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Abstract

We investigate a two-dimensional compaction scheme for a slicing layout. The compaction scheme
treats wires as topological entities, i.e. only the paths of wires that connect terminals of the same nets are
known but not their physical locations. Wires are not present physically in the layout during compaction,
but they are expressed as constraints which describe the actual space required to accommodate them. This

amounts to computing the shape function that captures the routing requirement of the layout.

We present an O (k-n?) algorithm to compute the shape function of a stack of k two-component river
routable channels with n nets, and a heuristic to approximate the shape function of a stack of multiple com-

ponent river routable channels.

We develop heuristics that use the algorithm and the heuristic above as their subroutines to approxi-
mate the shape function of a slicing layout under the restriction of river routing. The experimental results

show the potential of the proposed compaction scheme.

We study the asymptotic behavior of river routing and pitch aligning in uniform stacks and uniform
arrays. We derive the condition under which river routing is better than pitch aligning for such uniform

layouts.

We discuss the problem of computing the shape function of a slicing layout with general channel
routing. We use channel density as an estimate of channel width. We show an NP-completeness result for
computing such a shape function. We present a pseudo-polynomial time algorithm to compute the shape
function (using channel density as channel width) for a slicing layout of depth one, and we provide an
efficient heuristic to compute such a shape function. Experimental results show that the heuristic produces

shape functions which are very close to the exact shape function.
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Introduction

The compaction of a VLSI layout is to find a minimum area layout subject o design rules and topol-
ogy imposed on the layout. The design rules specify displacement constraints between layout components,
and the topology specifies the relative positions of the layout components. To be able to obtain a minimum
area layout is very important in a VLSI system because area is one of the major cost in fabricating a VLSI

chip [MeCo].

A custom VLSI layout consists of layout components (transistors, contacts, independently designed
black boxes), and wires interconnecting them. It is typically produced in two phases, namely top down
floor-planning and bottom up design. In the floor-planning phase, a circuit is partitioned into smaller sub-
circuits, each subcircuit is further partitioned into smaller subcircuits. The partitioning process stops when
a subcircuit, called the leaf cell, is of manageable size. It produces a topology of the layout. The floor-
planning phase is completed with a global routing in which the paths of the interconnecting wires between
leaf cells are specified. A floor-plan of a layout can either be obtained automatically [LaPo, Lau, Ou, SzOt,
WoLi] or manually.

In the bottom up design, each leaf cell is designed independently. Then the detailed routing, in
which the actual physical wires that interconnect the leaf cells are laid out, is performed. The design of
leaf cells and the detailed routing can be carried out automatically or manually with the aid of layout tools
[Eic, LaPo, Mat, LeMe, Ouha). The layout process described above is not a generic layout process but
rather a summary of a general layout process which we will use to show when and where the conventional
compaction of a layout occurs, and to point out the difference between our‘ compaction and the conven-

tional one.

The compaction process of a layout can occur at different stages during the layout process. It can be
carried out after all leaf cells are designed and the detailed routing is performed. Or it can be carried out in
two stages: each leaf cell is compacted independently, and after the detailed routing, the whole layout is
compacted and the leaf cells are left intact. In both cases, the compaction occurs after the detailed routing
is performed. We propose and investigate a compaction scheme which is different from the conventional
one in that it is performed before the detailed routing, but it captures the necessary routing space. The

actual detailed routing is performed after the compaction.
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We investigate such a compaction scheme for the slicing layout topology. A slicing layout topology
is a hierarchical partitioning of the layout. In Chapter 1 we give the formal definition of the slicing layout
topology. The compaction scheme we consider exploits the inherent hierarchy of the slicing layout topol-
ogy, and it is a two-dimensional compaction at each level of the hierarchy. The two-dimensional compac-
tion optimizes layout area, allowing both dimensions to vary simultaneously. This is different from a one-

dimensional compaction in which the layout is compacted in one dimension at a time.

The advantage of our compaction scheme is twofold. Firstly it treats wires as topological rather than
geometrical entities — this reflects more closely the important characteristics of the actual wires in the com-
paction stage of the design. And it delays the detailed routing, which very often affects the performance of
a compaction scheme both in terms of final area and efficiency, until the later stage of the design. Secondly,
it is a two- dimensional compaction; it can find a better solution than the one-dimensional compaction,
since the solution space of a two-dimensional compaction is a superset of the solution space of a one-

dimensional compaction.



Chapter 1

Compaction and Slicing Layout

A brief overview of constraint-based compaction is given. Our layout model and a
slicing layout are defined formally. Some layout tools that employ the slicing paradigm
are briefly introduced and their inadequacies are explained. The notion of shape function

of a layout is introduced and its application to layout optimization is discussed.

1.1 Constraint-based Compaction and Jog Introduction

A layout consists of layout components interconnected by wires. A layout component can be a
transistor, a contact, or a black box which is a collection of components. A component is usually
represented by a rectangle with given length and width. A wire consists of wire segments; for compaction,
the width of a segment is fixed but the length of the segment is determined by the compaction. The dis-
placements between layout components have to satisfy design rules dictated by the technology. For exam-
ple in Mead and Conway rules [MeCo] an nMos transistor must be at least 2A from a buried contact; metal
wires must be at least 3\ apart, where A is a basic unit depends on the technology. See Figure 1.1a and
1.1b.

metal wires

a transistor v

T|X 3

...E_] o
s buried

contact

Figure 1.1a Figure 1.1b

The compaction of a layout is to find a minimum-area layout of components subject to the design
rules and the topology of the layout. There are various approaches to layout compaction. In virtual grid
compaction [Wes, Ros], the layout components are placed on a grid, and the displacement between each

pair of grid lines is determined so that no design rule is violated and the area of the layout is minimized. In



-4.-

constraint-based compaction [Eic, Hsu, KeWa, Mat], the displacement constraints between layout com-
ponents are described by a system of linear constraints, and the system of constraints is solved to obtain a

compacted layout. We will be focusing on constraint-based compaction to illustrate the merit of our work.

In constraint-based compaction, a layout component is represented by a point inside the component
and displacement constraints between components are represented by linear constraints between coordi-
nates of the corresponding points in the components. For example, in Figure 1.2a the minimum horizontal
displacement constraint between component i and j is represented by the horizontal linear constraint
x; —x; 2 hd;;. Similarly, the minimum vertical displacement constraints between components are

represented by linear constraints of the form y; — y; 2 vd;;.

(ony;)
I o
vad;j:
: _‘(:i-}'i) :
! hd;; |
| TS — »

minimum horizontal displacement constraint: x; - x; 2 hd;;
minimum vertical displacement constraint: y; — y; 2 vd;;

Figure 1.2a

There are other types of constraints which can also be described by linear constraints of similar form. The

connectivity constraint is illustrated in Figure 1.2b, and the rigid constraint is illustrated in Figure 1.2¢c.

A vertical wire is represented by a horizontal coordinate, its width is fixed and it is allowed to stretch
along the vertical dimension. This is iliustrated in Figure 1.3. Similarly, a horizontal wire is represented by

a vertical coordinate.

Typically, the system of horizontal (vertical) linear constraints is solved with the objective of minim-
izing the horizontal (vertical) dimension of the layout. The solution determines the absolute horizontal
(vertical) positions of the components. Then the system of vertical (horizontal) linear constraints is gen-
erated and solved. This is regarded as one iteration of the compaction process. The process can be repeated
for many iterations until no improvement is made. The solution to the system of linear constraints that
minimizes the corresponding dimension of the layout can be computed by different longest path algorithms

depending on the assumptions on the linear constraints. [Hsu, Mat, LiWo].

The constraint-based compaction described above is regarded as one dimensional compaction. In

one dimensional compaction the systems of horizontal and vertical constraints are solved independently.
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Figure 1.2¢
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Geyg) v

a vertical wire with horizontal coordinate x;

Figure 1.3

Kedem and Watanabe describe constraints between components by mixed linear-integer inequalities

[KeWa]. In their formulation, horizontal and vertical constraints between two adjacent components are

specified simultaneously, and a decision variable (with value 1 or 0) is used to determine which of the hor-

izontal and vertical constraints is active. This allows the compaction of the layout to be carried out in both

dimensions simultaneously. Their compaction is regarded as two dimensional compaction.
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Both the one and two dimensional compactions described above require a jog introduction and a re-
compaction step to further improve the layout area [Hsueh, KeWa]. In the jog introduction, jog points are
inserted at appropriate wires and the wires are allow 1o bend at these jog points. After the jog points are
inserted new constraints are generated and the layout is re-compacted. One example in which the improve-

ment of the layout area cannot be achieved without jog introduction is illustrated in Figure 1.4,

/|

\ \

no improvement can be made improvement after a
for horizontal compaction jog is introduced

Figure 1.4

Maley studies antomatic jog introduction for layouts with single layer routing [Mal]. He treats wires
as topological objects and compacis a Iayout in one thosen dimension. During the compaction, wires are
translated into constraints {no longer part of the layout) and the necessary and sufficient routing space is
captured. The wires are restored by a single-layer router after the compaction. Mehlhom and Naher pro-
vided an improved algorithm in [MeNa] for compaction of this type. In our compaction scheme, we also

treat wires as topological objects, but out compaction is two dimensional.

1.2 Layout Model and Defimitions

The VLSI layout we consider consists of two types of objects, namely rectangles and wires. A rec-
tangle can represent a transistor, a contact or a black box which is a layout of a subcircuit. A rectangle has
terminals, which are signals coming into it or signals going out of it, on its boundaries. A net is a set of ter-
minals that carry the same signal. A wire connects terminals in the same net. Interconnecting terminals of

the layout is called routing of the tayout. The placement and routing of rectangles of a layout obey certain
design rules dictated by the technology.
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To be able to discuss the compaction problem of a VLSI layout we will require a layout model. A
layout model provides a framework for the placement of the basic objects. While there are a variety of
VLSI layout models, we shall choose the grid model. In the grid model, rectangles and their comers are
placed on integral grid points on a rectangular grid. The routing region is the region that is not occupied by
the rectangles. In addition, wires connecting the rectangles are assumed to have zero width and to run
along grid lines of the rectangular grid. The "design rules” in the grid model require that rectangles do not
overlap, wires run only in the routing region, and only one wire is allowed in one grid line, i.e. wires are
not allowed to overlap. Crossing of wires is allowed at grid points. With the more specific assumptions that
horizontal wire segments are in one routing layer and vertical wire segments are in another, the routing
model is known as rectilinear, two-reserved-layer routing model *. See Figure 1.5 for a layout in the grid

model.

grid unit apart™ 7

Figure 1.5

The area of a layout is the area of the minimum bounding rectangle that encompasses the layout. Notice
that in the grid model, the minimum bounding rectangle can only have integral dimensions. This simplified
model will allow us to investigate the algorithmic aspect of compaction, and to evaluate the performance of
proposed solutions.

A routing channel is a rectangular routing region. Terminals are distributed on the opposite boun-
daries of the channel (top and bottom, or left and right). The terminals come from rectangles on the oppo-

site boundaries. In general, wires may enter or exit a channel at boundaries which are orthogonal to the

* The rectilinear, two-reserved-layer routing model is not critical to our work. The results in Chapter 5 can be easily ex-
tended to other routing models, for example, the knock-knee model in which comers of two wires are allowed to overlap at

a grid point.
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boundaries on which terminals are distributed. The channel width of a routing channel is the minimum
number of grid lines parallel to the channel, called tracks, required to interconnect the terminals. See Fig-
ure 1.6a. The channel routing problem is to compute the channel width and find a routing that achieves the
channel width. If a channel consists only of two-terminal nets, the two terminals of a net are on the oppo-
site sides of the channel, and the terminals on the opposite sides of the channel have the same net ordering,
the routing can be done without wire crossing. This class of channel routing problem is called the river

routing problem and this type of channel is called a river routable channel. See Figure 1.6b.

. 3

LG shagne!

Figure 1.6a

JIL LT ) s

Figure 1.6b

1.3 Slicing Structure

In this thesis we investigate the compaction problem for a type of layout topology known as slicing
structure. A slicing structure is a partition of a rectangle into smaller rectangles, called slices, by using a
set of parallel lines, called cut lines. Each of the slices is further partitioned by another set of cut lines
which is orthogonal to the previous set, and so on. The total number of alternate vertical and horizontal
slicing operations is the depth of the slicing structure. The slicing process can be carried out to any depth.
Slices resulting from a partition of a slice s are called children of s, and s is called the parent of its child
slices. The bounding rectangle on which the partition begins is called the root slice, and slices on which no
further partitioning is performed are called leaf cells. The level of a slice is the distance of the slice from
its furthest descendent. The level of a leaf cell is zero, the level of a slice is the largest level of its child

slices plus one. See Figure 1.7a.



. leaf cells (level 0)
cut lines
YV e :
p— —
root slice
A slicing structure of depth 3

Figure 1.7a

a level 1 slice

One natural representation of a slicing structure is the slicing tree. It is a rooted ordered tree. Each

node of the tree corresponds to a slice in the slicing structure, and the children of the node correspond to

children of the slice. The root node of the slicing tree corresponds to the root slice, and leaf nodes

correspond to leaf cells. The depth of the tree corresponds to the depth of the slicing structure. The level

of a node is the level of the corresponding slice. See Figure 1.7b.

C
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Slicing Structure
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Figure 1.7b

Slicing Tree
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A slicing layout is a layout in which rectangles (circuit components) are placed according to a slicing

structures. A slicing layout is described by a slicing structure, i.e. each leaf cell of the slicing structure is an

imaginary bounding box of a rectangle of the layout. From here on we use slicing structure and slicing lay-

out interchangeably, although slicing structure sometimes refers to the topology of the slicing layout. This

should be clear from the context. Each cut line represents a routing channel. A slicing layout in which all

routing channels (cut lines) are river routable channels is called a river slicing layout.

During the detailed routing phase of a layout process, the channels have to be routed in a certain

order. For example, in a T intersection, the stem must be routed first in order to determine the order of nets



)

entering the horizontal channel. See Figure 1.8,

order and positions of nets entering
the horizontal channel have to be

""""" e determined before the channel can
° ont/"-—be routed

stem of the T intersection
a T intersection

Figure 1.8

Sometime, cycles in the channel routing order may be resulted. See Figure 1.9 for an example of a cycle in
the order of channels. In the example, channel A must be routed before B, B before C, C before D, and D

before A; hence a cycle.

A
D B
C
an order constraint cycle

for a non-slicing layout

Figure 1.9

A slicing layout has two major advantages over a non-slicing one. First, it is free of cycles in the
channel routing order [SuSl]. This implies a cycle breaking scheme can be avoided during the detailed
routing and no time-consuming iteration of re-routing is required. Secondly, a slicing layout has an

inherent hierarchy which is needed for a VLSI layout with a large number of circuit elements.
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1.4 Layout Tools which use the Slicing Paradigm

In this section we describe layout tools which use the slicing paradigm and their inadequacies. These

inadequacies motivate our work on a new two dimensional compaction scheme.

1.4.1 Allende: a layout language

Allende [Mat] is a layout language which uses the slicing paradigm. It describes a layout structure by
specifying relative position (left, above, right, below) of layout components called cells, for example (A
left B) above C, see Figure 1.10a.

1]
A [[] B
T4 A B
...... L .._:....'..‘. S
C : C
Pitch aligning cell
(A left B) above C composition scheme
Figure 1.10a Figure 1.10b

A larger cell is created by composing smaller cells. Terminals on the opposite sides of a common cut line
are required to have the same net order. The composition of cells is done by pitch aligning in which termi-
nals of adjacent cells are aligned and cells are abutted. Cell stretching is very often necessary for the align-
ment to occur. See Figure 1.10b. In order to apply the pitch aligning cell composition scheme, each cell is
assumed to be stretchable. In a stretchable component, the minimum displacement constraints are the only
constraints between terminals. There is a minimum constraint between two adjacent terminals on the same
boundary; there may or may not be minimum displacement constraints between terminals on opposite
boundaries. When there is a constraint between two terminals on the opposite boundaries, the movement of
one terminal on one boundary due to cell stretching will affect the terminal on the opposite boundary, as
illustrated in Figure 1.11a. When there is no constraint between two terminals on the opposite boundaries,
the movement of one terminal on one boundary will not affect the terminal on the opposite boundary as
illustrated in Figure 1.11b.

Allende allows a compact and relatively simple description of a layout and the layout produced is
guaranteed to free from design rule violation. One drawback of its simple cell composition scheme is that

undesirable stretching of cells occurs and this stretching may propagate, e.g. Figure 1.12.



-12-

there is a minimum

displacement constraint there is no displacement
between a and i constraint between a and
a b a a b
1, ;
B B Tl .
s s el I B o 1
v '
¢ I Tec T¢c
movement of terminal movement of terminal b does
b affects terminal a not affect terminal a
Figure 1.11a Figure 1.11b
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d | el
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Figure 1.12

One remedy is to introduce single layer routing in an optimal fashion between adjacent cells, e.g. Figure
1.13.

LAVA and HILL [Eic, LeMe] are two other layout languages that use pitch aligning as one of their

cell composition schemes.
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Single layer routing
avoids cell stretching

Figure 1.13

1.4.2 Floor-planning Tools

Many floor-planning algorithms use the slicing paradigm [Lau, LaPo, Ott, SzOt, WoLi]. They parti-
tion a circuit into smaller subcircuits using a certain cost criterion, typically the min-cut criterion in which
the number of nets crossing the partitioned boundary is minimized. Each subcircuit is further partitioned
by the same cost criterion until the subcircuits are leaf cells. After the partitioning process, a slicing
description of the circuit is obtained and the global routing is performed to determine the path of each rout-

ing wire. None of the authors in [Lau, LaPo, Ou, SzOt, WoLi] addresses the issue of the detailed routing.

After all leaf cells are designed, the dimensions of the leaf cells and absolute positions of terminals
on the boundary of the leaf cells are known. The width of a routing channel is determined by the wires that
pass through the channel and the wires that connect leaf cells adjacent to the channel. Relative positions of
leaf cells adjacent to a routing channel can have a major effect on the width of the channel, as illustrated by

an example in Figure 1.14.

4 tracks

5 tracks

2 horizontal units are
sacrificed, and 8 vertical
units are gained.

4 tracks

Figure 1.14
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1.5 Shape Function and Two-Dimensional Compaction

In this section we describe the notion of the shape function of a layout and some previous work in

computing the shape function of a slicing layout.

Given a topology of a layout, i.e. a relative placement of rectangles and the global routing of the lay-
out, we would like to find the smallest area bounding box that accommodates the layout, in other words, the
smallest shape at which the layout can be realized. Another scenaﬁ6 is, given a bounding box with a fixed
horizontal dimension, find the minimum vertical dimension of the bounding box that will accommodate the

layout, or vice versa.

The horizontal shape function of a layout is a function that gives the minimum vertical dimension of
the layout for any given horizontal dimension, and the vertical shape function is a function that gives the
minimum horizontal dimension of the layout for any given vertical dimension. The horizontal shape func-
tion of a layout is a monotonically non-increasing function in the horizontal dimension, this is because a
bounding box with horizontal dimension h can accommodate a layout in vertical dimension v, then a
bounding box with horizontal dimension A" > h can also accommodate the layout with vertical dimension
v. Here we assume the bounding box does not have to be tight, i.e. there may be white space between the
actual layout and the bounding box. Similarly, the vertical shape function of a layout is monotonically
non-increasing in the vertical dimension.

By the shape function of a layout we mean either the horizontal or the vertical shape function of the
layout, and it should be clear from the context. A shape (4, v) of a layout is a bounding box with dimen-
sions hxv., The shape (k, v) is said to be minimal if there is no A” < A such that the layout can be realized in
the bounding box with shape (h’, v), and there is no v’ < v such that the layout can be realized in the
bounding box with the shape (h, v"). It should be clear that the shape function of a layout is fully character-
ized by the set of minimal shapes of the layout. The minimal shapes are also called the break points of the
shape function. Notice that a shape function is a step-wise function because of the integral break points.

See Figure 1.15 for a shape function of a layout with two components.

The problem of computing the shape function for a slicing structure without interconnections has
been considered in the literature [Ott, Sto]. Stockmeyer considered the optimal orientation problem of a
slicing structure [Sto]. In the optimal orientation problem, each leaf cell has a fixed size and free orienta-
tion. And each routing channel has zero width (no interconnections). The problem is to choose one of the
two orientations (horizontal or vertical) for each leaf cell so that the area of the root slice is minimized. A
more general problem is considered by Otten in [Out]. In [Ott], each leaf cell has a set of shapes and fixed

orientation. The problem is to compute the set of minimal shapes (shape function) of the root slice. The
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Figure 1.15

optimal orientation problem is a special case of this problem: each leaf cell has two shapes (one for its hor-
izontal orientation and one for its vertical orientation) and the minimal shape of the root slice with the

smallest area is the solution.

