Princeton University

PRAM: A SCALABLE SHARED MEMORY

Richard J. Lipton
Jonathan S. Sandberg

CS-TR-180-88

September 1988

Computer Science

PRAM: A Scalable Shared Memory

Richard J. Lipton
Jonathan §. Sandberg

Department of Computer Science
Princeton University

1. Introduction

Shared memory is studied and used extensively throughout the fields of VLSI design [26][27][28],
MIMD architectures [10][25])(35][50][51], parallel programming [39], distributed computation [42], and
computer networking [14][37). Shared memory systems are preferred to message passing schemes [30][45]
because they are easy to program while at the same time they deliver high performance at a modest cost.
The greatest weakness of shared memory systems is that they are not scalable systems. In other words, at
some point the addition of hardware resources to a shared memory system degrades rather than improves
system performance. Although there are dozens of shared memory MIMD machines commercially avail-
able, typically only a few processors can efficiently share memory. In MIMD architectures the latency of
shared memory is one of the fundamental parameters determining the ultimate operation and performance
of the entire system [53]. Hence there is intense interest throughout the commercial, military, scientific, and
academic communities in the design, implementation, and analysis of shared memory systems with special
attention to the latency of such systems.

Nearly all of the current shared memory designs implement coherent memory systems (CRAM sys-
tems). Such coherent systems have the property that a read of a memory address always returns the latest
value written to that memory address. CRAM is desirable since it is a simple memory model that is both
familiar and transparent to the programmer. A programmer can use a CRAM as if it were a single global
memory. One common implementation of a CRAM shared memory system associates a local memory with
each processor. Since the local memories may store multiple values associated with a single memory
address, all CRAM systems include some mechanism or protocol to insure that local memories behave con-
sistently.

The cost of the simplicity, familiarity, and transparency of CRAM is hardware complexity leading to
increased expense. Current shared memory read and write commands require slow global actions that need
access 1o a bus or a network resource. Some CRAM protocols require such global actions during the execu-
tion of each shared memory write command [2]. In the design of MIMD architecture caches, consistency
requires a large processor state which in turn implies expensive context switching. The consequences of
coherency are inefficient processor utilization during memory accesses and increased hardware expense.
The search for a high performance CRAM protocol that requires minimum global action and minimum pro-
cessor state is generally considered to be the outstanding open problem in computer architecture [53][6][7].

Recent investigations have demonstrated that it is possible to reduce the penalty of high interconnect
latency costs at the expense of maintaining memory coherency. The goal of these investigations is to avoid
processor idle time due to interconnect latency while maintaining low synchronization costs. In the Horizon
Project [35] Smith has designed a machine that can effectively read and write in time independent of the
interconnect latency. Valiant [41] proved a simulation theorem using the same idea to get an optimal simu-
lation result. In both investigations memories were allowed to become inconsistent during the execution of
independent streams of instructions. Since reads and writes from independent streams do not interact, the
step by step consistency of the memory is not required. Scheurich and Dubois [44] have developed a cache
system that sacrifices cache coherency for a weaker property: sequential consistency. Given the trace
driven simulation results of Eggers [21], which indicate that the amount of write sharing in parallel

-2.

programs is small, shared memory systems that optimize performance with respect to memory latency may
achieve much higher performance than other shared memory systems.

The major result presented in this paper is an analysis of a new scalable shared memory system
called PRAM [37]. PRAM is scalable, unlike any CRAM shared memory system, precisely because PRAM
shared memory can reach an inconsistent state. The effects of any memory inconsistency demonstrated by
PRAM can be simply avoided using standard programming techniques. In fact, a large class of CRAM pro-
grams execute to completion exactly the same way on a PRAM as on a CRAM. Our approach to shared
memory is similar in spirit to the MIPS project [26][27] approach to processor design. MIPS demonstrated
that removing hardware locks on the instruction pipeline allows processors to run faster, while PRAM
demonstrates that removing coherency requirements on shared memory systems increases the memory
bandwidth. In both cases compiler technology is used to construct fast correct programs. In the following
sections we will provide evidence that PRAM systems are simpler, faster, and less expensive than CRAM
systems.

2. CRAM

In order to obtain results that are broadly applicable, we will use a very weak definition of a CRAM
system, namely: a shared memory is a CRAM provided the results of any parallel computation is always
that of some serialization. That is, every parallel computation reaches a state that some sequential compu-
tation could have reached. The usual notion of coherency, that each read returns the value of the last write,
is a much stronger condition [17](44]. The weak consistency property will be examined under the condition
that signal propagation delay or the network latency is not negligible.

A key parameter in any shared memory system is the latency 1. In a MIMD system the time required
for signals to travel from one processor to another is called the system’s latency. More generally, latency is
the delay between a request or command and its corresponding fulfillment or completion. For the purposes
of analysis, T can be thought of as the sum of two components,

T =Tglobal +Tlocal.

