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ABSTRACT

Data replication in distributed databases is used to improve data availability and
provide faster read access. However, new problems for database management are intro-
duced due to the need for maintaining the consistency of replicated copies. Dealing with
communication failures is one of them. For example, when the network partitions, con-
tinued update activities may lead to data inconsistency. On the other hand, halting all

updates until the network is reconnected is undesirable in many cases.

This dissertation introduces a methodological framework for designing replicated
databases that exhibit a high degree of availability (including the ability to make
updates) in the face of communications failures that can partition the network. The
framework is based on the simple notions of fragments and agents. It gives rise to a wide
scope of options with varying degrees of data consistency and availability. The con-
sistency criteria offered by these options include one-copy serializability as well as two

new criteria: virtual serializability and fragmentwise serializability.
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CHAPTER 1
INTRODUCTION

1.1. Replicated Data and Communication Failures.

One of the central motivations for studying and using distributed computer sys-
tems is improved availability of computing resources that they offer in the face of
machine crashes. In a centralized system, a single site crash brings the entire system
down (a trivial fact since there is only one site). In a distributed system, on the other
hand, when a single site (or even several sites) goes down, the system may still remain

operational.

Unfortunately, this advantage of distributed systems is offset by a whole new type
of problems, unknown in centralized systems: communication failures. In distributed
databases, the primary resource is data. In many cases data are replicated over several
sites to improve availability in case of individual site crashes. However, communication
failures can often complicate the management of such systems and, in the absence of
any special provisions, even degrade the overall performance in comparison with the

centralized case.

This paradoxically adverse effect of data replication is due to the necessity to syn-
chronize updates performed on the replicas. Synchronization is necessary in order to
preserve consistency of data. Therefore when a failure in the network halts communica-
tions, proceeding with updates entails the risks of creating inconsistent copies. Thus,
updates may be blocked even without a site crash, a phenomenon that could never

occur in a centralized database.

Consider what may happen if updates are not blocked when communications are

disrupted. Let z4 be the copy of data item z stored at site A. Let zp be the copy of z
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at site B. Suppose that A and B cannot communicate during a certain interval of time.
If during this interval both A and B update their copies of z, how are the possibly
diverging values of z4 and zp to be reconciled? What should be the "correct” value of

27

Note that, during a disruptive communication failure, an item does not have to be
updated at several sites in order to create problems with data consistency. Suppose
there were a second data item y with copies y4 and yp at A and B respectively. During
the failure the following (unsynchronized) updates could occur: z4 + fi(y4) and
yp + [o(zp) at A and B respectively, where f; and f, are some functions on appropri-
ate domains. Each data item has been updated at a single site only, and the replicas of
each, therefore, can eventually assume the same values after the updates are pro-
pagated. Nevertheless, this execution is intuitively incorrect. The problem is that these
updates cannot be sequentially ordered since the new value of each of the two items

was computed based on the old value of the other.

Thus, it appears that data availability and data consistency are competing goals
of distributed database systems that are prone to communication failures: when one is

fully satisfied, the other may be compromised.

A failure that results in disruption of communications between sites in a distri-
buted system is called a nefwork partition. A network partition divides all the sites into
partition groups such that any two sites can communicate with each other if and only if
they are from the same partition group. Assuming that partitions are easy to detect, a
safe and simple, albeit conservative, approach to preserving data consistency is to halt

all transactions, i.e., suspend access to all data, for the duration of the partition.

It does not take long to see, however, that such an approach is unacceptable in

many real situations. In many applications it is undesirable to halt transaction
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processing whenever a partition occurs. In some cases it is because partitions occur at
critical times. For instance, in command and control applications a military conflict
can make communications unreliable and it is precisely at this time that one wishes to
have access to the data. In other cases, halting transaction processing causes a serious
inconvenience or economic loss. For example, an unavailable airline reservations system

means lost customers, and hence lost revenues.

In yet other cases, partitions are normal rather than extraordinary occurrences.
This may be because the network is inherently very unreliable or because communica-
tion lines are not dedicated. For example, in the Unix UUCP network computers are
normally disconnected from the network. Only occasionally, and for usually short
periods of time, do they establish point-to-point connections (by dialing other comput-
ers) and exchange data. A similar situation exists in a system that uses satellites for
communications among geographically dispersed computer nodes (or clusters of such).
Communication between a pair of nodes (clusters) is possible only for a relatively brief
period of time when the satellite is in the right position within its orbit allowing it to
have radio contact with both nodes (clusters). In such an environment one would like

to process transactions even when there is no communication.

Also note that even in conventional networks, partitions may be more common
than what one might initially imagine. First, partitions do occur when gateways con-
necting networks fail or when Ethernet cables are inoperative (e.g., when an Ethernet
terminator is removed, say to add a new segment). Second, in most cases it is impossi-
ble to distinguish a node failure from the disconnection of a node from the network
(e.g., because its ARPANET IMP or its Ethernet transceiver failed). Hence, every node
failure must be considered a partition. Finally, "virtual" partitions occur when a com-

puter does not respond promptly to network messages. That is, network protocols usu-
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ally have a timeout period. If a computer does not respond within this time limit, it is
declared failed, even though it could be operational but slow. The timeout period has
to be set relatively short, else it would take an unreasonable amount of time to detect
and compensate for real failures. This means that overloaded or slow computers may
occasionally cause virtual partitions when they respond late. In summary, even though
partitions may not be frequent events, they may occur with enough frequency so that

halting transaction processing every time they arise is not acceptable.