There is an efficient method to compute the shape function of a parent slice given shape functions of
its child slices. It is the summing of individual shape functions along their common dimension. The sum-
ming operation is illustrated in Figure 1.16. To compute the shape function of the root slice of a slicing
structure, a postorder traversal is performed on the slicing tree, and the shape function of each tree node is
computed by summing the shape functions of its children. This method is presented by Otten in [Ott]. The
complexity of the algorithm is O (n-b-d), where n is the number of leaf cells, b is the maximum number of

break points in the shape functions of leaf cells and d is the depth of the slicing structure.

Luk et al [LSW] present an algorithm to compute the shape function of a slicing layout with a single

multiple-terminal net, i.e. all terminals carry a single signal.

After the shape function of a slicing layout is computed, the compaction problem is to find the

minimum-area shape among the set of minimal shapes of the layout. Another scenario is to find a shape
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with the smallest vertical dimension given a horizontal dimension or vice versa. In essence, the shape func-
tion of a slicing layout captures the tradeoff between the vertical and horizontal dimensions of the layout.
It represents truly two-dimensional compaction. This is different from one-dimensional compaction in

which a layout is compacted in each dimension independently.

1.6 Summary and Organization of the Thesis

In Section 1.1 we gave an overview of constraint-based compaction and pointed out the need of jog
point insertion to get a more compact layout. We assert that treating wires as topological entities in a layout
is essential for better compaction, because it decouples the compaction and the detailed routing phase, and

gives more interaction between the two phases.

In Section 1.2 and Section 1.3 we defined the layout model and the layout topology that we will be
considering -- the grid model and the slicing layout topology. We described layout tools which use the slic-
ing paradigm and their inadequacies in Section 1.4.

In Section 1.5 we introduced the notion of shape function that includes routing requirements. We
mentioned previous work in computing the shape function of a slicing layout without interconnections and

with limited interconnections.

In this thesis we consider a two-dimensional compaction scheme of a slicing layout. The compaction
scheme treats wires as fopological entities, i.e. only the paths of the wires that connect terminals of the
same nets are known but not their physical locations. The path of a wire is assumed to be given (obtained

from the global routing phase). Wires are not present physically in the layout during compaction, but they
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are expressed as constraints which describe the actual space required to accommodate them. This amounts
to computing the shape function that captures the routing requirements of the layout. For the rest of the
thesis, by shape function we mean a shape function that includes the routing requirement unless specified

otherwise.

We first study the two-dimensional compaction problem of the simplest slicing layout which is a
stack of components. In Chapter 2, we consider the problem of computing the shape function of a stack of
components under the restriction that each channel in the stack is river routable. A stack of single com-
ponents under this restriction is a river slicing layout of depth one. This is a natural extension of single
channel river routing problem. We present an algorithm to compute the shape function of a river slicing

layout of depth one and a heuristic to approximate the shape function of a river slicing layout of depth two.

In Chapter 3, we present heuristics that use the algorithm and the heuristic of Chapter 2 as their basic
subroutines (o approximate the shape function of a more general river slicing layout. In a river slicing lay-
out, terminals on opposite sides of a routing channel must have the same net ordering; this is the same
requirement in pitch aligning. We compare the performance of the heuristics with pitch aligning by com-
paring the smallest area of layouts produced by each of the heuristics to the area of the layout produced by
pitch aligning. This comparison shows the potential of our compaction scheme which treats wires as topo-
logical entities.

A uniform layout is a layout whose leaf cells are identical. In Chapter 4, we study the asymptotic
behavior of river routing and pitch aligning in uniform stacks and uniform arrays. We derive the condition
under which river routing composition is better than pitch aligning.

The channel routing problem under the rectilinear, two-reserved-layer routing model is known to be
an NP-complete problem [Syz]. It is unlikely that the channel width can be computed efficiently. Instead
of computing the channel width, the metric known as the channel density is often used to estimate the
actual channel width. Intuitively, the channel density measures the minimum number of necessary net
crossings at any grid line perpendicular to the channel. In general the channel density is a fairly good esti-
mate for the channel width [Lei]. In fact Rivest and Fiduccia claimed that their channel routing algorithm
usually uses no more than one track more than the channel density [RiFi].

In chapter 5, we discuss the problem of computing the shape function of a slicing layout using chan-

nel density as channel width. We show an NP-completeness result for computing such a shape function.
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And we present a pseudo-polynomial time algorithm * to compute the shape function (using channel densi-
ty as channel width) for a slicing layout of depth one. An efficient heuristic is proposed and the perfor-
mance of the heuristic is compared against the result of the pseudo-polynomial time algorithm.

We summarize the approach of computing the shape function that captures the routing requirement

of a slicing layout and address future research directions in chapter 6.

* Let ] be an instance of a computational problem A - typically J will be a sequence of combinatorial objects such as
graphs, sets, or integers. In our case, [ is positions of terminals, lengths of components and the number of components. Let
MAX(I) be the largest integer appearing in J. An algorithm for A is pseudo-polynomial if the algorithm solves any instance
of ] of A in time bounded by a polynomial in Ul the length of the encoding of /, and MAX(T) [PaSt).



Chapter 2

Shape Function of a Stack of Components under River
Routing

In this chapter the single channel river routing problem is introduced. A necessary
and sufficient condition for river routability is described. We extend the result of single
channel river routing to a stack of river routable channels. An algorithm to compute the
shape function of a stack of two-component channels is presented. A heuristic to com-

pute the shape function of a stack of multiple component channels is discussed.

2.1 Single Channel River Routing

Single channel river routing is studied extensively in the literature, see in particular [DKSSU, Mir,
Pin, SiDo]. We will give a brief review of the problem. The problem is stated as follows: given a channel
that is defined by two rows of components, terminals { to, {1, ..., Iw-; } are distributed along the bottom
edges of the components on the top row; terminals { by, by, ..., b,-; } are distributed on the top edges of
the components on the bottom row. Terminals are allowed at the left ends of components but are not
allowed at the right ends of components. ¢; is to be connected 1o b; by wire w;. We are using the grid model
in which wires run along grid lines. In a river routing channel, wires are not allowed to cross or overlap one
another. Tracks, the grid lines parallel to the channel, are numbered from 0 to -1, bottom to top, ¢ 2 0,
and ¢ is called the channel separation of the channel. For ¢ > 0, top components are ¢ grid units from the
bottom components, and wires are extended vertically from track ¢-1 to connect corresponding terminals
on the bottom edges of the top components, i.e. there are no horizontal pieces of wires on the bottom edges
of the top components. However horizontal wire segments are allowed on the top edges to the bottom

components (track 0). See Figure 2.1 for an instance of river routing.

The optimal placement problem at separation ¢ in a river routable channel is to find an optimal place-
ment of the components so that the horizontal span of the channel, i.e. the distance from the left edge of the
leftmost component to the right edge of the rightmost component is minimized. The minimum separation
of the channel is the minimum number of tracks required to route the channel. A channel separation is said

to be legal if it is no less than the minimum separation. Notice that if we compute the minimum horizontal



-20-

to 1y 1y 13ty ts g
track 2 :channel separation = 4
track 1 :
track 0 . '
by b, b, by by bs bg
An instance of river routing
Figure 2.1

span for each legal separation, we get the shape function of the two rows of components. Another variation
of the problem is to find the minimum legal separation of the channel. This can be done by a binary search

on the channel separations.

All solutions to river routing problems are based on a necessary and sufficient routability condition
of a river routable channel. We will proceed to give an informal derivation of the necessary and sufficient
routability condition. See [Mir, Pin] for more formal derivations. We use here the notations and termino-
logies in [Mir]. Consider the left base wires { Ly, L, ..., L, ], emanating from the bottom terminals,
as shown in Figure 2.2a. The left base wires are obtained by routing all bottom terminals to the left of the
channel by using as few tracks as possible without violating the wiring model. This can be done by extend-
ing each of the m bottom terminals in turn, beginning from terminal by, to the left or upward if it is
obstructed by a terminal or another wire. Similarly, the right base wires { Rg, Ry, ..., Ry } are obtained

by routing the bottom terminals to the right of the channel optimally. See Figure 2.2b.

Ls

bO bl bz b3 b4 bs b5
left base wires

Figure 2.2a
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Let I;(r) be the position on track ¢ where the left base wire L; intersects track ¢ from below, and rr;(r)

be the position on track ¢ where the right base wire R; intersects ¢ from below. II;(¢) is b;_, shifted right by ¢

units and rr;(¢) is b;,, shifted left by ¢ units, therefore
()=b;,+tand rri(t)=b; . — 1

Al separation ¢, wire w; that connects (; to b; is obtained by dropping a vertical wire segment from ; at
track 7 to the base wire L; or R; (depending on whether 4; is to the left or right of b;). A necessary condition
for w; to be a valid wire (run along grid lines, no crossing or overlapping with other wires) is that ¢; is to the

right of I/;(r) and to the left of the rr;, as shown in Figure 2.3.

(0

b, b,- <+ b" byt b;

Figure 2.3

In fact,
b_+t<1;sb -1t 2.1.1)

is a necessary and sufficient condition for w; to be a valid wire at separation r [Mir, Pin].
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2.1.1 Two-Component Channel

In a two-component channel, i.e. one bottom component and one top component, relative positions
of top and bottom terminals are fully characterized by the relative position of the left edge of the top com-
ponent with respect to the left edge of the bottom component, since relative positions of terminals within a
component are fixed. An offset is the displacement of the left edge of the top component with respect to
the left edge of the bottom component. See Figure 2.4,

easible range of 1;
at separation ¢
._-. ‘
ey
v
b;
Figure 2.4

At offset w terminal ¢ is at position ; + w. Al separation ¢, condition (2.1.1) describes a feasible range for

top terminal £, i.e.
b +t1<t;+wsbh, 1t

The feasible range of ¢; also defines an offset range for the top component (i.e. range of the left edge of the

top component with respect to the left edge of the bottom component)
b +t-t; Swsbh,—t—4

The intersection of all the offset ranges of top components at separation ¢ defined by each of the m termi-
nals is the feasible offset range of the top component at separation . The left endpoint of the feasible offset
range at separation { is called the left constraint at separation ¢, L (), and the right end point of the feasible

offset range at separation ¢ is called the right constraint at separation t, R (¢):
L@t)=max {b;,+t-;|t<i<m},0St <m;L(m)=—
R()=min{ b, —t-1;]0<i <m—1},0<t <m;R(m)=+eco

Let dBT be the mxm matrix whose ij™ entry is b; - t;. Then L (r) — ¢ is the maximum of all elements

on the sub-diagonal in dBT at distance ¢ above the main diagonal, likewise R (t) + ¢ is the minimum of all
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elements on the sub diagonal in dBT at distance ¢ below the main diagonal. Therefore L (t) and R (¢) can be
computed by a diagonal sweep of the matrix B-T. This requires O (m?) time.

The geometrical interpretation of the left and right constraint at separation ¢ is that, L (¢) is the left-
most position and R (¢) is the rightmost position of the top component with respect to the bottom com-

ponent such that the routing can be realized in 7 tracks.

For a separation ¢ 2 m, the feasible range of the top component is (—ee, +0°), i.e. the routing can
always be realized in m tracks. And for a channel with separation ¢ > m, we can reduce the separation o m
without affecting the feasibility of the channel. Therefore without loss of generality, we only consider

channels whose separations are no greater than the number of nets in the channels.
L (1) is non-increasing in ¢, since larger scparation will allow the top component to move further to
the left. Formally, observe that in the grid model
biw2bi+1,
S+ =2 bigay + (@ +1) =4, fort<m
SL(@)ZL(t+1)
Similarly, R (7) is non-decreasing in 1, i.e. R (1) SR (1+1).
The minimum separation is the smallest separation ¢ which defines a feasible offset range for the top

component. In terms of L (1) and R (¢), it is the separation ¢ such that,

LMO<R(®

L(-1)>R(t-1)
Since L (t) is non-increasing and R () is non-decreasing, the minimum separation can be computed by a
linear scan on L (¢) and R (¢).
Knowing how to compute the feasible offset range of the top component at separation #, we can com-
pute the minimum horizontal span of the channel at separation ¢. There are four cases:
(1) L@ <O0<R(),ie. 0is a feasible offset. Aligning components on the left gives the smallest
horizontal span.
(2)  L(r)y+length,, < lengthyouom < R (t)+lengthy,, ie. lengthyum—length,, is a feasible offset.
Aligning the components on the right gives the smallest horizontal span.
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(3) 0<L(r)<R(r)and not case (2), then the channel has smallest horizontal span at offset L (r).
(4) L(t)<R(1)<0and not case (2), then the channel has smallest horizontal span at offset R (¢).

Therefore the shape function of a two-component channel can be obtained by computing the minimum hor-

izontal span for each legal channel separation.

2.1.2 Multiple Component Channel

The optimal placement problem for a multiple component channel at separation ¢ is to find a place-
ment for each component at separation ¢ such that the horizontal span of the channel is minimized. Leiser-
son and Pinter reduce this problem to a longest path problem by deriving constraints between components

from condition (2.1.1) [LePi).

Consider a channel with k components and m terminals. The components are numbered from 1 to [
on the bottom row, and from [+1 to & on the top row. The order of the components on the same row is
fixed. The placement graph of such a channel is a weighted single-source single-sink directed graph that
describes constraints on relative placement between components in the channel. The source v corresponds
to the left boundary of the channel, and the sink v,,; corresponds to the right boundary of the channel. An
internal vertex v; corresponds to the left edge of component i. A vertex v; is regarded as a variable whose

value represents the horizontal position of the object to which it corresponds.

A constraint from v; 10 v;, v; — v; 2 w;; describes a relative placement between component i and com-
ponent j. It corresponds to a directed edge from v; to v; with weight w;;. There are two types of constraints
in a placement graph: constraints between vertices on the same row, and constraints between vertices on
different rows. A constraint for two adjacent vertices v; and v;,, on the same row is v;,; — v; 2 I; where [; is
the length of component #; there are k such constraints. A constraint between v; and v; on different rows is
established by constraints (condition (2.1.1)) between terminals on component i and component j. Since
relative positions of terminals within a component are fixed, the constraint between a top terminal ; and a
bottom terminal b; can be translated into a constraint between left edges of components that contain the ter-
minals. So a constraint from v; to v; is a maximal constraint between terminals on component i and com-
ponent j. This set of constraints can be established in O (m) time. In addition it can be easily seen that if v;
and v; are two vertices on opposite rows, v;» on the same row as v; and i <i’, vj» on the same row as v; and
Jj<Jj’, and vjs —v; is a constraint in the set of constraints, then v; - v;+ is not in the set of constraints.
Therefore the number of edges from the bottom row to the top row is at most 2k, and the number of edges
from the top row to the bottom is at most 2k. Thus the total number of edges in the placement graph is
O (k). Figure 2.5 shows a 5 component channel and the placement graph at separation 2. In the example,
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the constraint from v3 to v, is the maximal constraint of b, — 22 (equivalently v, — v4 20), and

by —1t; 22 (equivalently v, —v3 2 1),ie.v; —v3 2 1.
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Figure 2.5

Leiserson and Pinter find a partial ordering of the edges in the placement graph [LePi]. The partial
order leads to an algorithm which computes the longest path of the placement graph in linear time in the
number of edges in the graph. The shape function of a multiple component channel can then be computed
by solving the optimal placement problem for each legal channel separation.

In the next two sections we consider the river routing problem of a stack of components; we compute

the shape function of the stack.

2.2 Shape Function of a Stack of Single Component

In this section we compute the shape function of a stack of single components in which each channel,
defined by two adjacent components in the stack, is river routable. The shape-of-stack problem is stated as

follows:



Given,

(1) A stack of k+1 components, 0, 1,..., k, the 0* component is at the bottom of the
stack, and the k' component is on the top of the stack.

(2) n; bottom terminals and »;,, top terminals of the i** component. The j* top terminal
of the i* component is to be connected to the j* bottom terminal of the i+1" com-

ponent.

(3) The length length; and width width; of the i component.

Compute the shape function of the stack of k+1 components. See Figure 2.6.
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oo -......i" channel is river
routable with n; nets
(i-1)
®
[ ]
L]

L © |

an instance of the shape-of-stack
problem with £ +1 components

Figure 2.6

We will first define some of the terms that we will be using. Recall the left and right constraints of a
two-component channel. They describe the necessary and sufficient routability condition of a channel, i.e. a
channel is routable at separation ¢ if and only if the offset of the top component with respect to the bottom
component is greater than or equal to the left constraint L (¢) and less than or equal to the right constraint
R(?). In a stack of components, let L;(1) and R;(t) denote the left and right constraints of the i* channel

respectively. A separation vector (1y,1,,...,4) for a stack of k+1 components describes channel
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separations of the k channels of the stack. A separation vector (¢, 5, ..., #;) is said to be legal if all
channel separations are legal, i.e. L;(t;) < R;(1;) for i from 1 to k.

For a given separation vector (t;, t3, ..., &), the placement graph of a stack of k+1 components is a
weighted directed graph which represents constraints between adjacent components. There are k+3 ver-
tices; vg, vy, ***, v; correspond to the left edge of each component in the stack, v;,; and v,,, correspond
to the left and the right boundaries of the stack respectively. A vertex v; is also regarded as a variable
whose value represents the horizontal position of the object to which it corresponds. The weight of the
directed edge (v;_;, v;) is the left constraint of the i** channel, i.e. weight(v;_;, v;) = L,(t;), the weight of
the directed edge (v;, v;-,) is the negative right constraint of the i channel, i.e. weight (v;, v;—1) = =R;(1)),
weight (Vis1, v;) = 0, and weight (v;, vi42) = length;. See Figure 2.7.

placement graph for a stack of k+1
components with the separation vector

(‘IIIZQ see r‘l)
Figure 2.7

A configuration of a stack for the separation vector (1, #5, ..., &) is a placement of the k+1 com-
ponents; the i* component at position v;, and the i* channel with separation ;. A legal configuration is a

configuration in which relative offsets of all adjacent components do not violate the left and right



-28-

constraints between them, i.e. for a i-1* and i components pair,
Li(t) Svi-viq SRi()

Without loss of generality, we assume each channel separation in a legal configuration does not exceed the
number of nets in the channel. For the rest of the chapter, when we refer to a legal configuration, we mean

a legal configuration with the above assumption.

In terms of the placement graph, a legal configuration is an assignment of values to the nodes in the
graph subjects to the set of constraints. An optimal configuration for a separation vector is a legal
configuration of the vector with minimum horizontal dimension. The optimal configuration can be con-
structed by finding an assignment of values to the nodes on the placement graph subjects to the set of con-
straints, such that v;,, —v;,; is minimized. It is equivalent to solving the longest path problem on the
placement graph.

For a legal separation vector (¢, 15, ..., &), L;(t;) SR;(z;) for i from 1 to k; therefore, there is no
non-negative cycle in the graph. Therefore we only have to consider edge disjoint longest paths from v,
10 v;42. Due to the special structure of the graph, the longest path can be computed in time linear in the
number of edges in the graph [LePi]. The computation begins by initializing label (v, ;) to zero and all oth-
ers label (v;) 1o —=, it then updates the labels by scanning the edges in the order specified by the edge list &,

&= {1, v0), (Vha1, V1)s- - oy (Vrars W),
(o, V1), (Vi v2)s oot s (Vi1 Vi),
ks Ve-1), (k=15 Vi), - - -0 (V1, Vo),
(Vos Ves2), (V1s Via2)s - - o s (Viy Via2))
For each edge (v;, v;) in § it updates label (v;) as follows,
label (v;) = max {label (v;), label(v;) + weight (v;, v;)}

The correctness of the computation is due to the fact that each edge disjoint path from vy, 10 Vg4 is
a subsequence of £ [Pinter, Yen].

The routing dimension of a configuration is the dimension that is orthogonal to the routing channels
and the tradeoff dimension of a configuration is the dimension that is parallel to the routing channels. The
total separation of a configuration is the total of all channel separations. Because the total of all component
widths is constant in a given stack, the routing dimension varies with the total separation. From here on, we

shall ignore the constant total widths of the stack and use the total separation as the routing dimension of



the stack. See Figure 2.8.

