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ABSTRACT

In this paper we examine patterns of file use which could be exploited
by a file system to provide better service. =We establish that many files have
distinctive histories of access patterns. In particular, we are interested in
finding which files are more likely to be accessed in the future, and also those
files which are least likely to be accessed. These histories may be utilized by a

hierarchical system to optimize file migration algorithms.



Introduction

We present the concept of a file cache and discuss file access patterns
which make a file cache viable. A file cache will cache disk files in electronic
memory in order to minimize I/O bandwidth requirements. Since users access
data with skewed probability a relatively small cache should be able to capture
a large fraction of disk accesses. We present results which establish methods
for predicting how heavily a file will be accessed and how long a file should
kept in a cache after it is closed, by examining past behavior for each file. We
show that long term trends for any given file tend to be good predictors of

future behavior.

Motivation

This work was motivated by a combination of three trends in computer
architecture.  First, processors have been increasing in power and speed
dramatically. Secondly, the most common form of storage is the magnetic disk,
which has been only slowly improving in both latency and transfer time,
making the delay relative to the processor longer. = Finally, until recently
memory has been dramatically dropping in price and increasing in size. All
these factors combine to make disk caches a viable approach for breaking the
I/O bottleneck.

The first trend driving the need for higher I/O bandwidth and shorter
response times is the development of faster processors, particularly in the
micro-processor market. Within the last few years the power of the typical
micro-processor has increased over ten-fold. These faster processors need at
least a corresponding increase in I/O bandwidth or a decrease in I/O response
times in order to fully realize their potential. Two standard approaches for
increasing the available bandwidth are to either increase the bandwidth of

devices, or to increase the number of devices.

Trends in magnetic disk technology are slowly decreasing response
times coupled with rapidly increasing storage capacity. These trends lead
toward lower bandwidth per byte of storage, which conflicts with newer
processors' needs for increased bandwidth. In addition, since a large fraction

of response time is attributable to rotational latency, it will be difficult to



improve response time by more than a factor of twof without increasing the

rotational speed of the disks. As a result, it is possible to increase the available
bandwidth using many small disks, but there is no simple method, other than

caching, for reducing the response time. As a result, I/O will soon be a

bottleneck for many applications.

The third trend in computer technology is toward larger and cheaper
memory. Even though there has been a recent jump in the price of memory
chips, we feel the downward trend will surely re-assert itself as new memory
production comes on line. As a result, it is now possible to consider designing
computers with massive amounts of memory, which will be available for tasks
other than the traditional main memory store. Thus a new resource with both
high bandwidth and low latency is available to the computer architect for

increasing computer system performance.

Hierarchy

The three trends outlined above drive the need for more I/O bandwidth
and less delay, rule out the obvious solution of building faster disks, and offer a
possible solution. Ever since people noticed that computers access data in a
skewed fashion, computer designers have made use of this fact by building
memory hierarchies to solve bandwidth and response time problems. These
hierarchies try to provide storage at the cost of the slowest elements with the
performance of the fastest elements. The simple solution is to create an
analogous storage hierarchy with memory and disk, but this is only a partial

solution since there are several storage technologies available.

t Since essentially all disks rotate at 3600 revolutions per minute, the average delay due
to rotational latency is 8.3 milliseconds. For high performance disks such as the
Amdahl 6380J the average seek delay is 12 milliseconds. Ingoring other delays such as
‘the ‘protocol time and. the transfer .time, nearly half the delay is due to average rotational
latency.
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We define a hierarchy to be a pyramid with the smallest, fastest, and
most expensive storage at the top, and the largest, slowest, and cheapest
storage at the bottom. By creating a hierarchy we add the necessity for
migrating objects up and down the hierarchy to optimize performance. Since
caching seems to provide the most efficient use of the available resources, the
introduction of caching algorithms at all levels of the storage hierarchy would
be useful.

