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Abstract

The expected value of B, = B}, — (n — 1), where B, is the number of right-to-left maxima
encountered by the straight selection sort, is well known to be (n + 1)H, — 2n, but the variance
of B, has remained unanalyzed. In this paper, we derive an exact formula for the variance of By,
and show that it is asymptotically equal to @n®2(1 + o(1)), where a > 0 is an explicitly defined

constant.
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1 Introduction

The study of the average-case behavior of sorting algorithms is a major topic in the Mathematical
Analysis of Algorithms, an area first pioneered by Knuth [K1-3]. (See Greene and Knuth [GK],
Flajolet and Sedgewick [FS], and Flajolet and Vitter [FV] for more recent surveys of this area.)
Although there have been a multitude of interesting results regarding algorithms for sorting [K3]
(also see e.g. [S] [Y]), many questions concerning sorting algorithms remain open. In this paper,
we will answer one such question concerning a classical sorting algorithm, known as the straight

selection sort.

Given an array A[l : n] of distinct integers, a sorting algorithm will permute the contents
of A such that the integers are in ascending order in the array. In straight selection sort (see
Knuth [K3, Section 5.2.3]), this is accomplished in n — 1 phases. Before the start of the j-
th phase, 1 < j < n, the j — 1 largest elements in A will be in their final positions, namely,
A[n], A[n-1], ..., A[n—j+2]; during phase j, the largest element in the subarray A[l : n—j+1]
will be identified and exchanged with the element currently in A[n — j + 1]. The array A will be
sorted after n — 1 phases.

Suppose that the array A contains initially a random permutation of n distinct integers.
One quantity of interest in the analysis of the performance is B,, the number of times the
register holding the temporary maxima needs to be updated (see [K3]). One can write B, =
21<j<n(Cn,j — 1), where Cyp ; is the number of right-to-left maxima? in A[l:n — j + 1] at the
start of phase j. The expected value of B, is well known to be (n + 1)H, — 2n, where H, is the
Harmonic number 3¢ <,(1/7), but the variance of By, has not been analyzed (see Knuth [K3,
exercise 5.2.3 - 7]). In this paper we will give an exact formula for Var(B,), and an asymptotic

expression for large n.

An essential step in the derivation is to relate Var(B,) to a geometric stochastic process, which
is simpler to analyze. Let N > 0 be any integer. Let § = {(z;,%) | 1 £ i < N}, where z; are N
distinct real numbers, and y; are N distinct real numbers. We call such an S a standard N-set, or
simply, a standard set. Write v; for (z;,y:). For any integer m, where 1 < m < N, the m-division
of S, (D1(8S), D2(S), D3(85),D4(S)) is a partition of S into four disjoint subsets D;(S) defined as
follows: Dy4(S) = A1(S) N A2(S), Da(S) = A1(S) — Dy(S), D3(S) = Aa(S) — Dy(S), D1(S5) =
S — Dy(S) — D3(S) — Dy(S), where A;(S) is the subset of v; with the m largest z;, and A3(S) is
the subset of #; with the m largest y;. (See Figure 1.) We also define D5(S) = 0 if D4(S) # 0,
and otherwise let Ds(S) = Dy(S) N ((c,1) x (d,1)), where ¢ = max{z; | v; € D3(5)} and
d = max{y; | v; € D2(S)}. (See Figure 2.) For convenience, we agree that the emptyset § is a
standard N-set with N =0, and D;(#) =0 for 1 <i<5.

2A right-to-left mazimum in A[1 : m] is a location 1 < 1 < m such that A[i] > A[k] for all i < k < m. For
example, the array A[1: 7] = (2,5,9,3,7,1,4) has right-to-left maxima at 1 = 7,5, and 3.
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A point (z,y) dominates a point (z',y') if (z,y) # (z/,¢') and z > 2/, y > ¢/. Let T be a
standard set. A point (z,y) € T is a mazimal point of T if no point in T dominates (z,y). Let
MAX(T) denote the set of all maximal points of T. Let MAX(T)=0if T = 0.

Take a random set S of N points v; = (z;,¥:), when each z;, y; is uniformly and independently
chosen from the interval [0,1]. Call S thus generated a uniform random N-set. It is clear that,
with probability 1, a uniform random N-set is a standard N-set. Let 1 < m < N,and 1 <: < 5.
Let (D1(S), D2(S), D3(S), D4(S)) be the m-division of §, and Ds(S5) be defined as before.
Denote by 7N m i the random variable corresponding to |M AX(D;(S5))|. The next two theorems
give an explicit formula for Var(B,,). Let Hy @ denote Ticien(l/ 32).

Theorem 1 For all n > 1,

Var(B,)= Y. (Ev-HEM+2 Y ¥ (E(rN,m,er,m,l)-—E(rN,m,s)HN_m).
1<N<n 1<N<n 1<m<N-2

Definition 1 Let N,m,k,£ be integers suchthat 1 < m < N -2, k,£>0. Let 0 < A\, X' < 1.

e = (/).

m2 (N - 2m) (1 _ A).,,.,_1(1 - )\’)’“‘1().)\’)"(1 _ A/\I)N—2m—k .

hN,m(A,A',k) k

and,for0< 2 < 1,

' v_1fN=-2m-k ko1 (AN (1= A)z\ ¢ N(1 = A)z\N=-2m—k-£
gNm k(A N, 2) = k( ¢ )(1 z) (W) (1 — W) 5

Theorem 2 For all integers m, N with1 <m < N -2,

1 1
E(rNms) = pNm 3 Hi j j N, N, k) dAdN
0 0

k>1
and
E(TNm5T™Nm31) = PNm 2(32 + Hj —H(z) j / hNnm(A, N, k) dAdN
k>1
+ 2pNm 3 ) HiHy f j / AN X k) ON ok £(N, X', 2)dA AN’ dz
k>1 £21

The next theorem gives the asymptotic behavior of Var(B,). Let a be the constant of

4 2 m(m-1y 4 KRG S
3 T™— 3\/1?mz>:l @m 1 1)! 3\/- Z: m(2m+ Yk It is easy to check that a > 0. Let

k = 1/200.
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Theorem 3 For large n, Var(B,) = an®? 4 O(n3/2"‘log n).

The rest of the paper is divided into seven sections and three appendices. In Section 2 we
describe a representation of the straight selection sort in terms of a two-dimensional geometric
process. In Sections 3 and 4, we establish Theorem 1 and Theorem 2, respectively. In Section
5, we list a number of analytic formulas, whose proofs will be relegated to the three appendices.
With the assistance of these formulas, the proof of Theorem 3 is presented in Sections 6 - 8.

3/2 as an approximation of Var(B,)? We conjecture that the error term given

How good is an
in Theorem 3 is far too high. We leave as an interesting open problem a better determination of

the second-order term in the asymptotic expansion of Var(B,).



2 A Geometric Representation

In this section we consider a representation of the straight selection sort as a geometric process,
which is the underlying basis for our approach. We will also prove several elementary properties
of two-dimensional point sets that will be of use in Sections 3 and 4.

For any standard N-set T with N > 1, we define the notion of derived set d(T). Let
(zi,%:),(z;,v;) € T be, respectively, the points in T with the largest z-coordinate and the point
with the largest y-coordinate. That is, z; = max{z | (z,2') € T} and y; = max{2’ | (z,2') € T}.
Let d(T) = (T — {(2is %) (23,95)}) U {(23, %)} if (2,3) # (2,87), and d(T) = T — {(z;,4:)} if
(zi, %) = (zj,;). Clearly, d(T) is a standard (N — 1)-set. Let us further define d®(T) = T, and
d")(T) = d(d™)(T))for 1 < m < |T| - 1.

For N > 1, let Tx be the set of all permutations of (1,2,...,N). For any p = (p(1),0(2),
...,p(N)) € Zn, let V(p) denote the standard N-set {(i,p(i)) |1 < i< N}. Let R, be the set of
right-to-left mazrima in p, ie. R, = {j |1<j7<N,p(j)>p(k)forall j < k< N}. We further
agree that, for N = 0, Ex = {A4}, where A4 is a special symbol; define V(Ay) = 0.

Lemma 1 MAX(V(p)) = {(4,p(5)) | j € R,}-

Proof. Let p € Eny. If N = 0, the lemma is obviously true. We can thus assume N > 0. If
(7,p(7)) € MAX(V(p)), then p(j) > p(k) for all j < k. Thus, j € R,. In the other direction,
if j € R,, then there cannot exist (k,p(k)) with k& > j and p(k) > p(j). This implies (j,p(j)) €
MAX(V(p)). O

Let N > m > 0. For any p € In, let p™) denote the subarray A[l : N — m] at the start
of the (m + 1)-st phase of the straight selection sort, assuming that A[l1 : N] is initially set by
A[i] « p(i) for 1 < i < N. We will also regard p(™) as an element in En_pm41 in the obvious way.

Lemma 2 V(p(™) = d™)(V(p)).

Proof. We prove it by induction on m > 0. The induction base m = 0 is clearly true. Inductively,
let N > m > 0, and assume that we have already proved V(p{™-1)) = d(™-1)(V(p)). Let j; be
such that p(™=1(jo) = N — m + 1. There are two cases. f jo # N — m + 1, then p™(j) =
p™=1)(4) for j € {1,2,..., N—m} - {jo} and p(™)(jo) = p™~1D(N — m +1); thus V(p(™)) will be
(V(p™) = {(¥ = m+1, =N = m+1)), (do.p™ (o)) }) U{(Go p" DN ~m+1))} =
d(V(p'™=1), which by the induction hypothesis, equals d(d™~1)(V(p))) = d™(V(p)). In the
other case, jo = N —m+1, and p™)(j) = p™=1)(4) for all j € {1,2,...,N —m}; by the induction
hypothesis V(p(™=1) = dm=1(V(p)), we have then V(p™)) = V(p(m-D) - {(N-m+ 1, N -
m+1)} = d(V(p("""))) = d(d("'""l)((p))) = d(™)(V(p)). This completes the inductive step. O



Remark. We can thus view the straight selection sort of p € X,, as the transformation of a stan-
dard set V(p) — dD(V(p)) = d®(V(p)) - ... — d™=1D(V(p)), with |MAx(d(m-1)(V(p)))] =1
as the cost Cp, m — 1 for the m-th phase, where 1 < m < n. This connection is the underlying
basis of our approach to the analysis of straight selection sort, as it links the sorting problem to
a geometric process in two dimensions.

Definition 2 Let T be any finite set of points in the plane. The dual of T is defined as dual(T') =
{(v,2) | (z,9) €T}

Lemma 3 If p € Ty, then V(p~1) = dual (V(p)).

Proof. If N = 0, then V(p~!) = @ = dual(V(p)). If N > 0, then dual(V(p)) = {(p(i),i) |1<
i<N}={(G.r (i) I1<i<N}=V(p"). O
Lemma 4 For any two finite sets T, T’ of points in the plane, we have

dual(T UT') = dual(T) U dual(T") ,

and
dual(T N T') = dual(T) N dual(T’) .

Proof. Immediate from the definitions. O

Lemma 5 For any standard set T', we have

MAX(dual(T)) = dualMAX(T)) ,
Dy(dual(T)) = dual(Ds(T)) |
D3(dual(T)) dual(Dy(T)) ,
D;(dval(T)) = dual(Di(T)) for i€ {1,4,5}.

Proof. Immediate from the definitions. O
Lemma 6 Let N > m > 0. For any standard N-set T', we have d(™)(dual(T)) = dual(d™)(T)).

Proof. A straightforward proof by induction on m. O



3 Proof of Theorem 1

3.1 Reduction

By definition, By = 3°1<j<cn(Cn,j — 1), and thus,

Var(B.) = E(B2) - (E(Bx))

(2, o) (5, 2e)

1<j<n 1<j<n
1<j<n 1<j<n j<t<n
- Y (BCr))?-2 Y. X E(Cnj)E(Crp)
1<j<n 1<j<n j<é<n
= ¥ Var(Cu)+2 T T {E(CniCup) - E(Cri) E(Cad)} - (1)
1<j<n 1<j<n j<i<n

It is well known (see [K3, Section 5.2.3]) that, if we start with a random array A, then at the
start of phase j, the array A[1 : n — j + 1] is random, in the sense that all (n — j + 1)! relative
orderings of the n — j + 1 integers in it are equally likely. This implies (see [K2, Section 1.2.10
Eq. (16)]) that, for 1 < j < n,

E(Cn;j) = Hn-ji1 » (2)
and
Var(Cnys) = Huojr — S, (3)

It also implies that, forall 1 < j < f< n,

E(Cn;Cnt) = E(Cp-j411 Crmji1,e-j41) » (4)
E(Cr;j) = E(Cn-j+13) » (5)
and

E(Cny) = E(Cazt41,) - (6)

From (1) - (6), we obtain, for n > 2,

Var(B,) = Y. (Hn-HY)
1<N<n

+2 Y ¥ {BCNiCNmw)-ECN)ECrmi)} - (1)

1<N<n 1<m<N-2



We will prove that,forall 1 <m < N -2,

E(CNiCNm+1) — E(Cnj) E(CNm+1)
= E(rNm5TNm1) = E(tNms) E(CNm+1) - (8)

Clearly, Theorem 1 follows from (7), (8), and (2). The rest of this section is devoted to a proof
of Equation (8). We will assume m, N to be fixed, with 1 < m < N — 2, for the remainder of
Section 3.

3.2 Notations and Simple Facts

Definition 3 Let p = (p(1),p(2),...,p(N)) € En. We partition {1,2,..., N} into disjoint parts
Ii(p), 1 €1 <4, as follows:

Lp)={ill<i<N-m, p(j)<N-m},
L) ={iIN-m<j<N, p(j)<N-m},
L) ={jll<i<N-m, p(j)>N-m},
L(p)={iIN-m<j<N, p(j)>N-m}.

Let p<*> be the subarray of p restricted to positions in I;(p).

Remark. We shall use the special symbol u4 to stand for the unique sequence of length 0. In
the above definition, if I;(p) = 0, then p<*> = .

Clearly, if £ = |L,(p)|, then 0 < £ < m, |I;(p)| = |Is(p)| = m — £, and |Iy(p)| = N — 2m + £.
Definition 4 For 0 < £ < m,let Exme= {p|p € En, |Li(p)| = £}.
Definition 5 For any p € Ey and 1 <1< 4,let R,; = R, N I;(p).