We have defined the legal configuration of a stack of components for a given separation vector and
have described a method to compute the minimum tradeoff dimension of the stack. We now consider sets
of legal configurations that have the same total separations. First we define the minimal shape of a stack of
components and describe how it can be computed. A shape (s, ), describes a set of legal configurations,
whose tradeoff dimension does not exceed s and whose routing dimension (total separation) does not
exceed ¢, of a stack of k+1 components. A position w; of the k* component (top) is the position of the top
component relative to the left boundary of the stack from which s is measured. A 3-tuple (s, t, wi);
describes a set of legal configurations in (s, ), whose top components are at position w;. We say

(s, t, wy ), is legal if it contains at least one legal configuration. The legality of (s, ¢, w;); can be defined in
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terms of the legality of (s, 1—q, wi_;)x—; as follows,

(s, 1, w,), is legal if and only if for some w;_; and ¢ :

(1)  s<wy+length,, i.c. the k™ component is within the tradeoff dimension s.

(2) (s, 1—q, wi_ )z is legal.

(3) Lu(q) Swi—we_y <Ri(q), i.e. placement of the k™ component with respect to the

k~-1* component does not violate the left and right constraints. See Figure 2.9.
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We say (s, t), is minimal for a given tradeoff dimension s if

(1) There is some w; such that (s, t,w;); is legal.

(2) There is no w; such that (s, 1-1, wy), is legal.

Likewise, we say (s, £), is minimal for a given routing dimension ¢ if

(1) There is some w; such that (s, 1,w,), is legal.

(2) There is no w; such that (s—1, t, w;), is legal.

If (s, t), is minimal in both s and 1, then it is said to be a minimal shape. A minimal shape (s, 1), of a
stack corresponds to a break point of the shape function of the stack.

2.2.1 The Boundary Functions

Recall that in Chapter 1, the shape function of a layout is characterized by the set of minimal shapes
of the layout. Similarly, the shape function of a stack of k+1 components is fully described by the set of
minimal shapes of the stack. Computing the shape function of a stack of k+1 components amounts to com-

puting the set of minimal shapes of the stack.
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First we will show how to compute the minimal routing dimension of a stack of k+1 components for
a given tradeoff dimension s. To do so, we compute the left boundary function I, (s, t) and the right boun-
dary function ri(s, t). For a non-empty set (s, 1), of legal configurations, I;(s, #) describes the leftmost
position of the k* component and r,(s, ) describes the rightmost position of the k* component of all the

configurations in (s, ). If 5 is less than On;aék{ length; }, then (s, 1), is empty. In the following definitions

we will assume s is no less than Olgza;k{ length; }. Let,

n; denote the number of nets in the i channel,

Jj=i
N,- = anaN0=0°

j=1
Li(g) for g =010 n; denote the left constraint of the i* channel.
Ri(q)  for g =0 to n; denote the right constraint of the i* channel.
Tmin;  denote the minimum channel separation of the i* channel.
1ming(s) = 0

lo(s, 0) = 0;ro(s, 0)= s — length,

range;(s) denote the range [tmin;_, (s Tmin;, N;]. rangeo(s)=[0,0].
For t € range;(s),

lowg,(s, t) =max { t-N,_;, Tmin;)

highg;(s, t) =min { n;, t—tmin,_,(s)}

Since L;(n;) = —= and R;(n;) = +ee, we will need to add —e= and +e= t0 integers; we never need

(+9°) + (—o2). For a finite number x, we define x+(—ec) = —o0, and x-+(+o0) = +oo,

We will now give the inductive definition of the boundary functions. For a stack of i+1 components

the boundary functions /;(s, t) and r;(s, ¢) of the tradeoff dimension s are defined as follows:

For t € range,(s),

li(s, ) =min (5_y(s, 1-q) + Li(q) | lowq,(s, 1) < q < highg;(s, 1))
ri(s, ) =max (ri4(s, 1-) + Ri(q) | lowgi(s, 1) < q < highg,(s, 1))
li(s, 1) = max {0, Ii(s, 1))

ri(s, t) = min {s—length;, ri(s, 1)}
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tmin;(s) = smallest  in range;(s) such that ;(s, 1) < r,(s, 1).

The following lemma shows that the boundary functions are well-defined.

Lemma 2.1 For a stack of i +1 components and for ¢ in range;(s)
(1) (s, ¢) and r,(s, t) are well-defined.

(2) I(s, 1) is non-increasing, and r,(s, f) is non-decreasing in ¢ and [;(s,N;)=0,
ri(s,N;) = s—length;

(3) tmin;(s) exists

Proof. We shall prove the lemma by induction on i. The basis, i =0, is trivially satisfied: range(s) =
[0,0], Io(s, 0)= 0,ro(s, 0) = s—lengthy, tminy(s) = 0. From the induction hypothesis, tmin;_,(s) exists and
tmin;_y (s}+Tmin,<N;_,+n;<N;, therefore range;(s) is a legitimate range. To show that (s, t) is well-

defined, consider (s, 1):
li(s, 1) =min {l; (s, t-q}+L;(q) | lowqi(s, 1) < q < highgi(s, 1)}
Fort € range;(s),
(1) Tmin,<n;
(@) t-Nioy SN-Ni=n;
(3) Tmin; < t—tmin;_(s)
4) =N, St—tmin;_(s)

(1) is true because minimum channel separation is no larger than the number of nets in the channel, (2) is
true because N; is the largest 1 in range;(s), (3) is true because Tmin; + tmin;_;(s) is the smallest 7 in
range;(s), and (4) is true because rmin;_, (s) is no larger than N;_,. Thus lowgq,(s, t) < highg;(s, t). In addi-
tion for g € [lowq;(s, 1), highg(s, 1)1,

Tmin;<q<n;
Therefore L;(g) is defined. In addition,

t=N;_, £ q <t-tmin;_,(5) )
therefore,

t"liﬂ.‘_l (S) < —q SN"_I
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Therefore I;_; (s, t—q) is well-defined by the induction hypothesis. Hence, I;(s, ) exists and has a unique
value. Thus [i(s, ) is well-defined for ¢ in range;(s). Similarly r;(s, 1) is well-defined.

Now we show that I;_,(s, 1) is non-increasing. Let ¢ be the channel separation that defines I;(s, ).
Then,

li(s, ) =liy(s, t-q) + Li(q)

If t+1 is in range;(s), then 1+1 < N;. There are two cases:

Case 1: g <n;.

Then g+1 < n;. And L;(g) 2 L;(g+1), since L;(g) is a non-increasing function. Therefore,

Ii(s, 0) = Ii(s, t—q) + Li(q) 2 Ii(s, 1+1—(q+1)) + Li(g+1) 2 Ii(s, 1+1)

Case 2:. g =n;.
Then t+1-q SN;—~¢=N;-n;=N;_;. And, from g<highg(s, 1)), tmin;_;(s)<t—q <t+1-q. So,
li1(s, 1-q) 2 ;1 (s, t+1-q), since [, (s, t) is a non-increasing function by the induction hypothesis. In

addition n; € [lowg;(s, t),highg;(s, t)). Therefore,

Li(s, 0) = 1Ii(s, t=q) + Li(q) 2 Ii(s, 1+1-¢) + Li(q) 2 I/(s, 1+1)

If Ii(s, 1) <0, then Ii(s, £) =0, and if Ii(s, £) 20, then I;(s, t) = Ii(s, t). Therefore I(s, 1) 2 I:(s, t+1) for ¢

and t+1 in range,(s). Similarly, r,(s, t) 2 r;(s, t+1) for r and 1+1 in range;(s). Since,
li(s,N) S Ly (5,Nioy) + Li(n) = 0 + (<)
Ii(s,N;) = 0. Since,
ri(s,N) 21, (s,N;o) + Ri(n;) = s—length;_,+ oo = +oo

ri(s,N;) = s—length;. Now we show the existence of tmin,(s). We have [;(s,N;) <r;(s,N;). In addition,
Ii(s, t) is non-increasing and r,(s, ¢) is non-decreasing in range;(s), there is a smallest ¢ in range;(s) such

that l;(s, £)<ri(s, ). O
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Corollary 2.1 For ¢ in range;(s) and ¢ € [lowg;(s, ), highq;(s, 1)],
1-q € range;(s),
and

[l'—l (sl l“l) < ri-l(sl l“?)

Proof. q € [lowg(s, 1), highg,(s, t)] implies tmin;_,(s) <t—q <N,_;, and the result follows from the
definition of tmin;_; (s). O

We shall show that the left boundary function /;(s, ¢) and the right boundary function r;(s, ¢) of a
stack of i+1 components capture the shape (s, f);, i.e. for any w; such that I;(s, 1) < w; <ri(s, 1), we can
construct a legal configuration in (s, ¢, w;);, and for [;(s, t) > r;(s, t) there is no w; such that (s, 1, w;); is

legal. See Figure 2.10.

if the left end of the i*
component is in this range,
then (s,1); is legal
] 1 ] ]
: li(s,0) ! :
| (ACK] 1 ' ]
‘ . I- ................... —: : 1 :
if the left end of the i =1 | ' 4 ¥ )
componem is i.n lhi.s mnge‘ ..................... Vosnnsanuaisndiey s HI : N
then (5,1 —q);; islegal ! ‘q i
] ! A 1
1 Y i
Ly (s, —b) H :
f.- - -: : i-1 i tal )
. : ! ) separation
l.. ..... : ......................... -.: : =
' ri-1(s,1-q) A
G e BRSNS A 8 -
5
Figure 2.10

Lemma 2.2 For tin range;(s) (s, t, w;); is legal if and only if /;(s, 1) Sw; < r,(s, 1).

Proof. We shall prove the lemma by induction on i. The basis, i = 0, is trivially satisfied, since [o(s, 0)=0

and ro(s, 0) = s—lengthy, and (s, 0, wg), is legal if and only if 0 € wq < s-length,.
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Assume (s, 1, w;); is legal. Let, w;_; be the the position of the i-1" component of a legal
configuration in (s, ¢, w;);, and g be the channel separation of the i channel. Without loss of generality we
assume g < n;, and —g < N;_;. See the definition of a legal configuration. Then,

Li(g)sw;—wiy 2.1)

And, l;_y(s, t—q) Sw;_y <r;_(s, t—q) by the induction hypothesis. Therefore ¢min;_;(s) <t—q and so
qE€ [Iowq:'(& ‘)- highq;'(s. ‘)]. Thus,

li(s, ) Skioa(s, 1-q) + Li(q) Swi+Li(@) S w; [by (2.1)]

If Ii(s, 1)>0 then I(s, 1)=1(s, 1)< w;, if Ii(s, 1) <0 then (s, 1)=0<w;, since w; 20. Therefore,
I,‘(S, f) < Ww;. SlIm]arIy, r,-(s, l) 2 w;.

To prove the sufficient condition for legality we first show the following claim.

Claim If [;_(s, t—q)+L;(q) Sw; Srioi(s, t—q)+ Ri(q), for e range;(s) and
q € [lowq,(s, 1), highq(s, 1)], then there are w and w;_; such that, w,=w;_; +w,
L(@)<sw<Ri(q), and (s5,1—q, w;1);-1 is legal. This implies that if
0 <w; <5 - length, then (s, 1, w;); is legal.

Proof (claim). The interval [I;_,(s, t—q) + L;(q), r;-1 (s, t—q) + R;(q)] can be divided into two parts,

since,

lia1 (s, 1-q) + Li(q) S 1iy(s, 1—q) + Li(q) [by corollary 2.1]

<rii(s, 1-9) +Ri(q)

If w; falls in the first part of the interval, i.e.

lica(s, 1—q) + Li(q) s w; S iy (s, t—q) + Li(q)
choose w =L;(g) and w;_; =w; —w, then

Li(@)=w<Ri(g)
and
lia(s, t=@) Swiy=w;—w=r,(s, 1-q)

If w; falls in the second part of the interval, i.e.
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ria (s, 1=q) + Li(q) S w; <r;y (s, t—q) + Ri(q)
choose w;_y =r;_y (5, —q) and w = w;—w;_;, then
Lia(s, t—g)Swi_y=ri_i(s, 1-q)
and
Lig)swi-wi.y=w<sRi(q)

End of claim.

Assume [;(s, t) S w; <r,(s, 1). The sufficient condition implies that 0 < w; <s — length;. In addition,
li(s, ) SIi(s, 1) S w; <ri(s, 1) <ri(s, 1-q)
Let, ¢, and ¢, be channel separations of the i* channel such that

Ii(s, ) =1i1(s, t-¢,) + Li(q1)

ri(s, ) =ri1(s, 1=¢2) + Ri(q2)
Notice that q,, g5 € [lowg;(s, t), highg;(s, 1)]. Then we have the following,
li(s, ) =1iy(s, t=¢1) + Li(q,) Sw;
<ria(s, 1-92) + Ri(g2) = ri(s, 1)
In addition,
Liaa(s, t=q1)+Li(g) S7iey (s, 1= q1) + Ri(gy)
and
liai(s, 1-q2) +Li(q2) S iy (s, 1 - q2) + Ri(q2)
We will show the intersection of the following two intervals,
(1) [hials t=q1)+Li(q1), riea(s, 1= ¢1) + Ri(g))]
@ [hials, - q2) + Li(q2), riea (s, t — q2) + Ri(g2)]
is not empty by showing,

Lioa(s, t =q2)+Li(g2) Sriy(s, t —q,1) + Ri(q,)
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There are two cases,
Case 1:if ¢, < ¢,,ie.t-g,<t-¢q,
Since L;(g) is non-increasing and r;_, (s, t) is non-decreasing,
lica(s, 1= q2) +Li(q2) < iy (s, t — q2) + Li(q1)
Srici(s, 1—q2) + Ri(q1)
Sria(s, t-¢,)+Ri(qy)
Case 2:if g, 2¢g,,ie.t-go21-¢q,
Since /;_, (s, ) is non-increasing and R;(q) is non-decreasing,
Lioa(s, t=q2)+Li(g2) S liy (s, t — 1)+ Li(q2)
Sriaals, 1 - 1)+ Ri(q2)

Sria(s, t=q1)+Ri(q,)

Therefore w; is either in interval (1) or in interval (2); in either case, by the above claim, (s, 1, w;); is legal.

0

Lemma 2.2 implies that (s, tmin;(s)); is a minimal shape for the tradeoff dimension s. Lemma 2.2

also provides a mechanism to compute the position of the i—1" component, w;_;, from the position of the

i* component, w;, of a legal configuration in (s, #, w;);. This mechanism can be applied repeatedly until

positions of all components are known, and thus a legal configuration is constructed. Another approach o

, 1;) for each total

constructing a legal configuration in (s, ¢, w;); is to keep the separation vector (t1, {3, . ..

J=i
separation ¢, where ¢ = 3 t;, while computing /;(s, ¢) and r,(s, ¢). Then an optimal configuration can be

j=1

constructed by solving for the longest path of the corresponding placement graph.

For a stack of k+1 components, (s, ¢) and rx(s, ¢) can be computed straightforwardly from their

definitions as follows:
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Computelr:
(1) fori=1tok
2 Compute:
the left constraint L;(r), fort =0to n;
the right constraint R;(¢), for t =0 to n;
and the minimum separation Tmin; of the i* channel.
(3)  tming(s)=0;1y(s, 0)=0, ro(s, 0) = s—length;
Tming=0;No=0.
4) fori=1ltok

(5) for ¢ = tmin;_,(s) + Tmin, to N;

6) lowg;(s, t) =max {t-N;_;, Tmin,)

) highg;(s, t) = min (n;, t~tmin;_,(s)}

8) I;(s, ©) =min {l;_,(s, 1—q) + L;(q) | lowgq;(s, 1) < q < highg;(s, 1) }
©) ri(s, )= max {r;; (s, t—q) + Ri(q) | lowqi(s, t) < q < highqi(s, 1))
(10) Ii(s, 1) =max {0, [i(s, 1))

1 ri(s, t) =min {s—length;, ri(s, 1))

(12) tmin;(s) = smallest ¢ such that [;(s, 1) < r;(s, 1).

We will now analyze the complexity of computing /,(s, t) and r,(s, t) for ¢ in range;(s). At line (2)
in Computelr, L;(t) and R;(¢) for ¢ ranging from 0 to n,—1 can be computed by a sweep of the matrix dBT;
this takes O (n?) time. See Section 2.1. Tmin; can be computed in O (n;) time, due to the fact that L;(r) is
non-increasing and R;(¢) is non-decreasing. Let n be the total number of nets n =N,. Thus the total time
consumed at line (2) is

C'E:n,-z < C°(E:m)2 <Cn*=0(@n?
for some constant C.

From line (5) to line (11), I;(s, ) is computed by an off diagonal sweep. This takes O (N;_;n;) time.
Similarly, r{(s, ¢) is computed in O (N;_;n;) time. tmin,(s) can be computed in O (N;) time due to the fact
that [;(s, t) is non-increasing and r;(s, r) is non-decreasing. Therefore the total time required from line (4)
to line (12) is,

i=k i=k
EC ‘(Nioy'm;+ N < C-E(n-n.- +n)
ik

<CnY(m+1)
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<C-(n®>+kn)=0(n%+kn)

for some constant C.

Without loss of generality, we may assume there is at least one net in each channel, therefore k < n.

And the total time required to compute (s, t), ri(s, t) for ¢ in range;(s) and tmin(s) is O (n?).

2.2.2 Maximal Refinement of Well-behaved Intervals

Computelr computes the left boundary function, the right boundary function and the minimum total
separation of a stack of k+1 components for a given tradeoff dimension s. All minimal shapes of the stack
can be computed by applying Computelr to compute the minimal shape of each tradeoff dimension s.
However, a minimal shape (s, t); for s may not be a minimal shape for ¢, i.e. it may not be an actual break
point in the shape function. Therefore this approach may have potentially many redundant computations.

In addition, the range of tradeoff dimension one needs to consider by the above approach is from
i=k

02?&{ length} to IE’Lemgrh,-. This could be exponential in the length of the input.

Our algorithm computes the left and the right boundary functions (s, 1) and r(s, 1) at potential
break points, which are tradeoff dimensions where break points (minimal shapes) of the stack are likely to
occur. As we will show in the following lemmas, the number of potential break points of the stack is
approximately O (k-n); this results in an O (kn®) algorithm.

Two consecutive potential break points define a well-behaved interval, in which no break point
occurs except possibly at the left boundary. The basic skeleton of the algorithm is a refinement of well-
behaved intervals of a stack of i components into well-behaved intervals for a stack of i+1 components.

Formally, a half-open interval [s, s”) is said to be a well-behaved interval of a stack of i+1 components, if
ForA20ands+A<s’
(1)  tmin;(s + A) = tmin;(s)
(2) L(s+A, 0)=1(s, 1), fort 2 tmin(s)
(3) ri(s+A 0)=ris, t)+A,fort2tmin,(s)

A quick observation is that if [s, s”) is a well-behaved interval, then [s + §,, 5 + 8,) is also a well-
behaved interval when s + 8, <s+8, <s’.
Consider a legal configuration in the shape (s, tmin;(s));, the geometrical interpretation of a well-

behaved interval [s, s°) is that, as we increase the tradeoff dimension by A, it is not sufficient to accommo-

date a legal configuration with the position of the top component closer to the left boundary, so the left
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boundary function remains unchanged, on the other hand we can shift the whole configuration to the right
by A, so the right boundary function increases by A. See Figure 2.11.

Li(s+A,0)=l,(s,1) i T
4 - 1A  re~ight boundary is shifted
- e ienst - to the right by A units
L] : :
] '
] I
1] .
{111 : :
I ] : :
] |
bl ol v S R R R R - |
s
ri(s+A,0)=r,(s,0)+A A
- ------------------- h ’ ------- h
ri(s,;) | A 2 :
‘ ....... * ------- - I J 1
N T I
111 . : e whole configuration is shifted
| : . 10 the right by A units
M
]
Ll g :
|
' 1

Figure 2.11

Lemma 2.3 For any tradeoff dimension s, A 2 0, and 7 in range;(s),
terange;(s+4),
Ls+A, 1)<l(s, 1)
riis+A,0)zris, 1)+ A

tmin;(s + A) < tmin(s)

Proof. The lemma can be proved by simple induction on i. We will only show the induction step. Assume

the lemma is true for i—1, then

lowg,(s + A, 1) =max { t-N;_,, Tmin; } = lowg(s, t)
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highg;(s + A, t)=min { n;,t—tmin;_,(s + A) }
2 min {n;,t~tmin;_,(s) } = highq;(s, t)

tmin;_y (s+Ay+Tmin; < tmin;_, (sHTmin; implies range;(s) < range;(s+A)

li(s, )y =min { };_y(s, t—q) + L,(q) | lowgi(s, 1) < q < highgy(s, 1) }

Li(s+A, t)=min { [, (s + A, t—q) + Li(q) | lowgi(s + A1) S q < highg,(s + A1) }
<min { [;_y(s, 1-¢) + Li(q) | lowq;(s, 1) < q < highg(s, 1) }
=1li(s, 1)

Therefore, I;(s + A, t)=max { 0,[{(s + A, 1) } smax { 0, I;(s, ) } = (s, t). And,

ri(s, ty=max { .y (s, t-q) + Ri(q) | lowqi(s, 1) < q < highg(s, 1) }

ri(s+ A, )=max {r;_;(s + A, t—q) +R;(q) | lowg;(s + A,t) S q < highg,(s + A,1) )
2max { ri (s, 1—q) + A+ Ri(q) | lowgi(s, 1) < q < highqy(s, 1)}
=max { 1, (s, t-q) + Ri(q) | lowqi(s, 1) < q < highg,(s, 1)} + A

=ri(s, )+ A

Therefore,
ri(s+A,f)=min{s+A-length;,, ri(s + A, 1)}
2min{s+A-length;, ri(s, )+ A}
=min{ s - length;, ri(s, t) } + A
=ri(s, )+ A
In addition,

Li(s + A, tmin,(s)) < Ii(s, tmin,(s)) S r;(s, tmin;(s)) < ri(s + A, tmin,(s))

therefore, tmin;(s + A) < tmin;(s). O
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Corollary 2.2 In a well-behaved interval [s, s”) for a stack of i components, if s + A< s’
then for a stack of i +1 components and for ¢ in range;(s)

Li(s+A, 0=, 1),

ri(s+ A, t)=ri(s, 1)+ A, and

range;(s + A) = range;(s)

Proof. Replace the inequalities by equalities of the inductive step above. O

For a well-behaved interval [s, s”) of a stack of i components (0, 1,2,..., i-1) we say the
sequence of tradeoff dimensions

'

S=50<85) < *** <Sp=§
is a maximal refinement of [s, s”) after adding the i component (now a stack of i +1 components) if
(1)  [sj, 5;4+1) is a well-behaved interval of the stack of i+1 components, for j =0 to m-1
(2)  tmin;(s;) > tmin;(s;4,), for j =010 m-2.