1.2. Related Work.

From the discussion in Section 1.1, it becomes apparent that maintaining data
availability in the face of communication failures is an important practical problem. It
has been recognized as such and studied by many researchers in recent years. We
present here a brief overview of some of the approaches to the problem (see [Davi85a)

for a thorough survey).

The intuitive notion of data consistency is formalized by introducing a correctness
criterion for transaction execution such that when this criterion is satisfied, the data
are considered consistent. For example, the widely excepted correctness criterion for
transaction execution on replicated data is one-copy serializability [Bern86a). Infor-
mally, a one-copy serializable transaction schedule is equivalent (in terms of the output
produced by its transactions and the state in which it leaves the database upon comple-
tion) to some serial schedule of transactions that have access to only one and the same
copy of every data item. Thus one-copy serializable schedules prevent any possible
adverse effect that concurrency of transaction execution or replication of data might

have on data integrity.

All the known methods for increasing data availability during partitioned opera-

tion can be grouped into two categories. The first category is characterized by strict
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adherence to one-copy serializability, even during communication failures. This is typi-
cally achieved by limiting data access in different partition groups in a manner that
excludes the possibility of conflicts among transactions executing in these groups (e.g., a
data item will be allowed to be updated in one group only). So even though this stra-
tegy is clearly superior, in terms of data availability, to simply halting all transaction
execution for the duration of the partition, it does limit availability significantly. This
category of approaches is referred to as restrictive (this corresponds to what are called

pessimistic methods in [Davi85a] ).

The second category consists of methods that, instead of one-copy serializability,
emphasize unrestricted availability in the face of communication failures. They put no
limitations whatsoever on data access during partitions. Special techniques are provided
for making data consistent when the network becomes connected again. Note, however,
that even when the system is successful in eventually arriving at a consistent state for
the database, the transaction execution that took place during the partition cannot be
considered correct (in the sense of one-copy serializability) because incorrect outputs
may have been produced that cannot be retracted. The second category is designated

Jree-for-all' (this corresponds to optimistic methods in [Davi85a] ).

1.2.1. Restrictive Methods.

Gifford proposed a technique called weighted voting, based on assignment of a non-
negative number of votes v(z;) to each copy z; of data item z [Giff79a]. Non-negative

read and write thresholds, r, and w, respectively, are defined for z such that:

w, + 1, > Y o(a)) (11)
all J

! The main concern of the present dissertation is data availability. Consequently, we would like
to give the two categories of techniques the appropriate designations to reflect how they affect
availability. That is why we insist on renaming them.



Chapter 1: Introduction 6

2w, > Y, v(zy) (1.2)
all J

Version numbers are used for all copies of z. To update z a transaction T must "col-
lect" at least w, votes. This means that T must initiate write operations on a quorum
of copies whose total number of votes is at least w,, and commit only after all these
operations complete. Similarly, to read z a quorum with at least r, votes must be
accessed and the value of the copy with the largest version number taken. Since any
read quorum intersects any write quorum (see inequality (1.1)), that value is guaranteed
to be the most recent version of z. If due to communication failures a transaction fails
to secure enough votes to perform an operation on a data item, this transaction must
abort. Inequality (1.2) guarantees that in a partitioned network z can be updated in at
most one partition group. Inequality (1.1) guarantees that if z is updated in one group,
it cannot be read in any other. Thus no conflicts (either write—write or read—write)

can ever arise. Based on this fact it can be shown that the execution is always one-copy

serializable.

The described technique is also known as the quorum consensus algorithm and is a
generalization of the majority consensus algorithm (in which exactly one vote is

assigned to every copy) introduced by Thomas [Thom79a).

In a related approach proposed by El Abbadi et al. [Abba85a, Abba86a), read and
write thresholds are assigned in a similar fashion but used differently. The view of a
node is defined to be the set of nodes with which this node believes it can communicate.
For the method to work correctly, views do not have to be consistent with actual parti-
tion groups. For that reason, this method is known as the virtual partitions algorithm.
A data item can be updated (read) by a transaction only if the view of the transaction’s
home node has the required quorum of votes (note that this can be determined just

from the information at the home node). But to actually write a data item a transac-
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tion has to write all copies of it within the transaction’s view. To read an item any copy
can be accessed. Correctness of the algorithm is guaranteed by a special view update
transaction. This transaction is initiated by a node when the node detects a
discrepancy between its view and the real communication status of the system (e.g.,
contact is lost with a node in the view). The main purpose of this transaction is to con-
sistently update the views of all the nodes involved and to bring up-to-date all copies of

those items that nodes in the new view will be able to read.

Skeen and Wright developed a different type of restrictive method for maintaining
availability [Skee84a, Wrig83a]. In their approach, all transactions are pre-analyzed
and divided into classes according to their read and write sets. A class conflict graph is
constructed that models interactions and possible conflicts among transactions belong-
ing to different classes. When a network partion occurs, the class conflict graph and the
partition map are analyzed to determine the classes of transactions that can be exe-
cuted at a given node safely, i.e., with guarantees of a one-copy serializable schedule.
Unlike the previous approaches, the class conflict analysis (as this approach is known)
does not exclude the possibility of a data item being read in one partition and updated

in another. The class conflict analysis assumes that partitions are correctly detectable.