The traditional model of a hierarchy is the memory hierarchy. All
computers have some form of memory hierarchy with registers at the top and
main memory below. We call the memory hierarchy traditional because the
memory is layered, with each layer having well defined price-performance
benefits. As one travels down the hierarchy both performance and price
drop, while the size increases. Typically, the size would increase by one or
more orders of magnitude, while both the performance and price per byte
would decrease by one or more orders of magnitude. This is a simple model
because there is a strict ordering of technologies according to performance, so

they may be logically stacked to form a hierarchy.

However, a storage hierarchy is more complex than the simple memory
hicrarchy because there are at least two obvious and independent
performance measures, transfer rate and latency. We define the transfer rate
to be the number of bytes per second that a device can deliver data, once it has
sent the first byte. The latency is the time from the initiation of the I/O
request to the delivery of the first byte of data. Obviously, latency can be
attributed to a variety of factors, such as protocol overhead or disk seek and
rotation, which may depend on both the technology and the manner in which
the technology is used. Since transfer rate and latency are independent

properties, the various technologies ‘do not fit logically into a conventional
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hierarchy since they cannot be strictly ordered according to performance. As
a result, the performance may depend on the problem, with one technology
outperforming another in certain instances, and the reverse happening in
other cases. However, some technologies are clearly superior to others, such

as disk is superior to tape in both performance measures.

Typically computers have a variety of storage technologies, each of
which has its own set of phsyical characteristics, such as storage density or
cost per byte. Some of these characteristics are important from a performance
standpoint, others are important for political or economic reasons. Some
examples of simple characteristics for tape storage are that it is removable and
that it is accessed sequentially. An example of a device with an unusual
characteristic is the optical write-once-read-many (WORM) drive, where space
is not reusable and data can only be written once. Sometimes unusual
properties such as this make it difficult to compare two technologies, since the

two devices are inherently different.

There is another interesting difference between memory hierarchies
and storage hierarchies, and that is the issue of volatile versus non-volatile
storage. = Most operating systems assume that all secondary storage is non-
volatile, so that all changes are permanent. This presents problems when
caching written material, since most memory systems are volatile and updates
may be lost if the system crashes. However, write-through caches would tend
to be inefficient’ because twenty to thirty percent of all I/O's are writes!.
Thus the careful inclusion of volatility into a storage design by allowing files

to be designated as volatile might dramatically improve performance.

T One alternative is turn off caching for certain files either permanently or on certain
conditions.

1 [SMITHS85], page 190
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Since storage systems are constructed from technologies with vastly
different operating characteristics, a more complex storage model is needed to
adequately describe the system. An appropriate model might be a tree
hierarchy in which technologies which are different and where neither is
consistently "better" would be considered siblings, and demonstrably superior
technologies would be considered parents. For example, a disk cache with
some non-volatile memory for written data would be the root of the tree, and
the disks would be children of the cache. In addition, disks which are
organized into redundant-arrays-of-inexpensive-disks (RAIDs) would be
siblings of normal disks since the average response time for a RAID is longer
than a normal disk while the transfer rate is substantially higher than a
single large disk. Finally, tapes might be children of both disks and RAID's

since tapes are slower than either technology.

Overview of Cache

The concept of a cache is very simple; a small portion of fast storage is
used to hold a fraction of the data from a larger, slower storage system. The
small store attempts to hold the most frequently accessed elements from the
large store so that most accesses will proceed at the speed of the faster store.
Caches are common for memory systems, and it is not unusual for memory

caches to absorb ninety to ninety-nine percent of all memory accesses.

There are two properties that caches exploit in order to achieve the
greatest efficiency. The first is the property of spatial locality, and the second
is the property of temporal locality. The property of spatial locality relies

heavily on the concept of "neighbors". Obviously, different blocks of the same



file could be considered neighbors, whereas blocks residing next to each other
on disk but belonging to different files would probably not be considered
neighbors. Extending this concept further, one could imagine that files
within the same directory might exhibit a weak form of neighborhood.
Memory caches take advantage of this property by caching a whole line of
words on each cache miss. Storage hierarchies can take advantage of this

property in a variety of ways by acknowledging one or more forms of locality.