()  tmin,(sp-1) 2 tmin,(sm)

Figure 2.12 shows an example of a maximal refinement of a well-behaved interval.

total
separation i a maximal refinement (s¢,5,,52 53 54}
_.--of [s,57) after the i**
" component is added to the stack
*— 1
I ' ]
] []
] ] ]
] ] ]
] 1 ]
] ] ]
] 1 ]
] ] ]
1 1 [ ]
1 1 1 [ S——
sl( 1 1 | !
T ‘; jI —: - ] "
' ' 1 . “v-...  the total separation of a
' : ! 1 - “stack of i components in the
: ! 1 : : well-behaved interval [s,s57)
1 1 : ! '
I 1 1 ! '
T N A
| 1 ' ' | o
s ! ! ! st tradeoff dimension
So 5 52 53 54

Figure 2.12
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Lemma 2.4 Given a well-behaved interval [s, s”) of a stack of i components, adding
one more component to the stack we can compute the maximal refinement

r

5=50<5; < *** <Sp =S

of [s, s”) of the new stack in time O (N?).

Proof. We shall construct such a refinement. Intuitively, beginning at the left boundary s = 5, we look for
maximal tradeoff dimension s; such that [s, 5,) is a well-behaved interval of the stack of i+1 components

and tmin,(sy) > tmin;(s,) and continue the process until the last well-behaved interval is found.

Formally, compute [;(s, 1) and r;(s, 1) for ¢ in range,(s), and locate tmin,(s), i.e. find the smallest ¢ in
range;(s) such that l;(s, 1) < r;(s, 1). By Corollary 2.2, li(s + A, t) = l;(s, t) and r;(s + A, t) =ri(s, 1) + A for
s+ A < 5. If tmin,(s) equals its minimum achievable value over [s, s”), tmin;_; (s) + Tmin;, then the maxi-
mal refinement is [s, s”). Otherwise increase the tradeoff dimension by A until tmin,(s) > tmin;(s + A).

This occurs when
A= I(s, tmin(s)}-1) - r(s, tmin;(s)-1).
Since,
ri(s + Amin,(s)-1) = ri(s,tmin;(s}-1) + A
= l(s, tmin;(s)}-1) = [;(s + A, tmin;(s)-1)

Letso=sand s, =5¢ + (s, tmin;(s)-1) — r;(s, tmin;(s)-1). Then [sq,5,) is a well-behaved interval of the
stack of i channels. This is because, for 5o + 6 < 51,
ri(s + 8,tmin;(s)-1) = r;(s, tmin,(s)-1) + &
< ri(s, min;(s)-1) + I;(s, tmin;(s)}-1) = r;(s, tmin;(s)-1)
= li(s, tmin;(s)}-1) = I;(s + 8, tmin;(s)-1)

So tmin;(so + 5) = tmin;(so).
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Sjv1 = 8; + Li(s;,tmin;(s;)-1) = ri(s;, tmin,(s;)-1)
and [s;,5;41) is a well-behaved interval of the stack when s;,; < s”. This is because, for 5; + 8 < s;41
ri(s; + 8, tmin;(s;}-1) = ri(s;, tmin;(s;)-1) + & 0]
< ri(sj, tmin;(s;}-1) + li(s;, tmin;(s;}-1) = ri(s;, tmin;(s;)-1)
= li(sj, tmin;(s;}-1) = I;(s; + 8, tmin;(s;)-1)
The equality (/) is due to the fact that [s;.5;41) is a well-behaved interval for the stack of i channels.

We halt when tmin;(s;) reaches its minimum achievable value tmin;_; (s) + Tmin; or when Sj4 is greater

than or equal 1o s’, in either case set 5;,, =s’. Lemma 2.3 implies tmin; (sp-1) 2 tmin;(s,).

The actual refinement process is described as follows,

Refine (5, 5")

(1)  Compute I;(s, ) and r;(s, ¢) for 1 in range;(s).
@ Jj=0;5=s

(3)  while (s; <s”)

@) locate tmin;(s;)

®) if (tmin;(s;) = Tmin; + tmin;_y (5)) then

(6) i = s’

@) else

t)] Sjv1 = 8j + 1i(s;, tmini(s;)/)-1) = ri(s;, tmin,(s;}-1)
® J=j+1

(10) s;=s5"

The complexity of Refine is O (N?) for a stack of i+1 components. It requires O (N?) to compute
li(s, 1) and r(s, 1). The time consumed in the while loop is equal to the number of resulting well-behaved
intervals. Since tmin;(s;) is strictly decreasing, this number does not exceed N;. In addition locating
tmin;(s;) takes no more than the size of range;(s). Thus the complexity of Refine is O (N? + N,). If we
assume [;_;(s, 1) and r;_,(s, 1) are given, then it requires O (N;_;'n;) to compute I;(s, t) and r;(s, ). See

Lemma 2.2. Thus the complexity in this case is O (N;;'n; + N;). O
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2.2.3 The Main Theorem

Theorem The shape-of-stack problem can be solved in O (k-n*) time.

Proof. We show this by providing an algorithm to compute a sequence of tradeoff dimensions,
i=k
max { length; } =59 < 5; <S5 < *** <5, = Ylength;
i=0

such that
tmin,(sq) > tming(s,) > tming(sy) > <+ > tmin,(s,)
and when s5;+A<s;

tmin, (s;+A)y=tmin,(s;), fori =1tom-1

Notice that the above sequence of tradeoff dimensions covers the range of tradeoff dimension that is
needed to be considered, since for any tradeoff dimension s > s,,, the minimum total separation tmin,(s)
i=k
achieves its minimum achievable value ¥ Tmin;.
i=1
We construct the sequence incrementally as follows, Begin with the 0® component,
59 = max { length; }, s? = (3 length;)+1. [s$ sb) is a well-behaved interval of the stack of one component.
Adding the 1 component, by Lemma 2.4, we can construct a maximal refinement of [sJ' s?):

sg=sb<s]<sh< ' <sm =50

tmin, (sb) > tminy(s}) > « -+ > tmin(5p,~1') 2 tmin, (sh, ),

Each of [s], s}+1) is a well-behaved interval of the stack of two components. In general, after adding the
next top component, Refine can be applied to construct the maximal refinement of each of the well-
behaved interval. The process is continued until the refinement is obtained for the whole stack. After the
last refinement, we obtain the sequence { s, s} ..., s ) and tmin,(s}) is computed in the course of
computing each s%. The sequence has the property that fmin(sf+A)=tmin,(sf), when s}+A<sf,,. Thus we
can scan the sequence once and merge the intervals whose minimum total separations at the left boundaries
are equal. This gives us the required sequence and thus the shape function. A typical refinement of the
shape function for a stack of i components after the i* component is added is shown in Figure 2.13. The

algorithm is described as follows,
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Figure 2.13
Algorithm 2.1:
0) 53 =max {length; }; s? = :‘:::Iength,-ﬂ
i
(1)  Initialize List®: List® = { 53, 59 )
@2 i=1
(3) while(i<k)
@ add the i* component to stack
) for (each well-behaved interval [s*, si31) in List™™)
(6) Refine (si, 5i71)
W) add the maximal refinement into List’

(8) i=i+1
(9)  Scan List* and merge intervals whose minimum total separations

at the left boundaries are equal.

The complexity of Algorithm 2.1 depends on the number of times Refine is invoked. This number is equal
to the total number of intervals in all List® for i =0 to k—1. Let size (List") denotes the number of intervals in

List*. For i>1, we show in the following

size (List’) € N; + size (List*™") = O (i-N;) 2.2.1)
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After the sequence of sj in List' is constructed, tmin;(s}) is strictly decreasing except at some sk = 5§,
where tmin;(sh-y) 2 tmin;(sh). Therefore size(List") <N;+ 1+ size(List*')-1 =N; + size (List"™?),
because there may be N;+1 intervals due to the monotonicity of tmin;(t) and the 1* entry s} is not dupli-
cated. We shall show (2.2.1) for i>1 by induction. size (List') < N,+1, size (List?) <N, +N,+1 £2:N,

(we assume there is no empty channel). Assume true for i1,
size (List') SN; + (i-1)N;_ fori>2
SN" + (I-—l)'N" Si s N"

thus size (List") = 0 (i - N;) for i>1.

We keep /;_; (s, t) and r;_, (s, 1) after the i—1*" iteration. So at the i iteration the time required for
Refine(si™, si31) is O (N;; - n; + N;). The time required to refine List° is O (n?), and the time required to
refine List’ is O ((N;+1):(N;-n2+N,)). The total time required to construct the maximal refinement of all
intervals in List*™! for i-1>1 is O (size (List*™") - (N;_, - m; + N;)), and the complexity to establish the
shape function is therefore,

i=k-1

Cynf +CyWN +1)(Nyna+Na)+ X Ca i (N? - miyy +N; - Niyy)

i=2
i=k-]
SCynf+Co(Nyny+N3) + Y Cqvi-(N}-nyy +N;Nyyy)
i=]
i=k-]
< C1'ﬂ¥ + C2°(N1'n2 +N2) +Cy4k- nz s z (ﬂ;.ﬂ + l)
i=l

<C-(k-n*+4k%2-n?

for some constants C,, C3, C3,C4 and C.
Without loss of generality we assume there is at least one net in each channel, otherwise the stack

can be divided into two independent stacks and the shape function of the whole stack is the sum of the two

individual shape functions. So we assume n 2 k and the complexity of Algorithm 2.1is O (k - n%). O

2.2.4 Simplification on One-Sided Constraints
Algorithm 2.1 can be sped up by a factor of two if the left and the right constraints of all channels in
a stack are one-sided. We say the left and right constraints are one-sided if R;(Tmin;) is non-positive or

L,(Tmin;)2length; _,—length;, for i = 1,...,k.
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When R;(Tmin;)<0, for i = 1,...,k, all the left boundary functions are at their minimum, i.e. }(s,1)=0,
and we need only to compute the right boundary functions when computing the shape function. And when
L;(Tmin;)2length;_,—length;, for i = 1,...,k, all the right boundary functions are always at their maximum,
i.e. r;(s,t)=s—length;. Formally,

Lemma 2.5 In a stack of k+1 components, if R;(Tmin;)<0 for i = 1,...,k. Then I;(s,1)=0 for

ik
max{length,}<s< length; and t € range;(s).
i=0

Proof. By simple induction on i. R;(Tmin;)<0 implies L;(Tmin;)<0. Since L;(f) is non-increasing, this

implies L;(1)<0 for all channel separations t>Tmin;. Assume /;_ (5,)=0 then,
1 (s,t)=min{l;_, (5,1~ +L;(q) | lowq;(s,1)Sq<highq;(s,1)}<0
Thus, ;(s,0)=0.0
When L;(Tmin;)2length;_,—length; the result on the right boundary function can be shown similarly.

Therefore when we have one-sided constraints, only one boundary function needs to be computed and the

running time is sped up by a factor of two.

2.3 Stack of Multiple Components

In the previous section we considered stacks with single component entries. In this section we con-

sider stacks with multiple component entries. The shape-of-rows problem is described as follows,

Given a stack of k+1 rows, each row has one or more components with predetermined
order, and each channel defined by two adjacent rows is river routable. Compute the shape
function of the stack of rows. See Figure 2.14.

For simplicity we assume components in a row have the same widths. First we generalize the terms
we used in the stack of single component to the stack of rows. A separation vector (1,,1t3,..., 1)
describes the channel separation of a stack of k+1 rows. A configuration of the stack of k+1 rows for a
separation vector (¢, f2,..., #) is a placement of each components such that the structure of the stack is
preserved -- the i channel has channel separation ¢; for i from 1 10 k, components on the same row do not

overlap and the order of the components is preserved.

Notice that each channel in the stack of rows is an instance of a multiple component channel. (See

Section 2.1.2,) If the channel separation of a channel is given, the placement graph that describes
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Figure 2.14

constraints between components that define that channel can be derived as in Section 2.1.2. For a stack of
k+1 rows if a separation vector (¢, 75,..., #;) is given, the placement graph of each channel can be
derived, and the placement graph of the stack of rows which expresses constraints between components in
the stack can then be established by merging the placement graphs of each individual channel of the stack.
This is done by identifying vertices which represent the positions of the same components, vertices which
represent the left boundary, aInd vertices which represent the right boundary. This results in a single-
source-single-sink weighted directed graph. See Figure 2.15.

For a given separation vector (1, f3, ..., I4), a legal configuration is a configuration which does not
violate the constraints imposed by the placement graph of the stack. An optimal configuration for a stack of
k+1 rows for the separation vector is a legal configuration whose tradeoff dimension is minimum. Let v,
be the veriex that represents the left boundary and v, be the vertex that represents the right boundary, in the
placement graph associated with the separation vector (¢;, f2, ..., &), The minimum tradeoff dimension
for the separation vector can be computed by assignment of values to vertices in the placement graph, sub-
ject to the constraints, such that v, — v; is minimized. Again this amounts to finding the longest path in the
placement graph and can be solved by the standard Bellman-Ford algorithm [Law]. In addition, the values
of the vertices give us the optimal configuration.

A total separation for a separation vector is the sum of each channel separation. A shape (s, 1),
describes a set of legal configurations, of a stack of k+1 rows whose tradeoff dimension does not exceed s
and whose total separation does not exceed . We say (s, 1), is legal if there is at least one legal
configuration in (s, 1),; we say (s, 1), is minimal if no legal configurations in (s, #); has tradeoff dimension

less than s or total separation less than .
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placement graph of
the i channel

k* row

i-1" row

0" row

placement graph of a stack of rows

Figure 2.15

One of the difficulties in computing the minimum tradeoff dimension of a stack of rows for a total
separation ¢ is that we do not know of an efficient way to compute the channel separation of each individual
channel. In fact Pinter and Sipser showed that given a stack of rows, a tradeoff dimension s and a total
separation f, deciding if (s, r); is legal is NP-complete [Pin].

Since computing the shape function of a stack of rows is difficult, we will approximate the shape
function by a heuristic. The goal of the heuristic is to find a separation vector for each total separation 1.

The following are terms and notation required to describe the heuristic.

Consider a row in the stack, two adjacent components on the same row can define a routing channel.
To avoid confusion, we call the routing channels that are directly involved in the computation of separation
vectors the direct routing channels -- these are the channels defined by adjacent rows in the stack. We call

the nets in the direct routing channels the direct routing nets. For a stack of k+1 rows, let

Tmin;  the minimum channel separation of the i* channel.



Y

tmin; the smallest possible total separation of the first i channels of the stack.

J=
tmin; = 3 Tmin,.
j=

n; the numbser of nets in the i* channel.

M max the maximum of all n;.

N; the number of direct routing nets for the first i channels. N; = jfu,-.
=1
m; the number of components in the i row.
M; the total number of components for the first i +1 rows. M; = jf“,mi.
j=0
n the total number of routing nets. n = N;.
m the total number of components in the stack. m = M,.

v;(1) a separation vector (4, t, . . ., ;) for a stack of i+1 rows whose total separation

j=
istv()=(y,12,..., 4)and 1= ¥ t;.
j=1

vi(t) | ¢ the concatenation of a vector in IN' with a scaler 1o form a vector in IN'*!,

vilt) lg=(y,t2,..., ) 1 g=(ty,..., Q).

The heuristic computes a separation vector whose total separation is ¢ for a stack of i +1 rows by con-
sidering all combinations of v;_; (t—¢) and g, where g is a legal separation of the i** channel. It chooses the
best v;_;(t—q) | g pair, i.e. the pair that result in minimum tradeofl dimension of a stack of i +1 rows. This

is done for i from 1 to k. The heuristic is described in Algorithm 2.2,

In line 7 of algorithm 2.2, low;(r) and high;(t) are the smallest and largest channel separations needed
to be consider respectively at the i* channel. Obviously ¢ > Tmin; and g < t—tmin,_, . Intuitively when the
total separation of a stack of i rows is N;_;, each channel has full flexibility, i.e. components on adjacent
rows do not impose any constraints on each other, so the minimum tradeoff dimension achieves its smallest
achievable value. For instance, for the separation vector (n,, n,, ..., n;_1), each channel in the stack has
full flexibility and the tradeoff dimension is equal to the length of the longest row. When 1—¢ > N;_,, i.e.
q < t=N;_;, the tradeoff dimension of the stack for the separation vector v;_,(r—¢) | g is no better than the
tradeoff dimension for v;_;(N;_;) | 1=N,_;; therefore we only consider ¢ 2 max { tmin;, t-N;_; }. When
q > n; the minimum tradeoff dimension of the stack for the separation vector v;_; (r—¢) | ¢ is no better than

the tradeoff dimension for v;_, (1-n;) | n;, therefore we only consider ¢ < min { n;, t-Tmin;_; }.
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Algorithm 2.2 (stack of k+1 rows)
(1) fori=1tok

(2) Compute Tmin;.

(3) fort=Tmin, ton,

C)) vi() =t

(5) fori=2wk

©) for { = tmin; to N;

)] low;(1) = max {Tmin;, t=N;_}; high;(t) = min {n;, t—tmin;_,}

(8) optq = high;(t)

©) for g = low;(1) 1o high,(1)

(10) Establish placement graph for the separation vector
viei(t-q) 1 q.

(11 Apply Bellman-Ford to solve longest path.

(12) if (shorter longest path is obtained) then

(13) oplq =q

(14) vi(t) = v, (1—opiq) | opiq

The time required to compute Tmin; is O (n;-log (n,)), so the total time spent at the loop at line (1) is
O (n°log(nmax))- The time required to establish the placement graph at line (10) is O (N;), and the time for
Bellman-Ford algorithm at line (11) is O (M?) since the number of edges in the placement graph at the i*
iteration is O (M;). See section 2.1.2. The range of ¢ at line (9) is O (n;), and the range of ¢ at line (6) is
O (N,), therefore the complexity of algorithm 2.2 is,

C'iikNi'ni'(Ni +M?)
i=1
ik

<C-Yni(n*+nm?)

i=1
<C:(n®+n*mH=0(@n>+n?*m?
for some constant C.

In the above shape-of-rows problem we have assumed that components on the same row have same
widths, and there are no displacement constraints between adjacent components on the same row. In prac-
tice, components in the same row may have different widths, and displacements between adjacent com-
ponents on the same row may not be less than certain units due to routing requirements of the non-direct

routing channels. The first assumption is required to ensure that the total width contributed by the row
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widths to the routing dimension is constant, so for a row with non-uniform component widths, we use the
width of the smallest rectangle that encompasses the row as its width. The second assumption can be
reflected in the placement graph if the displacement constraints are known for all the non-direct routing
channels.

We have not evaluated algorithm 2.2 directly. However, algorithm 2.2 has been used as a subroutine
in heuristics that compute approximate shape functions of slicing structures. From the performance of

those heuristics we conclude that algorithm 2.2 is a useful heuristic. This work is presented in the next
chapter.



Chapter 3

Shape Function of River Slicing Layouts

In this chapter the algorithms developed in Chapter 2 are applied to approximate
the shape function a river slicing layout. Three heuristics using combinations of the algo-

rithms in Chapter 2 are described and the performance of each approach is discussed.