Tglobat 1S that portion of the latency delay that can be attributed to the execution of some global action such
as requesting and receiving information over a common bus or interconnection network. Ti.cq is that por-
tion of the latency delay that can be attributed to the execution of some local action. The cycle time of the
local processor or the latency of a local memory access are examples of Tic. delays. If an atomic local
action such as a write to local shared memory requires an accompanying action such as an acknowledge-
ment from a remote memory, the Tz,5a component of the latency may be the dominating term in 1. Since
any scalable shared memory system’s performance must be immune 0 Tgi,ba growing large with respect to
Tweal » OUr analysis will focus on these two quantities.

There are two basic lower bounds on 1:
Physical: T2d/c where d is the distance between the two processors and ¢ is the speed of light; and

Logical: 12 pl where p is the gate delay of a basic gate and / is the minimum number of gates on any log-
ical path from one processor to another.

The physical and logical lower bounds represent the two basic ways in which latency becomes a rate
determining factor in data communications. Both lower bounds account for instances where Tzpa dom-
inates Tioear in the latency associated with a shared memory request. The physical inequality nearly
becomes tight when the interconnect latency is attributed to the long distance that the signal needs to travel.
Such would be the case in a wide area computer network connecting high performance CPUs over hun-
dreds or even thousands of meters. But the physical bound, d/c, is even important in cases that signals
travel only a few meters, as can be attested to by designers of supercomputer class multiprocessors. As pro-
cessor speeds increase the physical latency bound will become as important in the fields of MIMD archi-
tecture and VLSI design as it already is in the fields of distributed computing and computer networking.

-3.

The logical inequality presented above is usually stronger than the physical inequality. The types of
latency, 1, for which the logical bound dominates are network latency delays. These are typically associ-
ated with complex routing networks that provide flexible communication between a possibly large number
of processors. For example, on a network based multi-processor such as the BBN Butterfly [13], p/ can be
as large as several microseconds.

The following simple theorem is quite useful because it demonstrates that CRAMs must couple glo-
bal actions (such as acknowledgement signals from remote machines) with local actions (such as reading
and writing from local shared memory). In the case that Tyusar dominates Ticar, CRAM commands must
pay Tzwea latency delays on local memory accesses.

Theorem 1: Let r (resp. w) be the best case (fastest possible) time to read (resp. write) in some CRAM.
Then, r+w 2 1.

Proof. Let the CRAM have two processors named P and Q. Let x and y be shared variables which are
initially both 0. Then let the processors execute the following programs:

P:
write (x,1);
weread (y);
Q:
write (y,1);
z « read (x);

Clearly, in any serialization of these two programs (w,z) is equal to (0,1) or (1,0) or (1,1). It is never equal
to (0,0) in any serial computation.

Since we have assumed that x and y are stored in a CRAM, any parallel computation must also avoid
the state of (w,z) equal to (0,0). Now assume that both P and Q execute their statements at the same time,
also assume that r+wis less than 7. Then both w and z must be 0 following the completion of P and Q.
Neither P nor Q can detect that the other has written because T is the minimum information transfer time.
This contradiction proves the theorem. QED.

Theorem 1 shows that either r 21/2 or w >1/2. We conjecture that a more delicate argument can
improve that constant of 1/2 in these inequalities.

This simple theorem is important since it shows that the cost of consistency is that read/write latency
must grow at least as fast as 7. Thus, no matter how clever or complex a protocol is, if it implements a
coherent shared memory or CRAM , it must be "slow.” If a shared memory system must be consistent, then
it must take time proportional t0 T,usa for reading and writing. In particular, a consistent shared memory
cannot be both fast (memory access time independent of T,wsar) and scalable (allow Tgiobar >>Tiocat). In the
next section we will define a PRAM shared memory that is allowed to become inconsistent so that it can
read and write faster than Typar.

All shared memory system implementations fall between two points in the design space. The first
point has all p processors sharing a single physical memory. In such a shared memory the fundamental
problem is that at least p—1 of the processors are physically separated from the shared memory. Thus, the
time required by these processors to perform a read or a write is dependent on T. AS T,uba grows large with
respect 1o the the processor speed the memory access latency becomes unacceptably long. Hence, few
current designs favor this portion of the design space [14).

The second design point is a distributed implementation of p processors each with a local physical
memory that communicate with a protocol that provides a virtual single shared memory. The fundamental
problem facing this second implementation is that while reads and writes may be satisfied from local
memory thereby avoiding latency delays, in the absence of further processing, individual constituent
memories may respond differently to identical requests issued by distinct processors. The second imple-
mentation has been the focus of nearly all the published shared memory literature.

A simple coherent distributed implementation would not allow a write to a shared memory address to
complete until all the other local memories containing that shared address were similarly written. In such a

-4-

scheme all the shared writes require time depending on T because all the remote memories even if they do
not contain the shared location must send an acknowledgement that they do not contain the location. The
current battery of cache coherency protocols including: directory schemes [2][34], snoopy schemes [26],
and software (compiler) enforced coherency schemes [10] [11] ameliorate the direct dependence of of
write delays on T demonstrated in the above simple example. In effect, these schemes seek to manipulate
shared variables so that if a processor must write to a shared variable it nearly always writes to a local ver-
sion of the variable and remains oblivious to the ensuing global actions.