Example 1 Let N = 9, m = 4, and p = (3,9,5,6,7,8,4,1,2), then p € g4, f1(p) =
{1,3}, L(p) = {7,8,9}, Is(p) = {2,4,5}, and I4(p) = {6}. Also, p<'> = (3,5), p<?> =
(4,1,2), p<3> = (9,6,7), p<*> = (8), and R, = {9,7,6,2}.

Lemma 7 If p € Iy, then D;(V(p)) = {(j,p(j)) |je I,-(p)} for1<i<4.
Proof. Immediate from the definitions. O
Lemma 8 If p € Iy, then, for 1 <1 <4,

Di(V(p))N MAX(V(p)) = {(3, (1)) | € Ry} -
Proof. Immediate from the definitions and Lemmas 1, 7. O

Example 2 In Figure 3 we show the set V(p) where p is as in Example 1. Note that
D3(V(p) -~ ' 2,9),(4,6),(5,7)}, and MAX(V(p)) = {(2,9),(6,8),(7,4),(9,2)}. This agrees
with the statements in Lemmas 1, 7 and 8.



Figure 3: V(p) for p = (3,9,5,6,7,8,4,1,2); N =9, m = 4.



Lemma 9 If p € Iy, then |R,-1 2| = |R, 3| and |R,-1 3| = |R, 2|

Proof. From Lemma 8 and Lemma 3,

|R,-12] = |Da(V(p™'))n MAX(V(p™"))|
& |D2(dua.l(V(p)))n MAX(dual(V(p)))l ; (9)
By Lemma 5,
Dy (dual(V(p))) = dual (Ds(V(p)) (10)
and
MAX (dual(V(p))) = dual(MAX(V(p))) - (11)

It follows from (9), (10), (11), and Lemma 4 that

IRp-12l = |dual(Da(V(p))n MAX(V(p)))|
|Ds(V(p)) N MAX(V(p))| -

Hence, from Lemma 8, we have
|Rp-1,2] = |Rp 3| -

This proves one of the equalities in the lemma. The other equality |R,-: 3| = |R,2| can be
established similarly. O

3.3 First Step

Take a random p, uniformly chosen from Xy, and let R; , 1 < i < 4 denote the random
variable corresponding to |R,;|. In this subsection, we will prove that

E(CniCNm+1) — E(CNp)E(CNm41)
= E(R1CNm+1) = E(R1)E(CNm+1) - (12)

To this end, it is clearly sufficient to prove that, for each ¢ € {2,3,4},
E(R;CNpm+1) = E(R)E(CNm41) (13)

as CNJ = 215:54 RJ

We begin by devising a method of generating a random p, which will enable us to examine
E(R; CNm+1) conveniently in detail.

Definition 6 Let s > 0 be an integer. For any s-tuple of distinct real numbers z =
(z1,22,...,2,), let 7(z) denote the permutation (#;,%2,...,i,) € I, such that z; is the i;-th
smallest element among (21, 22,...,2,).



Remark. We agree that 7(ug) = A4. Recall that £, = {4} for s = 0 in our convention.

Definition 7 Let s,t > 0 be integers, not both zero. Denote by I',; the family of all subsets
W C {1,2,...,8 + t} with |W| = s. Let 2 = (21,22,...,2,) and y = (¥1,¥2,..-,4:) be tuples
of real numbers, where z,,22,...,%,, ¥1,¥2,...,% are all distinct. Define 7(z,y) as the subset
W € T, such that, for each i € W, the ¢-th smallest element among z;,22,...,%,, ¥1,¥2,...,¥:
TRTR T . |

Informally, 7(z) specifies the relative ordering among the componenets of z, and 7(z,y)
specifies the the merge pattern between z and y. For example, if z = (2.8, 4.3, 1.1, 25),
y = (16, 1.4, 5.2), then 7(z) = (2, 3, 1,4) and 7(z,y) = {1, 3, 4, 7}.

Definition 8 Let £ be any integer satisfying 0 < £ < m. Let

A.N.m,t L FN—2m+l,m—l X rm-l,l X FN-2m+£,m—l X Pm—l,t
X EN-2m4t X Zmt X Emg X Z¢ .

Lemma 10 For each 6 € (13,624, M2, T54,01,02,03,03) € Ay, there exists a unique p €
£ N,m e such that the following conditions are satisfied: 7(I1(p),a(p)) = &3, T(L2(p), Ls(p)) = &aa,
7(p<1>, p<%>) = ma, 7(p<*>, p<*>) = n34, and T(p<*>) = g; for 1 < i < 4.

Proof. Let J; = &3, Jo={N-m+j|j€éu}, s={1,2,..., N=-m}=-J1, Jy={N-m+j|
1<j<m}-Jy, Ky =m2, K2={1,2,...,.N-m}- Ky, Ks={N-m+j|j€ nau}, and
Ky={N-m+j|1<j<m}- Ks. Clearly, Jy,J3,J3,J4 form a partition of {1,2,...,N}; so
do Ky, Kz, K3, Ky.

For each 1 < i < 4 with J; # 0, let ¢; : J; — K; be the unique 1 — 1 mapping such that, if

Ji= {jl':j?" .e vji} with h<jp<..< jh then T((‘Pi(jl)s Qal'(j'a‘)» seey (Ps(.]t))) = 0;. Let pE N
be defined by p(j) = wi(j) if j € J;i. It is straightforward to verify that p € En ¢ and all the
specifications for p stated in the lemma are met.

To show the uniqueness, assume p’ € Xy, also satisfies all the specifications. Clearly,

the constraints imposed by £13,£24, M2, 734 imply that Li(p) = L(p'), and {p(j) | j € Li(p)} =
{¢'(4) | 7 € L(p')} for 1 < i < 4. Then, for each 1 < i < 4, the constraint 7(p<*>) = 7(p'<*>)
implies that p(j) = p(§) for j € Ii(p). This proves p=p’. O

Definition 8 For each § € Ay m ., let x5 denote the p € Ty, ¢ associated with § in Lemma 10.

Clearly, for any p € Znm ¢, there exists a & € Anm ¢, such that x; = p. Thus, p = x; gives a
1 — 1 correspondence between Xy ;¢ and Anm e.

Example 3 Consider the permutation p given in Examples 1 and 2, with N =9, m =4, and p =
(3993 5v 69 798943 192)' Let § = (El:’h{?hm2v7734a01102’03$a4) € AN,m,Z, where £ = 1!613 = {1!3}5

10



624 = {2,3,4}, T = {3,5}, Ty = {1,2,4}, gy = (1,2), g9 = (3,1,2), 03 = (3, 1,2), a.nd 04 = (1)
It can be readily verified that p = xs as specified in Lemma 10.

Lemma 11 Generate a random 6 = (£33, £24, Th2, 734,01, 02,03, 04) € AN m ¢, Where each compo-
nent is uniformly and independently chosen from its domain, and let p = xs. Then p is uniformly
distributed over Ty s ¢.

Proof. It follows immediately from Lemma 10 and the remark after Definition 9. O

We now describe our approach to the proof of (13). Let us concentrate on the case i = 2.
To evaluate E(R3;CNm+1), We first generate a random 0 < £ < m according to some appro-
priate probability distribution, and then randomly choose a § € Ay the expected value
of the random variable |R,2| - |[Rym)| , where p = x;, is then equal to E(R;CNm+1). Let
6 = (&13,€24,M2,M34,01,02,03,04). It will be seen that the value of |R,2| is determined by
§24,02,04. We can thus evaluate the expected value of |R, |- |R 4m)|, by first fixing the values of
§24,02,04 and calculate the conditional expected value of IR‘,(,..)|. It turns out that, for any fixed
£24,02,04, if we randomize over the remaining components of §, we obtain a p = y; with p(™)
distributed as a uniform random element from X n_,,. This implies that, for any fixed {54, 02,04,
the conditional expected value of | R m)| is equal to E(Cn_m+1). We can thus effectively replace
the random variable |R m)| by the constant E(CN-m4+1) in the expression [R, 2| - |R m)|, whose
expected value was to be calculated. Taking out the constant factor E(Cn—m41), we obtain the
final expected value E(Rz) - E(CN-m+1)-

Below, Lemma 12 shows that |R, | is determined by £34,02,04. Lemma 13 expresses p(™) in
terms of the other components of 4, and in Lemma 14 p(™) is shown to be uniformly distributed
over ¥ n_m, when these components are randomized.

Remark. The statements and proofs of Lemmas 12, 13, and 14 are presented without reference
to the two-dimensional representation of permutations p as given in Section 2. However, it may
be helpful to understand the proofs, if we keep in mind the interpretation of p as V(p), p(™) as
d™)(V(p)), and the components of & as various ordering relations either between the sets D;i(V(p))
or among the points in one of these sets. For example, {3 specifies how the z-coordinates of the
points in D;(V(p)) interleave with those of the points in D3(V(p)); m2 specifies how the y-
coordinates of the points in D;(V(p)) interleave with those of the points in D2(V(p)); o, specifies
the relative ordering of points in D;(V(p)) as a two-dimensional set.

Lemma 12 There exist real-valued functions v,w on I'yy_g¢ X Z,,_¢ X I, such that |R,, o] =
v(£24,02,04) and |Ry, 4| = w(€a24,02,04), if 6 = (£13,824, T2, M4, 01,02,03,04) € ANy

Proof. Straightforward from the definitions. O

Definition 10 Let £33,7m12 € In-am+tm—t;, 01 € EN—gm4e, and ( € Ty, Write J3 =
{1,2,...,N-m}-§3and K2 = {1,2, ..., N = m} — m2. Suppose {13 = {i1,12, ..., iN—2m+¢},

11



ez = {1,185, .oy iN_amae)> I3 = {51,725 ... Im—e} and K3 = {k1,kz, ..., km—¢}, where the ele-
ments of each set are listed in ascending order. Define b(£13,m2,01,() to be the (N — m)-tuple
c=(c1,¢2, ..., CN—yn) € ZN—m, Where ¢;, = ifﬂ(,) for 1 <r < N-2m+¢ and cj, = k) for
1<s<m-¢£.

Remark. In other words, if we have array A[l : N —m] with Afi;] =4 () for 1 <r < N-2m+{,
and A[j,] = 400 for 1 < s < m — £, then we can obtain ¢ by replacing the oo entries with items
in K, and in fact, A[j,] gets the {(s)-th smallest element of K.

Let k > 0. For any two elements 3,3’ € I, their product 83’ is defined as usual to be the
element ¥ € I; with y(¢) = B(8'(7)) for all 1 < ¢ < k. We agree that, for k = 0, the product AzA,
iS )\¢.

Lemma 13 There exists a mapping © : Tpm—g¢ X Tigp X Ejn—g X gy = T'py¢ such that the
following is true: for any p = x5, where é§ = ({13,£24, 2, 734, 01,02,03,04) € AN, ¢, We have
p™) = b(£13, M2, 01,(03) where { = u(€24,734,02,04).

Remark. The detailed proof to be given below is long. We explain here why it is plausible.
Consider an array A[1 : N], with A[i] = p(¢) initially. After m phases of the straight selection sort
having been applied to A, the subarray A[1 : N —m] now contains p(™). Since no locations i € I;(p)
in array A were involved in the first m phases, p{™) can be obtained directly from the original
subarray A[1 : N — m], by replacing items in A[i], ¢ € I3(p), with items in {p(j) | j € L2(p)}. It is
thus clear (see the remark after Definition 10) that p(™) = b(£13,m2,01,(") for some (' € T,_s.
It is plausible that (' depends only on £34, 734, 02,04, and o3, since the locations i € [;(p) in A
do not affect the relative ordering of the items in other locations in the sorting process.

Proof of Lemma 13. If £ = m, let u denote the constant mapping with value Ay. In this case
€13 = m2 = {1,2,---,N — m}, 03 = Ag. Therefore, b(£13,m2,01,{03) = 01. Now, for any p = x5,
where § = (£13,£24, 2,734, 01,02,03,04) € AN,m ¢, the sorting process clearly gives p(’“)(i) = p(i)
for 1 < i < N — m. It follows that p(™) = b(£13,m2,01,(03) where { = u({24,74,02,04) as
required by the lemma.

We can thus assume that £ < m. Define §' = (§13, €24, mg,w,al,ag,ago),m) € AN,m ¢, where
0;(;0) € AN m, is the identity permutation, and let p' = 4.

Fact 1 There exists a unique ( € Ep,_¢ such that p"™) = b(£13, 2,01, (). Furthermore, ¢ depends
only on 624, 734,02,04.

Before proving Fact 1, let us establish some notations. Let Jo(p') = {p'(i) | i € L(p")}.
Then I3(p’) = {1,2,..., N = m} — &3, and Jo(p') = {1,2,..., N — m} — m2. Write I3(p') =
{1,325 - - -+ Im—2} and J2(p’) = {k1,k2, ..., km—z}, where the elements of each set are listed in
ascending order.
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We now prove Fact 1. Consider the straight selection sort applied to an array A[l : N], with
A[i] = p/() initially. Since the locations A[i] for i € I;(p’) contain initially only integers no greater
than N — m, the first m phases of the sort do not affect the contents in these locations. That
means p'(™)(i) = p/(i) for i € I(p). We have then also {p"™)(i) | i € I1i(p")} = {1,2,...,N -
m} - {p™(i) | i € L(p)} = {1,2,...,N = m} = {p'(i) | i € Ii(p")} = J2(p’). Therefore, there
exists a unique ¢ € L,,_¢ such that p'(™)(j,) = keo) for 1 < s < m — £ It is clear that ¢
does not depend on £;3,72,01; in fact, if we observe the sorting process in the m phases, paying
attention only to the relative ordering among contents in the array A restricted to locations in
{1,2,---,N — m} — I1(p'), then the process looks the same for all {13,712,01. Therefore, ( is
determined by £24,1734,02,04. It is easy to verify that ( satisfies

pf(m) = 5(613’ T2, al;C) . (14)
This proves Fact 1.

We define a mapping v : I'm—ge X T'm—t¢ X Em—t X ¢ = I'n¢ by assigning the ¢ in Fact 1 as
the value of u(£24,734,02,04).

To utilize Fact 1, we need to relate p(™) to p/(™), First we prove a relation between p and p'.

Fact 2
I(p) = I(p) for a€{1,2,3,4}, (15)
and,
p(i) = p'(i) for i€ h(p)Uh(p)ULilp) , (16)
p(is) = P(jos(e) for 1<s<m—2. 17)

To prove Fact 2, observe that by Lemma 10, 7(I2(p),ls(p)) = €24 = 7(L2(p’),14(p")). This
implies I(p) = {N —m +1i | i € €24} = I2(p’), and thus also I4(p) = I4(p’). Similarly, one can
prove I;(p) = I;(p') for i € {1,3}. This proves (15).