Some of the other restrictive schemes for availability include the missing

writes [Eage83a], the primary copy [Alsb76a], and the token schemes [Mino82a).

1.2.2. Free-For-All Methods.

Davidson proposed a method called the optimistic protocol [Davi84a]. It uses the
following strategy for making the database consistent after the partition is repaired.
Based on transaction logs that each network site kept during the partition, an extended
form of the serialization graph [Papa79a] is constructed. This graph models dependen-

cies among transactions not only from the same partition group but from different ones
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as well. If the graph turns out to be acyclic, that means that the execution was serial-
izable, and no action needs to be taken. Otherwise, some transactions have to be rolled
back to render the graph acyclic. That in turn may necessitate roll-backs of other tran-
sactions that depended on the updates produced by the first group of transactions and
so on (this is known as cascading roll-backs). The optimistic protocol provides heuris-
tics for keeping the number of roll-backs small (the problem of minimizing this number
is NP-complete). Note that even though the resulting state of the database is con-
sistent, some transactions cannot be truly rolled back because their outputs cannot be

annulled. For some applications this can be a serious problem.

The log transformation technique introduced by Blaustein and Kaufman [Blau85a]
(and used in the SHARD system Sari86a ) is also based on backing out some of the
transactions that executed during the partition. Unlike the optimistic protocol, how-
ever, instead of syntactic information (the serialization graph), this technique uses the
available semantic information (e.g.,, commutativity) about transactions to avoid
unnecessary backing out and rerunning. Like the optimistic protocol, the log transfor-

mation does not guarantee serializability.

Another approach that utilizes semantic knowledge was proposed by Garcia-
Molina et al. [Garc83a]. It puts forward Data-Patch — a tool based on a collection of
rules for integrating possibly diverging copies of data after the network is reconnected.
The process of integration is no longer carried out on the basis of transaction logs, as in
the previous two approaches, but rather on the basis of the values of different copies of
the same data item. The goal is to arrive at a single, "reasonable” value for all copies.

One-copy serializability is abandoned altogether.
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1.3. The Objectives and Tools of the New Approach.

Restrictive methods are best suited for the kind of database applications in which
one-copy serializability is of utmost importance. Free-for-all methods are called for
when losing, or even restricting, data availability during network failures is highly
costly. On the negative side, however, the former compromise availability during a par-

tition, while the latter lack meaningful correctness criteria.

In this dissertation a new approach to the problem is presented that attempts to
remedy the situation to a certain extent. The objectives are high availability in the face
of communications failures and, at the same time, adherence to meaningful and fairly
strict correctness criteria. High availability will be understood to mean the ability of
every node to access the same data during a partition (or other kinds of failures) as
during normal operation. The possible correctness criteria will include one-copy serial-
izability. In addition, new criteria will be introduced, which are less strict but quite use-

ful for some applications.

Assume for now that data replication is complete, i.e., every node in the network
has a copy of the entire database. The following main tools, or strategies, will be

employed to achieve the defined objectives of availability and correctness:

(i) Operational Node Autonomy. Nodes operate in total autonomy insofar as transac-
tion scheduling and execution are concerned. No synchronizing, or concurrency-
control, messages (e.g., remote lock requests) are exchanged. Transactions are
scheduled, run, and commit locally, without ever being blocked because of waiting

for a message from another node.

(i1) Restricted Transactions. Arbitrary transactions are not allowed. For every node,
there is a specified subset of data accessible to local transactions in read mode,

and a subset accessible in update mode. These subsets differ from node to node and
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(iti)

can change over time, but they do not depend on the communication status of the
network. Thus, during a partition any node is allowed to access the same data it
can normally access. Restricted transactions are motivated by the observation
that, in real distributed systems, democracy is not a very popular concept, i.e.,
different users are endowed with different sets of privileges as far as data access is
concerned, and the ability of some users to modify (and even access) data is often
restricted. For example, in an airline reservations system, it can hardly be con-
sidered a loss of availability if a travel agency, operating at its own computer
node, is unable to update the flight schedules in the database. Our approach will

try to exploit such inherent restrictions that many applications have.

Restricted Update Propagation. In a replicated database updates produced at some
node must be eventually propagated to all other nodes that hold a copy of the
relevant data item. Traditionally this is done without any regard to the order in
which different nodes receive and install these updates. In the proposed approach,
there will be some special restrictions on this order. Sometimes updates might even
be delayed on purpose to enforce these restrictions. Note, however, that this has

no effect on the operational autonomy of nodes.

It is immediately clear that tool (i) — node autonomy — is the guarantee of

unrestricted’ availability of data during partitions and other communication failures.

Correctness properties are enforced by the combination of tools (i) and (%), as will be

demonstrated later on in this dissertation.

It is worth noting that node autonomy is a very valuable property to have in a

distributed database (or any distributed system for that matter), even apart from its

! In the sense of allowing access to the same data during failures as during normal functioning of
the communication network.
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role in attaining high data availability in the proposed scheme. The reasons for that

are as follows.

