using TCBW

(transaction-consistent, black/white) checkpointing.
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Figure 6.3 - Measured and Predicted Overhead

Before continuing, we will first consider the causes of these discrepancies, starting with the

copy-on-update checkpoints.

Examination of the data in Table 6.7 indicates an abnormally large amount of processor
time consumed by the checkpoint server in each of the COU checkpoints. Because of the statisti-
cal nature of the system’s timing facilities and potential correlation between the testbed processes
and the sampling clock, timings of individual processes taken in isolation must be interpreted
with care. However, the large increase in checkpointing time did indicate that the checkpoint

server was a reasonable place to look for the cause of the increase.
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A copy-on-update checkpoint server would be expected to consume more processor time
than checkpoint servers using other strategies, since a COU checkpoint involves freeing the
"snapshot" segment copies (created by transactions) once they have been flushed to disk. How-

ever, the observed increase is larger than would be expected from this effect alone.

In the testbed, another difference between COU checkpointers and others is in the access
patterns they exhibit in primary memory. All types of checkpointers examine database segments
in the same logical order during each sweep through the database. Because of the way the seg-
ments are physically laid-out in primary memory when they are first read in from the secondary
database, this logical sweep translates to a sequential’ sweep though virtual (primary) memory.
Recall, however, that COU checkpointers write the "snapshot" copy of a segment to disk if one is
available. The snapshots are kept in a separate buffer pool. The sequential primary memory

sweep of a COU checkpointer is disturbed by these diversions to the snapshot pool.

Several experiments were run to determine whether or not this may have had an effect on
the processor cost of the COU checkpointer. Each of the experiments uses a sequential allocation
of 4000 segment-sized blocks of memory (about the size of the database used in the verification
experiments) plus an additional pool of 1000 blocks. In addition, disk space for 1000 blocks is
available. Each experiment involves writing 1000 blocks from memory to the disk. In the first
experiment, the next block to be written is chosen at random from blocks 1 to 4000. In the
second experiment, the first block to be written to the disk is chosen at random from among the
first four blocks (numbers 1 through 4). The next block is then chosen from among the next four
blocks (5 to 8), and this process continues until 1000 blocks are written. The third experiment is
a variation of the second. As in the second experiment, one block from each group of four is
chosen for I/O. However, half of the time another block is written it its place. The other block is
ch_osen at random from the last 1000 blocks (numbers 4001 to 5000), which are unused in the

"sequential” part of the experiment.

The second experiment was designed to have a memory access pattern similar to that of a

non-COU checkpointer. The final experiment is similar to a COU checkpointer, where the last

+ This is not completely accurate. Newly allocated segments and locking conflicts on existing segments can alter
the sequential pattern somewhat.
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thousand blocks (4001 to 5000) correspond to the "snapshot" buffer pool from which a COU
checkpointer sometimes takes a segment copy.

For each experiment, the mean total processor time was measured over 30 runs. Note that
all three experiments have the same disk access pattern. Only the source of each disk write varies

among the experiments. The target is the same in each case. The times are shown in Table 6.8.

user system total
experiment || processor time | processor time | processor time
(milliseconds) | (milliseconds) | (milliseconds)

1 (random) 1.38 84.72 86.10

2 (sequential) 1.40 44.77 46.17

3 (variant) 2.09 101.71 103.80
Table 6.8

The third test, corresponding to the COU checkpointer, has significantly higher processor
cost than the second. Interestingly, it’s cost is even higher than that of the first test in which
blocks were selected at random. Higher times might be expected for a more random memory
access pattern if virtual memory paging was occurring. However, the experimental machine has
more than enough physical memory to hold the virtual space used in these experiments. In addi-
tion, Mach’s virtual memory performance mom‘ton’ng facilities indicate that no paging occurs

during the tests.

Though these experiments are not conclusive and we are uncertain as to the cause of the
extra processor time, we believe that this effect (which is not modeled) accounts for most of the

unexpected increase in COU overhead costs.