The literature is filled with designs of coherent shared memories [2][4][6][9][171[24]
[28][41][46)[49]. Coherency is not so essential a property that all future shared memory designs need be
coherent. Consider the two major benefits of coherent shared memory: it handles write-write conflicts
efficiently and it provides fine grain locking. Eggers [20] has indicated that write contention is a small
fraction (2%) of the total memory requests in common parallel programs. If this is true then a coherency
protocol that significantly delays 98% of all memory references to aid the remaining 2% is of dubious
value. More importantly, multiprocessor applications utilize multiple processors to update records stored in
memory. Often these updates modify several words in the record. If the application is to keep these
records in a consistent state usually only one update on each record can be allowed at a time. Thus, the
applications must use a software lock to ensure that only one update occurs at a time. The coherency of the
shared memory does not alleviate the need for these software locks. Applications using coherent memory,
i.e., CRAM, or an incoherent memory such as PRAM both require synchronization overhead.

3. PRAM
In this section we present the definition of a PRAM (1) shared memory system and examine its main
features. Let P, ,P32,. .., Px be processors that share a memory with locations 0.1,...,m-1. Assume that

each processor has a local memory M; with memory locations 0,1,....,m—1. All the local memories are ini-
tially in the same state. The memory M; is the i* processor’s view of the current state of the shared
memory. Each processor executes read and write commands:

(1) read(i). Processor P; executes this operation by performing a normal read from location i from its
own local memory M;.

(2) write (i ,v). Processor P; executes this operation by performing a local action and initializing a global
action. Locally, it does a normal write to its memory M; at location i with value v. Globally, it sends a
message <i,v> to all the other processors. No acknowledgement of successful message transmission is
expected nor is one ever received.

As these messages <i,v> arrive at a processor they are automatically executed (i.e., location i is
written with value v). The data transmission media or switching network performs the task of repeating the
message <i,v> to all shared memory processors. In our implementations the PRAM memories have been
dual ported (one port devoted to network messages and the other to the system bus). In both reading and
writing, a processor never waits for the completion of a global action (in particular the execution time is
independent of Tgiobat)-

Theorem 1 shows immediately that a PRAM is not a coherent shared memory. The reader can
readily observe that a PRAM system can execute a sequence of write commands that will cause the shared
memory to become incoherent. This potential for inconsistency is the key feature of PRAM. The incon-
sistency alone is not a valuable feature, it is simply the necessary by-product of the complete decoupling of
global actions and local shared memory accesses. The only global action initiated by the PRAM protocol
has no completion acknowledgement mechanism. Hence, atomic local actions never wait for global actions
to complete.

Since PRAM is not even sequentially consistent, no CRAM hardware implementation (i.e., Snoopy
caches, Directory schemes, Distributed Map schemes, or weakly consistent schemes) can ever be
behaviorally equivalent to a PRAM hardware implementation. In addition to behavioral inequality, PRAM

1 Pipelined RAM

-5-

hardware is distinguished from CRAM with respect to financial and architectural costs. A PRAM imple-
mentation will always be less expensive than a comparable CRAM implementation because of economies
in part count, printed circuit board complexity, manufacturing, and system test. The simplified PRAM
architecture offers better use of technology related resources, faster design time, increased reliability, and
migration of complexity to the compiler.

Although architectural simplicity and cost alone are sufficient to justify the adoption of new technol-
ogy, PRAM also enjoys a performance advantage over CRAM. In computer architecture it has long been
recognized that processors need not wait for each operation to complete before starting the next one.
PRAM simply applies the same pipelining idea to shared memory block data transfers. The pipeline in
PRAM’s case can be thought of as a signal transmission media with a long propagation delay. The most
efficient way to use such a pipeline is to continuously load data signals into the transmission media. The
strategy optimizes for speed regardless of how long the signals will be delayed before reaching their desti-
nation. For example, video signal transmission over satellite links commonly employ a block data pipeline.

PRAM achieves a performance advantage over CRAM in any shared memory application that
requires a large fraction of local memory accesses to additionally perform some slower global action (i.e.,
when Tgiobat >Tiocat). A PRAM system, provided with adequate switching connections, can scale to any
number of nodes. There is no point where the signal propagation delays due to network saturation can
cause the system to fail. Since the local PRAM is independent of Tywpa this same quantity can grow very
large without effecting the PRAM hardware.

4. PRAM Programs

Since PRAM and CRAM shared memory implementations are behaviorally distinct it cannot be the
case that PRAM and CRAM programming are equivalent. Preliminary investigations indicate that PRAM
programming is very simple, however, final judgement can only be made after the computer science com-
munity gains more extensive PRAM programming experience. The differences between PRAM and CRAM
programming evolves solely from dependence on sequential consistency. We will examine these differ-
ences with respect to both coding practices (code generation) and execution speed. The unique CRAM
codes that cannot be executed directly on a PRAM system can be identified by a compiler that produces
correct PRAM versions of CRAM codes. Coding practices do not significantly change in moving code
between systems. The execution speeds of many CRAM codes rise dramatically when transferred to a
PRAM system.