Many of the previously proposed approaches assume that the nodes belonging to a
partition group have complete information about the members of the group, and that
the partition borders do not change dynamically. For instance, this implies that all the
links whose failure caused the partition are repaired at the same time. We call this type
of behavior clean partitions. The notion of clean partitions may not represent a realis-
tic scenario. Consider a network where failures of communication links occur fairly
often and repairs do not take long. That will result in the rapidly changing status of
the communication network. Moreover, as pointed out earlier, significant communica-
tion delays are not easily distinguishable from failures. Clearly, under such conditions
it will be extremely difficult to detect when partitions occur and when they are
repaired. It will also be difficult to determine the exact constituency of every group.
This scenario is referred to as the dynamic failure environment. Since the dynamic
failure environment represents a more realistic model for an asynchronous communica-
tion network, it is highly desirable that our approach be compatible with this model.
Since node autonomy provides a degree of independence from communication failures,
our approach will not require prompt or correct detection of partitions and will be able,

therefore, to operate in the dynamic failure environment.

Autonomous operation prevents message delays from contributing to the transac-
tion response time. Message delays can be quite significant for some networks (e.g.,
long-haul networks) and, in fact, constitute a large portion of the response time when
traditional concurrency control and commit mechanisms are used. For that reason
autonomous operation implies significantly better response time. In fact, the approach

to dealing with communication failures in replicated databases presented here can also
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be viewed as a very efficient robust concurrency control mechanism. Thus, it turns out
that the tools used by our approach provide us with additional "bonuses," apart from
correctness and high availability. Figure 1.1 gives a schematic representation of the

relationships among the objectives, tools, and bonuses.

OBJECTIVES TOOLS BONUSES

Restricted Transactions

Dynamic Failure
Correctness .
Environment
Restricted Propagation
Low Response
Availabilit
vailability Time

Autonomy

Figure 1.1. Objectives, Tools, and Bonuses.

Finally, note that node autonomy in a distributed system reflects the typical struc-
ture of many organizations that might use such a system. Namely, loose administrative
links among the constituent departments often imply the need for relative independence
among the corresponding computer nodes. Cooperation is still present and important
(exemplified, for instance, by information exchange in the form of update propagation),
but the ability of every node to function on its own even if it cannot communicate with
other nodes is no less essential. Moreover, even during normal communications it may
be undesirable to have globally synchronized data access, because it makes the transac-

tion throughput at an individual node dependent on how quickly other nodes can
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respond to synchronizing messages.

As a result of the operational autonomy, individual nodes are endowed with abso-
lute freedom (in scheduling their transactions). On the other hand, overall harmony (of
execution correctness) is nevertheless achieved. Because of the analogy to an ideal
anarchistic society, we have termed our model systems Bakunin data networks , after

the 19th century Russian political theorist and advocate of anarchism.

1.4. The Outline.

The rest of this dissertation is organized as follows. In Chapter 2 the basics of the
proposed model are presented. In Chapter 3 we show how to guarantee one-copy serial-
1zability for transaction schedules in Bakunin data networks. Several possible options
for doing that are given and proven correct. These options are obtained by varying the
types of restrictions on transactions and on update propagation. Chapter 4 introduces
the notion of virtual serializability — a new correctness criterion for transaction pro-
cessing that is less restrictive and cheaper to guarantee than one-copy serializability.
As in Chapter 3, several ways of enforcing virtual serializability are presented (com-
plete with proofs of correctness). In Chapter 5 the trend towards less restrictive
correctness criteria is continued. We introduce the notion of fragmentwise serializability
and show how this criterion can be achieved. In Chapter 6 we present various possible
extensions to the basic model that make our approach more general and flexible.
Finally, in Chapter 7 the main results of this dissertation are summarized and some

conclusions are drawn.



CHAPTER 2

BAKUNIN DATA NETWORKS: A FRAMEWORK

This chapter is devoted to the description of our model. The model is comprised of
elements of the standard model for distributed database systems enhanced by special
considerations essential to our approach. The goal of the model is to create a

comprehensive framework for designing highly available database systems.

We concentrate on the issues of data organization, transaction scheduling, and dis-

tribution of updates. Special attention is given to the notion of data control.

2.1. The Network.

The distributed system supporting our database application consists of n computer
sites, or nodes, interconnected by a communication network. Throughout this work we
assume that the network is point-to-point, however, all the results developed here will

be easily adaptable to networks containing broadcast links.

Nodes have stable storage that never fails (although the nodes are allowed to fail).
The network is unreliable. A dynamic failure environment is assumed (see Chapter 1),
i.e, links of the network can go down and come back up at any time and failures are
not automatically detectable. Messages can experience arbitrary delays. There is, how-
ever, a facility that guarantees that all messages are eventually delivered in the order

sent.

2.2. Replicated Data.

The database is a set of data objects each of which is replicated (has a physical
copy) at several sites. The subset of sites which hold a copy of object z is called the

realm of replication of z. The cardinality of this subset is called the degree of replication
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of z. The replication is complete when the realm of replication for every object in the

database is the set of all participating sites.

From the discussion in Chapter 1 it should be clear that increasing the degree of
replication for a data object improves its accessibility, but also makes maintaining of

data consistency a more difficult task.

We shall assume, for now, that replication is complete, unless otherwise specified.
(Later in this dissertation we shall take a more refined view of the subject of replica-
tion.) The main motivation for making this assumption is the simplicity of presentation
it affords. The results developed in the rest of this dissertation, however, can be applied

to the case of arbitrary levels of replication (see Chapter 6).

2.3. Fragments and Agents.
The very simple notions of fragments and agents form the basis of our framework.

The entire database is divided into k non-overlapping subsets called fragments and
denoted F'y, Fg, ..., F}. Every data object z belongs to a unique fragment of the data-
base: z € F;, 1 < i < k. (It should be remembered that a data object is a logical entity
and is not be confused with its physical replicas. A fragment, then, is a logical entity

too.)