Next we will consider the discrepancy in the TCBW experments. Recall that the distin-
guishing characteristic of black/white checkpoints is that they can cause transactions to abort and
restart for violating the two-color rule. The model computes the expected number of attempts
required to complete a transaction. The mean number of attempts is also measured by the
testbed. Table 6.9 shows the measured and predicted numbers of attempts for each of the three

TCBW experiments.
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experiment number of attempts to complete
checkpoint log measured mean | predicted mean
TCBW VALUE I:STJ, 152
TCBW AOPER 1.95 1.52
TCBW TOPER 2.04 1.52
Table 6.9

The great expense of aborting and restarting transactions means that a small increase in the
number of attempts to complete results in a large increase in transaction overhead. Figure 6.4
shows what the results of the verification experiments would have been if the model had accu-
rately predicted the mean number of retries in each of the black/white experiments. (To produce
the model’s bars in Figure 6.4, we substituted the measured mean number of retries for the

predicted value in the model’s calculations.)

The large increase in the model’s predictions shown in Figure 6.4 indicates that the
underestimation of the number of retry attempts is a principal cause of the low predictions for the
TCBW checkpoint experiments. The model’s difficulty lies in its assumption that the check-
pointer chooses its next segment at random from among the segments it has yet to examine. In
the testbed, the checkpointer’s segment access is far from random. In fact, the testbed’s check-
pointer examines the segments one set at a time, and always moves through the sets in the same
order: Account set, Customer set, Hot Card szt, Store set. To make matters worse, the DEBIT,
CCCK, and CLCK, transaction access records in both the Account and Store sets (see Table 6.2).
As these sets are at the beginning and end of the checkpointer’s sweep, the transactions are very
likely to violate the black/white restriction. DEBIT, CCCK, and CLCK comprise 60% of the

transaction load.

Modifying the model to account for this difference would involve eliminating the random-
ness assumption used in analyzing the checkpointer. Instead, the conditional probability of a por-
tion of the database being accessed next, given location of the previous access, would have to be
considered. This would detract considerably from the simplicity of the model. In addition, it is
not clear how serious the underestimation would be for other transaction loads. Clearly, the load

used to drive the testbed was particularly bad in this respect because of the high correlation of
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accesses to the Account and Store sets.

Even with the corrected retry counts, there is still a great deal of overhead not predicted by
the model. There are a number of unmodeled costs which contribute to this difference, such as
the cost of queueing the transactions that are waiting to be restarted. Fortunately, as we have
seen in Chapter 2 and will discuss again in the next Chapter, TCBW checkpoints are generally
predicted to have the highest overhead costs. The model’s underestimation of these costs does

not affect the relative performance of TCBW checkpoints in most situations.



CHAPTER 7
PERFORMANCE STUDIES

In Chapter 2 we compared the performance of a variety of checkpointing strategies. In this
Chapter we will expand that analysis to include the performance of logging and storage manage-
ment alternatives. We will also consider how these strategies can affect the performance of a

checkpointer.

Most of the analyses in this chapter are based on data from the performance model and use
the same default parameter settings are were used in the checkpointing analysis of Chapter 2.
Others use experimental data from the testbed. The remainder of the Chapter is divided into three
sections. The first section examines logging strategies and the interactions between logging and
checkpointing. The second and third sections cover management of the secondary and primary

database copies.

7.1 Logging Strategies

In Chapter 2, we considered the performance of various checkpointing strategies, assuming
that VALUE logging was used. In this section we will eliminate that assumption, and re-evaluate

the checkpointing strategies in combination with different logging strategies.

Recall that the various checkpointing strategies permit different logging strategies. A log-
ging strategy is permitted by a checkpointer if the log it produces can be combined with the
backup database produced by the checkpointer to create an up-to-date, consistent copy of the
database after a failure. The logging strategies permitted by the three classes of checkpoint stra-

tegies are shown in Table 7.1.

To study the effects of the different logging strategies, we will reconsider the checkpointing
comparisons made in Chapter 2, this time combining a checkpointer with an operation logging

strategy if permitted. A checkpointing strategy will be combined with the most "abstract” (i.e.,
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logging strategy
checkpoint VALUE AOPER TOPER

fuzzy permitted 2
action consistent permitted | permitted
transaction consistent || permitted | permitted | permitted

Table 7.1

rightmost in Table 7.1) logging strategy it permits. In other respects, this comparison is the same

as that that produced the graph of Figure 2.3., meaning

° checkpoints are taken as quickly as possible

® an immediate, shadow update strategy is used

e  transactions are pre- and group-committed

° the backup database is maintained using the PING-PONG strategy.