Caches also try to capitalize on the property of temporal locality.
Temporal locality implies that items which have been accessed recently will
probably be accessed again in the near future. Caches make use of this
behavior by retaining most of the recently accessed data for some time after it
has been accessed. Most caches use some form of Least-Recently-Used (LRU)
replacement strategy to keep the most recently accessed data in the cache.
While this algorithm is simple and usually effective, algorithms which are

sensitive to past behavior of particular files might be more successful.

Terminology and Concepts

We present the two new concepts file cache and file temperature. A file
cache will cache whole files, unless the file is very large. If the file is too big
to handle as an atomic unit, the cache may break the file into smaller pieces as
it sees fit. The essential difference between file caching and block caching is
the fact that file caching deals with storage on a logical basis (files), whereas
block caching deals with storage on a physical basis (disk addresses). The
primary advantage of file caching is the fact that caching whole files rather
than blocks or tracks allows the cache to deal with fewer objects at a more
abstract level. © It may store' more information about each file, so that it can
make better decisions, and it may start to deal with the operating system at a
more abstract level. For example, a file cache might know that a particular
file is typically very hot when it is opened, and that it is not opened very
often. When the file is opened, the cache may pre-stage the file at the open,
and flush the file at the close.
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The potential drawbacks to this ‘method of caching are wasted cache
space and wasted I/O bandwidth. Since file caching typically reads a whole
file into the cache, it is possible that much of the bandwidth and space
required to cache the file will be wasted if only a part of the file is accessed.
However, if the whole file is accessed during the course of the open, or if the
file is reopened before the file is flushed from the cache, then these resources

would not have been wasted.

The second concept is that of file temperature. In cache related
literature the terms "hot" and "cold" denote objects, such as words of memory,
which are accessed heavily and lightly - respectivelyl. We extend this* concept
and could give a simple definition for file temperature as the number of I/O's
the file receives. Since files don't all have the same size, this simple definition
is inadequate. For example, if two files each receive a hundred 512-byte I/O's,
and one file is a thousand bytes long while the other is a million bytes long,
then the thousand byte file is obviously "hotter". A more complete definition
of file temperature is the number of bytes transferred divided by the number
of bytes in the file. Given this definition the two files from the example above
would have vastly different temperatures. We will treat this definition of file

temperature as our working definition.

Unfortunately, even our working definition of file temperature is
slightly inadequate because we don't take into consideration time intervals and
because file sizes are not constant. For example, a file may be accessed very

heavily on Monday, and not at all on Tuesday. If only accesses from Monday

1 [BACLAWSKIS87], page 3



were counted, then the file would be correctly considered hot. However, if
accesses from Monday and Tuesday were aggregated, then the file might be
incorrectly considered to have been hot on Tuesday. This problem is not as
severe as it might seem, since each level of a hierarchy should take into
consideration the appropriate time frame for its temperature computations. A
second example might be the temperature of a spool file, which is continually
growing and shrinking. Since the file size is not constant, our definition of
file temperature is vague. A simple solution to this problem is to approximate

the file size as some function of the file sizes at file open and file close.

Prior Work

There are a variety of areas in which the prior work touches the
problem of the I/O bottleneck and which therefore touch on the problem of
file access patterns. These areas include disk caches, network file systems, and
databases, along with a collection of other topics. A large fraction of this work
mentions the topic of file access patterns in passing and then focuses
primarily on a method for increasing I/O bandwidth. The results from this
research can be fit into three categories: basic file access patterns, uni-
processor - disk - caches, ‘and network (typically single user workstations) disk

caches.

The first area of research which addresses the problem of the I/O
bottleneck and file access patterns is the design of disk caches. Much of this
research is focussed on the choice of cache size, and cache line size. The
results regarding cache size are both relevant and important. However, the
results for optimal cache line size are only applicable for caches with a fixed
line size since most work in this area tends to ignore the underlying file
structure in favor of physical addresses. The most notable papers in this area
are [OUSTERHOUTS5], [GROSSMANS5], [SMITHS85], [FLOYD86], [MCKUSIK84],
[FRIEDMANS83], and [BASTIANS2].