Using a similar line of argument, one can prove {p(i) | i € LI(p)} = {p'(?) | i € Is(p’)} for
a € {1,2,3,4}, utilizing the fact that p and p’ have the same n,2,734. However, we have by
Lemma 10, 7(p®) = a; = (') for i € {1,2,4}, 7(p®) = 03, and 7("®) = ¢{”). This means
that p(i) = p(1) for i€ Li(p)UI2(p) U Is(p), and p(js) = ka;(:)a P(Js)=ksfor1<s<m-L
This proves (16) and (17). We have proved Fact 2.

Note that (15) implies I3(p) = I3(p") = {j1,J2,***Jm-¢}. Thus, (16) and (17) determine p(1)
from p’ for every 1 <i < N.

13



Fact 3 For 0 <t < m, we have

pOG) = pOG) for i€ (h(p)UL(P)ULP)NILN-1], (18)
PG = #O(joyy) for 1<s<m—t . (19)

This can be proved by induction on ¢ > 0. If ¢t = 0, then (18), (19) follow from (16), (17). For
the inductive step, let 0 < ¢t < m, and suppose that we have proved (18), (19) for ¢t — 1. We will
prove them for .

Suppose that p(*"1(i) = N — t + 1. Then by the definition of the straight selection sort,
p' (o) = PN —t4+1)if i # N -t +1, and p(i) = pt-1(i) for i € {1,2,...,
N -t} — {ip}. We distinguish three cases:

CASE 1: ip = N —1+1. Since ip € I;(p)UI4(p), we have by induction hypothesis, p(t=1)(ig) =
p't=1(ig) = N — t + 1. Thus, the sorting process leads to p*)(i) = plt-1)(i) forall 1 < i < N - t,
and p’®(i) = p’®~1)(i) for all 1 £ i < N —t. The induction hypothesis for ¢ — 1 now leads to
(18), (19) for t.

CASE 2: i € (Il(p) U I(p) U I4(p)) N[1,N —t]. By the induction hypothesis, we have
pt=V(ig) = p'*=1(ig) = N — t + 1. The sorting process gives then p(!)(ig) = p(!"D(N — 1 + 1),
and p((i) = pt=1(i) for i € {1,2, ..., N — t} = {io}. It also gives p'¥)(ip) = p " D(N -t + 1),
and p'®(i) = p'® V(i) for i € {1,2,..., N — t} — {io}. As in case 1, it follows from the above
equations and the induction hypothesis that (18) and (19) are true for ¢.

CASE 3: ip = j, € I3(p). In this case, we have, by the induction hypothesis, pt-1(j,) =
p’(“l)(joa(,)) for 1 < s < m —{. Thus, p(“l)(j,;: (r)) = p-1)(j,) = N —t + 1. The sorting
process dictates that p(*) (ja;‘(r)) = pU=1(N -t 4+ 1), and p'®)(j,) = p"*"(N — t + 1). Since
N —t+1 € I(p) U I4(p), we have by induction hypothesis, p*" (N —t+1) = PN -t+1),
and hence,

P9 (toz3() = #OGH) - (20)

Observe that the sorting process also lead to
pW() = ptV() for i€{1,2,..., Nt} {j1y} and (21)
PO3E) = pN3E) for i€ {1,2,...,N-t}-{j} . (22)

We can establish (18), (19) for t by using (20), (21), (22) and the induction hypothesis for ¢ — 1.
This completes the inductive proof of (18) and (19), and thus the proof of Fact 3.

From Fact 3, we have with t = m, p(™)(j,) = p'(’")(j,,s(,)) for 1 < s < m—£. From Fact 1, we
have p'(”‘)(j,,a(,)) = k¢(0s(s))- Therefore, we obtain

p™(4s) = k¢(oss)) forl<s<m-—&
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This last equation, together with the fact p(™)(i) = p/(™)(i) for i & {j1,42, -+ Jm—t} (Fact 3),
shows that p(’“) = b(£13,"2,01,(03) The proof of Lemma 13 is now complete. O

Example 4 To illustrate the proof in the above lemma. Let N = 9, m = 4, and consider the
p=(3,9,5,6,7,8,4,1,2) in Example 3. Then o' = (3,6,5,7,9,8,4,1,2) and p'™) = (3,1,5,4,2).
Note that I3(p) = {2,4, 5}, and thus the array p"™) restricted to positions in I3(p) is 8 = (1,4,2).
This gives ( = u(&24,7M34,02,04) = 7(8) = (1,3,2). As 03 = (3,1,2), we have (o3 = (2,1,3),
and thus b(€13,Mm2,01,{03) = (3,2,5,1,4). Lemma 13 asserts that p(™) = b(£13,m2,01,(03). It
is easy to verify that this is indeed true, by performing on (3,9,5,6,7,8,4,1,2) m phases of the
straight selection sort to obtain p(™).

Lemma 14 If &3,7m2,01,( are independently and uniformly chosen from their respective do-
mains, then b(&13,ma2,01;() is uniformly distributed over Zn_.

Proof. Let p’ be any element of Ex_,,. For any choice of (§13,72), there exists a unique pair
(01,¢) such that b(§13,m2,01, C) = p'. Thus, the number of quadruples (£33,72,01,() that are
mapped by b to p’ is equal to ( N T H)z, a constant independent of p’. This proves the lemma.
O

We will now establish (13), which implies (12) as mentioned at the beginning of this subsection.
Consider first the case i = 2. Let r; denote the probability that a random p’' € n will satisfy
[14(p’)| = £. Writing x5 as p, we have

" z iRp.zllR,,(m)l . (23)
Nym,t SEQN

E(R;CNm41) = Y, Teri—

0<{<m IA

Now, from Lemmas 11, 12 and 13, we have

1 1
Z |Rp2| - |Rym| = 3 z v(£24,02,04)

IAN‘m't' SEANv m,¢ |rm~£'t| |Em-z| |2(| &‘ W134,02,04
{ 1 > |» |
2 b( &3, 102, ’
|FN—2m+t. m—!l IEN—2m+l| |Em—l| €13,m2,01,03 (&3 et P )03)

By Lemma 14, the last factor multiplying v(£24,02,04) in the above expression is equal to E(R,)
for a uniform random p' € En_. Thus, we obtain

1
R,2llR (m
] se,FoallFao

3

= v , 02,0 E(C

|rm-t.t|2i2m_zilzg[ &h’g”" (€24,02,04) E(CN,m+1)
_E(CN m+1)|A o I E |R9‘2| . (24)
. SEAN,m
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From (23) and (24) we have

E(R;CN,m+1)

E(CNym+1) 3. fz'l'z“;}";l > Ryl
1l se

GSme AN.m.!
E(Cryms1) E(R2) - (25)

Il

In a similar way, one can prove
E(RyCN,m+1) = E(CN,m+1) E(R4). (26)
It remains to prove (13) for the case i = 3. By Lemma 9,
IRp-I.aI = |R, (27)
It follows that

E(R3) = E(R,) (28)

To evaluate the expression E(R3 CN,m+1) , we take a random uniform p € £n and calculate
the expected value of |[R,-1 3| - |R(p_1 )(m)l. By Lemma 1, 2, 3, 5, 6, we have

|Biym| = [MAX(V((e™)™))|

= |MAx(d™ (V(p-l))) ’

I
=

AX (d(ml dual(V(p)) )

= |MAX| dual d(’")(V(p)) )‘

= |Max (@™ V()|
= |MAx(v(e™))|
= R,,(...,| . (29)
From (27) and (29), we have
E(R3CN,m+1) = E(R2CN,m+1) - (30)

It follows from (25), (28) and (30) that E(R3 CN,m+1) = E(CN,m+1) E(R3). This proves (13)
for the case i = 3. We have established (12).
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Remark Geometrically, the case i = 3 is dual to the case i = 2. If one developes the duality
aspect a little deeper than we have done, then the present proof for the case i = 3 will not be
needed.

3.4 Second Step

In this subsection, we will prove
E(Ry) = E(tN,m,s) , (31)
and
E(Ry CN,m+1) = E(TN,m5 TN,m,1) - (32)
This will complete the proof of Theorem 1, since (8) is clearly a consequence of (12), (31), and
(32).
Lemma 15 Let p € Zn. If Dy(V(p)) = 0, then

|Roa| = [MAX (Ds(V ()| -

Proof. Let § = V(p). By Lemma 8,
|Rpa| = |D1(S) N MAX(S)| . (33)

We now prove

Dy(S)YNMAX(S)= MAX(Ds(S5)) . (34)
Clearly (33) and (34) imply the lemma.

Note that S is a standard set. Since D4(S) = @, we have |D2(S)| = |D3a(S)| = m > 0. Let
(zi,9:) € D3(S) with y; = max{2’ | (2,2') € D2(S)}, and (z;,y;) € D3(S) with z; = max{z |
(2,2") € D3(S)}. Then any point in D;(S)— Ds(S) will be dominated by either (z;,y;) or (z;,y;),
and cannot be in MAX(S). This proves D;(S)N MAX(S) C MAX(Ds(S)). On the other
hand, any point (z,2’) in M AX(D5s(S)) must satisfy z > z; and 2’ > y;, and therefore cannot be
dominated by any point in either D3(S) or D3(S). This proves D1(S)NMAX(S) 2 MAX(Ds(S)).
This proves (34) and the lemma. O

Lemma 16 If Ds(V(p)) # 0, then MAX (d(”‘)(V(p))) = MAX (Dl(V(p))) .

Proof. Let § = V(p) and v be any point of Ds(S). Since Ds(S) # @, we have Dy(S) = 0.
Suppose D2(S) = {(zi,,%,) | 1 < 8 < m} with 2z, > z;, > ... > z;,, and D3(S) = {(=,, ;) |
1<t<m}withy; >y;, > ... > Yjm- Then, from the definition of d, it is easy to see that
d™)(S) = Dy(S)U {(zj,,%,) | 1 < s < m}. Since each (z;,,¥;,) is clearly dominated by v, we
have M AX(d(™)(S)) = MAX(D,(S)). O
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We now prove (31). Let T = {p | p € I, Dy(V(p)) = 8}. Clearly, if |R,3| # 0, then
p € T)y. By Lemma 15, we have thus

1
E(R) = 5 Y IR
" pETy

s % Y [MAX(Ds(vV())| -

pETY
As D5(V(p))= 0 for p € Ty — Ty, we have

1
E(R) == 3 |MAX(Ds(v(p)| - (35)
© pELN
For any standard N-set § = {(z1,11),(z2,%2), ..., (=N, yn)} with z; < 22 < ... < zn,

let type(S) denote the permutation & € I such that y; is the o(j)-th smallest element among
Y1,Y2, ---» YN. Then |MAX(D5(S))| = IMAX(D5(V(e)))|, where ¢ = type (5). Since, for a
uniform random N-set S, type (§) is equally likely to be any o € I, equation (35) implies that
E(R,) is the expected value of M AX(Ds(S5)) for a random uniform N-set S. That is,

E(Rl) - E(vamrs) -
This proves (31).
To prove (32), we use Lemma 1 and Lemma 2 to obtain

1
E(R,CNm41) = R 3 |Boal - 1R yom]
* pETy

1
= 4 3 [Real- IMAX(V())
" pETY

= i T Rl [MAX (™ V()] -
PET)

We then use Lemma 15 and Lemma 16 to get

E(B:Cnmst) = 77 3 [MAX(Ds(V(oD)|- [MAX (d™ V()|
PEL),

. b2 |Max (D5 (e))|- [MAX(D:(v(e))| . (36

As in the derivation of (31), we infer from (36) that E(R; CN,m+1) is the expected value of
|IMAX(Ds(S))| - |MAX(D1(5))| for a uniform random N-set 5. That is,

E(Rl CN, m+1) = E("N,-m.s fN,ﬂ.l) .

This proves (32), and completes the proof of Theorem 1.
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4 Proof of Theorem 2

In this section we will assume that N > 2m; otherwise Theorem 2 is clearly true, as pym = 0
and the random variable ry n 5 is identically 0.

Let S = {v; | v; = (2j,¥;), 1 £ j £ N} be any standard N-set in the unit square, and
D;(S), 1 £ i £ 5, are defined (with respect to m) as in Section 1. We introduce two more
definitions. Let Dg(S) = D7(S) = 0 if D5(S) = 0. Otherwise, let Dg(S) = (D1(S) — Ds(S)) N
([0,1] x [b,1]) and D+(S) = (D1(S) — Ds(S)) N ([e,1] % [0,1]), where b = max{yx | vk € Ds(5)}
and ¢ = max{zy | v € Ds(S)} (see Figure 4).

Lemma 17 If D5(S5) # 0, then M AX (D,(5)) is the disjoint union of M AX(D;(S5)), ¢ € {5,6,7}.

Proof. Let v,,v; € Ds5(S) be such that y, = max{yi | v« € Ds(5)} and z; = max{zp | vp €
Ds5(S)}; s and t may be the same.

MAX(Dy(S)). If z; > z4, then v; € (D1(S) — Ds(S5)) N ([z¢,1] x [0,1]) = D(S). If y; > ys, then
v; € (D1(S5) — Ds(S5)) N ([0,1] X [ys,1]) = De(S). I z; < z; and y; < y,, then we must have
y; > ¥ and z; > z,, since otherwise, v; will be dominated by either v, or v;; this implies that,
in this case, v; € D1(S) N ([zs,1] X [41,1]) € Ds(S). Thus, we have proved that M AX(Dy(S)) C
Uie(s,6,7) Di(S), which implies immediately M AX (D, (S)) C Uie(s,6,7) MAX(D1(S5)).

First we prove that MAX(Di(S)) C Uigsery MAX(Di(S)). Suppose that v; €

Next, we observe that if v; € D;(S), where i € {5,6,7}, and vy € Dy(S) — D;(S), then
v; cannot be dominated by v;;. This implies that any v; in MAX(D;(S)) must also be a
maximal point in D;(S). That is, MAX(D;(S)) € MAX(Dy(S)) for i € {5,6,7}. Hence,
Uie(s,e,1y MAX(Di(S)) € MAX(Dy(5)).