The results are shown in Figures 7.2 and 7.3. For convenience, the wide, outer bars in each figure
give represent the results of the original experiment (VALUE logging). The inner bars represent

the results of the current experiment.

As Figure 7.2 indicates, the changes in overhead are not large. This indicates that the log-
ging cost is not a dominant factor, at least for our default parameter set. Using TOPER logging
with the transaction-consistent checkpoints saves 200-400 instructions per transaction. The

change to AOPER logging saves even less.

As is indicated in Figure 7.3, changing log strategies affects recovery time as well. In fact,
changing to operation logging tends to reduce both overhead and recovery time, although by
small amounts. The exception is TCCOU, which sees an increase in recovery time with the
switch from value to transaction logging. This is because the log replay time becomes
processor-bound because of the high processor cost of re-running logged transactions. Note that
the log replay time does not become I/O bound when logging switches from value to transaction
logging under TCBW checkpoints. This is because a TCBW checkpointer produces a more up-
to-date database snapshot than TCCOU. As a result, fewer of the transactions in the log need to

be re-run.
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It would be possible to get a clearer picture of the total effect of a change in logging stra-
tegy if the overhead and recovery time changes were combined into a single number. As we
showed in Chapter 2, recovery time can be traded-off for overhead costs (and vice-versa) by
changing the checkpoint interval. To get a single measure of the effect of a change in logging
strategy, we can adjust the checkpoint interval so that the recovery time is the same before and

after the change. The overhead cost is then a useful single metric.

Figure 7.4 shows the processor overhead of each of the combinations when their recovery
times have been adjusted to match the slowest of the recovery times (about 2.5 minutes, for
TCBW checkpoints with VALUE logging) in Figure 7.3. As in Figure 7.2, the outer bars show
the overhead of the checkpointer when combined with value logging (with suitably modified

checkpoint interval).

Though this test shows a substantial reduction in overhead achieved by switching to from
VALUE to TOPER logging under TCBW checkpoints in particular, the relative ordering of the
checkpointing strategies is not greatly affected. Overhead costs are lower because switching to
operation logging reduces recovery time (except under TCCOU checkpoints). When we equalize
recovery time, the operation logging scenarios have more recovery time to "trade-off" for
decreased overhead. In other words, (in most cases) operation logging can achieve the same

recovery time as value logging, but with less frequent checkpoints.

Less frequent checkpoints benefit TCBW checkpoints more so than the other strategies
because restart costs are reduced. (When checkpoints are less frequent, transactions are less
likely to violate the black/white restriction of the TCBW checkpointer.) As a result, the overhead
reduction shown for TCBW in Figure 7.4 is more dramatic than for the other checkpointing stra-
tegies.

When TCCOU checkpointing is used, recovery is faster with value log (because of the high
cost of re-running transactions from a TOPER log). As as result, the trade-off works in the other
direction under TCCOU checkpointing. To keep recovery time constant, checkpoints must be
more frequent when operation logging is used than when logging by value. Thus, as shown in

Figure 7.4, the per-transaction overhead is greater when TOPER logging is used.
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Figure 7.5 shows in more detail the performance of the three logging strategies in combina-
tion with TCCOU checkpoints. The curves are produced by varying the checkpoint interval. The
disadvantage of TOPER logging disappears if long recovery times (long intercheckpoint inter-
vals) are acceptable. In fact, as the asynchronous component of the overhead becomes less and
less significant (because slower checkpoints have their cost spread over more transactions),
TOPER logging results in less overhead than the other strategies because of its lower synchro-

nous costs.

We have seen that the same logging strategy can have qualitatively different effects on per-
formance when combined with different checkpointing strategies. This has hinged on the fact
that the replay time for TOPER logs can be CPU-bound given our model parameters. Next we
will reconsider our comparison under the assumption that the processor is sufficiently fast to keep

the replay time I/O-bound, even for TOPER logs.

Figure 7.6 is analogous to Figure 7.3, showing the recovery time for a variety of check-
pointing and logging strategies. However, the recovery times in Figure 7.6 are 1/O times; we are
assuming that the processor is fast enough to keep up with the I/O rate. (The transaction over-
head costs for these scenarios are the same as those in Figure 7.2.) As in Figure 7.3, the outer
bars represent the VALUE logging case, and the inner bars AOPER or TOPER logging as
appropriate.