A second area of work which is strongly influenced by the 1/O
bottleneck is the design of networked file systems, particularly in a diskless
workstation environment. Since most common networks have a bandwidth

comparable to many disks and since that bandwidth must be shared by several



processors’s the bottleneck is even more pronounced than in the stand-alone
world. -~ Thus, most network file systems incorporate some form of local disk
cache to reduce network traffic and delay. The most notable papers on
network file systems are [HOWARDS8], [NELSONS88], [LAZOWSKAS6],
[SCHROEDERSS5], [SATYANARAYANANSS], and [HAGMANNS7].

A third topic which is heavily influenced by the 1/O bottleneck is
database design. Many database systems incorporate some form of internal
caching (typically using some ‘form of buffer management), and some
research has been done to analyze predictive caching methods for database
systems.  The most interesting paper in this field is [SMITH 78], which discusses

predictive prefetching of data for sequential scans.

Finally, there are a diverse assortment of other topics which touch
briefly on the problem of the I/O bottleneck and file access patterns. The most
similar topic is algorithms for the automatic migration of files between tape
and disk. Another similar topic is the management of electronic disks, which
typically have massive electronic memories with reserve battery power and
which talk to the host via a standard disk interface. Some relevant papers
from these and other topics are [PATTERSONS88], [HENLEYS87],
[SATYANARAYANANSI1], [BASTIANS1], [FRIEDMANS83], [SMITH81], and
[VOLDMANS3].

The first group of results on basic file access patterns were obtained by
experiment and they can be summarized as follows. First, sixty to seventy
percent all opens access the whole file in a UNIX environment!. Secondly,
twenty to thirty-five percent of all 1/O's are writes2. Thirdly, fifty percent of
all .newly created files arc. deleted within five minutes on a UNIX system3.

The results regarding disk cache design were obtained both from

experiment and modelling, and they can be summarized as follows. Block

t  Ethernet can handle at most 1.25MBytes per second while disks can handle up to
3.0MBytes per second

1 [OUSTERHOUTS5], page 15

2 [SMITHS85], page 190, and derivable from [QOUSTERHOUTS85] data on number of read-only,
write-only, and read-write opens.

3 [OUSTERHOUTSS], page 15



prefetching schemes can reduce miss ratios substantially?. Caches closer to
the processor which store “data from “several devices ‘provide better hit ratios
per byte of cache than several smaller caches located further from the
processord.  Caches that are roughly one percent of the total storage space can

give hit ratios of ninety percent®,

The last group of results focus on network disk caches. It has been
shown that a small local disk caches, on the order of a few megabytes, can
dramatically ‘reduce the network bandwidth required to support a distributed
file system’. The Sprite Network File System reports eighty-nine percent hit
ratios for reads with four megabyte caches8. In addition, it has been found
that each user needs an average bandwidth of a few hundred bytes per second,
but the peak requirements are significant compared to the total available

bandwidth in that system.

Data

In order to design a smart file cache we conducted some experiments to
determine if there were any useful file access patterns which would allow us
to predict future behavior more accurately than a simple LRU algorithm.
Amdahl  Corporation generously - allowed the author access to trace data and
computing resources necessary to conduct this research during the spring of
1988. We were primarily interested in dynamic access patterns. The utility
which generated the data was IBM's System Management Facility (SMF), which
provided us with trace data for each file open and close in IBM's MVS/XA
operating system.

We used data from two MVS sites using IBM's SMF. Most of the analysis
was done on SMF trace data using SAS® and Merrill's MXG®'  Package.
Essentially, SMF records file activity information on each file close. In

addition, at certain intervals SMF records information for each active process

4 [SMITH78], page 243

5 [SMITHS85], pages 171-172

6 [MENONS8], page 150

7 [NELSONS8], page 141

8 ibid.

T SAS is a trademark of the SAS Institute Inc. and MXG is a trademark of Merrill
Consultants
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and open file. This data is transformed into SAS data sets by Merrill's MXG
package. However, SMF data is somewhat unreliable, .and not all the data we

desired is recorded by SMF, so we could not answer certain questions.