Each fragment F; is controlled by a unique node N(F;) that is responsible for
updating it. The process that realizes the control is called an agent and is denoted
A(F;). Thus every fragment has a corresponding unique agent. Note that an agent can
be implemented as a separate process or as a component of the local data manager. In
either case, updates to a fragment can only be performed at the node where the

corresponding agent currently resides.

One way to insure the uniqueness of agents, i.e., to insure that no more than one
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node at a time has an active agent for a given fragment, is through the use of tokens.
These tokens, however, are different from the traditional tokens used in distributed sys-
tems (see [Mino82a], for instance). For every fragment, there is exactly one token, and
1t can be owned by a user (or consortium of users) as well as by a computer node. Thus
our tokens have existence outside of the computer system and can be passed by means
other than electronic messages, a situation quite different from the traditional use of
tokens. This property allows for transfer of tokens from node to node even when the
two nodes belong to different partition groups, i.e., are currently unable to communicate
with each other. An agent can be created only by the current owner of the correspond-

ing token and is automatically destroyed upon the withdrawal of the token.

As an example of a token, consider the card that a bank customer uses to identify
himself to an automatic teller. Whoever owns the card is authorized to perform banking
operations on the corresponding account, i.e., to update the fragment containing
deposit/withdrawal information for that account. One should not infer, however, from

this example that all tokens must have a concrete physical embodiment.

In order to specify how transactions originating at different nodes are restricted in
which fragments they are allowed to read, other than the one controlled by their own

node, we will use the following graph formalism.

Definition 2.1. The read-access graph (RAG) is a directed graph G =(V, E),
where V={Fy, Fy, ..., F; } and E = {(F;, F;): i # j and a transaction T that is ini-

tiated by A(F;) is allowed to read a data object contained in F; }.

Figure 2.1 shows an example of a read-access graph with three fragments: F;, F,
and F'3. Suppose that A(F;) resides at node ¢, for ¢ =1, 2, 3. Then transactions that
run at node 1 can read items in fragments F; and F'g, those running at node 2 can read

items in fragments F'y and F3, and those running at node 3 can read items in fragments
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F, and Fj.

Figure 2.1. RAG.

For the sake of simplicity, we shall assume for now that there is a one-to-one
correspondence between fragments and nodes, i.e., not only is every fragment controlled
by a unique node, but also every node controlls exactly one fragment. Like the complete
replication assumption, the assumption of the one-to-one correspondence is not limiting
to our approach and can be relaxed later (as will be shown in Chapter 6). It implies, in
particular, that k¥ = n. Also, until Chapter 6, we assume that all agents are stationary,
l.e., do not move from site to site. These two assumptions together imply that we can
alternatively regard the vertices of the RAG as nodes of the network rather than frag-

ments, whenever it is more convenient.

2.4. Transaction Scheduling and Distribution of Updates.

A transaction is taken to be a sequence of any number of atomic read or write
actions [Eswa76a]. Each transaction executes and commits at a single node (we say it
is local to that node) and can only update the fragment whose agent resides at that
node, but it can, in general, read copies of other fragments, as specified by the
corresponding RAG. (Since there are local copies of all fragments, these reads are per-
formed at the updating node.) Subsequently, all resulting updates are propagated

throughout the system. Let T; be an arbitrary transaction, then U(T;) denotes the list
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of all updates generated by T;.

Each node continues processing transactions as long as it stays operational,
regardless of the status of the communication network. Each node has a local con-
currency control mechanism used to schedule activity at that node. However, there is
no (explicit) global concurrency control. In particular, read and write accesses to data
never have to be coordinated with other nodes. The local concurrency control mechan-
ism schedules transactions local to the given node as well as updates produced by nonlo-
cal transactions that have been received for installation in the local copy of the data-
base. For the purposes of local concurrency control, updates produced by the same non-
local transaction can be viewed as a special "write-only" transaction to be executed
locally. Thus, if transaction T, is nonlocal to node 4, and its updates U(T,) are received
by i, then U(T,) is treated by 7’s transaction scheduler just as if it were a local transac-
tion (the only difference is that there are no read actions in U(T,), which reflects the
requirement that updates produced by a transaction be unconditionally installed at

other nodes after the transaction commits at the originating site).

To describe the interaction between the local transaction scheduling and propaga-
tion of updates, we introduce the generic update propagation protocol. This protocol
will also provide us with an instrument for restricted propagation when needed. We

identify here the nodes of the RAG with the computer sites of our network.

Definition 2.2. Let all the nodes of the RAG be numbered 1 through n. Let R(:)
be the set of all nodes from which node ¢ receives update messages
(R: {1, ..., n} = 21 =+ "}) Let S(i) be the set of all nodes to which node 7 sends update
messages (S: {1, ..., n} — 21+ ") R and Sare called propagation functions.

Functions R and S are mutually redundant since if one is fully specified then we

can also derive the value of the other for any . However, we have chosen to introduce
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both of them in order to facilitate the forthcoming discussions.

Every node ¢ will maintain two lists, which are initially empty. They are

UPDATES(7) and OUT(1). The protocol consists of three concurrent procedures.

(1) (Permanently in execution at mode 4, 1 < i < n.) For every local tranaction Ty,
append U(T;) to UPDATES(i). The order in which different transactions’ updates

are appended to the list is determined by the local serialization order.