Figure 7.6 shows that switching to TOPER logging now reduces the recovery time of the
TCCOU (and TCBW) strategies. A TOPER log means significantly less log per transaction than
a VALUE log. Next we equalize all of the recovery times of Figure 7.6 by adjusting the check-
point interval and compare the overhead costs of the different strategies. Figure 7.7 shows the

overhead of each of the strategies, with a constant I/O recovery time of just over 2.5 minutes.

Figure 7.7 shows that with I/O bounded recovery and the adjusted checkpoint interval
TCCOU checkpoints with TOPER logging are no more expensive then FUZZY checkpoints.
Even the overhead of TCBW checkpoints become reasonable.

Achieving I/O bounded recovery times in a high-performance system using TOPER logging

requires fast processor. Table 7.2 shows the minimum processor speed required to keep up with

the 1/O rate during the replay of the log. The numbers in the table were derived assuming
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PINGPONG backups and the TCCOU checkpoint strategy.

logging strategy | processor speed (MIPS)
VALUE 1.68
AOPER 10.51
TOPER 65.54
Table 7.2

7.2 Spooling Checkpoints

So far we have examined a variety of checkpointing and logging strategies. For each
checkpointing strategy (except FUZZY) we have considered a spooling (COPY) and non-
spooling (FLUSH) option. Recall that a spooling checkpointer copies segments to a primary
memory buffer and releases its segment lock before writing the segment (copy) to the backup
disks. The goal of this strategy is to reduce the amount of time the segment lock is held, thereby
reducing the lock contention between the checkpointer and transactions. The model has shown
(see Figures 7.2 and 7.7) that the cost of spooling checkpoints can be significantly greater than
that of their non-spooling counterparts. However, since lock contention is not modeled, the

benefits of spooling have yet to be determined.

The testbed monitors lock contention, and we have used this facility to study the advantages
of spooling. Table 7.3 shows the lock contention rate for the spooling and non-spooling versions
of several combinations of logging and checkpointing strategies. Lock contention here means the
percentage of lock requests that could not be granted immediately. The data was generated over

thirty or fifteen minute runs using the same transaction load used in Chapter 6.

The table shows that spooling checkpointers cause almost no lock contention. The lack of
lock conflicts is not surprising given the way the checkpoint server process is scheduled by Mach.
As long as the CS can find a segment to flush before the end of its normal time quantum (i.e.,
always), it relinquishes the processor as a result of I/O activity. A spooling checkpointer holds no
locks during 1/0O, so the checkpoint server will almost never hold a lock when it relinquishes the

Pprocessor.
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lock requests
log checkpoint spooling non-spooling
strategy strategy total conflicting | contention total conflicting | contention
AOPER ACBW 459466 2 0.0004 979309 222 0.0227
VALUE ACBW 459112 3 0.0007 916527 261 0.0285
AOPER ACCOU 457316 10 0.0022 896807 211 0.0235
TOPER TCCOU 488704 3 0.0010 957610 264 0.0276
TOPER TCBW 596845 8 0.0013 1344143 543 0.0402
VALUE SC 925722 11 0.0012 950993 266 0.0280

Table 7.3

The table also shows that non-spooling checkpointers exhibit only a tiny amount of conten-
tion. Well over 99% of lock requests can be satisfied immediately. Thus it appears that the extra
cost of spooling checkpointers is not justified, at least in the testbed environment. We would
expect to see higher lock contention with non-spooling checkpointers if transactions were more
data intensive or longer-lasting, or in a multiprocessor environment in which the normal mode of
transaction execution was not nearly serial. In such situations spooling checkpointers could

prove more beneficial.

7.3 Response Times

Before we move on to discuss secondary database management (SDBM) strategies, we will
first take a look at checkpointing and logging strategies from a different perspective. Thus far we
have considered transaction overhead (a throughput metric) and recovery costs, and have not
looked at transaction response times. Transaction response times are not included in the perfor-

mance model. However, we can obtain data on response times from the testbed.