The SMF traces contain tremendous quantities of data, most of which is
not relevant to our current work. Primarily, we can generate a table of file
opens. For each open we know: which file was opened, roughly how many
I/O's were done during the open, when the file was opened, when the file was
closed, how many tracks were allocated to the file at the time .of the close, the
name of the job which opened the file, and the logical name the job assigned to
the file.

The first limitation of SMF data is the fact that we cannot compute file
temperature using our working definition of bytes transferred over bytes in
file. Since SMF only records the number I/O's to a file and the number of
tracks allocated to the file, we must redefine file temperature as the number of
I/O's to the file over the number of tracks allocated to the file. This new
definition is used with our experimental data, and it is the "temperature"

referred to in our results.

The most glaring shortcoming of SMF data is the fact that it collects
summary statistics for each open. There is no record of the timing between
various reads, nor even which blocks or tracks were accessed. In addition,
SMF merely keeps a record of the number of I/O's to the file, it has no reliable
indication of the distribution between reads and writes. For those opens which
are read only or write only we can correctly assess the number of reads or
writes, but for those opens which are read/write we cannot distinguish
between reads ‘or writes.  Thus we have difficulty both comparing file caching

to block caching and assessing the impact of various write strategies.

A second problem with the SMF data is that fact that it only records the
number of tracks allocated to a file, not the actual space used by the file. In
MVS the user specifies at file creation time the initial size for the file. This
size is the space allocated for the file. The true file size is the number of bytes
of data stored in the file. Since our definition of file temperature is sensitive
to file size, and since we only know the allocated size of a file and not the space
actually occupied by the file, there is some experimental error in our

temperature calculations. In addition, since most of the small files have
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allocations of one cylinder or a few hundred thousand bytes, and since the
smallest unit of allocation is one track ‘or thirteen thousand to forty-seven
thousand bytes!l, the problem seems to be more severe with small files.

Because -most files are small our expected performance calculations will “be

biased. Note that the errors will tend to lower the file temperature.

Another problem with the SMF data is the fact that we only have data on
those files accessed during the measurement period. This means that we
cannot tell how large the entire file system is, nor can we tell how long it has

been since each of the cold files has been accessed.

In MVS a partitioned data set is a file which consists of a set of member
files. A final problem with the SMF data is the fact that it is impossible to tell
which member or members of a partitioned data set were accessed on a given
open. The SMF ‘data only records the name of the partitioned data set not the
name of the member which was accessed. Essentially, this means that
logically separate files are being treated as a single unit. As a consequence,
the temperature of the group is the average of the individual temperatures,
and the temperature for each open is computed as if each member had been
opened. One may think of this as diluting the temperature of the hottest
members, producing a uniform lukewarm temperature. Since some members
will probably be hotter than others, this dilution will tend to downplay the

existence of hot spots, which will tend to bias to our results against caching.

The data we used for our experiments came from two installations which
we will call customer "S" and customer "Z". The only information we received
from these shops was a trace of SMF data from some period of time. The first
trace, from customer "S", contained a week's worth of data and 170,437 disk file
opens. - The second trace contained three days of data with 142,795 disk file

opens.

One interesting feature of the data is that there are thousands of
temporary data sets which consume ten to twenty five percent of the total I/O's
and whose cumulative size is fifty to eighty percent of the total space
consumed by all files. However, the space used by temporary files at any

given time is relatively small. This fact produces an interesting accounting

1 For the IBM 3330 and 3380 devices respectively.
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problem from the standpoint of file system size since there is no easy way to
account for the space used by temporary files. The primary problem is that
the space is reused by the system, and it is not obvious how to attribute the
I/O's -to: particular locations. As a result we ignored temporary files, with the
assumption that they require little space.

Research Questions

Given the available data and the working design of a cache, we tried to
develop better caching strategies than a simple LRU algorithm. Our work
focussed on three areas: file temperature, spatial locality, and temporal
locality. In each case we tried to develop methods for predicting behavior,

particularly by examining past behavior.