The above discussion proves that MAX(D:(S)) = Uieseny MAX(D1(S)). As
MAX(Di(S)), i € {5,6,7}, are disjoint, we have completed the proof of Lemma 17.0

Take a uniform random N-set S, and let rn, m 6, TN, m 7 denote the random variables that take
on the values [M AX(Dg(S))|, |MAX(D7(S))|, respectively. It follows from Lemma 17 that

E("N.m..‘i '-"N,m.l) = E("N.m,5(rN,m,5 + T*N,me6 + TN,m,7 ))
E(T?V,m,S) + E(*N,ms TN,m6) + E(TN,m,5 TN,m,7) - (37)

Lemma 18 E("N,m,s rN!m'-,) = E(rN,ms rN'm's) .

Proof. For any standard N-set S, we have

Ds(dual($)) = dual(Ds(S5)) , (38)
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and
D7(dual(S)) = dual(Dg(5)) . (39)

Formula (38) follows from Lemma 5. The proof of (39) is straightforward.

If we generate a uniform random N-set S, then dual(5) is also a uniform random N-set. Thus,
E(rN,m,s ™N,m7) is the expected value of [M AX (Ds(dual(5)))| - |MAX(D7(dua1(S))) |, which
by (38) and (39) is equal to [MAX (dual(Ds(5)))| - |MAX (dual(De(8))) | = IMAX(Ds(S))] -
|M AX(Dg(S))|. This clearly implies that E(rN,ms *™N,m,7) = E(TN,m,5 TN,m,6)- O

From (37) and Lemma 18, we obtain

E(rN,ms ™N,m1) = E(tX, ms) + 2E(TN,m5 TN,m.6) - (40)

We will derive formulas for E(rN,m,s), E(TX ;5) and E(TN,m;5 TN,me), and then use (40) to
complete the proof of Theorem 2.

Let Fn be the family of all sets of the form § = {(z;,%:) |1 < i < N, 0 < z;,4 < 1}.
Let F be a real-valued function on Fy satisfying the conditions (a) for all S, |F(S)| < ¢ where
¢ > 0 is some constant, and (b) if S is a standard N-set and D4(S) = @, then F(S) = 0. Now,
take a uniform random N-set S, and let Y denote the random variable which takes on the value
F(8). Also, let d;, 1 < i < 7, denote the random variables that take on the value |D;(5)| if §
is a standard N-set, and a constant value ¢ = 0 otherwise. (In fact, ¢ can be chosen to be any
constant for our purpose, as § will be a standard N-set with probability 1.) Clearly,

E(Y)=Pr{ds=0} Y Pr{ds=k|ds=0}-E(Y |d¢=0,d5=k) , (41)
k>0
and
E(Y)=Pr{dy=0} Y Y Pr{ds=k,ds=£|dy=0}-E(Y |dy=0,ds=k,de=¢) . (42)
k>0 £>0

Lemma 19 Pr{ds = 0} = pN,m.-

Proof. In the calculation, we can ignore the possibility that S is not a standard N-set, since that
occurs with probability 0. If S is a standard N-set, then |D4(S)| = 0if and only if I4(type(S)) = 0.
It follows that Pr{d4 = 0} is equal to the fraction of p € X with I4(p) = 0. Now, one can assign to
each p satisfying I4(p) = @ a unique (m + 1)-tuple (i3,42,...,im; o) such that (a) #;,1z,...,4n are
distinct integers in the range [1, N—m], (b) 0 € En—m, (c) p(N—8+1) = i,for 1 < s < m,and (d)
o = 1(p'), where p' is the array p restricted to positions in {1,2,...,N —m} (i.e. p’ € En_sn With
p'(7) = p(3))- It is easy to see that this assignment is a one-to-one and onto mapping between the
set of p satisfying I4(p) = 0 and the set of all (m+ 1)-tuples (41,42, ...,im; o) satisfying conditions
(a), (b) above. Thus, the number of p € Iy satisfying I4(p) = 0 is equal to (V_™)m! (N — m)..
Hence, Pr{dy = 0} is equal to (",™)m! (N = m)! /N! = py,m. O
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Lemma 20 Pr{ds = k | d4 = 0} = [y fg hn,m(A, X, k)dAdX, for all integers k > 0.

Proof. Let ax = Pr{ds = k | d4 = 0}. Since only type (5), which represents the relative ordering
of the coordinates of points in §, and not the scale, is relevant, we normalize D;(S) to occupy
[0,1] x [0,1] and compute a) accordingly. Consider the following random process:

(a) Generate independent random variables y;,¥2,...,¥m, €ach of which is uniformly dis-
tributed over [0, 1]; let Ymax = max{y1,¥2,...,¥m};

(b) Generate independent random variables z;,z3,...,%m, €ach of which is uniformly dis-
tributed over [0,1]; let Zmax = max{z1,22,...,2Zm};

(c) Generate N — 2m independent random points vy, v3,. .., UN-2m, €ach of which is uniformly
chosen over the unit square [0,1] x [0,1].

We will interprete the above random process as follows: {vy,v2,:--,vN-2m} is the set D;(5),
the y;’s are the y-coordinates of the points in D2(S5), and the z;’s are the z-coordinates of the
points in D3(S5). Now, let Jn,m x be the event that exactly k points v; are in [Zmax, 1] X [¥max, 1]-
Clearly ax = Pr{Jnmx}, as we can identify Dy(S) with {v,v2,...,9N_2m}, and Ds(S) with
those v; in [Zmax, 1] X [¥max, 1)-

Let A = 1 = Zymay, A’ = 1 = Ymax. To calculate Pr{Jy m i}, we note that the probability
density for (A, X) is given by p(A, ) = m%(1 = A)™"1(1 - N)™1 for 0 < A\, X' < 1. The
probability that exactly k v; fall into the region [1 — A, 1] x [1 — X', 1] (see Figure 5) is equal to
U AN < ANk S,

1 p1 biEy
/ j s A’)(N ka)(AA’)"(l—,\A’)N‘z’""‘d/\ dx'
0 JoO

1 1
f f AN (A, X, E) dAdX' .
0 Jo

Pr{JN,mx}

This proves Lemma 20. O

We adopt the convention that Hgp = Hég) =0.

Lemma 21 For all integers k > 0, E(rN,ms | d4 = 0,ds = k) = Hi,and E(r}; .5 |da=0,d5s =
k)= H} + H, - H®.

Proof. Clearly the lemma is true for k = 0. Now, let £ > 0. As in the proof of Lemma 20, we
can compute the expected value and variance of ry,m 5 by using the distribution generated as in
the proof of Lemma 20, conditioned on the occurrence of event Jy,pm k. When Jn, m x occurs with
parameter values A, X, the k points v;,,v;,,...,v;, that fall in the region [1 — A, 1] x [1 = X', 1]
are independently and uniformly distributed over that region (see Figure 5). Thus, E(rN,ms |
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2
dy = 0, ds = k) = E(Cky) = Hy, and E(r}; s | ds = 0, ds = k) = E(C},) = (E(Ck1)) +
Var(Cy1) = HE + H - H,Ez), where we have used (2) and (3) in the derivation. O

Lemma 22 For all integers k > 1 and £ > 0, Pr{ds = k, ds¢ = £ | dy = 0} =
S AN, m(A N k) gN,m ok e(A N k) dA dN dz.

Proof. Let ax¢ = Pr{ds = k, d¢ = £ | d4 = 0}. We consider the following process:

(a) Generate independent random variables y1,¥2,--.,¥m, each of which is uniformly dis-
tributed over [0, 1]; let Ymax = max{y1,¥2,...,Ym};

(b) Generate independent random variables z;,z2,...,Zm, each of which is uniformly dis-
tributed over [0,1]; let Tmax = max{z1,22,...,Zm};

(c) Generate N — 2m independent random points v; = (w;,2;), 1 < i < N —2m, each of which
is uniformly chosen from the unit square [0,1] x [0, 1];

(d) Let r = 0 if there is no v; in [1 — Zmax, 1] X [1 = Ymax, 1], and otherwise, let r = 1 —max{z; |
v; € [1 = Zmax, 1] X [1 = Ymax, 1]}-

Let JN,m k¢ be the event that exactly k points are in the region [Zmexs 1] % [tenaxs 1), and
exactly £ points are in the region [0,Zmax] X [1 — 7, 1]. An interpretation of the above random
process similar to that used in the proof of Lemma 21 gives ax¢ = Pr{Jn,mk¢}-

Let A = 1 — Zmax and X = 1 — ymax. To compute Pr{Jn m ¢} for k > 1, £ > 0, observe
that the probability density for (A, X, r) is given by p(A, X', 7) = m?(1 = A)™~1 (1 - X)™"1 (N -
2m)A(1 = Ar)N=2m-1 for 0 < A, X' < 1and 0 < r < X. Now, let C) xr(k,£) be the probability
that, given (X, ), r), exactly k — 1 v; fall into the region F; = [1 - A, 1] x [l =X, 1-r], and
exactly £ v; fall into the region F; = [0,1 — A] X [1 = X', 1]. (See Figure 6.) Then,

b k-1 —om —
i (5 (8521

” (r(l - 4\))‘(1 - AN e (L - A))N_zm—k-t

1-Ar 1=Ar
Thus,

1 1 A
Peldit mid] = fn '[) fo p(A, N, ) Cayer (K, £) dr dN dA
1 1 1
/ j / p(A, X, A’z) CA,A'.A’: (k,f)z\' dz d) d)
0o Jo JO

1 1 1
/ j j hN,m O X k) gN, et Xy 2) dz dN dX .
0o JOo JO

This proves Lemma 22. O
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Figure 5: Normalized representation of D;(§); N — 2m = 7.
Event Jy , 3 occurs in this case,



Lemma 23 E(rN,msT™N,mge|ds =0, ds =k, dg = £) = H; H,, for all integers k,£ > 0.

Proof. This lemma is clearly true for either kK = 0 or £ = 0. Now suppose k, £ > 0. We can
compute the expected value of rnm 5 TN me by using the distribution generated as in the proof
of Lemma 22, conditioned on the occurrences of the event Jn ;, x ¢. Suppose Jy, m k¢ Occurs with
A, X', r being the parameter values as described in the proof of Lemma 22; let v;,,v;,,...,v;, be
the k points in the region [1 — A, 1] x [1 = X,1], such that v; is on the horizontal line segment
Ly joining the point (1 — A, 1 - r) to the point (1, 1 —r), and v;, ..., v;, arein the region Fj; let
Vjy Vs, -+, Vj, be the points in the region F,. (See Figure 6.)

The probability distribution K of (v;,,v,,...,v;,) can be described by picking v;, uniformly
on the segment Lo, and picking each of v;;,v;,,...,v;, independently and uniformly over L;; the
probability distribution K of (vj,,vj,,...,v;,) can be obtained by picking each of vj,,v;,,...,7;,
independently and uniformly over L,. Furthermore, K; and K, are independent of each other.
This implies that E(rN,m,5 TN,me | ds =0, ds = k, dg = £) = E(Ci,) E(C¢1) = Hy He. D

It follows from (41), and Lemmas 19, 20 and 21 that

1 1
E(rN,ms5) = PNm 3 Hi f fo b, m(A X, k) dX dX

k>0 ¢
1 1
= PN 3, H,,f / Ay, m(A A, k) dA dN (43)
k>1 o Jo

and also

1 1
E(rdms) = pw,m’%(ﬂhm—ﬂ,?’) fo fo BN N, k) dX dX'

1 1
v ¥ (B2 + B BY) [ [ hvnX R dxay . (49
i o Jo

Similarly, it follows from (42), Lemmas 19, 22 and 23 that

E(vamrs rNimls) =

1 1 1
pvm Y Y HLH, / j j B m(A N, E) GV, m (0, Xy 2) dA N dz . (45)
k>1 231 ¥ =9

Theorem 2 is an immediate consequence of (40), (43), (44) and (45).
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5 Some Mathematical Formulas

We give in this section formulas which will be useful for the proof of Theorem 3. All proofs will
be relegated to the Appendices. The constants in the O-notations for the rest of this paper will
be absolute constants, unless otherwise specified.

Let Ny = N7/ N, = NY2+¢ where € = 1/400, N3 = N5 a(m,N) = (10ln N)/m,
b(m,N) = 1/(m N'/19), and v be the Euler’s constant limj_,o, —(H(k) - Yicick lli). It is well
known (e.g. Knuth [K2, Section 1.2.11.2]) that H(k) = In k + v 4+ O(1/k) for large k.

Definition 11 For 0 < A\,),2< 1, N > 0,and m, k > 0, let

k
fl‘N‘m(Aa A',k) = % E_AA'N m2 8—(A+’\’)m '

Definition 12 For z,u,v > 0, j € {0,1}, and integer k > 1, let

k B
Yik(z,u,v) = —(":,) ev 22 =%~ (1 )i

5.1 Formulas involving py . and hn .

Lemma 24 For large N, pvn = e™/N(1 4 O(N-1/243)) for 1 < m < Ny, and pym =
O(e=M*)for Ny< m< N -2.

Lemma 25 For any fixed integer k > 0, ¥,,5; m* e~™/N = O(N(*+1)/2) for Jarge N. (The
constants depend on k in this case.)

Lemma 26 For any 0 < A, A’ < 1,and 1 < m < N/2, we have

Y hnam(A N k) = m3(1 = A1 - )Y,
0<k<N—-2m

1 1
j f hnm(A N, k) dAdN = 1,
0<k<N-2m “0 70

z ilN'm(A,)t',k) s m2 e—(t\-l-,\')m,
k>0

1 1
p j f ANm(A X k) dAdX <1 .
0 0

k>0

Lemma 27 Let Ny < m < N3, 1<k < N3, A € (0, a(m,N)), and X € (0, a(m,N)). Then, for
large N, hnm(X, X, k) = (1 + O(N~Y8)) Ay (A, X, k).
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Lemma 28 For Ny < m < N3, 1< k < N-2m,and let f(\, ), k) stand for either hy (A, N, k)
or hnm(X, N, k) we have, for large N,

2 %81 a(m,N) ra(m,N)
f j FON k) dAdN = f ] SN, E)dAdN + O(N-10) .
0 Jo 0 0

Lemma 29 For N; < m < N3, N3 < k < N-2m,and let f(A, X, k) stand for either hn m(A, N, k)
or hn m(X, X, k), we have, for large N,

jol /01 FOLN, k) dAdN = O(N-19) .

Lemma 30 Let N; < m < Nj, and F(k) be a function such that |F(k)| = O((log k)?) for large
k. Let f(A, X', k) stand for either hAxym(A, A, k) or fm,m(/\, A, k). We have, for large N,

a(m,N)
F(k) f(A, N, k) dX' dA
> | j(m' vy FE SN

1<k<N;

. f f F(k) fO\ N, k) dX' d) + O(N=11° (log N)?)