Parallel programs perform three principal tasks: synchronization, data motion, and computation.
PRAM software can perform all the functions programmers depend on in developing codes to perform
these tasks. However, this is not the whole picture: in many cases the exact same program that solves the
task on a CRAM will also operate correctly on PRAM system. This class of programs is important enough
to name: say that a parallel program P is conservative provided it reaches the same final states on a CRAM
as on a PRAM. The class of conservative programs is quite large, being composed of programs whose pri-
mary duty is data motion and computation.

The running time of PRAM programs will in general be as good or better that of corresponding
CRAM programs. In order to make this comparison we will need the following definition. The number of
steps of a parallel computation is the maximum number of operations performed by any of its processors.
On the other hand, the time of a parallel computation is the actual duration of the computation taking into
the account the execution times of each operation. Then,

Theorem 2: For any CRAM computation of n steps and ¢ time, O (tn) 2 t. Moreover, 1 2Q (tn) for some
computations.
Proof: This follows directly from the definition of time and Theorem 1. QED

Theorem 2 shows that there exist a class of CRAM programs whose running time depends multiplica-
tively on 7. In sections 4.2 and 4.3 we will define and give examples of practically important classes of pro-

grams whose running time on a PRAM system depends only additively on t. First we will examine the
methods of synchronization available to PRAM and compare their performance with corresponding CRAM

synchronization methods.

4.1. Synchronization

Of all parallel programming tasks synchronization is the most difficult and hence requires the most
attention in both PRAM programming and paralle] computing in general. Synchronization is the only task
where CRAM and PRAM programs display distinct behavior. Independent instruction streams performing
data motion or computation execute the same way on a PRAM as on a CRAM.

Parallel programs use three basic synchronization mechanisms to: (1) synchronize the transfer of
data between processes (producer-consumer), (2) hold processes at a common synchronization point (bar-
rier), and (3) allow a process exclusive access to a system resource (mutual exclusion). Classic CRAM pro-
grams performing these functions have been published and thoroughly studied. The classic solutions use
only read and write operations with the additional guarantee of serializability.

In order to demonstrate that PRAM can efficiently handle the common demands for synchronization
we will show there are competitive PRAM programs for producer-consumer, barrier, and mutual exclusion.
However, a great deal of research remains to be done on issues of fault-tolerance, faimess, and other
aspects of synchronization on PRAM.

The PRAM programs we will propose as solutions to the producer-consumer and barrier synchroni-
zation tasks depend on the busy-wait loop. The standard busy-wait program where a process waits for a
flag to change:

flag «1;
while (flag=1) do;

is conservative, and hence works just the same on both PRAM and CRAM. In Theorem 3 we will use the
busy-wait loop to implement conservative program solutions for producer-consumer and barrier.

Theorem 3: (1) Both CRAM and PRAM can solve the producer-consumer problem in the same time of
O (1) per item wansferred. (2) Both CRAM and PRAM can perform a barrier in time O (tlog (p)) with p
Processors.

Proof: We will just prove (2) since (1) follows in the same way. Both CRAM and PRAM use the same
tournament method to generalize the solution for p=2 to p>2. For p=2 they each operate as follows: Each
of the processors P and Q have flags: let P have x and Q have y as a flag. Initially, x and y are both 0.
Then they execute the following programs:

P:

x «1;

while (y=0) do;
Q:

y<l

while (x=0) do;

Clearly, this implements 2 barrier. Also it is easy to see that the time required by both CRAM and PRAM is
O (7). QED

Some of the classical programs used to solve the mutual exclusion problems on CRAM do not
operate correctly on PRAM, i.e. they are not conservative. For example, Dekker’s solution to the mutual
exclusion problem [54] depends on the fact that the shared memory is serializable. Hence, it will not
operate correctly on PRAM. However, there is a trivial PRAM program that does solve the mutual exclu-
sion problem.

Theorem 4: Both CRAM and PRAM can solve the mutual exclusion problem in time O (t) per operation.

Proof: We assign one of the processors 1o be the central controller. The other processor sends a message 10
the controller requesting access to the critical section. It then waits for the go ahead as in theorem 3.

Clearly, the time bound is as claimed. QED

-7-

Theorems 3 and 4 demonstrate the existence of programming solutions to standard synchronization
problems, but they do not necessarily indicate that PRAM is an easy target for which to write synchroniza-
tion code. Current synchronization programs use a variety of primitives that take advantage of memory
coherency. In general any commonly used synchronization primitive can be implemented in a PRAM pro-
gram. Given a library of synchronization primitive routines it is easy for a compiler to substitute PRAM
software for the CRAM operations. The result will be PRAM code that reaches the same set of final states
as the original CRAM code.

4.2. Data Motion

PRAM executes data motion operations optimally. For any single data item PRAM and CRAM codes
execute at approximately the same speed. However, for streams of data, PRAM programs take advantage of
a pipeline effect. No matter how large Tzusa becomes relative to Ti,ca data will be sent from the producer
€Very Tiocat time period until the data stream is exhausted. In Theorem 5 we will show that a PRAM can do
a block copy of n words in time O (rn+1) rather than the expected CRAM time O (tn). Thus, the latency 1,
in a PRAM system, only contributes an additive term to the execution time. However, the latency T execu-
tion time penalty in a CRAM system is expected to be multiplicative since latency costs may be paid at each
step of the block copy. Many of the proposed shared memory systems would take Q(tn) time; the few
designs that avoid this do so only under special conditions using complex hardware.