The first question was whether file temperatures were skewed. If file
temperatures were not skewed, then disk caches would not work because each
file would be accessed with equal probability. However, file temperatures are
strongly skewed. In figure one we show the temperature curve of the file
systems for both customers. The graph shows the log of the temperature
versus the log of the rank of the file. The rank is an index from one to the
number of files, with the hottest files having the lowest rank. The
temperature is simply the number of I/O accesses the file received during the
experiment over the number of tracks allocated to the file. The interesting
point is the fact that the temperatures vary over five orders of magnitude,
with the majority of files having lower temperatures.

The second property we tried to establish was file open temperature
consistency. We define file open temperature as the temperature of a file for a
given open. If files had the same temperature on each open, then the cache
replacement strategy would be simplified because there would be a constant
ranking of files. As expected, however, file open temperatures are not
constant in most cases, and are in fact very random in nature. Figure two
shows the file open temperature for a representative file over sequential
opens. It is obvious that the file open temperature for any given file is not

constant.

Since file open temperatures are not constant, the file open

temperature probability density function (PDF) is an important property for
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cach file. If the PDF is "regular" in some sense, then the cache could guess
more accurately which files to promote. A "regular" PDF might be an
exponential or uniform distribution. Since PDF's are not directly observable,
we  assume that the histograms of file open temperatures provide a reasonable

approximation to the PDF.

In figure three we show some file open temperature histograms for a
sampling of files. This is a three dimensional plot, with the files arrayed on
the "rank" axis, the file open temperature "buckets" on the "temperature" axis,
and the number of opens per "bucket" on the "density" axis. The "buckets" are
really the conversion of the real valued file open temperatures to a discrete
axis. The rank is the identical to the rank in figure one, and all temperature
values associated with a given file have the same rank. However, many file
open temperature histograms seem to be random scatter plots rather than

regular functions, so in general this avenue would appear to be a dead end.

We then tried to establish whether file temperature was at all
consistent.  Essentially, file temperature consistency implies that file
temperatures are similar during consecutive time periods. It turns out that
long term file temperature is reasonably consistent, and that temperature over
a period of a few days can predict temperature for subsequent days. Since we
only had a week's worth of data, it is not possible for us to see how temperature
varies over periods of more than a week, nor were we able to determine how

well long term temperature predicts temperatures further in the future.

In figure four we show how long term temperature can predict
temperatures over subsequent days. The graph represents the cumulative
percentage of the I/O's absorbed by the files during each of the three time
frames.  The first time frame, called the calibration period, was used to
establish a ranking of files according to file temperature. This period was
three days long. The two remaining curves show what fraction of the I/O
during the two subsequent days is absorbed by the hottest files from the
calibration period. Looking at the graph one may see that long term
temperature is a reasonable predictor of future temperature, since most of the
I/O's are absorbed by the hottest files from the calibration period. It is
interesting to note that the calibration period predicted the fifth day's accesses

better than it predicted the fourth day's accesses.
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A third property we investigated was a possible linking between file
temperature and file size. If there were a strong link between a file's size and
it's temperature, then the replacement strategy would be relatively simple.
However, it appears that any such linking is weak at best. In figure five we
have plotted cumulative percent of file system space versus cumulative
percent of total 1/0's for both customers, with the files ranked by file size. If
there were no correlation between the two variables then the curves should
be relatively straight lines from the origin to (100,100), but the curves do not
follow this pattern. One curve is slightly concave, which implies that the
smaller files are hotter than the larger files, while the other curve doesn't
follow any simple pattern. However, both curves exhibit similar behavior for
the first ten percent of the file system, which consumes fifteen to twenty
percent of the I/O activity. As a result, very small files seem to be moderately
hotter than other files.

Another question was whether shared files tended to be hotter than
non-shared files. = Apparently, shared files are significantly hotter than other
files, consuming roughly sixty percent of the total I/O's. In addition it seems
that files which are shared by interactive users tend to be hotter than those
files shared by batch jobs. While this distinction is important in the MVS

world, there doesn't seem to be a corresponding distinction in the UNIX world.