1<k<N3
and,

a(m,N) pa(m,N) .
j / F(K) f(A, N, k) Tn(N A') dX' dA
l<k<Na b{

=3 / / F(k) (A, X', k) In(N X') d dA + O(N~"/1° (log N)?) .
1<k<N; g

5.2 Formulas involving gnm k¢
Lemma 31 Foralll1 <m < N/2,1<k<N-2m,and 0< A, X' < 1, we have

Y aNmaeAN,2) = k(1-2)F! forall0<z<1, and
£>0

2_[ Nt X, 2)dz=1 .

£>0

Lemma 32 Let N; < m < N2 ,and F(k,£) be a function such that |F(k, £)| = O ((1 + log(kt))*)
for k,£ > 1. We have, for large N,

2 / / / F(k,£) hnm (A X' k) gNm k(A X, 2) dz dX' d

l<k<N3 21

a(m,N) ra(m,N) ’
DY f / f F(k,) Ay (A, X, k) N m ke X', 2) dz dX' dX
1<k<N3 201 b(m,N) JN=3/8

+O(N-1%(1og N)?) .
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Lemma 33 Let Ny <m < N3, 1 <k < N3,and (A, X,z2) € (0, a(m,N))x (b(m,N), a(m,N)) x
(N~3/8,1). Then, for large N,

> Heanme e X, 2) = (In(NXz) + 4 + O(N~Y2%)) k(1 - 2)F
£1

Lemma 34 For all 1 < k < N3, we have, for large N,

1
[\ K1=2F nzdz = —Hi+O(N~*/%(log X)) , and
N-3/8

1
— k-1 by Pt -1/16
'/N K=z de = 1-0NTe)

5.3 Formulas involving v;

Lemma 35 (a) For j € {0,1} and each k > 1, the integral 8;x = [;° [5° Jo~ ¥ik(2,u,v)dz dvdu
exists and is finite.

(b) Let j € {0,1}, and F(k) be a nonnegative real-valued function on integers k£ > 0. Suppose
B,D >2,,and X; >1> X; > 0. Then

B B rX;
k : = .
15‘21: F(k) fo fo '[X 1 ¥ix(z,u,v) dz dvdu 1:{;:3 F(k) B; x

= o(ﬂ;’ﬂ +e~%2 ¢(D) + VX C(D)) ,

where C(D) = max{F(k) |1 < k £ D}.

(c) Let j € {0,1}. For all k > 200, B = O((I?S/’;)J)'

Definition 13 For any sequence (aj,@2,...,8k,...) of real numbers, write << a; >> for
S k>1 axBoy if the sum exists; write ((ax)) for 3_ps5; @i By if the sum exists.

Lemma 36

<< H.>> = 7,

VT — 4m(m = 1))

(2)
<< H” >> = 4
2 a3 (2m +1)!
: 1
-— 2 —— —e
2((Hg)) + << Hi >> v << Hy >> +4/7 m§>l: Gm T 1)
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6 Evaluation Step One

Definition 14 For N > 2, let

v = ¥ % we(Bi+H-HD - HHyp)
1<m<N/2 1<k<N-2m

1 1
x j j hnm(A N, K) dAdN
0 Jo
and

1 r1 p1
WN = Z E Z PN,m Hk H[/ j j hN'ﬂl(A) A’,k) QN,m,k,t(A, A',k) d)\ dA’ dZ )
1<m<N/2 1<kSN=-2m £21 o Jo Jo

From Theorems 1, 2 and the fact that py,, = 0 when 2m > N, we obtain, for n > 2,

Var(Bn)=2 Y. (Tn+2Wn)+O(nlogn) . (46)
1<N<n

We will, in this and the next two sections, derive the asymptotic form for Ty, Wy as N — oo,
and then use (43) to prove Theorem 3. As a first step, we will prove the next lemmma in this

section.

Lemma 37 For large N,

Iv = Y ¥ e™N(BEE-BP-HN+y-1)
Ni<m<MN; 1<k<N3

1 1.
X f f hinm(A X, k) dAdX + O(N/18(log N)?) .
0 JO

Proof. From Lemma 26 we have

z E PN,m(Hf'{'Hk-H{.z)—HkHN_m)
1<m<N; 1<k<N-2m

><.[01 f; BN (A, X, k) dA AN
= Y. O((legN)?

1<m<N;
= O(N1(log N)?) . (47)

Also, from Lemma 24 and Lemma 26, we have

> pNm(HE+Hi- B - HiHy-m)
Ny <m<N/2 1<kSN=-2m

1 r1
X j / BN (O, Xy k) dA dN
0o Jo

= ¥ oM (ogNp)
N2<m<N/2

= O(N(logN)? e B (48)
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It follows from (47), (48) that

™~ = 3. > pnm(BE+Hi— B - HiHy-p)
N1 <m<N; 1<k<N-2m

3 1
X / j BN (A X'y k) dAdN
0o Jo
+0(M:(log N)* + N(log N? e ). (49)

Using Lemma 24 and Lemma 29, we obtain from (49)

v =Y ¥ ovm(Bi+H-HP -HiHy-n)
Ny <m<N2 1<k<N;

1 rl
x f j hnm(A, N, k) dA dN'
0 JO

Y Y 0egh?) [ [ hwm Xk daax

Ny<m<N; Na<k<N-2m
+ O(Ni(log N)?)

1 r1
= ¥ T (r+ovmx)emN f f R (A, N, k) dA dN'
N1 <m<Nz2 1<k<Ns3 4 70

g (53 +He— B~ By (N = m) 4+ 0(75 - m))))

. O(—Nz(l%;mi) +O(N(log N)?)

1 r1
= T X e hnm N k) daax
N1E<m<N; 1<k<N; Ll

X (Hg ~HP - H(nN+y-1+ 0(-;‘—,)))

4 O(N—1/2+3c) Z z e-mle (logN)2
Ny <m<N; 1<k<N;

1
x j / BN (A N, K) dAdN
o Jo
+ O(Ny(log N)?) .
Applying Lemmas 25 and 26, we have then

Ww= Y 3 em”N@E-BP-H(nN+v-1)
N1 <m<N; 1<k<Ns;

1 1
X f j hNm(0 Xy k) dA dN
0o Jo
+0((Na/N + N71/24%) . (log N)?)

x Y €™ Nt O(Ny(log N))
N <m<N;
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™/ (B} - BY) — Hy(n N + 4 - 1))
Ni<m<N; 1<k<N3

1 1
x j j hm(A N, ) dA d'
0 Jo
+ O(N:(log N)?) .

From (50) and Lemmas 25-28, we obtain

v = Y Y e™MNHE-HP-H0N+y-1))
N1 <m<N; 1<k<N;

a(m,N) pa(m,N)
x / j B (A, X, k) dA dN’
() ()

+ O(N *(log N )’%) + O(N,(log N)?)

= N. <E:<N2 1<§<:N e‘m3IN(Hf = H£2)_Hk(lnN+ vy - 1))
h<m < 2

a(m,N) pa(m,N) _ ’ ,
x/ f B0, Ny k) dA dA
0 0

+ON"V8) 3 e™/N(logN)?
N1 <m<N;

1 1.
xz:f / B X, ) dA dX'
0 Jo

k>0
+ O(Ni(log N)?)

> ¥ e (Hi-EP -H(nN+y-1))

N1 <m< N2 1<k<N;
1 1.
X f f hnam(A, N, k) dA dN
0 Jo
1
+ O(Nz(log N)zwé-)

+O(N~Y/%). O(VN (lg N Y?)
+ O(Ny(log N)?) .

This proves Lemma 37. O
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7 Evaluation Step Two

We will prove the following lemma (recall that x = 1/200):

Lemma 38 For large N,

wy = Y. Y e™NE,

Ni<m<N2 1<k<N3
1 1.
x f / hnm(A XN, E)(AR(N ) + 7 — Hy) dX dA
0o Jo
+O(NV2"logN) .

Proof. Let

G = 3 > Y pnmHiH,

Ny <m<N; 1<k<N; £21
1 1 1
X [ [ ] hham X ) a0 X 2)dz N dx
0o Jo Jo

G; = > > Y pNmHiH:

Ny <m<N; 1<k<N; £21

a(m,N) pa(m,N) p1
x j j j BN O N ) gm0 N, 2)dz AN dA
o b(m,N) JN-3/8

Gz = 2 z Ze-mzﬂvﬂkﬁg

N; Sm(Nz 1_<_k(N3 21

ja(m'N) a(m,N) 1 F‘ A Af k A A’ d dA’ dA
X 0 ‘[b(m.N) -/N—ala Nom(A, A k) gNm ke t(A, X'y 2)d2

Using Lemmas 24, 31, we obtain

Wy-Gil < ¥ 0(e™ M (ogNP) T
k>1£>1

ISWI(Nj
1 r1 1
_[) jo j BN (s X, E)aN (A, X, 2) d2 AN, dA
0

-~ > o (e"‘h (log N )2) .

N2<m<N/2 k51051
1 o1 1
./o ,[; jo AN (A X, B)gN m ke (A, X', 2) dzd)N, dA

+ O((logN)?)- ¥ » W

Ny Sm(Nz N;SkSN—zm ‘21

1 1 1
j f / BN (A N, )N m b (A Xy 2) dzdN, dA
¢ Jo Jo

1 1
T e Y f f hnm(A, N, ) dX dX
0 Jo

1<m<N; k>1

= O((log N)’){
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N2e 1 r1
e DS j f BN\ X, k) dX dA
0 Jo

Na<m<N/2 k21

+ Z: Z ./01 ./: hN.m(Aﬁ Arsk) dX' dA}

N; Sm(Na N; SkSN—Qm

Now, from Lemmas 26, 29, we have

W - G| O((log N)’){ Y emNyNe Ny o(jé-g)}

1<m<N;

O(Nl(log N)z) ;

Using Lemmas 24, 25 and 32, we obtain

Br=Gy. £ Y. o™ ¥ %

Ny <m<N; 1<k<N; £21

1 1 1
1 f / j HiHy hymO Xy B)anms e X, 2) dz ' dA
0o Jo Jo

(51)

a(m,N) ra(m,N) r1
s f / j HoHy by X k)an i oA, Xy 2) dz dN, d|
1] b N-3/8

(m,N)

= O(QogNR N1 308 i)
Ni<m<N;

= O((log N)? N7/1¢) .

Similarly, we have from Lemmas 24, 27, and 31

IG2—-Gs| < Y Y Y Ievm—e™N | HeH,
Ni<m<Ny 1<k<N; £21

./a( ’ )./a( )./1 hnm (X X', K AN z)dzd) dX
x m ] [ y 7
o b(m,N) JN-3/6 ) Gkt z)dz

a(m,N) ra(m,N) r1
-m? [N
+ &z pemmaf [T

Ny <m<N; 1<k<N; £>1
X | BNmA X, k) = By (A X3 k) | gnm e e(A, Xy 2)dz dX dA

= O(N"lh"'&) E E Z 0((logN)2)e"'"2/N

Ny <m<N; 1<k<N; £>1
1 pr1 p1
X j f j RN (s Xy K)aNm k(A X, 2) dz X' dX
o Jo Jo
+ON-V8) T T ¥ O((logN)P)e™ /N

Ny <m<N; 1<k<N3 £21

1.
X j f / B Xy k)an st X'y 2) dz X' d
0o Jo Jo
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1 1
= O(N-V#%(lgNY) T % e-""/"’ff B (O X, k) AN dX
Ny<m<N; 1<k<Ns =0

1 4
+O(N-VE(ogNY) T T e f / A m(A N k) AN d)
Ni<m<N; 1<k<N3 P ¥

Using Lemmas 25 and 26, we obtain

|G3 — G3| = O(N*/®(log N)?) . (53)

We now evaluate Gs. Let Ny < m < Nz, 1 < k < N3, and (\,X,2) € (0, a(m,N)) x
(b(m, N), a(m, N)) x (N=%/%, 1). By Lemma 33,
> Heanmpd)X52) = (In(NX'z) + 9+ O(N"/2%)) k(1 - 2+ .
£>0
This implies that

1
j > HegnmpeN,2)dz = (In(NX) + 7+ O(N~/2%))
N=3% 50

1  §
xj k(1 —z)"“dz+f k(1 -2 lnzds .
N=3/8 N=-3/8

Using Lemma 34, we get

1
f Y Hignmpe(A N, 2) dz
N-3/8 0

= (IH(NA’) +v4 O(N—1/200))(1 _ O(N—IIIG))
—Hi + O(N~*/8(log N))
=In(NX')+v - Hx + O(N~Y/2%0) (54)

From (54), we have

Gz = E Z e""leHk

N1 <m<N2 lSk‘:Na
a(m,N) pa(m,N) 2
x j j (n(NX) + 7 = H) hym(O, X, k) dX dA
0 b(m,N)

+ O(N"YX0) 3 ¥ ™IV,
N1 <m<N; 1<k<N;

a(m,N) ra(m,N)
x f f hinomO, N, k) dN A
0 b(m,N)

Using Lemma 30, we obtain

Gs= Y Y ™

N1 <m<N; 1<k<N3
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1 r1 -
x jo f (n(NN) + 5 — Hy) hym(A, X, k) dN dA
0

+ Y em™/NO(N-Y1%og N)Y)
N;SmSNa
+ O(N-YV™) §° e m™/N(logN)
Ny <m<N;

1 p1l
x 3 fo ]0 hnm(A X, k) X d

k>1

Now using Lemmas 25 and 26, we get

1 1,
I DI M ey H"f f hNm(A XN, E) (In(NX') + v = Hy) dX'd)
Ny <m<N; 1<k<N3 o Jo
+O(NY?% 1og N) . (55)

Lemma 38 follows from (51), (52), (53) and (55).
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8 Evaluation Step Three

We finish the proof of Theorem 3 in this section. From Lemma 37 and 38, we obtain

Tn+2Wn = ), 3 vopntdN
My $m<N; 1<k<Ns

1 r1
x fo jﬂ (28, m(VN X) + (v + 1) Hy - B - B")
xﬁNm(,\ X,k)dX d\ + O(NY?~% log N)

2
s a5, e
0 N <m<Nz

Xhnm(A N, k) In(VN X)dA’dA

+ ¥ (G+1)H-H - H‘*’j/ il
1<k<Ns 0 N1<m<N2

XA m(A, N, k) dX dX
+ O(NY**"logN) . (56)

l<k<N3

Let gn k() be defined as follows: for s > 0,

k
gN kN (8) = %T_)_. e~ MWN g2 —(A+))s=#* /N

Then, for integers m > 0, gnxan(m) = €™ /N hy (X, N, k). Write N/ = [N;] for i = 1,2. By
Euler’s Summation Formula (see, e.g. Knuth [K2, Section 1.2.11.2]), we have

N; 1
Y aNkax(m) = j . Nk N(8) ds - 5(9N.k,A,A'(N£) — gngan (V)
N1 <m<N; Ny

N
+ [ Bilo = lsD () ds (57)

where B;(z) = z — 1/2 is the Bernoulli polynomial of degree 1.