Theorem 5: A PRAM can move n words from one memory buffer to another in time O (n+1).

Proof: Let processor P wish to send n words to processor Q. Then P just copies the n words to Q’s
buffer. When this process is done, P signals the completion by setting a flag. Once the flag is set, 0 is
free to copy the block of words. The total time for this transfer is:

(1) O (n) for P to copy the biock of n words into PRAM,;
(2) O (1) for Q to get the result of setting the flag; and
(3) O (n) for Q to copy the block from PRAM.

Thus the total time is O (n+1). QED

The block transfer program used in the proof of Theorem 5 is another example of a conservative pro-
gram. The same code executes correctly on the CRAM and PRAM but the PRAM code in this case requires
the minimum possible execution time (7).

4.3. Computation

There are many examples of conservative computations because many parallel algorithms are organ-
ized into parallel stages that are executed in order. Within a stage each processor works independently on
its own part of the computation. Typically, each processor operates in a manner that does not require that
its writes be performed completely until the next stage is started. Since the processors are required in gen-
eral to perform a barrier before the next stage it is always the case that the writes will be completed before
the next stage starts. Thus, algorithms that are organized in this manner are always going to be conserva-
tive. These observations are summarized in the following theorem:

Theorem 6: Let P, ; P2 ; ...; P, denote the sequential execution of the computations Py, P2, ..., Px, while
Py 1 Pa1l -+ || P denotes the parallel execution. Furthermore let Py, P3, ..., Px be conservative
computations. Then,

(1) Py;P2;...; Py isaconservative computation.

QP11 Pyl - 11 Prisa conservative computation provided no P; writes a value that a P, reads
withi#]. ;

1 Not accounting for encoding address bits

_8-

We have already seen an application of this theorem in the use of busy-wait loops for the construc-
tion of programs for producer-consumer and barrier in Theorem 3. Another important example is data base
transaction processing. Transaction systems use software locks to control memory conflicts. Thus, they are
conservative systems by Theorem 6.

We can greatly generalize Theorem 5 to the class of oblivious computations. A computation is
oblivious if its data motion and the operations it executes at a given step of the computation are indepen-
dent of the actual values of the data. Many important computations including the following are oblivious:

(1) Digital Signal Processing algorithms such as FFT [8];

(2) Matrix operations such as matrix-vector product, matrix-matrix product,
and, elimination without pivoting; and

(3) Dynamic Programming [16].

Also included in the class of oblivious computations are systolic array algorithms [31], data-flow algo-
rithms [2], and functional programs [25]. For example, most of the Livermore Loops [22] and LINPAC
[15] codes are oblivious computations. The class of oblivious computations is very large.

On any computation let the depth of the computation be the minimum number of steps required to
perform the computation with any number of processors. For example, FFT on n points has depth log (n).

Theorem 7: Let an oblivious computation take n steps and have depth m. Then,

(1) A CRAM can do the computation with p processors in O (tn/p+tmlog (p)) time; and

(2) A PRAM can do the computation with p processors in O (n/p+tmlog (p) time.

Proof: Since the computation is oblivious we can represent it by a fixed dag G. Each node of the graph
corresponds to one step of the computation and an arc from one to another represents a dependency, i.e.
x—y means that x must be executed before y. Both our claims (1) and (2) follow again from the same
algorithm. Divide the graph G into its levels G,G1.....Gm-1 Where G; is the set of nodes with exactly i
predecessors. Now execute each level in parallel and then do a barrier on all p processors before stating
the next level. Clearly, this takes |G;|/p to do the i# level and O (tlog(p)) to do the barrier by Theorem 3.
The total time is,

g’x L%" +0 (tlog(»))

where A is the cost of read/write access to the shared memory. Thus, the total time is

0 (’;—7* +milog ().

Setting A =t for a CRAM and A=1 for PRAM yields the theorem. QED

The importance of this theorem is that provided n/p > mlog (p) the first term dominates. In this case
CRAM is about 1 slower than PRAM in the worst case. Since this is often the case it follows that PRAM is
much more efficient. Note, this is the case whenever the actual computation dominates the synchronization
overhead. Also this theorem shows once again that both CRAM and PRAM often execute the same exact
program. Only the time required is different.

5. Scalability

Corresponding to the two basic latency lower bounds presented in section 2 there are two fundamen-
tal directions along which one can scale a PRAM shared memory system. First, the distances between
memories can be as long as desired. Second, the number of processors can be significantly increased. We
will examine the effects of scaling PRAM along each of these directions.