Table 7.4 shows the mean transaction response time for different combinations of check-
pointing and logging strategies. The data were generated using the same transaction load as was
used in Chapter 6 and to produce Table 7.3. To measure response time, message servers in the
testbed timestamp each transaction request message when it is placed on the transaction request
queue. Another stamp is generated when the response is taken from the message server’s
response queue, and the response time taken to be the difference between the stamps. Thus,

response time includes the entire time spent in the system, including queueing delays.
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transaction response time (seconds)
log checkpoint 90% confidence interval

strategy strategy mean min max
VALUE FUZZY 340 3.40 341
VALUE SC 3.48 3.48 3.48
AOPER ACBW 3.86 3.85 3.86
AOPER ACCOU 4.09 4.09 4.10
TOPER TCBW 33.85 33.46 34.24
TOPER TCCOU 393 393 3.93

Table 7.4

Except for TCBW checkpointers, most of the strategies exhibit comparable response times.
Under TCBW checkpoints, many transactions suffer from repeated abort/delay/restart cycles
from violation of the black/white restriction. When using TCBW, transactions with no
black/white violations have response times comparable to transactions under other strategies.

However, those with violations can take an extremely long time.

It is conceivable that the response time of transactions under the TCBW strategy might be
improved by varying the retry interval. Recall that the retry interval is delay between the abor-
tion of a transaction for black/white violations and it’s restart. The retry interval is measured in
terms of the checkpointer’s progress as it sweeps though the database. In the testbed, the check-
point server signals the transaction server to restart aborted transactions each time it examines
another R segments. The restart interval, R, is a controllable checkpoint parameter. Figures 7.8
and 7.9 show the variation of the mean transaction response time and throughput under a TCBW

checkpointer and TOPER logging, as a function of the retry interval R.

The response time can be improved somewhat by reducing the retry interval (R = 1000 seg-
ments was used to produce the data presented in Table 7.4) at some loss of throughput (i.e.,
increase in transaction overhead). However, even with very frequent retry attempts, the response
time is considerably worse than that of the other checkpointing strategies. Thus, even in situa-
tions where TCBW may have been a feasible checkpointing strategy when throughput and
recovery time alone are considered (e.g., combined with TOPER logging and sufficient processor
speed to make the log replay I/O-bound), TCBW must be ruled out on the basis of poor response

time.



Chapter 7 108

40 —
35—
Mean
Response
P 30 —
Time
(seconds)
25 —
20 —

| | I | | I I |
250 500 750 1000 1250 1500 1750 2000

Retry Interval (segments)

Figure 7.8 - Response Time Variation with Retry Interval



Chapter 7 109

55 —
50 — \
>—..____________
B
45 —
Transaction
Throughput
(Transactions
per second)
40 —
35 —
30 —
| I | | I | | I
250 500 750 1000 1250 1500 1750 2000
Retry Interval (segments)

Figure 7.9 - Throughput Variation with Retry Interval



Chapter 7 110

7.4 Backup Strategies

In the first section of this chapter and in Chapter 2 we have assumed that a PINGPONG
strategy was used. In this section we will eliminate that assumption and consider the effect of the

SDBM strategy on performance.

When checkpoints are taken as quickly as possible, i.e., a checkpointer is active constantly,
the backup strategy has little effect on transaction overhead. Intuitively, this is because when the
checkpointer is active, segments are always being flushed to the backup disks at the same rate.
The rate is determined by the bandwidth to the backup disks, and does not depend on the check-

point or SDBM strategy that is being used.

However, SDBM does affect recovery time by affecting the active duration of a checkpoint.
If the total checkpoint interval is held constant while the SDBM strategy is varied, transaction
overhead is affected because of the changing length of the active interval. For example, check-
point sweeps initiated once every three minutes may take only one minute to complete under one

SDBM strategy, but two minutes to complete under another.

Figure 7.10 shows the transaction overhead for the five SDBM strategies assuming a con-
stant recovery time of just under three minutes. (This is the fastest recovery time possible under
the FM strategy given our parameters.) Segment-consistent checkpoints and VALUE logging are
combined with each of the SDBM strategies. The performance differences are small relative to
the differences produced by changing checkpoint or log policies. However, the I/O cost of 1500
instructions in the default parameter set is lean, and the effect of SDBM changes will be more

pronounced when I/O is more expensive.

The FM strategy costs more because each segment is flushed twice, resulting in longer-
lasting checkpoints and more overhead. Single-flushing strategies, like SM, can recover more
quickly than FM since their faster checkpoints mean a shorter log to replay at recovery time. If
SM is to have the same recovery time as FM, it can afford to initiate checkpoints less frequently

and thus reduce overhead.