For 1 < k< N3, 0< AN <1, N{ <8< Ny, it is easy to see that

lansan(N)| < %’?ﬁ ¢~ IN N142¢ ~N2 -
lanaan(N])] < Qi\;'—N)k e=IWN NT/8 ~(+XINTI® (59)
and
‘ij "‘"""'(3)| = 1_'23 -t X) = |9N,k.A,A’(3)
- (A X4 O(N‘T/m)) Nk N(S) - (60)
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Lemma 39

> (418 - B2 - BP) j j e~ N oy (0, N, ) AN dA
1<k<N; B N1<m<N2

= VN{(v+1) << Hy >> = << HE >> = << H® >>} + O(N¥/3(log N)?).

Proof. From (57) - (60), we obtain

> (o+vm-mi-80) [ [ &N fiyyn (A, N, K) N dA
1<k<N3 0 N1<m<N2
= ¥ (G+1H: - B - BY) j f j Congax(s)dsdN dA+ Ly, (61)
1<k<Ns a0 Ay
where
1 r g it
ILi| < Efojo > |(7+1)Hk—Hk—Hk’
1<k<N;
X(AA;N)'; —-AMNN Nl+2€ —N2e dA’d/\
+ 5[ [ T |o+vm-n2-80)|
1<k<N
(M N)k e~ INN NT/8 ~(MNNTI® 430 0y
+ fjf {(7+1)H,,-H,,-H‘2’
1<k<Na
X (X + X+ O(N=""))gn x5 x(s) ds dN' d .
Clearly,

L,

1
O((logN)z) N1+2e e—N’“ + O((log N)z N?{S) (j e—AN"Ils d,\)z
0

1 41 (N}
+0 ((log N)?) f f / (A+ X +0(N""11%)) 2
o Jo JN;
xe= " IN=0+X)s g )" g
= O((logN)2 Nl+2c E’_Nh)
+0((log N)? N'/®) . O((N~"/16 f " e da?)
(1]

+ O((log N)?) {2 jN f" e~ IN

X ( /0 e dA) ( fo Le¥e dx) ds
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+ O(N—'TIIG)./NNZ‘ 82 e—:’/N(./Ol e—,\a)z dS}
O((log N)*) + O((log N)?)
X { jN :” % ds + O(N-7/18) _[o T e ?IN ds}

= 0((log N)*) {log N + O(N~"/16 N1/2)}
= O(NY®(log N)?) . (62)

Let z; = N}/v/N and z; = Nj/v/N. From (61) and (62), we obtain

> (@ +1) 8- B2 - BP) / A ™ /N hiy (A, N, k) dN dA
1<k< N3 by N<m<Nz
= Y (+1)H-HE-HD) fff
1<k<N3

(AAU:V)" =AXN g2 o=(\+X)a=2/N o g3 g
k!
+ O(N*/® (log N)?)

i (2)
= A (('T+1)Hk Hk H f j f

1<k<N3

(uv)* e~V N 22 = (u4v) e-s % dz dvdu

+ O(N'8 (log N)?)

= \/N(KKM (v+ I)ij j / Yoi(z,u,v)drdvdu
_1<k<N Hk/ f /zngok(z u,v) dz dvdu
1<1,<N3 (2)j / /zz Yoi(z,u,v) dz dvdu)

+ O(N'8(log N)?)

Using Lemma 35, we then obtain

> (a+nm-mz-a0) [ [ e N him(A, N, k) X' dA
1<k<N3 L A <m<Nz
1
= \/N{ > ((r+1)He- B = BY?) Boj + (log NY? -O(T + e +ﬁ7)}
1<k<N; N
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+ O(NY®(log N)?)

= - 2 (2) (log N)?
_\/'JV{(7+1)<<Hk >> - << B >> - << B >> +O( i )

+0 (N3 (log N)?) .

This proves Lemma 39. O

Lemma 40

Hy ] j ™ IN i (0N, E)ln(VA ) dN dA
0 Nj(lﬂ(Ng

= VN ((Hy)) + O(N*®/** (log N)?) .

1<k<N3

Proof. We follow the same approach as used in the proof of the preceding lemma. Again, let
2, = N!/V/N and z, = N}/v/N. From (57) - (60), we obtain

Hy f / =™ N i (0N, B) In(VI ) dX' dA
0

1<k<N3 N) <m<N3

- Hk/f/ * N () In(VR X) dsdN' dA + L (63)

1<k<N

where
1 1
ILa| < % ] / O((log N)) N2 ¢=N* 1n(v/N A') dX' dA
0 JO
1nn A+") NT/16
+5 f j O(log N) N7/8 ¢=(:+X) In(vVN X)dX dA
0o Jo
1 1 (N}
+ O(log N) f j / (A+ X+ O(N-T/19)) 52
o Jo JN!

xe~#/N=042)s 1n(+/N X') dsdX' dA
= O(e™ N'™*(log N)?)
+0((log N) N/%) jo L emanTs .n| . l /o L NN 10 R X X
+ O(log N) '[N Tz Pl i ( jo : jo 1(,\ +X) In(VN A’)e“("‘*"')’) dX' d\ds
+0 ((Iog N) N"’/"’) ffi s2e~"IN
;

x ( fo ' fo (VN V) emO+X)s d)\'dA) ds . (64)

Now,

1
j I/ d).l = O(N-T18) | (65)
0
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and

1 % 1 ; 1 ' 16
/ e_AiN /16 ln(\/ﬁA’)dA' = 0 (f e—A NT/1e ID(NTIIG ,\f) dA! iy (logN)/ e—z\ N7/ dA!)
0 ¢ °

[« o]
= O(N—Wj e *Inzdz 4+ N-7/6 ]ogN)
0
= o(n-™e logN) . (66)

Also, for N{ < s < Nj,
1 :
| / f (A4 M) In(VN X') e=(+X)s gy d)\i
0 Jo

IA

| jﬂ xe=Mdx ]0 (/I N = ¥s [
+ U; e~ d) /01 N In(VN M) e~ dxl
B O(;l-z—'[oooxe—fd;r.%/owhx(gy) e""dy)
+ O(%/Ome‘zdz-s—lz’/owy ln(g y) e“'dy)
& 0(8—1310g N) . (67)
Similarly, for N} < s < N}

1 1
| f f In(VN X') e~ @+ gy d,\l
0 Jo

Il

' '[0 Lo dA, - ’ /0 ‘() ;—A" dA"

O(si:log N) (68)

Using (65)-(68), we obtain from (64) that
L, = O™ N%*(log N)?) + O((log N) N7/8 N=7/16 N=7/16 |og N)
N!
+ O(log N) f “§2e=IN li’%ﬂds
N{ $

Nl
+ 0((1og N) N~=7/19) f " grem s ;15 log N ds

Nl
= 0((log N)?) + O((log N2 N=7/ /0 "IN o)

= O(N'Y'%(log NY?) . (69)

From (63) and (69), we obtain

1 1 " ) 5
E Hk‘/o / Z e‘“m fN hN,m(A, A',k)lﬂ(ﬁa\’) d)t,d)\

1<k< N 0 Ni<m<N;
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; k
_ ka / /N2 (M'N) e=ANN 2 = (HN)s=2IN 1 (/N AYAN' dA
1<k<N;

% o(zvlflﬁ(log NY?)

Hk/ ]‘ [ ko—uv 7 2 = (utbv)o—a? dz dvdu
== ]S Y Nt e (Inv)
ry (wo)"e v N

1<k<N
+0 (lelﬁ (log N)ﬁ)

= Hk/ j j ¥y k(z,u,v) de dvdu

1<k<N3
+ O(N%(log NY?) . (70)

This last expression is equal to, by Lemma 35,

VN( Y i+ (ng)”O(—j—-— +e™ + /@) + O(NV(log N)?)
1<k<N3

=V {(110) + OCZEZ) + (l0g N - O +¢7 4 VD) + O(N/*%(10g V)

= VN ((Hi)) + O(N'*/® (log N)?) .

This proves Lemma 40. O

From (56), Lemma 39 and Lemma 40, we obtain

In+2Wn = \/ﬁ((—y +1) << Hy >> — << Hf >> - << H,Ez) >> +2 ((Hk)))
+ O(N**1ogN) . (71)

Now, from Lemma 36, we have

(7+1) << He >> — << H,f >> — << H(Z) b +2((Hk))

B \/_ — 1))
=ga= Zﬂ (2m+1 ‘/_Z =HET,
_3,
T4
Thus, we conclude
Ty +2 Wy = % aV/N +0(N'>=* log N) . (72)

Theorem 3 follows immediately from (46) and (72).
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Appendix A: Proof of Lemmas 24-30.

In the proofs of Lemma 24 and Lemmas 27-30 below, we will, without loss of generality,
implicitly assume that N is sufficiently large such that N, < N/7 and (In N)/N; < 1/30. This
ensures that N —2m > 0 and 0 < a(m,N) < 1, and we can structure our proof on that basis

without further explanation.
A.1 Proof of Lemma 24.
For 1 < m < [N;], we have from Stirling’s formula (see e.g. [K2, Section 1.2.11.2]) that

Inpym = 2ln((N—m)') In((N - 2m)!) - In(N!)
= 2(N-m+ )ln(N m) = 2(N - m)+1n(21r)+0( =)

N-m
—(N-2m+3 )ln(N 9m) + (N - 2m)—-1n(27r)+ o(5 lgm)
—(N+%)lnN+N—§ln(27r)+O(w)
= (2N—2m+1)1n(1—%)—(N—2m+%) (1—-2]\—'?)+0(%)
= ";,2+O( 3)+0(N).
Thus,
lnpN,m=—m72+O(N'%+3‘) . (73)

For N; < m < N — 2, we observe that pym < pn,[n,], and that formula (73) gives py,[n,) =
O(e‘Nz (). This proves Lemma 24.

A.2 Proof of Lemma 25.

Let g(z) = zF e==/N. Then, ¢'(z) = — -— g(:c). Using Euler’s Summation Formula (see
e.g. [K2, Section 1.2.11.2]), we obtain, with Bldv) =z-1/2,

Y mte™N = 3 g(m)
m>1 m>1

o0 1 o0 ;

= [ o(@)dz - 5(0(00) -0 + [ Bila - |2))o'(2) d

1 1
fm NKI2 yk o=V N12dy 4+ O(1) + O(jm l9'(z)| a'z)
1 1
- (k+1)/2 % pk=1 =N 1 [® k41 22N

o(N )+O(k/l z*1e dz+Nj1 st e d:n)

= O(N®+2)
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This proves Lemma 25.

A.3 Proof of Lemma 26.

Clearly, EOSESN—?m ANm(A, N, k) = m?(1 = A)™-1(1 - X')™~?, and Ek?_o fLN'm(A,)\',k) =

m2 e—(A+N)m

. Hence,

1 1 1 *
) jf hN,m(A,A',k)dAdA'=(f m(z-A)m-ld,\) i
0 Jo 0

0<k<N-2m

It also follows that, for any A > 0,

0<k<A

from which we conclude that

k>0

This proves Lemma 26.

A.4 Proof of Lemma 27.

By definition,

InhAnm(A A k)=2lnm 4+ In (

Now,

and, similarly,

Also, we have

N —-2m
k

2
1 p1. 1
;= /fhw,m(.\,,\',k)dmxg(f me-*’"d,\) <k g
0o Jo 0

1 41,
Zj f ANm(A A k)dAdXN <1 .
0 0

) +(m=1)In(1-A)+ (m—-1)ln(1 - X)

+ Ekln(AN)+ (N = 2m —k)In(1 - AX') .

(m-1)In(1-2)

— mA+0(X+m?)
— mA+0((log N2 N-1€) |

(m—1)In(1- X) = — mX' + O((log N N=7/*%) .

(N = 2m — k)In(1 = AX)

- AX(N -2m-k) + O(N(M')z)
— AXN +0((log NY? N-7/16)
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From Stirling’s formula, we have

i N -=2m
"ok

In((N — 2m)!) - In(k!) = In((N — 2m — k)!)

(N = 2m + 3) In(N = 2m) = (N = 2m) + 31a(27) + O (7=57)

- (N-2m-k+3 )In(N 2m — k) + (N — 2m — k)
¥=amoF) -
2m

-k-ln(k!)+k1nN+(N—2m+;)1n(1_7)

- (N-2m+3-®)m(1- 2228 4 o(2)
~ In(k!) + kIn N + O(N=3/16+¢) (78)

Il

- Em(zw) +0(

Il

It follows from (74) - (78) that
Inhn,m(A, X, k) = 2lnm = In(k!) + kIn N = m(A + X') + kIn(AX) = AXN + O(N~1%)

Hence,
hnm(A X k) = (1+O(N'1/8)) by N) e=IWN 2 (—(A+X)m

This proves Lemma 27.
A.5 Proof of Lemma 28.

Using Lemma 26, we have

1 #1 a(m,N) ra(m,N)
f RN (A N, E) dAdN — j j hnm(A N k)
0 0 0 0

1 r1
< 2 j j im0, X', k) X
a(m,N)

2 f / wi's & P i el 5 # 4
: (mm - Ay* )
2m / (1= A)"1dA j — XY™y

2(1 - a(m, N))™
2e—mn(m.N)
2e—lﬂlnN

I IA

I VAN |

O(N-19) .
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Similarly, we have

1 1, a(m,N) ra(m,N)
j f AN om(A, N, k) dAdX - / / B (A, N, k) dX dN
0 JO 0 0

IA

1 §
2 f j( v\, X, k) dAdN'

j f m2 —(A4+2")m d\ dA'
a(m,N)

- 8 j me=>™ d) me=Nm gy
a(m,N)

< 2(e—a(m,N)m oo e-m)

= O(N"1)

IA

This proves Lemma 28.
A.6 Proof of Lemma 29.