Data communication is the key to successful exploitation of all types of parallel processing. PRAM's
wide area high-speed memory-to-memory data transfer capability makes it uniquely suited for conducting

-9.

parallel computations across geographically isolated processors. Consider the execution time of a parallel
program derived in Theorem 7,

0(-;- +tmlog (p)),

of n operations in m stages over p processors and a maximum latency t. If we are willing to spend half our
time performing interprocess communication then

- =1plog (p)

In other words the amount of work per stage of the computation must be equal to the normalized latency
delay (1), times the number of processors, times the synchronization delay. If we are performing a calcula-
tion that requires 100,000 instruction executions per stage then in the case of four 1 MIP processors the
normalized latency delay may approach 12,500. Such physical latency delays would not be encountered
until the processors were approximately 2500 miles apart. If there is more work to be done per stage or if
more time can be spent synchronizing the distances between processors can grow still larger.

Some computations may only be possible on the combined resources of geographically isolated
machines. In these cases it is not the parallel speed up that is important but the fact that the task can be run
at all. For example, consider scientific simulations/computations that use fine scales requiring hundreds of
megabytes of memory for execution. Problems in aerodynamics, hydrodynamics, structural analysis, radia-
tion transfer, thermodynamics, weather forecasting, solid-state physics, and physical chemistry all have
such requirements. If no one machine has enough memory to run the simulation then the task cannot be
completed. If the combined memory resources of four machines is available for one problem the simulation
can proceed to completion.

PRAM can be scaled to support many more processors than conventional CRAM. However, there is
one problem with a straightforward implementation of the PRAM protocol: network traffic. Consider a
PRAM system with p processors. Then if each processor simultaneously writes to the shared memory,
each processor must send p messages through the network; a total of p? messages will be sent. In a scal-
able system where p would be large this would be a major bottleneck. Thus, we must consider how to
reduce the number of messages that the network must handle.

A simple solution to the network traffic problem is to add a cache to each processor. Then generalize
the PRAM protocol to handle cache read and write misses.

(1) read—miss (i). PRAM behaves as any conventional cache would: a memory request is made for the
specified word.

(2) write—miss (i ,v). PRAM broadcasts a write message of the form <i,v> to all the other processors. The
write does not wait for any sort of acknowledgement.

The use of a cache has all the usual advantages and dramatically reduces network traffic. Assume
that each cache has a table mapping pages between caches. Since messages, <i,v>, are only sent to those
processors indicated in the page table the network traffic is reduced. For example, consider an arbitrary
oblivious computation. If the fan-in of each operation is at most O (1), then on the average the fan-out
must be at most O (1). Thus, each write message from a processor is needed by at most O (1) other proces-
sors. The network traffic is reduced dramatically.

Existing codes have similar write fan-out upper bounds so that all caches need not be mapped into
the same shared memory. However, even if one page is in all the caches only writes to it will cause mes-
sages 1o be sent to p processors. The network traffic will be modest provided there is not a substantial
write-write sharing of data. Since the trace simulation results presented in [20] indicate that write sharing
is rare it follows that PRAM is scalable with respect to the number of processors.

f The normalized latency is

Tlocal

6. Conclusions

We have presented a new scalable implementation of shared memory, PRAM , that is immune to long
network latency delays. Surprisingly, the cost of synchronization has remained low while the long latency
performance has been significantly improved. The price for this scalable behavior is that the PRAM shared
memory is not and cannot be coherent or even sequentially consistent. The possibility of a PRAM system
becoming inconsistent is a simple problem to overcome with software. Moreover, a large class of pro-
grams, the class of conservative programs, behave exactly the same way on a conventional shared memory
or a PRAM.

PRAM is currently running parallel processing codes and serving as the primary computer network in
our laboratory at Princeton University. Itis implemented on IBM PC/AT boards that contain 32 Kbytes of
memory and fiber-optic connectors. Each board performs the PRAM protocol at full bus speeds; thus, each
IBM PC "sees” 32KB of shared memory. Work on PRAM boards for VME and other busses is currently
underway. All future PRAM boards will be compatible with previous PRAM hardware. Hence, the PRAM
hardware will be used as a high-speed heterogeneous bridge. A variety of software projects are currently
underway to exploit this system.

The unique features offered by PRAM including: scalability, low cost, simplicity, memory-bus speed
data transfers, wide area distributed computing capabilities, and highly flexible resource sharing make
PRAM an obvious candidate for the backbone of the Federal Coordinating Council on Science, Engineering
and Technology (FCCSET) proposed National Computer Network. In the search for breakthroughs in
parallel supercomputer simulation of physical processes modeled by nonlinear three-dimensional PDE’s,
PRAM-based caching strategies are worthy of inclusion in any MIMD supercomputer architecture. Finally,
in VLSI MIMD architectures as increased processor speeds and silicon real estate create a demand for
more on-chip cache PRAM will be an attractive method to lower the required off-chip bandwidth.

7. Acknowledgements

We would like to acknowledge and thank R. Altman, T. Altman, R. James, D. Serpanos, and C. Zim-
merman for their collective efforts on behalf of the PRAM project. This research was supported by the
Defense Advanced Research Projects Agency of the Department of Defense and by the Office of Naval
Research under contracts Nos. N00014-85-C-0456 and N00014-85-K-0465, and by the National Science
Foundation under Cooperative Agreement No. DCR-8420948. The views and conclusions contained in this
document are those of the authors and should not be interpreted as necessarily representing the official pol-
icies, either express or implied, of the Defense Advanced Research Projects Agency or the U.S. Govern-
ment.