3.1 Introduction

While the shape function of a slicing layout without interconnections can be computed efficiently
[O1t, Sto], to compute the exact shape function that includes all the necessary river routing space of a slic-
ing layout is NP-complete [Pin]. Our goal here is to approximate the actual shape function. Recall that the
exact shape function of a slicing layout captures a set of minimal dimensions (break points) of the layout,
i.e. given a horizontal dimension of the layout we can find the minimum vertical dimension and vice versa.
Since finding the exact set of minimal dimensions of a slicing layout with interconnections is difficult, we
develop heuristics to find a set of shapes which are area efficient. Three heuristics are developed to com-
pute an approximate shape function of a river slicing layout. In a river slicing layout, terminals on opposite
sides of a routing channel must have the same net ordering, this is the same requirement in pitch aligning.
We compare the performance of the heuristics with pitch aligning by comparing the smallest area of lay-
outs produced by each of the heuristics to the area of the layout produced by pitch aligning. This com-
parison is intended to show the potential of our compaction scheme which treats wires as topological enti-

ties.

3.2 The Rigid Heuristic

To approximate the shape function of a river slicing layout we employ an approach similar to that
used by Otten [Ott] to compute the shape function of a slicing layout without interconnection. In [Ott] the
shape function of a slicing layout is computed by performing a postorder traversal on the slicing tree that
represents the slicing layout. When a slice is visited the shape function of the slice is computed by sum-
ming shape functions of its child slices. After the root slice has been visited, the shape function of the slic-

ing layout is obtained. In general, when computing the shape function of a parent slice that includes the
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routing space between its child slices, a simple summing operation will not work. This is because the rout-
ing requirements between two adjacent child slices may alter when different shapes of the child slices are
chosen. However, if a fixed shape is chosen for each child slice, computing the shape function of the
parent reduces to the shape-of-stack problem. Our approach is based on a shape-choosing strategy in
which a "good” shape is chosen for each of the child slices, and the shapes are used to compute the shape

function of their parent slice.

Recall that in Chapter 2, algorithm 2.1 provided a solution to the shape-of-stack problem. We will
first illustrate how algorithm 2.1 is applied to approximate the shape function of a slicing layout of depth
two. We assume leaf cells of a slicing layout have rigid shapes and their terminal positions are given.

Notice that a slicing layout of depth two is a stack of rows of leaf cells.

To approximate the shape function of a slicing layout of depth two, algorithm 2.1 is applied to com-
pute the shape function of each row of components on the stack. Then a shape is chosen for each row and
the row is frozen at that shape, i.e. the optimal configuration is constructed for the row of components and
the row is treated as a rigid component. We choose the shape with the smallest area. The shape choosing
strategy will be discussed in Section 3.5. Now algorithm 2.1 is applied to compute the shape function of
this stack of rigid components. See Figure 3.1 for an illustration. The resulting shape function is an

approximation to the actual shape function of the slicing layout.

' — [ P P
; | ¢ § 2 3%
1 fri 2404 3 1y §° 833
s : - each row is frozen
....... il ot i S5
il o at a rigid shape NERRS S "
b ° 0 5
4 # 5 . i
o P' — .
]
_______ .|__--I.---r--.-......—-.
iy | ] T8 8. 808 co
1 1 B
6 .t 73, 8 6 331 8
| ' 2807 38
| L e e [ R 3 i CRENEELEn
Slicing Structure of depth two A configuration of a shape of
(a stack of rows) the stack of rigid components
Figure 3.1

In general the above approach to approximate the shape function of a slicing layout of depth two can

be applied to approximate a shape function of a slicing layout of any depth. The basic skeleton of the
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heuristic is a postorder traversal on the slicing tree that represents the slicing layout. At a visit of a slice,
after a shape is chosen for each of its child slices, the shape function of the slice is computed by the rigid
algorithm (algorithm 2.1). Formally the heuristic is described as follows:

Rigid_Shape_Function( slice )
(1)  if (slice is aleaf cell )

(3] return( dimensions of slice )

(3) else

“) for (each child of slice )

(5 Rigid_Shape_Function( child )

(6) Choose a shape on the shape function.

(7)  Apply Algorithm 2.1 to compute shape function.
(8)  return( shape function computed )

3.3 The Thawing Heuristic

A better approximation of the shape function for a stack of rows of components can be obtained if
we do not freeze the rows in their chosen shape. That is, after a shape is chosen for a row and a
configuration is constructed for that row, we allow flexible displacements between two adjacent com-
ponents on the row. To be more precise, the minimum displacements between two adjacent components on
the row are enforced at the channel separations that are determined by the chosen configuration, but there is
no constraint on the maximum displacement of the adjacent components on the row. We call a row with
flexible displacements between adjacent components a thawable row. Now Algorithm 2.2 can be applied to
approximate the shape function of this stack of thawable rows. To apply algorithm 2.2 the width of each
row is required. We use the tradeoff dimension of the chosen shape of each row as its width. See Figure
3.2 for a configuration of the slicing layout in Figure 3.1 when algorithm 2.2 is used to compute the shape

function.

The routing dimension of the shape function obtained by the above approach can be reduced. Recall
that there is a separation vector associated with a given break point. From the separation vector a
configuration of the stack of thawable rows can be constructed at that break point. After the configuration
is constructed, the actual displacements between two adjacent components on a row may be larger than the
predetermined minimum displacements. The accurate width of a row can be obtained by the squeezing
operation which is the construction of the optimal configuration of the row using actual channel displace-

ments as channel separations. This does not affect routability of the routing channels of the row. To obtain
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a more accurate shape function, the squeezing operation is applied to each row of components to obtain the
minimum routing dimension at each break point. See Figure 3.3. We refer to the application of algorithm

2.2 and the squeezing operation as the thawing operation.

widths of the top and bottom
E rows are reduced after
5 the squeezing operation

Figure 3.3

The basic skeleton of the thawing approach is the same as that of the rigid approach. Although algo-
rithm 2.2 can potentially produce better shape functions, it is computationally more expensive than algo-
rithm 2.1. A predetermined parameter, Thaw_level is used to control the level at which the thawing opera-
tion begins. Thaw_level equal to one means the thawing operation begins on slices with level higher than
one, i.e. slices which have at least one non-leaf child slice. Thaw_level equal to the level of the root slice
means no thawing operation is applied; this is equivalent to the rigid heuristic. Formally the thawing

heuristic is described as follows:



-58-

Thawing_Shape_Function( slice )
(1)  if (sliceisaleafcell)

) return( dimensions of slice )

(3) else

4) for (each child of slice )

&) Thawing_Shape_Function( child )
©) Choose a shape on the shape function.

(7)  if (depth of slice is < Thaw_level )

8 Apply Algorithm 2.1 to compute shape function.
(9) else

(10) Apply Algorithm 2.2 to compute shape function.
(11) Apply squeezing operation for each child slice

10 obtain more accurate shape function.

(12) return( shape function computed )

3.4 The Dynamic Thawing Heuristic

The above heuristic requires a predetermine parameter, Thaw_level, which is the level at which the
thawing operation begins. From our empirical study of 60 randomly generated slicing layouts we see no
direct correlation between Thaw_level and the compactness of the shape function, i.e. a lower Thaw_level
does not necessary produce a better shape function. We compare shape functions of a layout produced by
the above heuristics with different values of Thaw_level by comparing the area of the smallest shape on
each shape function.

The optimal thawing strategy is to choose the best Thaw_level for a given layout. This can be done
by running the heuristic for each value of Thaw_level. However, this is very inefficient computationally.
This motivates the dynamic thawing scheme in which a criterion is used to determine if the thawing opera-
tion or the rigid computation is applied at the computation of the shape function of a slice.

We will define some terms that we will use in the criterion for dynamic thawing. In a stack of rows
of components with known minimum displacements between adjacent components on each row, define the

following:
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rminsep; the minimum channel separation of the i channel if the i row and i+1 row are
rigid.
tminsep; the minimum channel separation of the i channel if the i* row and i +1* row are

thawable.
mits mits = Y tminsep;.

mirs mirs = Y rminsep;.

The dynamic thawing heuristic decides if the rigid computation (algorithm 2.1) or the thawing com-
putation (algorithm 2.2 + squeezing operation) is applied. From empirical observations we conclude that
the thawing computation is beneficial when the muts of a slice is smaller than the mtrs of the slice. The
explanation of this conclusion is that in a rigid computation channel separations of some routing channels
in the slice are at their minima, i.e. rminsep;, and if tminsep; is much less than rminsep; at these channels, a
better routing dimension can be expected if the thawing computation is applied. Since both rminsep; and
tminsep; can be computed very efficiently [Mir, Pin], mtts and murs serve as a convenient indicator for
when to apply the thawing computation. We do not know an efficient way to decide if thawing will
improve the tradeoff dimension of a slice. Therefore, we focus on the channel dimension as our criterion
for the dynamic thawing,

mirs — mils

Iti int =
melting_poin i

If melting_point is greater than a tuned parameter, Thaw_threshold, then the thawing computation will take
place. The Thaw_threshold is empirically determined to be 0.10. Formally the dynamic thawing heuristic

is described as follows:



Dynamic_Shape_Function( slice )
(1)  if (sliceisaleaf cell)

2) return( dimensions of slice )

(3) else

“4) for ( each child of slice )

5 Dynamic_Shape_Function( child )
(6) Choose a shape on the shape function.
()  Compute muts and mers.

(8)  melting_point = W

(9)  if (melting_point < Thaw_threshold )

(10) Apply Algorithm 2.1 to compute shape function.
(11) else

(12) Apply Algorithm 2.2 to compute shape function.
(13) Apply squeezing operation for each child slice

to obtain more accurate shape function.

(14) return( shape function computed )

3.5 Shape-Choosing Strategy

Choosing good shapes of child slices for the computation of the shape function of their parent slice is
a non-trivial task. The shapes of child slices affect the shape of their parent and in turn the shape function

of the parent slice affects its parent slice. We will illustrate this by the following example:

Example 3.1a Example 3.1b
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In the above examples, the slice that contains A and B has two shapes, if the shape in Example 3.1a is
chosen the composite slice that contains A, B and C requires no routing area. However the composite slice
that contains A, B, C and D will require 6 routing tracks. On the other hand if the shape in Example 3.1b is
chosen for the slice that contains A and B, extra routing area is required in the composite slice that contains

A, B and C, however no routing area is required between the composite slice and D.

The moral of the above example is that good shapes of child slices chosen for their parent slice may
not be good shapes for higher level slices that contain them. To consider all combinations of shapes is
infeasible. For example, in a stack of n rows, if the average number of shapes to be considered for each
row is k, to compute shape functions of the stack for each combination of shapes of the n rows will require

k" computations of shape functions.

The shape-choosing strategy we use is to choose the shape with minimum area. We believe this is a
good strategy in terms of producing a shape with minimum area in the final layout. In our empirical study
of 60 randomly generated layouts, the rigid heuristic and the dynamic heuristic with the best area shape-

choosing strategy produce layouts with areas much smaller than pitch aligning.

3.6 Complexities of the Heuristics

The complexity of each of the three heuristics is the sum of the cost of computing the shape function
of each slice over all the slices in a slicing layout. At a visit of a slice, a shape is chosen for each of its child
slices. The shape choosing strategy on a slicing layout is linear in the number of break points of the shape
function, and the number of break points of a slice’s shape function is at most the number of its direct rout-
ing nets. The sum of the number of direct routing nets over all the slices is equal to the total routing nets of

the slicing layout, n.

The cost of computing the shape function of a slice s, depends on whether the rigid computation or
the thawing computation is used. The cost of computing the shape function of a slice if the rigid computa-
tion is used is the cost of algorithm 2.1 which is O (k;n}) where k; is the number of direct routing channels
of the slice, and »; is the number of direct routing nets of that slice. Notice that k; is the number of slicing
operations that partitions the slice, 3 'k; over all slices is equal to m~1 where m is the total number of leaf
cells. The cost of computing the shape function of the slice if the thawing computation is used is the cost
of algorithm 2.2 plus the squeezing operation. The cost of algorithm 2.2 is O (n}+n?-g?), where g; is the
number of components involved in the thawing operation of s, i.e. the total number of child slices of child
slices of s, they are the child slices which are two levels below 5. The cost of the squeezing operation on a

slice is equal to the number of direct routing channels of the slice, assuming the child slices two levels
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below s can be looked up in O (1) time. The sum of the cost of the squeezing operations over all the slices
ism-1.

In the dynamic thawing heuristic extra computation is required to determine which of the rigid com-
putation and the thawing computation is used to compute the shape function of a slice. This involves the
computation of minimum rigid channel separations and the minimum thawing channel separations of each
direct routing channel of the slice. The minimum rigid channel separation of a channel can be computed in
linear time in the number of nets of the channel [Mirzaian], and the minimum thawing channel separation
can be computed in O (t-log r) where ¢ is the number of nets of the channel [LePi]. So the total cost of the
decision making over all slices is O (n+n°10g t,,.,) wWhere 1, is the maximum number of nets in a channel

over all routing channels.

Given a slicing layout, let

n the total number of routing nets in the slicing layout.
m the total number of leaf cells in the slicing layout.
S, the set of slices which shape function is computed by the rigid heuristic.
S; the set of slices which shape function is computed by the thawing heuristic.
k; the number of direct routing channels of slice i
m, the number of channels involve in the rigid computation, i.e. Es k;. m, =m-1 for
i€,
the rigid heuristic.
n; the number of direct routing nets of slice i.
8 the total number of child slices two levels below the slice i.

Noax the maximum of n; over all slices.

Prcia the maximum of n; over all slices in S,.
Piesas the maximum of n; over all slices in S,.
8max  the maximum of g; over all slices in §,.

[ the maximum number of nets in each channel over all channels.
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The complexity of the rigid heuristic is
cost of algorithm 2.1 + cost of shape choosing

<Cy* Y kn}+Cy Y direct routing nets
all slices all slices

sCi( ¥ k,-)-n?,m +Cyn= O(rl":-n?m +n)
all slices

for some constants C; and C,.

The complexity of the thawing heuristic is
cost of rigid + cost of thawing + cost of shape choosing

=Cy- Y kin} + Cy- Y (n? + g2n?) + cost of squeezing + C 4'n
ies, ies,

SCimyeni + Cy(n®+ g?m-nz) +C3sn+Cysn
= O (My Nias + N2 (n+g20as) + 1)

for some constants C;, C,, Cs and C,.

The complexity of dynamic thawing is similar to that of ihe thawing with an extra overhead on deci-
sion making. The total cost of decision making is O (n+n-10g ¢n,,). Therefore the complexity of the
dynamic thawing is O (m, npe + n2-(n+82z) + 1 + R10Z(1 max).

Although the complexity of the rigid heuristic is O (m*n2,, + n), it can be much faster in practice.
This depends on two factors. The first factor is the value of n,,, with respect to the actual number of nets,
n, in the slicing layout. The second is the actual number of potential break points in each individual calcu-
lation of shape function of a slice. Recall in chapter 2, (k;n;) is the total number of potential break points in
the calculation of the shape function, but it can be small in practice. Our empirical results show this is the

case. The results are tabulated in section 3.7.

3.7 Performance of Heuristics

In this section we summarize the performance of each heuristic developed above. Sixty depth-one to
depth-six slicing layouts were generated randomly, ten for each depth. Typically, a slice contains four to
six child slices. See appendix A for the generation of the examples. We compute an approximate shape

function for each slicing layout, and the area of the minimum area layout on the shape function is



-64-

compared against the area of the layout produced by pitch aligning. Pitch aligning is chosen because it also
requires terminals on opposite sides of a channel to have the same net ordering. The comparison is
intended 1o show the potential of the compaction scheme we propose. Table 3.1 presents the total layout
area of the sixty slicing layouts produced by each scheme. The total routing area is the total area minus the

total area of all leaf cells, i.e. the total non-cell area.

total total normalized | normalized | normalized

layout area | routing area | layoutarea | routing area time
Pitch (P)
Aligning 2712870 1925517 1.000 1.000 1.000
Rigid (R)
Heuristic 1662586 875233 0.613 0.455 0.920
Dynamic (D)
Thawing 1586263 798910 0.585 0.415 25.81
Optimal (O)
Thawing 1585368 198015 0.584 0.414 76.00

Table 3.1

Since most of the heuristics were coded for their correctness and are by no means in their most
efficient forms, the normalized total running times are provided to illustrate the tradeoff between the time
and area. The result of the optimal thawing is obtained by running thawing heuristic for all values of the
parameter Thaw_level; for each slicing layout the values of Thaw_level range from one to the level of the
root slice. For each slicing layout the Thaw_level that produces the shape function with the smallest

minimum area shape is chosen.

Observe that the running time of the rigid heuristic and the running time of pitch aligning are of the
same order of magnitude. The running time of pitch aligning is linear in the number of constraints, which is
linear in the number of terminals. It is essentially solving the longest path problem in a graph with no posi-
tive cycle. See Appendix A. Therefore the actual running time of the rigid heuristic is approximately linear
in the number of terminals on the average. This is because the rigid heuristic makes use of the explicit

hierarchical structure of the slicing layouts.

X;
Table 3.2 gives the statistics based on individual comparisons. Here the samples are P where X; is

the best area produced by a heuristic for the i™ example, and P; is the area produced by pitch aligning.
There are a few examples in which the heuristics actually produced layouts with larger area than the lay-
outs produced by pitch aligning. These only occur for slicing layouts with small depth (1 or 2). From Table
3.2 we see that the dynamic thawing heuristic is as good as the optimal thawing. And it is better than the
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thawing heuristic with a fixed value of Thaw_level.

X

E (F) standard

mean | median | deviation min max
Rigid
Heuristic || 0.703 0.697 0.142 0435 | 1.242
Dynamic
Thawing || 0.677 0.673 0.135 0418 | 1.216
Optimal

Thawing || 0.677 0.673 0.135 0418 | 1216

Table 3.2

Table 3.3 gives the statistics when the dynamic thawing heuristic and the optimal thawing heuristics
are compared with the rigid heuristic for each individual example. The comparison is done for the second
half of the sixty slicing layouts, i.e. slicing layouts with depth four or more. This is because the dynamic
thawing heuristic is almost equivalent to the rigid heuristic for slicing layouts with small depths, since only
very few thawing operations are performed on slicing layouts with small depths. For example, there is no
thawing operation for a depth-one slicing layout. Notice in Table 3.3, the number of times Algorithm 2.2
called by the dynamic thawing heuristic is less than that of the optimal thawing heuristic. The much more
expensive Algorithm 2.2 is only called by the dynamic heuristic at about 22% of the time. The dynamic
thawing heuristic produces layouts 5% smaller than the rigid heuristic but take more time by a factor of 25.

E(%) standard # of # of
mean | median | deviation | min max | Algo.2.1 | Algo.2.2
Dynamic
Thawing || 0.951 0.960 0.037 0.861 | 1.000 814 235
Optimal
Thawing || 0.950 | 0.960 0.037 0.861 | 0.994 772 277

Table 3.3

In summary, the hierarchical approach of the rigid heuristic is as efficient as the linear time pitch
aligning scheme on the average and it also produces layouts with smaller area than pitch aligning. This
shows that treating wires as topological entities during compaction can be beneficial without sacrificing the
running time. In addition, if machine time is not a scarce resource, the dynamic thawing can be applied to

reduce the routing area in the rigid heuristic by about 5% on the average.



3.8 A Sample Output

In this section we show a sample output of the rigid heuristic, the dynamic thawing heuristic and
pitch aligning. The example we use is a depth-six slicing layout with 57 leaf cells and 937 nets. Figure 3.4
shows the minimum shape produced by the rigid heuristic of the slicing layout. Figure 3.5 shows the
minimum shape produced by the dynamic thawing heuristic of the same layout. Figure 3.6 shows the
shape produced by pitch aligning. Figure 3.7 shows the superimpose shape functions of the layout pro-
duced by the rigid heuristic, the dynamic thawing heuristic and pitch aligning. The shape function pro-
duced by pitch aligning is a point.

Minimum shape produced by the rigid heuristic
Dimensions of shape are 161 X 172

Figure 3.4
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Dimensions of shape are 183 X 184
Figure 3.6

Shape produced by the pitch aligning scheme
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Chapter 4

Asymptotic Behavior of River Routing and Pitch
Aligning in Uniform Layouts

We address the issues of using the mixture of pitch aligning and river routing cell
composition. We study the asympiotic behavior of river routing and pitch aligning in
uniform layouts, and we derive the condition under which river routing is better than

pitch aligning.