For 0 < A\, )" < a(m,N), we have

hnm(A, N k)

IA

(N 2r")(,\,\ * N2
= (( (AA’)k N?)
eN 100(InN)?
B 0((Nsne =) N)

100 e(In N)?
(0P )

0 2‘””16

]
Qo

Thus, using Lemma 28, we have

1 r1 a(m,N) pa(m,N)
j f RN, By dAdN = f f b N (A, N, K) dA AN + O(N 1)
0 Jo 0 0

= 0o(27™") +o(v-1)
= O(N-Y) .

Similarly, for 0 < A, X’ < a(m,N), we have

!
X < (S2E) N2

0(2-"”’“‘) ;

]
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and then, using Lemma 28, we obtain

a(m,N) ra(m,N) _ &
j j v, N, k) dAdN + O(N-10)

= 0(27M'1%) +o(v-1°)
N .

1 1.
f f A (A Ny k) dX dN
0 Jo

This proves Lemma 29.
A.7 Proof of Lemma 30.

Let

2 f f F(k)f(A, X, k)(In(N X)) dX dA

1<k<N;

- / e f ) PR SO, X, K) (N AY) AN )|
1<k<Ns b(m.N

for j € {0,1}. Clearly,

I; < Mj + Mj + Mj3 (79)
where
Mj = F(k)fO, X, k)(n(N X)) | dX' d | 80
"= Tz S [ L e mmay] (80
s(m.N ] "y '
My = ¥ j [F70, X, b)Y X ar (81)
1<k<Ns
a(m,N) b(m,N)
Mjs = f j |F(k) £, X, R)An(N X)) | dX' dA (82)
1<k<N;

Note that, for 0 < A, X' < 1, we have by Lemma 26

Y [N R g mPer T (83)
1<k<N;

Using (83), we have

1 1 " ;
Mji = O((logN)?) f f m? g~ l(lnN+1nA’)’| d\ d\
a(m,N)JO

i

1 1 ;
O((logN)z){ / o j (In N) m? e=O+NIm g7 g
2 —(.\-I-a\')'m d\ d)\
v[:(m N)Jo f /\’
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1 1 .
= O((log N)z) {(lnN)/ me-)«m dA/ - e-)\ m g\
a(m,N) )

1 1 ) 1
—-Am =A'm Pl A,
e [ meren(g) o)

= O((log N)’){(e-m(mm)(lnzv +Inm+1)}
= O(N79).

Similarly, we have

M;j;

1 01 , ;
= O((log N)?) / j m? =0+ (1n N 4 1n Ny| N dA
0 Ja(m,N)

2 1 r1 2 _—(A+M)m '
= O((log N)?) /0 jﬂ(mN)(lnN)m g N d

1 1 1 2 _—(A+\)m '
+.[: .[z(m,N)in(T)m # dX"dA

1

k !
= 0((10gN)2){(IogN)f me=>™ d) me=Nm g\
0

a(m,N)
1

1 1 ‘
_Am dA ln i me_)‘ m dA’
+~/0 v a(m,N) (,\’)

= O((log N)?){e~™*™M 1 N}
= O(N79) .

The same approach gives

and

M13

1 b(m,N) ,
O(log M) [ [ m? e=0+¥Im axan
0

0((log N)’) . (1 = e"'") (1 _ e-b(m,N)m)
0((logN)2 ’ (1 _ e-1/N1no))
0((log N)? N-mo) :

Mos

Al
1 pb(m,N) s
0((logN)’){(1nN) _[ j m2 e~OFXIm gargy
0 Jo

1 pb(m,N) ?
L[ o
o Jo A

b(m,N)

1 pb(m,N) ’ 1
O((log N?) fo fo m?e=O+¥)m (1n N 4 In ) dX'dA

0((1og N)* N-117°) 4 0((og NY?) ‘L
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Now, for large N,
b(m,N) . 1 mb(m,N) m
jﬂ me¥™ In(5) AN < /0 e In(2) da
-1/10 1

tam)(1= ) 4 (7 i (1) e

0

IN

z=N-1/10

= O((logN)N'llm) +(z—zlnz) I
O(N-/*logN) .

z=0

From (87) and (88), we have
M3 =0((log NP NY/10) .

Lemma 30 follows from (79), (84)-(86), and (89).
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Appendix B: Proof of Lemmas 31-34.

As in Appendix A, we will assume, without loss of generality, that N is sufficiently large such
that N, < N/7 and (In N)/N; < 1/30 in the proofs of Lemma 32 and Lemma 33 below.

B.1 Proof of Lemma 31.
Immediate from the definitions.
B.2 Proof of Lemma 32.

Let

s kL f F(k, ) hnm (0 Ny K)anm i t(M Xy 2) dz dX' dX

1<k(N 21

a(m,N) ra(m,N) r1
- = T[T F O (X k)
b N—3/8

1<k<N3 £>1 (m,N)
qu,m.k,g(a\, X’,Z) dzd)\ d)\l .

Then,
L<Li+ L+ L3+ Ly, (90)
where

L,

> [ [ IFG0] amOXE)
a(m,N)
Nkt N, 2) dzdN dX (91)

RN Y o0 i N AL CUT e

]<k<N3 £21
qN,,,“(,\ X, z)dzdXN d) | (92)

Iy = E// )./: IF(k,£)] hnm(X, X, k)

l<k<N3 21

QN,m,k.t(’\a A', z) dz d/\’ d\ N (93)

1<k<N £21

and

L = >[f fN_mIF(k O] hnm(M, N K)

l<k<N3 >2>1
Q'N,m,k,l(As )t', 2') dz d)\! dA ’ (94)

From Lemmas 31 and 26, we obtain

L1=Ef

1<k<N; Ja(m.N)

0(togNY?) [ f " m? (1= ™11 — X)=1 N d)

a(m,N) JO

1
j O((log N)?) hym(A, ', k) dX' A

47



We have evaluated this expression in the proof of Lemma 28, which gives
Li=0(N"%) .

A similar argument proves

L,=0(N") .
To evaluate Ls, we obtain from Lemma 31

1 pb(m,N)
L = ¥ [ [ 0(0g M) hnn (0, X, k) d
1<k<N; 70 70

1 pb(m,N)
O((log N)?) f j m2 (1 = A)™1(1 = X)™1 X' dA
o Jo
1 b(m,N) ,
= O((log N)?) j f m? e=OHNIm gar gy |
o Jo
We have evaluated this expression in the derivation of (87), which gives

Ly = 0((log N> N1/%)

To evaluate L4, observe that

-3/8

N
f S qnmi (AN, 2) [F(k,£)| dz
o 1

N-3/8
0((log N)?) fo k(1 - 2)b1 dz

= O((log N)?) (1-(1- N=3/%)")

= 0((log N)? (1 - eO*N"))
= O((logN)* N71/%%)

Thus, from (94) and Lemma 26, we obtain

L,

1 1
otognynie) 3 [ j hNm(A, X, k) dX
1<k<N, 70 70

= 0((log N> N1/ .

Lemma 32 follows from (90), (95)-(98).
B.3 Proof of Lemma 33.

Let y = N(1— A)z/(1 = A)),and M = N — 2m — k. Then

M
Nkt N, 2) = k(1 = 27 ( ; ) CES)
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Let K = L5y He (%)) v* (1 - y)M~*. Then

3 HegnmpdAX,2) =k(1— 21K . (100)
£>1

Now, consider the flip of M independent coins, each having probability y to be a “TAIL”.
Then, (Af ) ¥¢ (1—y)M~¢ is the probability that exactly £ “TAIL” will occur, and K is the expected
value of the quantity H;. To evaluate K, we show that the probability that ¢ differs significantly
from the expected value yM is small, which gives K = In(yM).

Let ¢ = 1/700. In the range of parameters considered, it is easy to see that for large enough
N,
N—390/40+¢ ¢ 4 < 20(In N)N-7/18 (101)

Let 6 = 3\ yM|>(wMp/M (Af) y'(1 — y)M-L. In terms of the experiment of flipping M
independent coins of bias y, we have

6=Pr{

% = y[ > -r} , (102)
where 7 = y3/4/M1/4, A well-known inequality (see Rényi [R, eq. 4.4.18]) gives, for large N,

9 e~ M7 [(4y(1-4))
g (103)

)

IA IA IA

Observe that, for £ satisfying |£ — yM| < (yM)>/4,

t yM(l-i-O(-GI;)T“-)) ;

and hence,
1
Hy, = Int+ 7+0(?)
1
= In(yM)+v+ O(W)
' 1
= In(NXNz)+7+0())+O(N-1/2+¢) 4 O(W) . (104)

From (101), (104), and the bounds on the range of A, we have , for £ in this range,

Hy=1n(NXNz)+v + O(N~/2%) (105)
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Using (103) and (105), we obtain
K = (1-6)(In(NXNz)+75+O0(N-/®)) +§.0(n N)
= In(NXz)+7+4 O(N"V20) (106)
Lemma 33 follows from (100) and (106).
B.4 Proof of Lemma 34.

It is elementary that, for large N

1
_ K _ _ n-3/8\k
j;v_m k1-z2%dz = (1-N-%8)
> e—2kN-/S
> 1-2kN-3®
> 1-2NyN-3/8
1 =gNIas
As [p-ss k(1 - 2)F"1dz < [ k(1 — z)¥"1 dz = 1, we have
1
'[N K= dz=1- 0NV (107)

This proves one of the inequalities in Lemma 34.

Let 1/N < 6 < 1, then

§
'/ k(1 = 2)*Inzd:
0

IA

1/N
’] k(1 - 2)*In 2dz
0

1N 5
klj Inzdz|+ (In N)f k(1 - 2)*dz
0 1N

O(k(ln N)/N) + O(ké1n N) .

]
- lj k(1 - 2)*Inzdz
1/N

IA

I

It follows that
N=3/8
/ k(1 - 2)*'In zdz
0

= 0N~/ (log N)) . (108)

Let 0 < w < 1 be any number. Then the following expansion is uniformly convergent for

|z| < w:
In(l-z)=-)_ EEP (109)

m2>1 m
It follows that, for any 0 < w < 1, we have
jwkz"'lln(l -2z)dz = - E /wkz"'1 2 My
0 m>170 "
- k 1 wm-H:

s m m+k
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The infinite series of functions (of the variable w) on the right-hand side of the above expression
is uniformly convergent on the interval [0, 1. We can thus interchange limit and summation (see
[A, Theorem 9.7]). Thus,

1
jkz""ln(l—z)dz = - lim ) L mek
0 wol- o m m+k
k1

w1 ™ m+ k
= —Hi . (110)

From (108) and (110), we obtain
! k-1 -1/16
jN_m k(1-z)*"'Inzdz = —Hi + O(N~/"%(log N)) . (111)

This completes the proof of Lemma 34.
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Appendix C: Proof of Lemmas 35-36.

C.1 Proof of Lemma 35.

(a) Note that ¥ k(z,u,v) > Oforallk > 1, z,u,v 2 0; Y1 4(z,u,v) 2 0if v > 1 and ¥y x(z,u,v) <
0if 0 < v < 1. To show that §;, exists, we only need to prove that there exist two constants
C1,Cq > 0 such that, for all r;,7 > 0 and r3 > 1,

T 2 r3
j f / [%;k(z,u,v)| dvdudz < Cy ,
0 0 1

L S 1
/ fzf [¢;x(z,u,v)| dvdudz < C; .
0 0 0

To prove (112), we observe that

r1 T2 T3
/ / j I%; (2, u,v)] dvdudz
0 0 1

This proves (112).

Now, note that

< [M[7 [ e e -t (nvy doduda
o Jo J1

T1 rz T2 T3 .
= ] e~ {/ e du} {j ze™ " (Inv)y dv} dz
0 0 1

T1 o3 3T g

5] e {] e ¥(lny-Inz) dy}d:r:
0 z

gf e d.rf e"'(1+|1ny|)dy+j |Inz|e~% dz .
0 0 0

T T 1
_/lfzf |¥;k(z,u,v)| dvdudz
o Jo Jo

T r2 1 ‘
< / 1 / f 22 e_:’-(u+v)x (ln(l/ﬂ))J dvdudz
o Jo Jo

< /0" e {fon ge™"" du} {jol ge™"™ (ln(llv))j dv} dz

1 :2 T
< j e {j e V(14 |lny|l+ [lnz|) dy} dz
0 )

5] - dzf e"”(l+|lny|)dy+/ e |lnz|dr .
0 (1] 0

This proves (113), and completes the ﬁroof of item (a) in Lemma 35.

(b) Let

K;

Z I"'(k)/‘:2 ./OB ‘/lB Yjk(z,u,v)dvdudz

1<k<D

52

(112)

(113)



and

’

- F(k)j f j ¥;x(z, u, v) dvdudz

1<k<D

z F(k)] ‘/.OB ./: ¥ik(z,u,v)dvdudz

1<k<D

- F(k)j j f¢,k(z u,v) do dudz

1<k<D

It suffices to prove that

and

Clearly,

where

and

Observe that

|T1,5]

K;=0 (E@%c'g_” +e~ %2 C(D) + VX; C(D)) :

M= O(Mfla—gg)‘ +e X (D) + VX7 C(m) -

Ki<h;+T;j+Ta;+Ty;

I

Ty,; F(k)f / / Yik(z,u,v)dvdudz ,

1<k<D

T; = F(k)j f ] ¥ix(z,u,v)dvdudz ,

1<k<D

Is; = F(k)f / j ¥;x(z,u,v)dvdudr

1<k<D

Ty;= F(k)f j ] ¥;k(z,u,v) dvdudz

1<k<D

IA

c(D) /x . j j == =42 (1n ) do du de

IA

IA

C(D)]X: - {flme""(l +lny+lnz)dy} e

0 (C(D) jx ” e~ dz + C(D) /x “(nz)e= a‘a:)
o(e* c(D)) .
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C(D) P ol {[o ne du} {./;m ze "% (Inv) dv} dz

(114)

(115)

(116)

(117)



Similarly,
X1 poo poo .
T 2 =%~ (utv)z J
|T25] < C(D)-[} ‘/; ./1 zre (Inv)’ dvdudz
X X
< O(C(D) / "¢~ dz + C(D) j "oz e d:.:)
0 1]
= 0(C(D) X In(e/X1))

= o(c(p)vxy) . (118)

We also have,

oo (= <] o0 12 '
T3] < C(D)j ./B f 2% e~ ()T (I v) dv dudz
0 1

C(D)./‘:o ™ {/Boo 2e™™ du} {jl‘oo ze " (Invy dv} dz
C(D)/Om e =Bz {jje-vu + fagl eyl |1n.-e|ff:° e dy} d
= O (C(D) fom e==~B% 4z 1 C(D) jom =Bz || o) da:)

c(D) . C(D)
o(TF2 + 5

IA

IA

(In BY) . (119)

Similarly,
sl % C(D)jooo ./:o ijzz e""‘(“"'")’(ln vy dvdudz
< C(D)j:o(ln v) /:oxe"’?"” {fow ze " du} dz dv
- O(C(D) jB “(in v)f{ fo wze'“dz} dv)
s O(C(D)j:(h;—:)j dv)

(C(D) “‘ff?y) . (120)

From (116) - (120), we obtain (114).
To prove (115), we can write
Mj<Lij+ L+ Laj , (121)

where

Lij= ¥ F(k)f):jowfol %;4(z, u,v)| dvduds |

1<k<D
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Ly;=
and
Iym
Now,
|L1,]
Similarly,
|L2,;]

It is also elementary that,

|L3,j]

IA

F(k)f j / |¥;k(z,u,v)| dvdudz

= Z F(k)jw/ / |¥jk(z,u,v)| dvdudz .