8. References

[1] Agarwal, A., "Analysis of Cache Performance for Operating Systems and Multiprogramming,” PhD.
Th., Stanford, CSL-TR-87-332, 1987.

[2] Archibald, J. and Baer, JL., "An Economical Solution to the Cache Coherence Problem,” The 11th
Annual International Symposium on Computer Architecture Conference Proceedings, pp. 355-362, 1984.

[3] Archibald, J. and Baer, J.L., "An Evaluation of Cache Coherence Solutions in Shared-Bus Multiproces-
sors,” ACM Transactions on Computer Systems, Vol. 4, No. 4, pp. 273-298, Nov. 1986.

[4] Arvind and lannucci, R.A., "A Critique of Multiprocessing von Neumann Style,” The 10th Annual
International Symposium on Computer Architecture Conference Proceedings, pp. 426-436, 1983.

[5] Axelrod, T.S., "Effects of Synchronization Barriers on Multiprocessor Performance,” Parallel Comput-
ing, Vol. 3, No. 2, May 1986.

-11-

[6] Bitar, P. amd Despain, A.M., "Multiprocessor Cache Synchronization” The 13th Annual International
Symposium on Computer Architecture Conference Proceedings, pp. 424-433, 1986.

[7] Bitar, P., "Fast Synchronization for Shared Memory Multiprocessors,” RIACS TR 85.11, Dec. 1985.
[8] Brigham, E.O., The Fast Fourier Transform, Prentice-Hall, 1974.

[9] Cheong, H. and Viedenbaum, A.V., " A Cache Coherence Scheme with Fast Selective Invalidation,”
The 15th Annual International Symposium on Computer Architecture Conference Proceedings, pp. 299-
364, 1988.

[10] Cheriton, D.R., et al., " The VMP Multiprocessor: Initial Experience, Refinements and Performance
Evaluation,” The 15th Annual International Symposium on Computer Architecture Conference Proceed-
ings, pp. 410-421, 1988.

[11] Cheriton, D.R., Slavenberg, G.A., and Boyle, P.D. "Software-Controlled Caches in the VMP Mul-
tiprocessor,” The 12th Annual International Symposium on Computer Architecture Conference Proceed-
ings, pp. 366-374, 1986.

[12] Clark, D., "Cache Performance in the VAX 11/780," ACM Transactions on Computer Systems, Vol.
1, pp. 24-37, Feb. 1983.

[13] Crowther, W., et al., "The Butterfly Parallel Processor,” IEEE Arch. Tech. Comm. Nesletter, pp. 18-
45, Sept./Dec. 1985.

[14] Devlin, et al.,"Shared Memory Multiprocessor Computer System," U.S. Patent No. 4,212,057, July 8,
1980.

[15] Dongarra, J.J., et al.,, LINPACK User’s Guide, SIAM, 1979.
[16]) Dreyfus, S.E. and Law, A.M., The Art and Theory of Dynamic Programming, Academic Press, 1977.

[17] Dubois, M., Scheurich, C., and Briggs, F., "Memory Access Buffering in Multiprocessors,” The 13th
Annual International Symposium on Computer Architecture Conference Proceedings, pp. 434-442, 1986.

[18] Dubois, M. and Briggs, F.A., "Effects of Cache Coherency in Multiprocessors,” IEEE Transactions on
Computers, Vol. c-31, No. 11, Nov. 1982.

[19] Dubois, M., Scheurich, C., and Briggs, F.A., "Synchronization, Coherence, and Event Ordering in
Multiprocessors," IEEE Computer, Vol 21, No. 2, pp. 9-21, Feb. 1988.

[20) Eggers, S.J. and Katz, R.H., "A Characterization of Sharing in Parallel Programs and its Application to
Coherency Protocol Evaluations,” The 15th Annual International Symposium on Computer Architecture
Conference Proceedings, pp. 373-383, 1988.

[21] Eggers, S.J., "Simulation and Analysis of Data Sharing Support in Shared Memory Multiprocessors,”
PhD. Th., Berkeley, 1988.

[22] Feo, J.T., "An analysis of the Computational and Parallel Complexity of the Livermore Loops,” Paral-
lel Computing, Vol. 7, pp. 163-185, 1988. &

[23] Goodman, J.R. and Woest, P.J., " The Wisconson Multicube: A New Large-Scale Cache-Coherent
Multiprocessor,” The 15th Annual International Symposium on Computer Architecture Conference
Proceedings, pp. 422-431, 1988.

-12-
[24] Goodman, J.R., "Using Cache Memory to Reduce Processor-Memory Traffic,” The 10th Annual Inter-
national Symposium on Computer Architecture Conference Proceedings, pp. 124-131, 1983.

[25] Gotdieb, A., et al., "The NYU Ultracomputer -- Designing an MIMD Shared-Memory Parallel Com-
puter,” IEEE Transactions on Computers, Vol. ¢-32, pp. 175-189, Feb. 1983.