(2) (Ezecuted at node i, 1 < i < n, upon receipt of OUT(j), j € R(i).) Append OUT(j)
to UPDATES(1) and atomically install all updates from OUT(j) in the local copy
of the database. Make sure that for every local transaction T; that is serialized
before these updates (and none other) U(T}) is appended to UPDATES(i) before
OUT(j).

(3) (lterated with arbitrary intervals at node i, 1< i< mn) Atomically copy
UPDATES(i) to OUT(i). Send OUT(:i) to all nodes in S(i). Reinitialize

UPDATES(?) to empty.

Note: Since UPDATES(i) is accessed concurrently by several procedures, it is essential

that a locking mechanism be used.

Propagation functions establish a logical order of update propagation. They have
nothing to do with physical routing of messages. Thus, OUT(i) is addressed to nodes in
S(i), but how it gets there is not important as long as the nodes not in S(i) through

which the message may be routed do not attempt to process it.

Note that, when all the agents are stationary, updates in U(T,), where T, is a
transaction updating fragment F;, are needed only at those nodes that control frag-
ments F; such that (F;, F;) is an edge in the RAG, for only those nodes will ever read
the data updated. For the sake of simplicity, we will ignore any redundancies associ-

ated with delivering U(T,) to other nodes. However, it is a straightforward matter to
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introduce an optimization provision in the protocol that would prune out update lists of
those updates that are known not to be needed by any node further down on the given

propagation path.

By choosing different propagation functions R and S, we can derive an entire fam-
ily of specific protocols from the general update propagation framework presented
above. We are going to use two basic criteria for selecting R and S. First, they must
be such as to ensure the required correctness properties (see Chapters 3, 4, and 5).
Second, they must provide, as much as possible, prompt delivery of updates. Here we
are going to discuss the second criterion, which will be also referred to as performance

of a protocol or expediency of update propagation.

Clearly, the basis for the evaluation of performance should be how fast updates
are delivered to the node which needs them. Of course, this largely depends on the
topology of the communication network, its current load and status, the bandwidth of
its links, etc., but even assuming that these factors are constant different protocols

(different propagation functions) will perform differently.

Consider two nodes in a Bakunin data network, ¢ and j. Suppose, there is an edge
from 7 to 5 in the RAG. That means that transactions executing at node ¢ can read
data from the fragment controlled by node j. In that case, it is desirable that updates
generated at j be delivered to ¢ as promptly as possible in order for the transactions at
i to be able to read up-to-date information. Therefore, a protocol that allows node j to
ship its updates directly to 7 for installation in the local copy is the most favorable to

node 7. Such a protocol would have i € S(7) (and 5 € R(?)).
Definition 2.3. Let G =(V, E) be a RAG with corresponding propagation func-
tions R and S. Then G, =(V, E,) is called a propagation graph if E, = {(3, j): 1, jEV

and 7 € S(¢) (or ¢ € R(7))}.
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Definition 2.4. Let G and G, be as above. A path from node ¢ to node j in G, is

called characteristic if it is a shortest path from ¢ to jin G, and (4, j) € El

A propagation graph describes the order in which updates are propagated in the
network and installed in the local copies of different nodes. The length of a charac-
teristic path indicates how far an update has to travel (in the logical sense) before it
reaches a node where it is needed. Intuitively, a "good" protocol would result in a pro-
pagation graph with as short characteristic paths as possible for as many pairs of nodes
as possible. One reason for this is that short characteristic paths imply that there are
fewer nodes between the sender and the receiver that have to install the updates in
their local copies. Thus the delays will be shorter. In addition, a characteristic path can
be the only path between a pair of nodes in the propagation graph (a situation common
for the propagation functions considered in subsequent chapters). If that is the case and
if some node on the characteristic path gets isolated from both the sender and the
receiver, due to a network partition, then the updates will not reach the receiver until
the partition is repaired, even if the receiver is in the same partition group as the
sender. Thus, a shorter characteristic path (when it is the only path from the sender to

the receiver) will have fewer vulnerabilities with respect to communication failures.

Ideally, we would like to have a protocol that results in a propagation graph of
which the corresponding RAG is a subgraph. Then all characteristic paths would be of
length 1. This situation is achieved when ¢ € S(j), for every (i, j) € E. However, as we
shall see in the subsequent chapters, it is not always possible to have propagation func-
tions that guarantee both good performance and adherence to the required correctness

criteria.

! Note that if 5 and j are not connected by an edge in the RAG, then we are not really interested
in the length of the shortest paths from ¢ to jor from j to , because neither of the nodes processes
transactions that read data from the fragment controlled by the other.
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2.5. Example.

To illustrate the concepts of fragments, the read-access graph, and propagation
functions, consider the following example of a simple Bakunin data network. Suppose
we have an airline reservation database (which has typically been used to illustrate
high availability replicated data mechanisms). The database contains information on
flight schedules, customer reservations, and seat assignments. Copies are to be placed
at several computers, including machines at the airports where this airline operates.
High availability is required for this application. For example, we would like to assign
passengers to their seats at the airport even if that machine is cutoff form the rest of

the system.

Note that in this example it is not necessary to run all types of transactions at
any node. For example, it is unlikely that a flight schedule will be changed at an air-
port. (The actual departure time may be changed, but this is another matter.) Flight
schedules are probably handled at a central airline office, and it is this machine that

needs to be able to execute schedule changes.