C(D)j: /owjol 22 e P ~(wtv)z |y 1 dv du dz
(C(D) j % e { f ze v ln(l) dv} dz)
O(C(D) eV (lnz + [Iny|) dy} d:z)
0 (C(D) e Inz dz)
(

ol c(D) e-X=) v (122)

X o rl
= C(D)/ 1'[ f g2 e~ ~(utv)e ln(l) dvdudz
o Jo Jo v

O(C(D) L B e { fo Cpemve m(%) dv} dz)
0 (C(D) -/:', ez dz)

o(c(p) x3) . (123)

C(D)f / /.’c e ("""’)’ln dvdudz

C(D)fo '/B P {/0 ~vz ln(v) dv}dud:r
O(C(D)jw f°° 22 = -u dudz)
0 C(D)/ {/ g e"“’dx} )

e )) : (124)
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Clearly, (115) follows from (121) - (124). This proves item (b) in the lemma.

(c) Let k > 200. We have

Bo,k

where

Now,

= %jw jw /m(uv)k e~ " g2 =% ~ ()T gy du dz
1- omJ um 0 ) 5

= —'/ / (uv)* ™™ {j z? e~ (utv)z d:z:} dvdu
k'Jo Jo 0

- __1__ ! k —uv 1

= 0(1:![3 .[o (uv)*e Wt o) dvdu)

i 1 o k —uv 1

= 0 k!.L ./D(uv) e Wt op dvdu)

1 il i k —uvi

E./o ,/o (uv)®e " dvdu)

1 =1 R |

-Ei./o ;-5{.[0 w e ;dw} du)

(Q(0,vk/10) + Q(vk/10, oo))) :

Q(Vk/10, 0) < ./\;':/m u—l“{jomw"e"‘”dw} du

Also,

- j°° A du
VE/10 ul
= O(k! k“:"/’) )

Q(0, vk/10)

IA

vE/10 1 w o
./u = [) w*dw ) du

VE/10 1 42(k+1)
= j — du
0 uf k+1

1 1 vk 2k-1
T O k+12%-1 (E)
= O(k!2"‘) .

It follows from (125), (127) and (128) that, for k£ > 1,

Box = O(k~%?) .
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This proves one of the inequalities in item (c).

We now estimate f; ;. Write
Brk=8k—1t ,

where

8;,:—/ j j (uv)F e~ 22 e~ -(vie)e (lnv)dvdudz |,

oo poo pl
) = -l—j j _/ (uv)* e~ 22 == ~+) In(1/v) dv dudz .
k'Jo Jo Jo

Clearly,

ke = [ [ ke o) [ e dzl dpdu
o N1 0
0 (fm /w(uv)k e " (lnv) (Tl)a dv du)
(f / (uv)* e (Inv) ——— o 5 dvdu
+ 5_/1 jl‘ (uv)* e~ (ln(uv)) (u_-f-v_):"’ dv du)
0] (/01 jlioo uk v¥=3 &% (In v) dv du

+[7 [ ot (n(un)) g dodu)

Il

Il

Note that

1 jpoo
f j u* v*"3 e~ *(In v) dvdu
o /1

1
/oo v*~3(lnv) {f ukemw du} dv
1 0
- k—3 k _—w
= '/1. (lnv)vk_'_1 {/0 w"e dw} dv

= J(1,vk/10) + J(VE/10, ) ,

where

It is easy to see that

J(VE/10, 0) < PR { / dw} o
e OB
vk/o vt

O(k! (log k) i)
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and that

Vk/10
J(1, VE/10) < j L2 {/ " dw} 2
\/'/10 lnv k!
= j p— dv
1 vi k41

1 (VEyk-2 logk
- o () 2E)
= o(kz") . (134)

From (132)-(134), we have
1 peo
j f uk v¥ 3¢~ (Inv) dvdu = O(k! (log k) k—s/z) : (135)
o /1

We now analyze the other term in (131). It is clear that

j /(uv)k ""’(ln(uv))( e dvdu

O(]/ k=3 ok “"lnudvdu)
(/‘muk“3 lnu vke""’dv} du)
1 1

( Wlnu{ & "”dw}du)
1

o[l [ v )

= 0(I(1, VE/10) + I(VE/10, )) , (136)

I(::,y)=j:lnu{f w"e“"dw}dw ‘

We have evaluated similar expressions in the derivation of (125) previously. We can establish,
similarly,

0

O

Q

where

1(VE/10, ) /\/_/m ~¥ kldu
= O((logk) k2 -k!) , (137)
and

du

I(1, Vk/10)

VE[10 15 o y2(k+1)
/1 T

logk /vVk\2k-11
o(Z: (H™})
& O(k!2"‘) : (138)
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From (136)-(138), we obtain
j ” j " (w0t e (1n(uv)) s dvdu = O(Ki(log k) k=7 . (139)
1 N (u+v)®
It follows from (131), (135), and (139) that

sk = 0((logk) - k=%/*) . (140)

We now need to derive an estimate for {;. Note that

ki, a0 ( jo S jo (o)t (1 %) { jo % g2 em(utv)e dz} dv du)
(jom fol(uv)k & (ln %) (u+_1v)3 dvdu)
= O(jol(ln%) {/Ooow"e'"’ @ i v)3 %1;1_;} dv)

LoD e i) )
jo 1v2 (in -11;) { /U ~ wt3e dw} dv)

Thus,
=03 . (141)

It follows from (130), (140), and (141) that
Bri = 0((logk) - k~*/%) .
This completes the proof of item (c) in the lemma.

C2. Proof of Lemma 36.

We first prove the following identity: for all k > 1,

_ VT ] W A (142)

To prove (142), note that

' f /oo z? —v:l':-:l:2 {/co uk e~ u(v+2) du} dvdz
+ JO 0 0

1

k

1 0 k 2 —vz—::z k!

Z ./0 _-m—_(v+:':)"+1 dvdz .

ﬁo.k ==

59



Make a transformation of variables = £v, and we obtain

00 e E2vk+2 1 o 2),2

- /w /m (1 + E)k+1 e+ de v

= ol ra2) "
“ o L 267 (1+ 677

\/'f°°

ey

Make a transformation of variables z = TE’ and we obtain
1
ﬁo,k=4/ Vi—zzkdz .
0
This proves (142).

(a) Determining << Hy >>.

Using (142), we have

<< Hy>> = ) HiPox
k>1

‘/-me Viczabdz . (143)

k>1

For any 0 < w < 1, the following expansion is uniformly convergent for |z| < w:

11 ‘ZH*"C

k>1

It follows (see e.g. [A, Theorem 9.8]) that, forany 0 < w < 1,

Zﬂ'kj Vi—z zFdz = /w\fl—::llxln 1 dr

k>1 1-2z

- dz . (144)

‘/___

Note that Hy [} V1 -z 2¥dz =0 ((log k)k=3/ 2) by (142) and Lemma 35 (c). Thus the left-hand
side of (144) is an infinite series of functions (of the variable w) that is uniformly convergent on
the interval [0, 1]. We can interchange limit and summation (see e.g. [A, Theorem 9.7]) to obtain

hm sz/ Vi-zzF dz—z H;,j Vi-zztde (145)

v=l-ia k>1
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It follows from (143)-(145) that

1
<< Hp>> = v Z:ijo Vi—z zFdz

4 =
= — m k l—-zz"dz
VL He| V b
4. =S 0
_ VT v ] 1
. 4 wlivllil—o l—Iln 1—Idz
T 1 1
I R er i i
T 11
= ~TL%lnzdx
z=1 1
= —ﬁ{2\/51n: -2 ﬁldz}
4 0 T
z=0
= 7.
(b) Determining << H,(f) >>.
Using (142), we have
oL H(z) >>= t— \/_ E Hmj Vi-zztdz . (146)
k>1
. Define the following function g(z) for |z| < 1,
g(z) = T2 mz>:1 — % - (147)

For any 0 < w < 1, the expansion (147) is uniformly convergent for |z| < w. It is elementary
that,forany 0 <z < 1,

TP - £ ¥ 3

k>1 k>1 1<5<k 7?
m>l{m2 k>m }
=3 1 =
] m2l-—z
= 9(z) (148)
Thus, from (147) and (148), we have for all |z| < 1
1 1
S B = Y = (149)
k>1 T l-z g om?



For any 0 < w < 1, since (147) is uniformly convergent for |z| < w, we can integrate term by

term (see [A, Theorem 9.9]) to obtain

I r(;w ~)d..., . j%(g mL)d

— 2™ dzx
Sk
Ir=w
=¥ iz {-2@ ™. < 2m/ vi-z z‘““d:r}
m>1 " :=O
= -2/T-w Z +22 f Vi—zz™'dz. (150)
m2>1 m>1
On the other hand, as 345, H ,(f}\/ 1—z z* is uniformly convergent for |z| < w, we have
w
/ Vi—z Y 8P| dz=Y B® [ V=2 *dz . (151)
k>1 k>1 ¢
From (150) and (151), we have, for 0 < w < 1
ZH”’] Vi—z z¥dz=-2/T-w E 42T f Vi—z z™ldz . (152)
k>1 m>1 m>1
Now, using similar reasoning as in the proof of (145), we obtain
lim ( H(z)/ Vi-z 2 d::) = (2)j Vi—z zFdz (153)
p G V1 k>1
and
. -1
wh_nla_( 2V1-w E— + 2y = / Vi—z z™" d:t)
m2>1 m21
=2y — f Vi-z z™ldz . (154)
m21
It follows from (146), (152)-(154) that
1
<< Hf’ >>=ﬁ Z L Vi—z 2™ ldzr . (155)

2

By repeated partial integrations, we have

1 (m-1)!
i om=lg, - AM=1)F
jo l=% s%"de = T——p
22 2
4™ (m - 1) m!

(2m +1)!
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Thus,
< HP>>=F 5 (L)
s (2m +1)!

This proves item (b) in the lemma.
(c) Relating ((Hx)) to << H,(,z) >>, << Hi >>.

Let f(u,k) = u* e~u(v+3), Then f(u, k) satisfies the conditionsin Apostol [A, Theorem 10.39],
and hence [5° f(u,k)du exists, & [¢° f(u,k) du exists, and § [5° f(u,k) du = [5° 8f(uk) 40
This means

o0 (=9
jo (Inu) uk e *("+2) dg = % (L uk e~ulvt2) du) ; (156)
We need another well-known identity (see [K2, Exercise 1.2.7.23]):
I'(k+1)
Ry = He- 7 (157)

where + is the Euler’s constant.
Now, using (156), we have, for all k£ > 1,
(=] o0 oo
Bix ‘= % / f f (In u) (uv)* e™* 22 e~ =2+ gz du dv

= k'.[ ] v :.,'2&_'”’_"2 9 [j k g=u(vtz) du] dvdz

wie  EE k.2 —vz—z2 8 r(k+1))
= k!-fo /0 v ze (___—(v+z)k+1 dvdr

!
B %fm/wu”zze"”(""'”){ l‘(k+ ) I‘(k-!-l)ln(v-l-a:)}dvdx

- (v + )41 (v+ z)k+1
— r’(k +1) 2 yk e—=(v+2) 1
2= I‘(k+1)./ f e (ot 2)H dvdz
&~ In(v+ z)
_,[3 ./t; z? z(v+x) m dvdz . (158)

These two last integrals can be shown to exist by standard arguments as used in the proof of
Lemma 35 (a). (Proof omitted)

By (157), the expression in (158) is equal to
o0 o0 (= <]
(Hy _7)/ j j Yo,x(z, u,v) dz dudv
o Jo Jo
o0 o0 o0
—j / / Yo(z,u,v) In(v+ z)dzdudv .
o Jo Jo

Thus, we have

((Hy)) = << Hi>>—79 << Hy>>
H Yoi(z,u,v) m(v+ z) dzdudv . (159)
2L WAV
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From (159) and the definition of ((Hx)), we obtain
<< HE>> - 2((Hi))=7<< Hi >>

zﬂk_[ f j Yox(z,u,v) In(v+ z) dz dudv

k>1

-—EH;,.[ j / Yok(z,u,v) Invdzrdudy

k>1
= Y<< H;>>+Cp , (160)

where

CO_EH;"/ / f Yor(z,u,0) In(1+Z) dzdudv .

k>1

We now evaluate Cp, omitting the justification of standard manipulations such as the exchange
of sum and integration, since we have done similar arguments earlier in the proofs of item (a) and
item (b). Proceeding as in the proof of (142), we have

o0 o0 o0 T
f / ] Yox(z,u,v) ln(l + —) dz dudv
o Jo Jo v

Vil R/ 4
= Tjg T na+od

ﬁ j: Vi—z z* ln(i) dz

I

Thus,
Co = \/T_] Vitz In )(Ez"ﬂ,,)dx
1
= if Vi-z In(= )lizlnl_l_zdz
= \/T’Fjol \/11__2 (Inz)(la(1 - z)) dz
- 4 ]01 % (In z)(In(1 - 2)) dz
. _4@1%/‘: 212 In 2 dz
= ‘\/TE mz>:1 % {m+11/2 1/ a2 :: - m+11/2 o] zm_md"}
_ \/Tv'rﬂgl%m (161)

64



From (160) and (161), we have then

ﬁzl e

2 e = . '
<< Hi >> - 2((Hi)) = v << Hy >> + = m (2m + 1)?

m>1

This completes the proof of item (c) in Lemma 36.
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