[26] Hennessy, J.L., et al., "MIPS: A VLSI Processor Architecture," Technical Report No. 223, Computer
Systems Laboratory, Stanford University, Nov. 1981.

[27] Hennessy, J.L., "VLSI Processor Architecture," IEEE Transactions on Computers, Vol. ¢-33, No. 12,
Dec. 1984.

[28] Hill, M.D. and Smith, A.J., "Experimental Evaluation of On-Chip Microprocessor Cache Memories,"
The 10th Annual International Symposium on Computer Architecture Conference Proceedings, pp. 158-
166, 1984.

[29] Hill, M.D., "Aspects of Cahce Memory ans Instruction Buffer Performance,” PhD. Th., Berkeley,
1987.

[30] Hillis, W.D., The Connection Machine, MIT Press, 1985.

[31] Hillis, W.D. and Steele, G.L., "Data Parallel Algorithms,” Communications of the ACM, Vol. 29, pp.
1170-1183, Dec. 1986.

[32] Karlin, A.R. et al., "Competitive Snoopy Caching," Algorithmica, Vol. 3, pp. 79-119, 1988.

[33] Karp, R.M. and Ramachandran, V., "A Survey of Paralle]l Algorithms for Shared Memory Machines,"
UCB Report No. UCB/CSD 88/408, March 1988.

[34] Katz, R.H,, et al., "Implementing a Cache Consistency Protocol,” The 12th Annual International Sym-
posium on Computer Architecture Conference Proceedings, pp. 276-283, 1985.

[35] Kuehn, J.T. and Smith, BJ., "The Horizon Supercomputing System: Architecture and Software,"
personal comm. 1988.

[36] Kung, H.T., "Synchronized and asynchronous parallel algorithms for multiprocessors,” Algorithms
and Complexity, pp. 153-200, 1976.

[37] Lipton, RJ. and Sandberg, J.S., "Oblivious Memory Computer Networking," U.S. Patent Application,
1988.

[38] Moore, W., McCabe, A., and Urquhart, R. (eds.), Systolic Arrays, Adam Hilger, 1987.
[39] Perrott, R.H., Parallel Programming, Addison Wesley, 1987.

[40] Priess, B.R. and Hamacher, V.C., " A Cache-Based Message Passing Scheme for a Shared-Bus Mul-
tiprocessor,” The 15th Annual International Symposium on Computer Architecture Conference Proceed-
ings, pp. 358-364, 1988.

[41] Przybylski, S., Horowitz, M., and Hennessy, J., "Performance Tradeoffs in Cache Design,” The 15th
Annual International Symposium on Computer Architecture Conference Proceedings, pp. 290-298, 1988.

[42] Raynal, M., Networks and Distributed Computation, The MIT Press, 1988.

=18

[43] Rudolph, L. and Segall, Z.,"Dynamic Decentralized Cache Schemes for MIMD Parallel Processors,”
The 11th Annual International Symposium on Computer Architecture Conference Proceedings, pp. 340-
347,1984.

[44] Scheurich, C. and Dubois, M., "Correct Memory Operation of Cache-Based Multiprocessors,” The
14th Annual International Symposium on Computer Architecture Conference Proceedings, pp. 234-243,
1987.

[45] Seitz, C.L., "The Cosmic Cube,” Communications of the ACM, Vol. 28, pp. 22-33, 1985.

[46] Smith, A.J., "Cache Memories,"” ACM Computing Surveys, Vol. 14, No.3, pp. 473-530, September
1982.

[47] Smith, A.J., "Bibliography and Readings on CPU Cache Memories and Related Topics,” Computer
Architecture News, Vol. 14, No. 1, pp. 22-42, Jan. 1986.

[48] Smith, A.J., "Cache Emulation and the Impact of Workload Choice,” The 12th Annual International
Symposium on Computer Architecture Conference Proceedings, pp. 64-73, 1985.

[49] Smith, A.J., "Line (Block) Size Choice for CPU Cache Memories," IEEE Transactions on Computers,
Vol. c-36, No. 9, pp. 1063-1075, Sept. 1987.

[50] Swan, RJ., et al., "Cm* - A Modular, Multi-Microprocessor,” Proceedings of the National Computer
Conference, pp. 3946, 1977.

[51] Thacker, C.P., Stewart, L.C., and Satterthwaite, E.H., "Firefly: A Multiprocessor Workstation," IEEE
Transactions on Computers, Vol. 37, No. 8, pp. 909-920, August 1988.

[52] Valiant, L.G., Ortimally Universal Parallel Computers, Unpublished Manuscript, 1988.

[53] Arvind and Iannucci, R.A., "Two Fundamental Issues in Multiprocessing,"” MIT Computation Struc-
tures Group Memo 226-5, July 25, 1986, pp. i-35.

[54] Dijkstra, E.W., "Co-operating Sequential Processes,” Programming Languages, ed. Genuys, Academic
Press, 1968, pp. 43-112.

	PRAM Tech Report001.pdf
	PRAM Tech Report002