TWIST also requires longer checkpoints, but not because segments are flushed twice.
TWIST suffers in restoring the primary database copy after a failure, which takes it longer than

any of the other SDBMs. (Recall that under TWIST, two copies of each segment must be read in
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from the backup.) To equalize recovery times, TWIST must reduce its log replay time by check-
pointing more frequently.

One interesting note in Figure 7.10 is that PINGPONG and SM backups perform about as
well as SHD. This is an indication that the transaction load is producing a saturated database.
We say that that database is saturated when the load is sufficient to dirty almost all of the seg-

ments during the checkpoint interval, i.e., a checkpoint normally must flush all N,,, segments.

Under a SHD strategy dirty pages are flushed once each (along with occasional updates to
the indirection table). Therefore we expect the length of a checkpoint to a SHD backup to
decrease correspondingly as the database becomes less saturated. A PINGPONG checkpoint
should get shorter as well, but not as quickly as for SHD. This is because PINGPONG uses two
dirty bits, one for each secondary copy, and must sometimes flush twice a segment that would
have been considered clean the second time by a SHD checkpointer. In a saturated database,
these segments are always dirtied by a subsequent transaction before the second flush can take
place, thus PINGPONG no longer does extra work in flushing them. On the other hand, check-
pointing to a SM backup should get no faster with a less saturated database since SM backups

require all segments to be written, dirty or not.

We would expect the database to become less saturated in a less heavily loaded system.
Figure 7.11 shows the active checkpoint interval (checkpoint duration) under each of the SDBM
strategies as a function of transaction load. In the figure, saturation is indicated by flattening of
the active interval curve as the load increases. As expected, the active interval decreases more
quickly under SHD than PINGPONG as the load drops, with the curves crossing at about 300

transactions/second. Also as expected, the active interval under SM is load-independent.

Figure 7.12 shows the overhead under each of the SDBM strategies as a function of the
transaction load, with the checkpoint interval fixed at three minutes. As expected, the differences

among the SDBM strategies are more pronounced when the database is not saturated.

Another factor that can have an effect on SDBM performance is the segment size. Figure
7.13 shows the recovery time under each of the SDBM strategies as the segment size is varied.
The curves are governed by two effects. First, in a saturated database, larger segments mean

more efficient I/O and thus faster checkpoints. At recovery time this translates into less log to be
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replayed, and thus shorter recovery times. All of the the SDBM strategies show this effect,
although the FM strategy has longer checkpoints than the others (see Figure 7.11), accounting for

its greater recovery times.

The second factor is the speed with which the primary database copy can be restored after a
failure. Because of more efficient I/O with larger segments, all strategies can restore the primary
more quickly. TWIST, which restores two copies of each segment (as one double-sized block)
behaves differently from the other strategies. When segments are small, a double-sized segment
can be read from the backup disks almost as quickly as a single segment because of the fixed
overhead associated with each I/O operation. For small segment sizes TWIST performs nearly as
well as PINGPONG. For larger segment sizes, TWIST s penalty is fully felt and its performance

degrades.

7.5 Update Strategies

In this section we consider the effects of primary memory management on the recovery
manager’s performance. Although the cost of primary memory management is not directly
included in the recovery overhead, the memory management strategy does affect it. For example,
the primary memory management strategy determines whether or not UNDO logging is neces-
sary. We will consider all four combinations of update location strategies (INPLACE and SHA-

DOWS) and update delay strategies IMMEDIATE and DELAY).

Figure 7.14 shows the recovery time/transaction overhead tradeoff for each of the four com-

binations. The curves were obtained by varying the checkpoint interval.

The difference between SHADOW and INPLACE strategies is not large unless recovery
time is very short. The slightly higher cost of the INPLACE strategy arises from logging UNDO
information in the log. This difference is probably even less significant than it appears since we
do not consider the cost of the update strategies themselves (e.g., the cost of allocating shadow
pages in primary memory) in the model. We can expect that SHADOW updates would be more
costly to implement than INPLACE updates, thus negating any reduction they permit in recovery

overhead.
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One distinction SHADOW and INPLACE updates is in the way they handle aborted tran-
sactions. Aborting a transaction when INPLACE updates are used is likely to be costly because
old values of modified records must be restored from the log. We would expect to see a greater
difference between the SHADOW and INPLACE strategies in an environment with many aborted
transactions. TCBW checkpointers produce such an environment. As we have already seen,
TCBW checkpointers cause frequent transaction restarts, particularly when checkpointers occur

frequently.