4.1 Introduction

In Chapter 3 we presented three heuristics that compute the approximate shape function of a river
slicing layout. The basic skeleton of the heuristics is a postorder traversal on the slicing tree that represents
the slicing layout. At a visit of a slice s, the shape function of s is computed by different algorithms assum-
ing that the river routing cell composition scheme is used. During the computation of the shape function of

the parent slice of s, the smallest area shape of s is chosen.

If all child slices of s are streichable, the pitch aligning cell composition scheme can be used to pro-
duce a shape for s. The shape produced by the pitch aligning scheme is then compared to the smallest area
shape on the shape function of 5. The shape with smaller area is then chosen for the shape function compu-
tation of the parent slice of 5. This gives us a mixture of the pitch aligning and river routing cell composi-
tion strategies. Because of the hierarchical nature of the heuristics in Chapter 3, they can be modified

easily to include the extra procedure that computes the shape of a slice whose child slices are stretchable.

The modified heuristics would be more efficient if we had some criteria to decide which scheme
would give us a better shape without actually computing the shape of a slice using both cell composition
schemes. We know of no good criterion that will allow us to tell which scheme is better in general without

carrying out the actual computation. But for uniform layouts this may be possible.

In this chapter we will derive bounds for the area of a uniform layout without the actual computation
of the shape function or the longest path of the constraint graph that describes the layout. In particular we
consider stacks with uniform basic components and two dimensional arrays with uniform basic com-

ponents. We derive the condition under which river routing is better than pitch aligning. We do this by
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comparing an upper bound for the area of a uniform layout using the river routing cell composition scheme

to a lower bound for the area of the layout using the pitch aligning scheme.

4.2 Bounds for the Area of a Stack of Uniform Components

We will derive bounds on the area of a stack of uniform river routable components. A stack of uni-
form river routable components consists of a basic component which is replicated many times to produce a
stack, and two adjacent components in the stack are river routable. We shall refer to this type of stack as a
uniform stack. We can use the river routing cell composition scheme to compose the stack. If the basic

component is stretchable, the pitch aligning cell composition scheme can also be used.

In a uniform stack with n basic components, when the river routing cell composition is used, we
derive an upper bound for the smallest area of the stack. The upper bound is an expression in terms of n
and the left and right constraints of two adjacent components. If pitch aligning cell composition is used we
derive a lower bound for the area in terms of n and the minimum displacement constraints between termi-

nals of the basic component.

4.2.1. Upper Bound on River Routing

Recall that in Chapter 2 the routing requirement of two river routable components is captured by the
left and right constraints of the top component with respect to the bottom. The left and right constraints

define an offset range, [L (1), R (¢)], for the top component at channel separation ¢.

Consider two uniform basic components. Let,

k be the number of nets between the two components.
Tmin be the minimum channel separation.

Tmax  be the smallest channel separation such that L (1)<O<R (¢), i.e. the smallest channel separa-
tion such that the top and bottom components can be aligned.

w be the width of the basic component.
I be the length of the basic component.

In a uniform stack of n components, we want to find bounds for the areas of the stack at different
total separations. For the purpose of our analysis, we only find bounds for the areas of the stack at total
separations where simple bounds exist. We consider the total separations, (n—1)-Tmin, (n=1)(Tmin+1) ,...,

(n=1)Tmax. Without loss of generality we can assume O<SL(Tmin)<R(Tmin). When
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L (Tmin)<R (Tmin)<0, we can flip the stack and get the same bound. When L (Tmin)<0<R (Tmin), Tmax is
equal to Tmin and we only consider the total separation (n—1)-Tmax which is covered in the following
analysis. Let offset; be the least possible absolute offset of a basic component with respect to the previous
component at the channel separation Tmin+i. offset;=L(Tmin+i) for i = 0,1,...,Tmax—-Tmin-1, and

offsetrmax-Tmin=0. An upper bound for the area of the stack at the total separation (n—1)-(Tmin+i) is

(nwHn-1)(Tmin+i))-((n—-1)-offset;+1)

See Figure 4.1.
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Figure 4.1

The bound at the total separation (n—1):(Tmin+i) is established by distributing Tmin+i tracks to each
channel. This is a simplistic but sufficient bound for our purpose. In fact, it is not known whether the
optimal distribution of the tracks at a given total separation can be computed in time polynomial in
k-log(I)+log(n-w-I), the length of the input. The smallest upper bound can be used as upper bound for the

smallest area of the stack. We choose to use the bound at total separation (n—1)-Tmax,
(n-w+(n—1)Tmax)l

See Figure 4.2,



@l cccrasesassanrrerannans -
A
n-1 ‘w
Y
] ? 1
A :
n-2
! |
] I
] P ]
! . |
I I
1
] [ 1
I ; '
- :Tmax !
1) : ]
] ' ]
0

area at total separation nTmax =
[nw+(n-1)-Tmax]-l

Figure 4.2

4.2.2. Lower Bound on Pitch Aligning

In this section we will derive a lower bound for the area for a uniform stack if the pitch aligning cell
composition scheme is used. To apply the pitch aligning scheme, the basic component in the stack has to be
stretchable. A streichable basic component with k terminals on the top boundary and & terminals on the
bottom boundary with minimum displacement constraints between neighboring terminals can be described
by the commonly used constraint graph shown in Figure 4.3. We call this the basic graph of the basic com-

ponent.

The source s in the basic constraint graph represents the left boundary of the component, the sink ¢
represents the right boundary of the component, vertex v; represents the i* terminal of the top boundary,
vertex u; represents the i* terminal on the bottom boundary. A directed edge from vertex u to v with a
non-negative weight represents a minimum displacement constraint from u to v. Terminals on the top
boundary are separated by the minimum displacement constraints dy,d,, . . . ,d;, The minimum displace-
ment constraint td; between the i terminal and the i+1" terminal is represented in the basic constraint

graph by an edge from v; to v;,; with weight ¢d;. Similarly terminals on the bottom boundary are separated
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Figure 4.3

by the minimum displacement constraints bd,bd, .. . ,bd) and are represented by edges in the constraint
graph with corresponding weights. All minimum displacement constraints between terminals on the same
boundary are positive.

If there is a minimum displacement constraint dd;; from i** terminal on the top boundary to the j*
terminal on the bottom boundary, it is represented by a directed edge from v; to u; with weight dd;;. Simi-
larly a minimum displacement ud;; from the /™ terminal on the bottom boundary to the i* terminal on the
top boundary is represented by a directed edge from u, to v; with weight udy;. The minimum displacement
constraints between terminals on opposite boundaries are non-negative.

In practice, the horizontal constraint graph of a component describes the horizontal displacement
constraints between sub-components of the component (terminals on the boundaries are sub-components of

the component). And the constraint graph includes vertices corresponding to sub-components which are not
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top or bottom terminals. The basic graph of the component can be obtained by computing the transitive
closure of the vertices corresponding to the top and bottom terminals. We assume only minimum displace-

ment constraints exist between any pair of top and bottom terminals for a stretchable component.

The length of the longest path of the basic constraint graph is the length of the compacted rigid basic
component. We assume the component is realizable, i.e. we assume there is no positive cycle in the basic
graph. In a uniform stack of stretchable components with pitch aligning cell composition, the constraint
graph of the stack is formed by stacking the basic graph and identifying the vertices which represent termi-
nals that are pitch aligned. A double edge is reduced to a single edge with weight equal to the maximum
weight of the original edges. See Figure 4.4 for an illustration of the constraint graph of a uniform stack.
The longest path in the constraint graph determines the horizontal dimension of the stack, and the vertical
dimension of the stack is the sum of the widths of the basic components in the stack. To find a lower bound

for the area for the stack, we find a lower bound on the longest path of the constraint graph.

L X N J
[ ]
L]
® o0 e
i+]
L N J
i
[ ] LA N
]
®
0
L X N ]
A uniform stack with constraint graph of the uniform
n basic components stack with n components

Figure 4.4
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The constraint graph of a uniform stack is a graph with a stack of rows of vertices, and vertices in the
same row have a natural topological ordering, namely the order of the terminals which the vertices
represent. Edges in the graph only exist between vertices in the same row and vertices in the adjacent
rows. It is a very regular graph with the basic graph replicated many times. We can exploit the regularity
of the constraint graph to find a long path in the graph and use the length of this long path as a lower bound
for the actual longest path. The basic idea to find a long path in the constraint graph is to find subgraphs in
the basic graph that can be strung together in the constraint graph.

For a uniform stack of n stretchable components, we do not compute the actual longest path of the
constraint graph because such computation needs to be carried out for each value of n. This is because the
longest path for a given n may not reflect the longest path for another value of n. In fact it is not known
whether an expression exists for the longest path of the constraint graph of a uniform stack of n com-
ponents in terms of the n and the minimum displacement constraints between neighboring terminals of the
basic component and can be computed in time polynomial in the length of the input, i.e. k-log (I+log(n-l),

where [ is the length of the basic component.

We introduce the notion of a block in the basic graph. Intuitively, a block is a subgraph in the basic
graph that can be strung together to form a long path in the constraint graph of the uniform stack. An
upward block in a basic graph is a longest path from u; to v; and i is said to be the index of the block. A
downward block is a longest path from v; to u;. An upward block with index i is denoted by ub (i), a
downward block with index j is denoted by db (j). See Figure 4.5a.

a downward block db (j)
0 %
R4
an upward block b (i)
blocks in a basic graph
Figure 4.5a

In the constraint graph of a uniform stack, an upward block ub (i) of the basic graph can be strung together
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to form a long path from the bottom row to the top row, this is because ub (i) ends at v; which is the begin-
ning of an equivalence upward block of the next basic graph. Similarly a downward block db (i) can be
strung together to form a long path from the top row to the bottom row. See Figure 4.5b. Note that these

blocks may not exist.

downward blocks can be strung
together from top to bottom

0
- ;0
L]

~.

upward blocks can be strung together m
the constraint graph of a uniform stack

Figure 4.5b

Let u=u; ,u; , ..., u; be the vertices on the bottom row of the basic graph that appear in ub (i), and
they appear in the order that they are specified. Let v;,.v),,....v;,=v; be the vertices on the top row of the



<78
basic graph that appear in ub (i), then

Lemma 4.1 i=ig<i; <" <i, and jo<j;< - ** <j =i

Proof. Assume the contrary, then there is i;>i},,, i.c. there is a non-negative path from u; to u; , in ub (i),
but there is a positive path from u;, 1o u;. This give us a positive cycle which contradicts the assumption

on the basic graph. Similarly, jo<j,< - - <j,=i. See Figure 4.6.

0000

An upward block ub (i) :
ub(i)=u,-° Wy Vi i, W, v u"' ki Vj', where I‘o':jq:i

Figure 4.6

Similarly in a downward block db (i), vertices on the same row that belong to the block appear in
their topological order. O

In an upward block ub (i) let umax (i) denotes the largest index of all vertices in ub (i) and umin (i)
denotes the smallest index of all vertices in ub (i). From Lemma 4.1, Uyma iy aNd Vymingiy are both in ub (i).
Similarly in a downward block db (j), let dmax(j) denotes the largest index of all vertices in db(j) and
dmin (j) denotes the smallest index of all vertices in db (j) and Vima (j) and Ugmin(j) are both in db (j). See

Figure 4.7a.
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Lemma 4.2 Consider an upward block kb (i) and a downward block db (j). The following

are true
(1) if i<j then wnax (i)<dmin (j). See Figure 4.7a.
(2) if i>j then dmax (j)<umin (i). See Figure 4.7b.

(3) if i=j then umax (iy=umin (i }=dmax (j)=dmin(j)=i. See Figure 4.7c.

<0
S A > &

Figure 4.7b
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Proof.
(1) Assume umax (i)2dmin (j). Then there is a non-negative path from Ugmin (j) 10 Mumax(i)» there is a non-
negative path from .. 10 v;, there is a positive path from v; 1o v;, and there is a non-negative path from
Vj 1O Uimin(j)- This is a positive cycle in the basic graph which contradicts the assumption on the basic
graph.
(2) Similar to (1).
(3) Since there is a non-negative path from u; to v; and there is a non-negative path from v; to u;, there is a
non-negative cycle. For the cycle to be also non-positive, ub (i) is a path of zero weight. Assume there is a
third vertex in ub (i), WLOG let the vertex be v, and g <i. Since there is a positive path from v, to v;, there-
fore ub (i) has a positive weight (since ub (i) is a longest path). A contradiction. Hence ub (i) consists of
the edge (u;,v;) with zero weight. Similarly, db (i) consists of the edge (v;,4;) with zero weight. O

Call the type of blocks in (3) of Lemma 4.2 a barrier. A barrier is a zero cycle u;v;u;. Lemma 4.2
implies that if we order the blocks by their indices, we have a natural partitioning of the sequences of
upward and downward blocks, i.e. we have a sequence of blocks with one orientation followed by a
sequence of blocks with another orientation and so on. In addition two sequences of blocks with different
orientations are either disjoint or they are intersecting at a barrier. We call a maximal sequence (consecu-
tive blocks) of upward blocks an upward cluster, and a maximal sequence of downward blocks an down-

ward cluster. An upward cluster is followed by a downward cluster and vise versa.

By Lemma 4.2, two adjacent clusters are either disjoint or they are intersecting at a barrier. Assume
there are x clusters in the basic graph and the clusters are numbered from 1 to x. Let ¢ (i) denotes the i*

cluster. Let b (i) denotes a block with maximum weight in ¢ (i). See Figure 4.8.
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a maximum upward a downward block in
block in the cluster an adjacent cluster

An upward cluster :
a maximal sequence of upward blocks

Figure 4.8

The upward and downward blocks in the basic graph can be computed by an all-pairs longest path
algorithm. To construct a long path in the constraint graph of an uniform stack, we first compute all the
blocks in the basic graph and then compute the clusters ¢ (1),¢ (2),...,c (x) in the basic graph and the max-
imum blocks b(1),b(2),...,b (x) in the clusters. If b(i) is an upward block, let b (i) be ub (b;). Compute the
longest path, lpath (i), from v, 10 vy, . If b (i) is a downward block, let b (i) be db (b;). Compute the long-
est path, lpath (i), from u, to u;,,, . Let Ipath (0) be the longest path from the source s to b(1). If 5(1) is an
upward block, /path (0) is the longest path from 5 to u,, , if b(1) is a downward block, Ipath (0) is the long-

est path from s to v, . Similarly, lpath (x) is the longest path from b (x) to the sink ¢. See Figure 4.9.
bfi) Ipath(i) b(i+1) b(i+2)

g spey 5 ey ey

Figure 4.9
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Now we begin to construct a long path in the constraint graph of a uniform stack with n components
using Ipath(0),Ipath(1),..,Ipath (x), and b (1),b(2),...,b (x). Assume the first cluster is an upward cluster.
The long path consists of the following pieces, Iparh (0), n copies of b (1) strung together from bottom to

top row, Ipath (1), n copies of b (2) strung together from top to bottom row, and so on. See Figure 4.10.,
b(1) Ipath(1) b(2)

\ |

A :
lpafh(O) lpalh(x)
a long path in the constraint graph

Figure 4.10

Let W (path) denotes the length of path. The length of the long path constructed above is

S W (path (Yyn-3W (b (D))
i=0

i=l
Observe that the concatenation of Ipath(0), b(1), lpath(1), b(2),..., b(x), lpath(x) is a path in the basic

graph. Let L be the length of this path. Let B=Y W (b(i)) Then the length of the long path becomes

i=]
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L+(n-1)-B. In a uniform stack of n components, with the pitch aligning cell composition scheme, the vert-
ical dimension of the stack is w'n where w is the width of the basic component. Thus, a lower bound for the

area of the stack is w'n-(L+(n-1)'B).

4.3 Asymptotic Behavior of River Routing vs. Pitch Aligning

4.3.1 Uniform Stack

We derived, in the previous section, an upper bound for the smallest area of a uniform stack if the
river routing cell composition scheme is used and a lower bound for the area of a uniform stack if the pitch
aligning cell composition scheme is used. In this section we compare the asymptotic behavior of the two

bounds. Consider a uniform stack with n components. Let
] denote the length of the compacted basic component.

L denote the length of the path in the basic graph constructed in section 2.2. L</, since [ is the
length of the longest path of the basic graph.

B denote the weight of all maximum blocks in the clusters of the basic graph.
w denote the width of the basic component.

Tmax  denote the minimum channel separation between two adjacent basic components such that

they can be aligned.
rarea  denote the upper bound for the area for river routing. rarea=(n-w+(n—1)-Tmax)-l.

parea  denote the lower of the area for pitch aligning. parea=n-w-(L+(n-1)-B).

Consider the ratio 2274 3
rarea
parea  nw{(L+(n-1)B) _ nw (L+(n-1)B)
rarea (n ‘wH(n-1)Tmax)l n-w+(n-1)Tmax l
w B
D w+Tmax |

for large n and B >0. The ratio holds when -(n—;-l—)--B>—‘;l. Since -lf<l. the ratio holds when (";1) B>1,

i.e. when (n—l)>%. The ratio is growing with n, this means river routing scheme is better than the pitch
aligning scheme for a uniform stack with large number of components. parea begins to exceed rarea when

w+Tmax 1

(n-1)2 3
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Intuitively, the blocks in the basic graph represent the portions of the basic component which will be
stretched. And the stretching propagates to produce a layout with large area.

‘When B =0, there are no stretchable portions of the basic component that will propagate. Let Hdim

denotes the horizontal dimension, the length of the longest path in the constraint graph, of a uniform stack

; . parea
with n components. The ratio % becomes,

parea _ n'w . Hdim
rarea nwHn-1)Tmax |

Tmax is the channel separation of a stack of two basic components at minimum horizontal dimension
(when they aligned). Since B =0, there is no upward or down block in the constraint graph, we can compute

the longest path of the constraint graph of a stack of two basic components and use this as a lower bound
for Hdim. We can then use the ratio ‘:—g—;:—: as a guideline on when to use pitch aligning and when to use

river routing cell composition.

In summary, when B >0 river routing cell composition is superior to pitch aligning cell composition
for large uniform stacks. When B =0, the performance the two schemes is determined by the value of n, w,
I, Tmax and Hdim.

4.3.2 Uniform Two Dimensional Array

Consider a nxm array and assume the array is sliced vertically first and then horizontally. The
column graph, the horizontal constraint graph of a column of the array, is similar to the constraint graph of
a uniform stack. The horizontal constraint graph of the array is formed by placing the column graphs in a
sequence and identifying the sources and sinks of adjacent graphs. See Figure 4.11. A long path in a
column graph can be computed the same way we compute the long path in the constraint graph of a uni-
form stack. Recall that when we compute the long path of a uniform stack, we compute
Ipath (0),....lpath (x), b(1),...,b (x), where b (i) denote the weight of the maximal block in the i* cluster of
the basic graph, and Ipath (i) is the length of a path that link the i and the i+1* maximal block, lpath (0) is
the length of a path from the source to &(0) and Ipath (x) is the length of a path from & (x) to the sink. Let
B, be the sum weight of the maximal blocks and L, be the length of the long path that links all the blocks.

A long path of the horizontal constraint graph of the array can be obtained by concatenating the long

paths in the column graphs. Thus a lower bound for the horizontal dimension of the array is,

m-(Ly+(n—1)'B,)
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Now consider the vertical constraint graph of the array. It is constructed by concatenating the verti-
cal constraint graph of each column. The following is another equivalent construction which is more suit-
able for our analysis. The row graph, the vertical constraint graph of a row of the array, is similar to the
constraint graph of a uniform stack rotated ninety degrees, but instead of one source and one sink it has m
sources and m sinks. See Figure 4.12. The vertical constraint graph of the array can be formed by stacking
up the row graphs and identifying the sources and sinks of adjacent row graphs. See Figure 4.12. A long
path in a row graph can be computed the same way we compute the long path in a column graph; we com-
pute the sequence of maximal blocks and the paths that link the adjacent blocks. If the first maximal block
and the last maximal block have opposite orientations (one is to the left and one is to the right or vise
versa), so they end up at the same column and a long path of the vertical constraint graph can be con-
structed by concatenating the long paths of the row graphs as illustrated in Figure 4.13. If the first block
and the last block have the same orientation, we can eliminate the first (or the last block) by treating it as
part of Ipath(0) (or lpath(x)), and we get a sequence of maximal blocks such that the first and the last
block have opposite orientation. A long path of the vertical constraint graph can then be constructed simi-
larly. Let B, be the sum weight of the sequence of maximal blocks of a row graph (first and last block have
opposite orientation), and L, be the length of the path that links all the blocks. Then a lower bound for the
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vertical dimension of the array is,
n«(L,+m-1)B,)

Let, Tmax; denotes the minimum horizontal channel separation such that the adjacent components can be
aligned horizontally, and let Tmax, denotes the minimum vertical channel separation such that the adjacent

components can be aligned vertically. See Figure 4.14.
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With the same approach as in section 2.1, we can derive an upper bound for the smallest area of the
array if the river routing cell composition scheme is used. Let 2drarea denotes the upper bound, then
2drarea=(n-w+(n-1)-Tmax,)-(m-1+(m-1)-Tmax,)

Let 2dparea denotes the lower bound for the area of the array when the pitch aligning cell composition is
used. Then,

2dparea=n-(L,+(m-1)-B,ym-L,+(n-1)B,)

The ratio % when n and m are large and B,, B, >0 is then,

2dparea n+(L,+(m-1)B,y'm-(L,Hn-1)B,,
2drarea  (n-w+(n—1)Tmax,)(m-1+(m-1)-Tmax,)

_LHm-1)B,) Ly+(n-1)By)
w+Tmax, 1+Tmax,

1 .( 1) Bv Bk
in=Srie w+Tmax, I[+Tmax,

Again the ratio is growing with n and m. This shows again that river routing scheme is better than the pitch
aligning scheme for uniform two dimensional array. If B,=0 and B, >0 the ratio grows with n, if B,=0 and
B,>0 the ratio grows with m. If B,=B,=0, let Hdim denotes the length of the longest path of a column
graph, and Vdim denotes the length of the longest path of a row graph from i source 10 i* sink for some
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i<m, Hdim>l and Vdim2w. Then the ratio 22278 yecomes,
2drarea

2dparea _ n'Vdim . m-Hdim
2drarea n-w+(n-1)Tmax, m-W+(m-1)Tmax,

In such a case we can use the ratio as a guideline on when to use pitch aligning and when to use river rout-

ing.