The database is divided into six fragments. Each node has a copy of every frag-
ment. The fragments are: the flight schedules (F), the west coast reservations (R,), the
east coast reservations (R,), and the seat assignments at airports A, B, and C (S4, Sp,
Sc¢). (Our airline only flies out of three airports. We also assume that the reservations

data are split into two parts).

Each fragment Gj is controlled by a unique node N(G;) responsible for updating
items in the fragment. For simplicity we assume that each node controls only one frag-
ment. Thus, our system will have six nodes: one at the airline headquarters where the
schedules are changed, two computers for handling reservations, and one computer at

each of the three airports for seat assignments.
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Each transaction executes at a single node and can only update the fragment con-
trolled locally. However, a transaction is allowed to read the local copies of other frag-
ments, without requesting any "locks" at other nodes. (A local concurrency control

mechanism ensures that local executions are serializable.)

Figure 2.2 presents the RAG for our running example. Transactions that change
schedules do not need to read data outside this fragment, so node F has no outgoing
arcs. To make a reservation, a transaction must be aware of the schedules, so there
are arcs R,—F and R,—F. Finally, transactions that give a customer a seat at the
airport need to see the schedule and the reservations (a passenger without a reservation

does not get a seat); hence Sy—R,, Sy—R,, S4—F, and so on.

Figure 2.2. Airline Reservation Example.

Recall that our goal is for nodes to be autonomous. Hence, when node N(R,)
wants to make a reservation, it reads R, and the local copy of F. The copy of R, is the
most up to date since all updates to this fragmant originate at this node; however, the
copy of F may be out of date if N(F) has been unable to communicate with N(R,).
This will not stop the reservation transaction from executing. It will read the latest

value of F that it has and will proceed to update R,. The new values generated will
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then be propagated to the other nodes.

To illustrate how the propagation functions direct the flow of updates in the net-
work, suppose that
S(F) = {Rea Rw}
S(Ry) ={S4, Sp, Sc}

S(R.) ={S4, Sp, Sc}
Then in order to get from N(F) to N(Sp), for example, the updates to fragment F have

to go through (and be installed at) either N(R,) or N(R,). (We do not show in this
chapter how propagation functions are used to guarantee correct global schedules of

transactions.)

2.6. Trade-offs for Bakunin Data Networks.

In the previous sections of this chapter we introduced the basic conceptual com-
ponents of Bakunin data networks — a model for designing highly available replicated
databases. Given the assumptions of one-to-one correspondence between fragments and
sites, full data replication, and stationary agents, a Bakunin network is fully defined by
its RAG and propagation functions. The RAG represents restrictions on access patterns
for transactions. The propagation functions represent restrictions on logical propaga-
tion paths that updates can take. Together, when properly chosen, the RAG and propa-
gation functions can guarantee the specified correctness criteria for the system without
compromising data availability. In the next three chapters, various combinations of
RAGs and propagation functions will be studied that guarantee correctness porperties
ranging from the traditional one-copy serializability to less strict properties motivated

and defined in Chapters 4 and 5.

Maintaining high levels of data availability never comes for free, no matter what

approach is applied. The Bakunin networks model is no exception. Unlike other known
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approaches, however, Bakunin networks compromise neither availability nor correct-
ness. Instead, we sacrifice the generality of transaction types and, in some cases,
promptness of update delivery to remote sites. That immediately points to the kind of
applications best suited for this approach. Such applications would have a limited
number of well categorized transaction types. Examples include (but are not limited to)

airline reservations systems, banking databases, and inventory databases.

It would not be difficult to design a Bakunin data network that can guarantee the
desired correctness properties if we were willing to settle for severely restricted RAGs
and update propagation functions. The challenge is not to give away more flexibility
than necessary in order to achieve the goals of availability and correctness. It is intui-
tively clear, and will be demonstrated in succeding chapters, that the more restrictive
the propagation protocol (functions), the less restrictive the RAG has to be, and vice

versa. This is the fundamental trade-off exhibited by Bakunin data networks.

If an application’s needs can be satisfied by one of the less strict correctness pro-
perties that we shall introduce, then we can even further relax restrictions on the read-
access patterns and/or update propagation protocols. For example, let B be a Bakunin
data network with a RAG of type X and propagation functions R and S, such that B is
known to guarantee serializability. Then it is likely to be the case that if virtual serial-
izability (see Chapter 4) is our goal, it can be satisfied by Bakunin network B’ with the
same propagation functions S and R, but with a RAG of a more general, and therefore
less restrictive, type X’. Thus, the ability to choose from several meaningful correctness
criteria will add another dimension to the trade-off space of our model, thereby adding

more flexibility.

Bakunin data networks can be viewed as a framework for designing highly avail-

able replicated databases, rather than just another approach to coping with communi-



Chapter 2: Bakunin Data Networks: A Framework 26

cation failures and network partitions. Such view is justified by the fact that this model
provides a large number of specific options, each of which is characterized by a different

trade-off instance out of a wide scope of possibilities.



CHAPTER 3
PRESERVING ONE-COPY SERIALIZABILITY

One-copy serializability is an important general correctness criterion for replicated
databases. It provides transparency with respect to both concurrency of transaction
processing and data replication. In other words, it always appears to the users of the
database system that transactions run serially and that there is a single copy of every

data item.

The goal of this chapter will be to study Bakunin data networks that guarantee
one-copy serializability.