Figure 7.15 shows the increase in the transaction overhead when INPLACE rather than
SHADOW updates are used under segment-consistent and TCBW checkpointers. As expected,
the difference is greater under TCBW, and it increases as the recovery time is reduces, since to do
so the checkpointer must be run more frequently. However, the increase is not large and would

probably not be significant unless transactions updated a large number of records.

Figure 7.14 showed even less of a difference between the IMMEDIATE and DELAY
update time strategies. As with the SHADOW/INPLACE comparison, this difference can be
expected to get somewhat larger when there are many aborted transactions, since the DELAY
strategy results in almost no log data for an aborted transaction. However, any advantage this
accrues is likely to be offset by the additional (unmodeled) expense of implementing the DELAY
strategy. DELAYed updates are more costly to implement because modifications must be buf-

fered until the updating transaction commits.

One situation where the DELAY strategy does prove advantageous is when fuzzy check-
points are combined with INPLACE updates. In that case, UNDO log information must be sent
to the log disks since transaction locks do not prevent the checkpointer from seeing the results of
partially completed transactions. Since the DELAY strategy avoids the creation of UNDO log
information, this cost is avoided. Figure 7.16 shows this situation. It is similar to Figure 7.14,

except that fuzzy rather than segment-consistent checkpoints are being taken.
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CHAPTER 8
CONCLUSIONS AND FUTURE WORK

We have presented a collection of strategies for recovery management in memory-resident
databases. The collection includes strategies for maintaining a secondary copy of the database,
for logging, and for updating the primary database copy as requested by running transactions.
We have described an analytic performance model and the implementation of a recovery testbed
used to compare the performance of various combinations of strategies. The performance metrics
included the impact of recovery strategies during normal transaction processing as well as the

speed of recovery after a failure.

While all of the strategies affect performance in one way or another, the most critical deci-
sion is the choice of checkpointing strategy. Checkpointing costs are normally the biggest factor
in the impact of recovery management on transaction processing speed. Under conditions that
could be expected in a high-performance memory-resident system, FUZZY checkpointing stra-
tegies consistently prove to be the best choice. This is true despite the fact that other strategies,
which produce more consistent backups, and can take advantage of less-costly operational log-
ging. FUZZY checkpoints have the additional édvantage that they can be used with fast mono-

plex backup strategies for even better performance.

The performance advantages of FUZZY checkpointing hold up under a number of varia-
tions in our high-performance scenario. One scenario in which its advantages disappear is when
log bandwidth is very limited and a great deal of processor power is available for recovery (i.e.,
the processor is under-utilized during normal transaction processing). That scenario favors
checkpointing strategies which can be combined with operation logging, since operation logging

requires relatively little I/O bandwidth but more processor time than value logging.

Among the backup strategies, PINGPONG, shadow, and sliding monoplex performed well.
Both the fixed monoplex and TWIST strategies suffer from longer recovery times. PINGPONG
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and sliding monoplex perform well in large part because the database is saturated by the transac-
tion update load. The performance of both of these strategies can be expected to degrade when
the database is unsaturated. The database may fail to saturate because of a lighter load (fewer
transactions or fewer updates per transaction), a larger database or a database with large cold
areas, or when segment sizes could be made smaller without impacting the efficiency of I/O

operations (e.g., if the backup medium was stable RAM rather than disk).

Normally, the update strategies (for modifications to the primary database copy) have the
least effect on performance of all of the strategies studied. Furthermore, those strategies which
result in lower overhead must be used with more expensive storage management strategies. Thus
their benefits will be at least partially negated. However, when combined with certain recovery
and backup strategies, the updates strategies can prove to be more critical. This is particularly
true when FUZZY checkpointing is used with a monoplex backup. Using a delayed update stra-

tegy in that case avoids the need for a large increase in the cost of logging.

Despite the variety of strategies we have considered, there remain a number of issues to be
explored. Though we (and others) have begun exploring some of them, others have yet to be stu-

died. Some of these issues are discussed briefly in the following sections.