4.4 Conclusion and Open Problems

In this chapter we derived upper bounds on the area of uniform layouts when the river routing cell
composition scheme is used, and lower bounds when the pitch aligning cell composition scheme is used.
The asymptotic behavior of the bounds shows that river routing is superior to the pitch aligning scheme for
uniform layouts with a large number of basic components if stretching causes terminals to spread from bot-
tom to top. For uniform layouts with a small number of basic components, the bounds can be used as

guidelines to determine which cell composition scheme should be used.

In the derivation of the bounds we used very crude estimates to get the bounds that are sufficient for
our purpose. An open problem is to exploit the regularity of the uniform layouts to compute the exact
shape functions for uniform layouts more efficiently. Initial work on this has been done by Iwano [Iwa]
who considers the problem of solving the longest path problem of regular graphs in time independent of the
size of the regular graphs. He proposes a method to generate the longest path of a regular graph based on
the longest path of a subgraph of the regular graph. He shows the condition when such a subgraph exists
and shows how large must the subgraph be. For the case of the river routing cell composition scheme, it is
not known whether an expression exists for the shape function of a uniform layout in terms of the number
of basic components in a layout and the left and right constraints between adjacent basic components. If
the expression exists, it is interesting to know if it can be computed in time polynomial in the length of the
input. For the case of the pitch aligning cell composition scheme, it is not known whether an expression
exists for the area of the uniform layout in terms of the number of basic components in the layout and the
minimum displacement constraints between neighboring terminals of the basic component, again we would

like to compute such an expression in time proportional to the length of the input.



Chapter 5
Shape of Density Stack

In this chapter we consider the computation of the shape function for a stack of sin-
gle components using channel density as an estimate of channel width. We show that to
compute such a shape function is NP-complete and provide a good heuristic to compute

an approximate shape function,

5.1. Introduction

In the previous two chapters we considered the shape functions of river slicing layouts. In a river
slicing layout all routing channels are river routable, i.e. terminals on opposite sides of a channel have the
same net ordering. In this chapter we address the problem of computing the shape functions of more gen-

eral slicing layouts (routing channels may not be river routable).

In a general routing channel the channel width, the minimum number of tracks required to route the
channel, is difficult to compute. In fact, Szymanski showed that computing the channel width under the
rectilinear, two reserved layer routing model is NP-complete [Szy]. It is unlikely that the channel width
can be computed efficiently. Instead of computing the channel width, a metric known as the channel den-
sity is often used to estimate the actual width. Intuitively, the channel density measures the minimum
number of necessary net crossings at any grid line perpendicular to the channel. Formally, in a channel
with n nets, given the positions of terminals (top and bottom) in the channel, the channel density d is
defined as,

g m:x {iE—lﬁ(x%

i=0

where,

1 g'fl,-SxSr,- and I,'#f"
f@) =10 otherwise

and /; is the horizontal position of the leftmost terminal of net i, r; is the horizontal position of the rightmost
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terminal of net i.

In general, the channel density is a fairly good estimate of the channel width. In fact Rivest and
Fiduccia claimed that their channel routing algorithm usually uses no more than one more track than the
channel density [RiFi]. Theoretical results relating the channel density and the channel width are described
in [Lei].

In this chapter, we shall use the channel density as an estimate of the actual channel width, the
minimum number of tracks required to route the channel. We consider the problem of computing the shape
function of a stack of components using channel density as channel width. We show that such a problem is
NP-complete. We present a pseudo-polynomial time algorithm and an efficient heuristic for the problem.
We compare the performance of the heuristic against the pseudo-polynomial time algorithm. Finally, we
discuss the problem of computing the shape functions of slicing layouts using the heuristic as a basic sub-

routine.

5.2 The Density Function

In a two-component channel with n nets, the i terminal on the bottom edge of the top component is
given as an ordered pair (;, n;) where ; denotes the position of the terminal from the left edge of the top
component and n; denotes the net in which the terminal belongs. Similarly, the i terminal on the bottom
component is given as (b;, n;). For a given offset w, the displacement of the left edge of the top component
with respect to the left edge of the bottom component, the absolute position of the i top terminal, (1;, n;),
is f;+w. We assume the left edge of the bottom component is at absolute position 0; therefore the absolute
position of the i* bottom terminal is b;. At offset w, the leftmost position of net i, [;(w) and the rightmost

position of net i, r;(w) are well-defined and the density function is defined as,

i=a-=1
D(w)='“§"{ ) ﬁ(x.W%

where

1if [(w)<sx<r,(w) and [;(w)#r;(w)
fitx, w) 2{0 otherwise

See Figure 5.1. Notice that only the leftmost and rightmost terminals of a net are relevant in the density
calculation. We preprocess the terminals and only keep track of four (or fewer) terminals of each net,
namely the leftmost and rightmost terminals of the net in the top component, the leftmost and rightmost ter-

minals of the same net in the bottom component. These four (or fewer) terminals of a net i are sufficient to
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define [;(w) and r;(w) at a given offset w. Therefore we only have to keep track of at most 4-n terminals,
2:n on the top component and 2+n on the bottom component. The preprocessing time is O (m,+m,) where m,
is the number of terminals on the top component, and m, is the number of terminals on the bottom com-
ponent. We shall consider the density computation after the preprocessing and shall express the computa-

tion time in terms of n.

At a given offset w, f;(x, w) changes from 0 to 1 as x increases from x</;(w) to /;(w) and fi(x, w)
changes from 1 to 0 as x increases from [;(w)<x<r;(w) to x>r;(w). To compute D (w), we sort the list
{lo(W), ..., Iy (W), ro(w),..., ra_y(w)} and scan the channel from left to right, update the density (the sum
of fi(x, w)) at the positions in the sorted list in order, and remember the maximum. Let p be the current

position being scanned, the density at p and the position immediately to the right of p is updated as follows,

(i) Only one terminal is at p. If p=I;,(w) for some i, the density increases by one; if p=r;(w) it
remains unchanged at p and then decreases by one, otherwise the density stays the same. See
Figure 5.2a.

(ii) Two terminals are at p. If the terminals belong to the same net, say i and they are the only two
terminals of the net, then the density remains unchanged. If net i has more than two terminals,
and if p=I;(w) then the density increases by one, if p=r;(w) then it and remains unchanged at p
and then decreases by one. If the terminals belong to different nets, say i and j, if p=l;(w)=l;(w)
then the density increases by two, if p=r;(w)=r;(w) then the density remains unchanged at p and
then decreases by two. If p=I;(w)=r;(w) the density increases by one at p and then decreases by

one. See Figure 5.2b.
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This can be done in O (n-log (n)) time.

Let w denote an offset in which alignments of terminals occur and w* denote an offset between w

and the next offset in which alignments of terminals occur. While computing D (w) we also compute
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D (w*). In our grid model, there may be no legal w*, but the computation of D(w*) is necessary for the
updating. The updating of D (w*) differs from D (w) only when the following cases occur at the current
scanning position p. Case (i): there are two terminals of different nets at p, say the top terminal is in net i
and the bottom terminal is in net j, and p=I;(w)=r;(w). The densities of offset w* at [;(w*) and r,(w*) are
one less than the density of offset w at p=I;(w)=r;(w). See Figure 5.2c.
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Figure 5.2¢

Case (ii): there are two terminals of the same net, say net 7, at p and they are the only two terminals of the
net. In this case the density of offset w* between r;(w*) and /;(w*) is one more than the density of offset w

at p=l;(w)=r;(w). See Figure 5.2d.
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Therefore D (w*) can be updated with little extra accounting.

There are at most 4n2 offsets at which alignments of terminals occur. Therefore only 4:n? offsets
are of interest, and the density function can be stored in at most 8:n? space, 4-n2 at the offsets w of interest
and 4-n2 at w*. A straightforward method to compute the density function is to compute the 4n? offsets

and compute D (w) and D (w*) at each of the 4-n? offsets in order. We can sort the 4-n? offsets in
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O (n*log(n)) time. The sorting of the list {Ig(W),..., la_y (W), Fo(W), ..oy 7oy (W)} need only be done once,
since we can update the list when we goes from one offset to the next. The total time required by the
simple-minded computation is O (n%), since the update at each offset can be done in O (n) time except the
first one. The density function is defined over the range (—ee, 4+e2). And D (w) = n for w greater than the
length of the bottom component or w less than the negative length of the top component, since all n nets
have to cross the vertical column at the left (w<0) or right (w>0) boundary of the bottom component.
Since the density function of a two-component channel can be described by at most 8:n2+1 segments, the

minimum density of a two-component channel can be computed in O (n2) time, given the density function.

The simple-minded computation of the density function is sufficient for the purpose of this chapter
although more efficient computation exists. LaPaugh and Pinter use more efficient updating of D (w) from

one offset to the next. They present an O (n2-log(n)) algorithm to compute the density function in [LaPi].

5.3 The Shape of Density Stack

In this section we describe the problem of computing the shape function of a stack of single com-
ponents using channel density as channel width and show that the problem is NP-complete. The shape of

densiry stack problem is stated as follows:

Given,

(1) A stack of k+1 components, 0, 1,. .., k, the 0* component is at the bottom of the

stack, and the k™ component is on the top of the stack.

(2) The set of nets for each channel. The i* channel is defined by the i-1* and the i*
component. There are n; nets and m; terminals in the i channel. Each net has at least
two terminals. The terminals are distributed on the bottom edge of the i* component
and top edge of the i—1* component. The position of a terminal with respect to the
left edge of the component it is on and the net in which the terminal belongs are

given.

(3) The length length; and width width; of the i component.

Compute the shape function of the stack of k+1 components using channel density as channel width.

See Figure 5.3.

Since we are using the channel density to approximale the actual width of a channel, from here on,
by density of a channel we also mean the actual vertical dimension of the channel. A configuration of a

stack of k+1 components is specified by a density vector (d,,d,..., d;) and an offset vector
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(W1, Wa, ..., wy) such that d; is the channel density of the i channel and w; is the offset of the i+1"
component with respect to the i component for i from 1 to k. Let D;(w) denotes the density function of
the i* channel. A configuration of a stack of k+1 components is said to be legal if D;(w;)<d; for i from 1 to
k. The total density of a configuration is the total of all channel densities. A shape (s, d); describes a set of
legal configurations of a stack of k+1 components, whose tradeoff dimension does not exceed s and whose
total densities do not exceed d. A shape (s, d), is said to be legal if it contains at least one legal

configuration.

We now show that the shape of density stack problem is NP-complete by showing the following

decision problem, Stack of Density, is NP-complete:

Given a stack of k+1 components as in the shape of density stack problem, a total separation 4 and a trade-

off dimension s, is (s, d), legal ?
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Theorem 5.1 The Stack of Density problem is NP-complete.

Proof. (i) The stack of density problem is in NP. Guess an offset for the i* component with respect to the
i-1" component for i = 1,..., k. The channel density of each channel can be computed in O (n;‘log (n;}+m;)

time where n; is the number of nets and m; is the number of terminals in the i channel. Therefore the

i=k i=k
total density can be computed in O (n-log (n)}+m) time where n = ¥ n, and m = ¥ m;. The tradeoff dimen-

i=1 i=]

sion can be computed in O (k) given the relative offsets of the components.

(ii) The stack of density problem is NP-hard. We show this by a reduction from PARTITION [GaJo].
An instance of PARTITION:

Given a set of positive integer § ={ a,, a3, ..., a; }, is therc a subset AcS such that

za,-= E a,-?

aGeA aeS-A

Construct the following instance of stack of density problem:
i=k
o ) _ max :
Let, L -Ela,,M 'a,-eS{a‘ J.

0” component:
lengthy = 2-L+M,
top terminals : (L,1), (L+a,, 2),
bottom terminals : @

i* component: (i = 1,..., m—1)

j=i
length; = 2:(3 a;) + M,
j=1

top terminals : (0, 1), (4,41, 2),
bottom terminals : (a;, 2), (2@;, 1)
k"™ component:

j=k
length, =2:(3a;)+ M =2L + M,
j=1

top terminals : @,
bottom terminals : (g, 2), (2:a;, 1)

Is 2-L+M, k), legal ? See Figure 5.4.
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Observe that the minimum channel density of each channel is 1. For i = 2,....k, the i channel
achieves density 1 when the i* component is 2'a; units to the left of the i—1" component in which case
they are aligned on the right, or when the two components are aligned on the left in which case the right
end of the i* component is 2:a; units to the right of the right end of the i—1* component. See Figure 5.5.
Suppose (2-L+M, k), is legal; choose a legal configuration in (2-L+M, k),. Notice that at total density k,
the channel density at each channel is 1. Let, /; denote the position of the left end of the i** component to
the left of the left end of the i —1* component for i =2,..., k. And !, denotes the position of the left end of
the 1* component to the left of position L of the 0* component. Fori =2,..., m,

0 " and i-1" component align on the left
li= 2-a; i" and i—1*" component align on the right

0 1* component at position L
171 2:a, 1 component at position L-2-a,

See Figure 5.5.

Let, r; denote the position of the right end of the i* component to the right of the the right end of the i-1*

component for i = 2,..., m. And r, denotes the right end of the 1* component to the right of position L+M
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Two positions of the i** component relative
to the i —1*' component in which the
i channel achieves density 1

Figure 5.5

of the 0* component. Fori=2,..., k,

{ 2-a; i* and i-1* component align on the left
=

0 i* and i—1* component align on the right

and,

2-a, 1" component at position L
"1=10 1" component at position L -2-a,

See Figure 5.5.

Let, II; denote the position of the left end of the i* component to the left of position L of the 0** com-
ponent. Notice that I; = ll;_,+l;. Therefore,
i=k
”g =+ = ”t_2+h_1+h ree = El,
i=l
Let, rr; denote the position of the right end of the i* component to the right of position L+M of the 0*

component. Notice that rr; = rr;_,+r;. Therefore,
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i=k
rr,= "*_14‘7; = rr§_2+rt_1+r‘ rrr = Er,-
i=1

Since length, = 2-L+M, ll,=rr, =L, i.. the m* component is aligned with the 0 component. Thus,

i=k =k
3.l;= Y r;. But from the definitions of /; and r;, ;= 0 if and only if r; = 2-a;, and [; = 2-q; if and only if

i=l i=l
r; = 0. Therefore [; and r; give a solution to the instance of PARTITION.

Now suppose there is a subset A S which is a solution of the instance of PARTITION. We can con-
struct a legal configuration in (2-L+M, k), by choosing [; = 2-a; if a;€ A and [; = 0 otherwise. Similarly,

r; =0if g;e A and r; = 2-g; otherwise. Hence, the stack of density problem is NP-complete. O

5.4 A Pseudo-polynomial Time Algorithm

In this section we present a pseudo-polynomial time algorithm for the shape of density stack prob-
lem. Recall that the input is the size of the stack, the lengths and widths of components in the stack, the ter-
minals of components in the stack. Let [ be the sum of all the component lengths, w be the sum of all the
component widths, m be the total number of terminals and [, be the largest integer to describe a terminal
position, then the length of the input is log (w*I"k)}+m-10g(/ 1.x)- The running time of the algorithm depends
on the sum of the lengths of all the components, which can be exponential in the length of the input. The
structure of the algorithm is similar to Algorithm 2.1: for a given tradeoff dimension s it proceeds com-
ponent by component and compules the minimum total density of a density stack at s. However, unlike the
river routing problem, for a given channel density the offset range is not a contiguous range, we cannot
apply the same method to compute the potential break points of the density stack. Therefore we compute
the minimum total density of the stack at each tradeoff dimension. First we define some notation in the

algorithm. Let,

D;(x)  denotes the density function of the i channel.
Dmin;  denotes the minimum channel density of the i* channel.

d;(s, x) denotes the minimum total density of a stack of i+1 components at tradeoff dimension s

with the i component at position x relative to the left boundary of the stack.
dmin;(s) denotes the minimum total density of a stack of i+1 components at tradeoff dimension s.

dmini(s)= < x Slzil]length‘-{d"(s‘ x)).
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It should be clear that di(s, x) is only defined when s2 O'L‘j?‘si{lengm ;. In addition, when
J= Jj=

s 2 Y length;, dmin;(s) = 3 Dmin;. This is because, at the j “ channel, the minimum horizontal span such
j=0 j=0

that the channel density Dmin; is achieved is at most length;_,+length;. Therefore it is sufficient to con-

sider the tradeoff dimension s such that,
max =
0< jg{lengthj} <s< golengthj
J
when computing dmin,.
max i=k
For _:_,{length;}) <5 < ¥ length; and 0 < x < s—lengthy, we define,
O<i<k i=0
do(s, x)=0
Then, for 0 < x < s-length;,
di(s. X)= ey < Clengih, (461, YHDix=y)}

See Figure 5.6.
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Figure 5.6

The validity of the algebraic definition of d;(s, x) can be verified by simple induction on the number of

components in the stack.



< Y00 =

To compute the shape function for a density stack, we compute the minimum total density at each

i=k

tradeoff dimension s in the relevant range, i.e. ;2 g, {length;} < s < ¥ length;. Formally the algorithm is
i=0

described as follows:

Algorithm 5.1:
(1) Mins = o272, flength;}

i=k
(2) Maxs =Y length

i=0
(3 fori=1lwk
“) Compute D;(x)
(5) for s =Mins to Maxs
6) for x =0 0 s-length,
Q)] do(s, x)=0
(8) fori=1wk
9) for x = 0 to s—length;
(10) 415 X) = oy cr Tomgih, (di-1 (5. YHDix =)

(11) for s= Mins to Maxs

(12) Aminy(s) = (et fomgih 1965 )

dmin,(s) gives the minimum total density at tradeoff dimension s, and this describes the shape func-

tion of the density stack.

For a fixed tradeoff dimension s, the time required to compute d;(s, x) for x in the range

i=k
[0, s—length;] is O (s2). Therefore the time required to compute d,(s, x) is O (k-s?). Let =Y length;, then
i=0

the complexity of Algorithm 5.1 is O (k-1%).

5.5 A Heuristic to Compute the Shape Function
In this section we present a heuristic to compute an approximate shape function of a density stack.

ik
We first outline the basic steps of the heuristic and explain the steps in detail. Let dmin = ¥ Dmin;, and let

i=l
5(d) denotes the tradeoff dimension of the approximate shape function at the total density d. The basic

steps of the heuristic are as follows:
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(1) Construct the initial configuration with the total density dmin greedily. In this step, we have a
density vector (Dminy, Dmin,, . .., Dmin;), and heuristically obtain a good tradeoff dimension
s(dmin). (s (dmin), dmin), will be a break point of the approximate shape function we are com-
puting.

(2) Find a channel whose density increased by one unit will result in the maximum reduction in the
tradeoff dimension. In this step we obtain a new density vector for a total density which is one
unit more than the previous, and a new tradeoff dimension which is no greater than the previous

one.