In figure six we show the cumulative percentage of the total I/O versus
the cumulative space used for all files, files shared by users, files shared by
batch jobs, and non-shared files. Each curve represents the activity of a set of
files, with the x-axis as the cumulative space used by the files expressed in
terms of the total space consumed by all files, and with the y-axis as the
cumulative I/O absorbed by the files relative to the total I/O to all files. The top
curve, in the solid line, shows the cumulative percent of I/O versus the
cumulative percent of file system space for all files, and is provided for
reference. The second curve, with the plus signs, shows the curve for those
files which are used by more than one user. In order, the remaining curves
are for files used by more than one batch job, files used by more than one user
and by more than one batch job, and files used by at most one batch job and
user. Note that one may not simply add two curves together because it does not
account for the space consumed by each ﬁlé. Also note that the set of files
shared by users and the set of files shared by batch jobs are not disjoint, and
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that within each set files are ranked by descending temperature. Clearly, files

which are shared by users arec significantly hotter than unshared files.

Another property of interest was whether file opens are bursty. If the
opens for each file occurred in bursts, then caching a whole file on the first
open, and flushing it after the last close would drastically reduce the
bandwidth needed for that file. However, as expected, things are a bit more
complex than this simple model. It turns out that opens do tend to occur in

bursts, but we can't provide a simple model for this phenomena.

An interesting file property is the PDF for the time from a file's close to
that file's next open. This could be used by the replacement strategy to flush
files with a lower probability of being re-opened. Again, since we cannot
observe PDFs, we approximated them using histograms. It turns out that some
files exhibit exponential-like distributions, whereas others exhibit more
uniform distributions. It would be a relatively simple matter to store some
form of the PDF for the time to next open by storing a histogram of the times
along with a total of the number of opens. Then the replacement strategy
could compute the "probability of being accessed within some time frame" for
cach file every few minutes using the PDF, and rank the files according to that
probability.

In figure seven we show the histograms for a handful of files. Figure
seven is a three dimensional graph, similar to figure three, with axes "rank",
"seconds"” and "density”". The axes "rank" and "density" have meanings similar
to the axes in figure three. The axis "seconds" represents the number of
seconds between ecach file close and the next open. A negative value would
imply that the file was reopened before it had been closed. However, we
discarded the negative values. In addition, the "seconds" axis has been clipped
at one hour, and the density at one hour is really the probability density for

all time greater than one hour.

Many files seem to have recognizable, or at least reasonable PDF's for
the time from last close to next open. For example, files forty-three, and fifty-
three seem to have exponential-like distributions. Unfortunately, many files,
such as files fifty-one and fifty-two, exhibit more complex behavior. As a
result, it seems that we should be able to predict with reasonable probability
whether certain files are likely to be reopened.
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A final question was whether file temperatures could be linked to file
open frequency. The basic premise is that files which tend to be opened
frequently should tend to have a higher temperature. It appears that this is in
fact true, but the connection is weak compared to the linking between past
long term temperature and future temperature. In figure eight we show the
cumulative percentage of I/O versus the cumulative percentage of file system
space for both customers with the files ranked by open frequency. There is
some correlation because nearly ninety percent of the I/O went to fifty
percent of the space, using this ranking. However, this is still a fairly weak

correlation, and is nearly useless from a practical standpoint.

Conclusions

In conclusion we have presented our concept of a file cache and some
results regarding basic file access patterns which may be useful for
constructing an efficient file cache. We tried to find patterns which would
allow us to predict file temperature, which in turn would help predict the
value of promoting a given file. We also tried to find patterns which would
help predict the time from a file's close until it's next open, in order to predict
the value of keeping a file in the cache after the file is closed. We found that
long term file temperatures are reasonable predictors of future long term
temperature. In addition, we found that for many files the time from close to
next open can be predicted using a probabilistic model based on past behavior

with some reasonable success.
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