8.1 Hardware

This thesis has presented and compared a variety of algorithmic recovery alternatives. We
did not consider the feasibility or benefits of special purpose or dedicated recovery hardware. For
example, several architectures for MMDB transaction processing have been proposed which rely
on a large amount of non-volatile RAM [Eich87a, Lehm87a]. These proposals also include dedi-
cated recovery processors. Other possibilities have been suggested as well. For example, HALO,
a special hardware device which creates a word-level value log transparent to the database pro-

cessor is proposed in [Sale86a]

To determine the feasibility of these ideas, it is necessary to know what performance advan-
tages they can provide over similar systems without special hardware. The comparisons
presented here play a useful roll in that decision, since they can be used to establish the best per-

formance of the base case. Another interesting issue is whether the strategies presented here can
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be adapted to work with special hardware, and if so how their relative performance will differ.

8.2 Multiprocessors

The recovery performance model presented in Chapter 4 does not distinguish between uni-
and multiprocessor transaction processors. Instead, the transaction processor is treated as a gen-
eric resource capable of supplying processor cycles. In reality, differences can be expected
between single and multiple processor implementations. The question of how best to use a

multi-processor MMDB is an interesting one that remains to be studied.

One alternative is to functionally segregate the processors, e.g. the checkpointing, logging,
and transaction execution tasks could be assigned to different processors. This approach has been
taken in a ftransaction processing system built recently at Princeton on Firefly
multiprocessors [Li88a]. Alternatively, processors could be treated uniformly, with all proces-
sors performing (potentially) all functions. The latter approach has the advantage of even distri-
bution of the workload, even if the different functions differ greatly in their demand for processor
time. One the other hand, functional segregation can reduce the task switching overhead that is

present processors perform multiple duties.

8.3 Concurrency Control

The same concurrency control algorithms used in a DTPS can be used in a MTPS. How-
ever, the best strategy may not be the same one in both cases. In a MTPS, most transactions have
much shorter lifetimes than they would in a disk-based system because I/O delays are no longer
in their critical path. Furthermore, the degree of multiprogramming, i.e., the number of active
transactions, in a MTPS can be kept much lower than in a disk-based system without decreasing
the utilization of the system’s processing power. One comparison of concurrency control in disk

and main-memory databases has appeared in [Lehm86a].

Another interesting concurrency issue for MTPS is long-lived transactions, i.e., transactions
whose lifespans are much greater than most others running in the system. Long-lived transac-
tions are a problem in disk-based as well as main-memory, databases. Arguably, however, the

problem will be more widespread in the case of main-memory. In a MTPS, most transactions
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will be very short, much shorter than in a disk-based system. As a result, unusual transactions,
e.g., those which perform special activities such as user interaction, disk access (see Section 8.3
below), or device control during their lifetimes, will be relatively longer-lived in a MTPS than in
a disk-based system. Handling such long-lived transactions gracefully has been a topic of

interest for some time [Gray81a].

We have considered two approaches for coping with long-lived transactions: sagas and
alrruistic locking protocols. A saga [Garc87a] is a particular class of long transaction that
appears common in many transaction processing applications. By replacing the normal atomicity
guarantee of a transaction with a weaker (but nonetheless useful) semantic atomicity guarantee,

sagas can be scheduled much more freely than other types of long transactions.

The second approach retains all of the guarantees normally associated with transactions.
Instead, additional concurrency is gained by employing a locking protocol than can take advan-
tage of access pattern information provided by transactions. By using knowledge of what data a
transaction will no longer access, and what data it may access in the future, these altruistic lock-
ing protocols [Sale87a] can permit greater concurrency than other locking protocols without
sacrificing the serializability of the transaction schedule. The altruistic protocols are general pur-
pose, i.e., they can be used to schedule any set of transactions, not just those with long-lived tran-
sactions. However, the increase in concurrency that can be achieved with the protocol is likely to

be greatest when there is a mix of long and short transactions.

8.4 The "Almost" MTPS

It is likely that there will always be some databases that cannot feasibly be kept entirely
memory-resident. However, by keeping the most frequently accessed portions of the database in
memory we may be able to achieve most of the performance possible with a MMDB without
eliminating access to the remainder of the data. Some interesting aspects of "almost" memory-
resident databases are discussed in [Garc87b]. The transaction processing system for such a
database behaves like a DTPS in that it caches the frequently accessed portions of the database in
memory for fast access. However, because of the large amount of main memory, the recovery

manager behaves like a MTPS, using an asynchronous checkpointer to update the secondary
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database copy.
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