(3) Repeat step (2) with the new density vector until the total density dmax, where dmax is the
smallest total density such that s(d)=s(dmax) for all total density d greater than dmax,

i=k
s(dmx)=02?2k{ length,}. dmax<Y n;, where n; is the number of nets in the i* channel.

i=l

Before we go into the details of how to carry out each step of the heuristic, we first show how the
tradeoff dimension of a density stack can be computed given a density vector (d,, d3, ..., d;), and how a
configuration of a density stack can be constructed with this density vector (d,, ds, ..., d). Recall that in
a river routable channel, the left and right constraint of the channel at a channel separation ¢, L (¢) and R (¢),
represent the leftmost and rightmost position of the top component with respect to the bottom. It is a con-
tiguous feasible offset range of the top component with respect to the bottom. In a general channel how-
ever, there may be more than one feasible offset range of the top component at a channel density d, i.e. at
channel density d, the offset x where the density function D (x) equal to d falls in a collection of feasible
offset ranges instead of one contiguous feasible offset range. Let /,(d) and r,(d) represent the p™ feasible

offset range of the channel at density d, then
l,(d)<x <r,(d)

implies
D(x)<d

Also recall the placement graph of a river routable stack of k+1 components for a separation vector
(t1,82,...,4). The placement graph consists of k+3 vertices, v, . . ., V;42, V; Tepresents the position of
the i* component from the left boundary of the stack, for i = 0,...,k, and v, and v;,, represent the left
and right boundary of the stack respectively, weight (v;—y, v;}=L;(t;), and weight (v;, v;_;)=—R;(1;). In a den-
sity stack, for a density vector (d;, dj, ..., d;), we have a collection of feasible offset ranges at a given

channel density. However, if one is chosen for each channel we can construct a similar placement graph to
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that of a river routable stack. The length of the longest path of such a placement graph is the tradeoff
dimension of the stack for the chosen set of k feasible offset ranges (one for each channel). The labels of
the non-boundary vertices give the configuration of the stack. See Figure 5.7. In general, it is infeasible 10
compute the shape function by solving for the longest path of the placement graph for each combination of

the offset ranges of the k channels. Since the number of such combinations can be n}-n}-+n} =0 (nZ%,),

where n; is the number of terminals in the i** channel and =) ¢ i 4{"-

D;(d;) is a collection of feasible offset ranges:

[(L(1),ri (1)), [5:(2),r: ()], ..., [1i(gi)ori(g:)]

Let [;(p,),ri(p:)] be chosen for the i* channel, then the above is the
placement graph of the density stack with the density vector (d,,d,, . . . ,d;)

Figure 5.7

We now describe each step of the heuristic in detail. In step (1) of the heuristic, we construct an ini-
tial configuration of a density stack for the density vector (d,, d3, ..., d;) by a greedy approach. We
begin at the 1* channel choosing the feasible offset range, from the collection of feasible offset ranges at
density Dmin, which will result in a good tradeoff dimension. We add one component at a time, choose

the feasible offset range of the top channel at the given channel density of that channel such that the
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tradeoff dimension resulted by adding the new component is minimum. In case of a tie while adding the i*

component, we break the tie by one of the following cost criterion,
j=i
() min{ Y label (v,-%, where label (v;) is the label of v; afier the computation of the longest path
j=

on the placement graph of the current stack of components. This in effect produces a left com-
pacted stack.
(2) min { E}(label (vi42)-label (v_,-)%. where label(v;,;) is the length of the longest path. This in
=
effect produces a right compacted stack.
(3) min { 'ffw}. where w; is the offsct of the i component with respect to the i—1 component.
i=1
This in effect produces a stack that is clustered to the center.
Any additional tie is resolved by randomly choosing one offset range from the set of offset ranges par-
ticipating in the tie.

In step (2) of the heuristic, we increase the density of each of the k channels, one at a time while
keeping offset ranges-in other channels constant (restoring the density of the current channel before
proceeding with the next channel), choose the feasible offset range that results in maximum reduction in
the tradeoff dimension, and among the k chosen offset ranges (one for each channel) keep the most
beneficial one, and increase the channel density of the corresponding channel by one. We obtain a new

density vector with total density increased by one and also the tradeoff dimension of this total density.

The running time of the heuristic depends on the number of longest path computations. At one itera-
tion, a longest path computation is done for each feasible offset range under consideration. There are at
most O (n?) feasible offset ranges for the i** channel and therefore the total feasible offset ranges is O (n2),
where n; is the number of terminals in the i channel, and n is the total number of terminals in the density
stack. At each iteration the total density is increased by one, therefore there are at most n iterations. The
time required for a longest path computation is O (k) (See chapter 2). Therefore the total running time of
the heuristic is O (k-n*). In practice, the number of feasible ranges under consideration is much smaller
than n2, and the total number of iteration is dmax—dmin, therefore the actual running time is much more

efficient than the worst case time.
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5.6 Performance

We compare the performance of the heuristic by comparing the approximate shape functions pro-
duced by the heuristic to the exact shape functions produced by the pseudo-polynomial algorithm on sixty
randomly generated density stacks. The size of the density stacks ranges from four components to nine
components, ten were generated for each size. The length of the components ranges from 25 to 35 units.
The average number of nets in a channel is 12. The minimum channel density ranges from 1 to 8. And the
minimum density such that a channel has minimum horizontal span ranges from 1 to 11. See appendix B

for the generation of the random density stacks.

For each density stack we compute the percentage that the total densities on the approximate shape
function deviate from the total densities on the exact shape function. We compute the percentage that the
total densities deviate for each tradeoff dimension s for s ranges from s(dmax) to s(dmin) and take the
average over the range of s, where s(d) denotes the tradeoff dimension on the approximate shape function
at total density d, dmin denotes the minimum total density on the approximate shape function and dmax
denotes the smallest total density on the approximate shape function such that s (d)=s (dmax) for d>dmax.
Let, dheu (x) and dopt (x) denote the total density on the approximate shape function and the exact shape
function at tradeoff dimension x respectively. Let the fraction that the total densities deviate be d_,,, then,

#=r i) dhew (x)-dopt (x)|

4= s(dmax)—s (dmin)+1

Similarly we compute the percentage that the tradeoff dimensions deviates. Let sheu (x) and sopt (x) denote
the tradeoff dimensions of the approximate shape function and the exact shape function at total density x
respectively. Let the fraction that the tradeoff dimensions deviates be sg,,, then,

" shew (x)-sopt @)

ey S sopt (x)
dmax—dmin+1

Sdev=

The results are tabulated in Table 5.1.

standard
mean | median min max | deviation

| daey T 0.017 | 0.007 | 0.000 | 0.123 | 0.0251
Siev || 0024 | 0.008 | 0.000 | 0.158 | 0.0346

Table 5.1
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On the average the heuristic produces shape functions that are very close to the exact shape func-
tions. The average percentage that the approximate total densities deviates from the exact total densities is
1.7%, and the average percentage that the approximate tradeoff dimensions deviates from the exact trade-
off dimensions is 2.4%. In fact, the heuristic produced the exact shape functions almost 50% of the time.
There are a few cases where the heuristic produced approximate shape functions that deviate from the
exact shape functions by more than 10%, both in terms of total density and tradeoff dimension. The shape
functions of one such example is shown in Figure 5.8. In Figure 5.9 we show shape functions of an exam-
ple at the median of the sixty randomly generated examples. The actual running time of the heuristic is
about an order of magnitude faster than the pseudo-polynomial time algorithm. This is because the number
of feasible offset ranges under consideration at each iteration is small.

total
density
[}

30 +—

d4,,=0.091
Sae=0.158
25 ——
exact shape function / I*L-—g-;;l~
20
e, } { = { = &
tradeoff
30 35 40 45 50  dimension
Figure 5.8

‘We observed that in general the heuristic is likely to produce the exact shape function when there are
very few break points on the shape function. From the empirical study of the sixty randomly generated

density stacks, we conclude that the heuristic produced good approximate shape functions.
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Figure 5.9

5.7 Conclusion and Open Problems

In this chapter we addressed the problem of computing the shape function of a stack of components
using channel density as channel width. We showed that an efficient solution for such a problem is unlikely
to exist by showing the decision problem Stack Of Density is NP-complete. We presented a pseudo-
polynomial time algorithm and an efficient heuristic to compute the shape function of a density stack. We
compared the approximate shape functions produced by the heuristic to the exact shape functions produced
by the pseudo-polynomial algorithm. The empirical results show that the heuristic produces shape func-

tions very close to the exact shape function.

Another variation of the problem of computing the shape function using channel density as channel
width is to consider a multiple-<component channel and compute the shape function of such channel. John-
son, LaPaugh and Pinter provide an O (n*) time algorithm 10 compute the minimum channel density of a
multiple-component channel, where n is the number of nets in the channel [JLP]. Their algorithm does not
compute the tradeoff dimension of the channel and it is not known whether the shape function of a

multiple-component channel can be computed in polynomial time.

Finally, we will close this chapter by addressing a few technical details that arize when computing
the shape function of slicing layouts using channel density as channel width. To compute the shape func-
tion of a slicing layout using channel density as channel width, we can apply the bottom up approach simi-
lar to the rigid algorithm in chapter 3. The heuristic presented above can be applied as a basic subroutine to
compute the shape function of a stack. However, in the formulation of the shape of density stack problem

we have assumed each channel only has top and bottom terminals. In general, after a global routing step of
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a slicing layout, a wire connecting two terminals may pass through a channel and the net may not have any
terminal in the channel. This problem can be resolved easily by the fact that such a net will contribute
exactly one unit to the density of the channel it passes through; it does not depend on the offset of the chan-
nel. There is another problem when a net in a channel may have to be connected to a terminal outside the
channel. This can also be resolved easily by letting the leftmost position of the net be —ee if the net has a
terminal (o the left of the channel, and letting the rightmost position of the net to be +ee if the net has a ter-
minal to the right of the channel.



Chapter 6

Conclusions and Future Research

6.1 Conclusion

Due to the complexity of custom VLSI layouts, hierarchy is necessary for custom VLSI layout
description. The slicing paradigm is a widely used hierarchical layout description. In this thesis we inves-

tigated the compaction problem for slicing layouts.

Our compaction approach is different from the conventional compaction approach. Conventional
compaction is carried out after the detailed routing of the layout has been done. For river slicing layouts,
our compaction approach captures the necessary routing space of the layout without the routing being
present. The routing is deferred until after the layout is compacted. For more general slicing layouts we
use the channel density to estimate the actual routing space and again the routing is deferred until after the
compaction. We introduced the notion of shape function of a layout that includes the routing requirement
between components in the layout. Computing such a shape function of a layout decouples the compaction

and the detailed routing phase of the layout process, while giving interaction between the two phases.

For river slicing layouts with the river routing cell composition scheme, we presented methods of
computing (sometimes approximate) shape functions. We presented an O (k'n®) time algorithm to solve
the two dimensional compaction problem for a stack of river routable channels. The solution provided an
efficient computation of the shape functions for river slicing layouts of depth one. We provided heuristics
to compute the shape functions of river slicing layouts of general depth. This is a generalization of the
compaction problem of slicing layouts considered by Otten and Stockmeyer where they assumed there are
no interconnections between components [Ott, Sto], and the compaction problem considered by Luk,
Sipala and Wong where they considered slicing layouts with a single multiple-terminal net [LSW]. We
compared the heuristic computation of the shape function for a river slicing layout with with the conven-
tional pitch aligning cell composition scheme through 60 randomly generated examples. On the average,
the minimum area layouts produced by the best heuristic are 33% smaller than the layouts produced by the
pitch aligning scheme.
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In Chapter 4 we addressed the issues of using a mixture of pitch aligning and river routing cell com-
position. We studied the asymptotic behavior of river routing and pitch aligning in uniform layouts, and we
derived a condition under which river routing is better than pitch aligning.

We showed the intractability of computing the shape function of a stack of components, using chan-
nel density as channel width, when the routing channels are not river routable. We provided efficient

heuristics for computing such a shape function.

6.2 Future Research

In our layout model we assumed wires have zero widths. This assumption allowed us to apply the
relatively simple routability condition for a river routable channel that has wires with uniform widths. To
implement the algorithms to compute the shape function in a real layout, necessary and sufficient routabil-
ity conditions that capture non-uniform wire widths needs 1o be developed, and versions of algorithms 2.1
and 2.2 based on such conditions need to be investigated.

Our results on the shape function that captures the routing requirement are based on the routability
condition of a channel -- the channel separation for a river routable channel and the channel density for a
more general routing channel. We assumed a channel is a rectangular routing region, i.e. components that
define the channel touch the boundaries of the channel and there is no empty space between the com-
ponents and the boundaries of the channel. To compute more accurate shape function of a layout, routabil-
ity conditions for non-rectangular channels need to be developed. We also assumed components in a layout
to be rectangular, computing the shape function of a layout that contains non-rectangular components is an
area that needs to be explored. Reclated work in this arca is considered by Maley [Mal]. Maley presents
necessary and sufficient conditions for single layer routing when the layout which contains non-rectangular

components is compacted in a chosen dimension.

The core of our approach to compute the shape function of a river slicing layout is Algorithm 2.1 and
2.2, which compute the shape function of a stack of components. In the stack we considered, connections
only exist between adjacent rows of components. In a more general stack, connections exist between non-
adjacent rows. The ability to compute the shape function of such a stack will add more versatility to the
compaction scheme we proposed in the thesis. Initial work in this area is considered by Joseph and Pinter
who present an efficient algorithm to compute the minimal area of such a stack when the channel separa-

tions of routing channels are given [JoPi].

In the heuristics that compute the approximate shape function of a river slicing layout, we choose the

best area shapes of the child slices for the computation of the shape function of their parent slice. One
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direction of future research is to investigate more sophisticated shape choosing strategies. For example,
when we know a priori the desired aspect ratio of the final layout, we can choose shapes of child slices so
that the final aspect ratio can be achieved with smaller area. Another possibility is to ignore the routing
requirements between child slices and apply the cheaper shape-summing operation presented by Otten
[Ou] to sum the shape functions of the child slices, and obtain a "pseudo-shape” function of the parent
slice. The shape summing operation can also be applied to obtained pseudo-shape function of slices at
higher level of the hierarchy. The pseudo-shape function may provide more information for the slices at

higher level of the hierarchy and enable us to choose more appropriate shapes of the child slices.

In a slicing layout, at each level of the hierarchy we compute the shape function of a stack. In a non-
slicing hierarchical layout representation, at each level of the hierarchy we will be dealing with a more gen-
eral layout topology, for example the topology that gives the cyclic routing order (Chapter 1). To apply the
compaction scheme in this thesis to a non-slicing layout, algorithms that compute the shape function of a

layout topology other than a stack need to be developed.

One final research issue we will address is hierarchical versus flat compaction. Due to the size of a
VLSI layout, hierarchical compaction is needed to reduce the amount of information to be dealt with at any
instant during the course of compaction. One drawback is the "boundary enforcement” of the hierarchy. In
the case of a slicing layout; the hierarchy defines the routing channels of the layout, the routing channels
are the boundaries of the hierarchy we enforce. It can be beneficial if we do not enforce the boundaries of
the hierarchy, i.e. we can consider a boundary of the hierarchy as a flexible routing region rather than a
routing channel as illustrated by Figure 6.1. This will allow the possibility of slices with jagged edges to be

composed in a more compact way. The same remarks apply to non-slicing hierarchical compaction.

components in a
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Appendix A

In this appendix we describe the generation of river slicing layouts that we used in the empirical

study of the performance of the heuristics in Chapter 3. We generate slicing layouts that mimic the parti-

tioning of a true design.

We first describe a general procedure that generates the slicing layouts and then describe the parame-

ters that control the generation in detail. To generate a slicing layout we begin with a root slice whose hor-

izontal and vertical dimensions are parameters. The value of the parameters are supplied at each genera-

tion. The root slice is partitioned into smaller slices according to some criterion. The criterion is controlled

by some parameters which will be described later. The smaller slices are then further partitioned with the

same criterion. In general a slice s with the dimensions and the number of terminals on each boundary

known is partitioned as follows,

(¢))

@

3
@

Determine the orientation and the number of the cut lines that will partition the slice. If the cut
lines have the same orientation as the slice, the resulting child slices remain in the same level,
otherwise the child slices become one level lower in the hierarchy. See Figure A.1. The orienta-
tion of the cut lines is determined by the dimensions of s; when the horizontal (vertical) dimen-
sion is greater than the vertical (horizontal) dimension, the vertical (horizontal) cut lines are
generated with higher probability. This has an effect of reducing the probability of generating
slicing layouts with a lot of long and thin slices which in general are not present in a true design.
After the child slices are obtained, distribute the terminals on the boundaries of s that are per-
pendicular to the cut lines to the child slices uniformly. We ensure that the terminals distributed
to the boundaries (perpendicular to the cut lines) of the child slices can be accommodate by the
boundaries.

Determine the number of nets between the common boundary of two adjacent slices.

If slice is a leaf cell, deform the slice but preserve the area of the slice, and then determine the

displacements between adjacent terminals.
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Figure A.1

The following are the parameters that control step (1) to (4) above,

seed, step

These provide seeds for the random number generators used.
nslice This is the maximum number of slices in one partitioning process.
level This determines the level of the resulting slicing layout.

WellFifThis determines the degree of deformation of a leaf cell. If WellFit = 100% then no deforma-
tion is done. The deformed leaf cell is ensured to accommodate all terminals on its boundaries.
CutRatioLow, CutRatioHigh
This determines the number of nets in a common boundary. Let dim denotes the size of the
common boundary, then the number of nets is uniformly chosen between dim-CutRatioLow and

dim-CutRatioHigh.
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CN, DN
These describe the functions f (x) and F (x), where

f (x)=CN+@§9’! x

For a boundary with n terminals, we want to generate (n+1) pieces of displacements which add
up to the length of the boundary. We use the probability function F (x) to generate displace-
ments between adjacent terminals, i.e. the i* displacement has an expected value F (i) length of
boundary. The (n+1) pieces of displacement are then permuted randomly. This is intended to
generate non-uniform displacements. When DN is equal to CN, the displacements are uniformly

distributed, and when DN is not equal to CN the displacements have linear variations.

CS, DS
These describe similar functions g (x) and G (x). G (x) governs the distribution of the displace-

ments between cut lines on a slice.

With the parameters described above we will be able to generate a large variety of slicing layouts.
When WellFit is 100%, the slicing layout generated is tight, i.e. if we ignore the routing between cells, all
leaf cells are perfectly fit and there is no empty space in the layout. When WellFit is low, it may have a lot
of empty spaces between cells. CutRatioLow and CutRatioligh control the number of nets in a common
boundary, when CutRatioLow = CutRatioHigh = 100%, the number of nets is equal to the size of the boun-
dary. The probability function G (x) govems the sizes of the leaf cells. When CS « NS the leaf cells will

have very different sizes.

We have described the generation of river slicing layouts for the river routing cell composition
scheme, In order to use pitch aligning cell composition we need to generate one horizontal and one vertical
constraint graph, which model a stretchable component, for each leaf cell. To generate a constraint graph
for a leaf cell we need to determine the minimum displacement constraints between terminals. For termi-
nals on the same boundary we use the actual displacements as the displacement constraints. For two termi-
nals on the opposite boundaries, with probability p we generate a displacement constraint using the actual

displacement between the two terminals. See Figure A.2 for an illustration. The number of constraints
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generated with this assumption is linear in the number of terminals of the leaf cell. In addition, there is no
cycle in such a constraint graph, therefore there is no cycle in the constraint graph of the whole layout and

the longest path problem in such a graph can be solved in time linear in the number of constraints.

‘When p=0 there is no minimum displacement constraints between terminals on the opposite boun-
daries. In a layout generated with p=0, movement of terminals on one boundary of a component due to the
stretching of the component will not affect movement of terminals on the opposite boundary. In this type of
layouts, the undesirability of streiching is kept to the minimum. On the other hand, when p=1, there is a
minimum displacement constraint between two neighboring terminals on the opposite boundaries. In a lay-
out generated with p=1, movement of a terminal on one boundary of a component due to stretching will
force a terminal on the opposite boundary to move. In this type of layouts the undesirability of stretching is

at its maximum. We use p=0.5 in our examples.



Appendix B

In this appendix we describe the generation of density stacks that we used in the empirical study of
performance of the heuristic in Chapter 4. We generale density stacks with two-point nets. A density stack

is generated according to the following parameters,

seed The seed of the random number generator used.
k The number of channels in the stack.

minlength, maxlength
The lengths of the components in the stack are uniformly distributed between minlength and
maxlength.

nlow, nhigh
Let smlength denotes the smaller length of the two adjacent components. Then the number of
nets in the channel is uniformly distributed between nlow-smlength and nhigh-smlength.

Terminals on a boundary are randomly distributed on the boundary. 20% of the time the terminals
are cluster to the left, 20% of the time they are cluster to the right and 60% of the time they are uniformly
distributed on the boundary. In addition, the order of the terminals on one side of the channel is randomly

permuted.