Before we proceed the following simple result is established that will facilitate the
presentation of the material in the rest of this chapter. A missing write refers to a
failure to record an update on one of the copies of a data item (as in the missing writes

algorithm [Eage83a] ).

Theorem 3.1. A serializable transaction schedule on replicated data in which

there are no missing writes is also one-copy serializable.

Proof. Let S be the schedule in question. Since S is serializable, it is equivalent to
a serial schedule $' =TT, --- T,, i.e,, S’ is a concatenation of r single-transaction
schedules each of which includes write actions on every existing copy of every data item
being updated. Because of the absence of missing writes, every reference in S’ to any z;
(the copy of item z at node J) can be replaced by z (representing a logical operation on

item z), which yields a one-copy serial schedule. Hence S is one-copy serializable. O

! See [Bern87a) for the definitions of serializable and one-copy serializable schedules on replicated
data.
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In Bakunin data networks every transaction updating a data item eventually
updates every existing copy of it by propagating update messages to remote nodes.
Thus, by Theorem 3.1, the notions of serializability and one-copy serializability are

equivalent in our model. It will, therefore, be sufficient to concentrate on serializability.

3.1. Cycles in RAGs.

We begin with a fairly simple observation that the RAG must be acyclic if we
want to guarantee serializability at all times, even during communication failures. To
show the need for this, consider the example of Figure 3.1. Suppose that a partition
occurs and leaves each node in complete isolation. If the nodes continue processing
transactions — and that is what Bakunin networks are supposed to do — the transac-
tion schedule may not be serializable. For instance, if transaction T'; runs at node 1,
reads b € F'y, and writes @ € F';, transaction Ty runs at node 2, reading ¢ € F3 and
writing b, and transaction T's runs at node 3, reading (the original value of) a and writ-
ing ¢, the results cannot be integrated to match any serial schedule. Note that the

above holds true for any possible propagation functions.

Fy

Fy 3

Figure 3.1. RAG.

Consequently, all the systems that we shall study in this chapter will be character-
ized by acyclic RAGs only. Note that the airline reservations example in the previous

chapter had an acyclic RAG (see Figure 2.1).
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3.2. Acyclic RAGs: A General Case.

In this section we exhibit a propagation protocol that is sufficient to guarantee
serializability for arbitrary acyclic RAGs. Let G = (V, E) be an acyclic RAG. Suppose
that ord: V — {1, ...,n} is a topological order on the vertices of G, i.e., for any two
vertices ¢ and j, if (4, ) is an edge in G, then ord(i) < ord(j) [Mehl84a]. (A topological

order must exist if G is acyclic.) Then define functions R and S as follows:

- [{ord Y (ord(¢)+1)} if 1<ord(i)<n
R (‘)={@ if ord(i)=n Odn)

ord Hord()—1)} if 1<ord(?)<n
5(‘)‘“‘{{@ el if ord(f)(-_-)f (3.1b)

For the purpose of notational convenience, we assume, without loss of generality, that
the original numbering of nodes in G corresponds to a topological order. Then we can

rewrite the above definitions in a more digestable form:

4+ 1} f1<i<n

R(:‘):{{Q;+ };f‘.;; (3.2a)
T T

5(,-)={{®' }i“=1—” (3.2b)

Definition 3.1. Let [/ € V be such that ord(!) = 1 (with our simplifying assumption,
I = 1). We define relation < as follows. For a pair of transactions T; and T}, T; < T if

U(T;) is installed at node ! before U(Tj).
Lemma 3.1. If for every edge (T;, T;) in the serialization graph T; < T}, then the
serialization graph is acyclic.

Proof. Suppose not. Let C = (T, ..., Ty, T;) be a cycle in the serialization graph.
It is easy to see that relation < is transitive. Therefore we must have T, < T, which is

clearly impossible. O

Lemma 3.2. Let R and S be the propagation functions defined in (3.2a) and

(3.2b). Then for every edge (T;, T;) in the serialization graph T; < Tj.
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Proof. Consider any pair of transactions T; and 7} such that (T}, Tj) is in the

edge set of the serialization graph.

Case 1. Transactions T; and T; are local to the same node, say node ¢, 1 < ¢ < n.
Since (T;, T;) is an edge in the graph, 7; must be serialized (locally) before T;. Hence,
U(T;) is effectively installed in the local copy of the database before U(T;). Moreover,
they are appended to UPDATES(q) in the same order, and thus, will be installed in that

order in the copies at nodes ¢ — 1, ..., 1.

Case 2. Transaction T; is local to node g, transaction 7j is local to node r, and
1< ¢ < r < n This means that 7; overwrites a value read by T, Therefore, T; is serial-
ized at node g before U(T;). Consequently, U(T;) is appended to UPDATES(q) before
U(T}). This, in turn, implies that nodes ¢ — 1, ..., 1 install U(T;) before U(T}).

Case 3. As in Case 3, except r < q. Here, T; reads a value written by 7;. There-
fore, U(T;) is serialized at node r before T;, U(T;) is appended to UPDATES(r) before

U(T;), and finally, U(T;) is installed at nodes r — 1, ..., 1 before U(Tj).
Cases 1, 2, and 3 exhaust all possibilities. Thus, 7; < 7;. D
Lemmas 3.1 and 3.2 together establish the following theorem.

Theorem 3.2. Let R and S be the propagation functions defined in (3.2a) and

(3.2b). Then the schedule for any execution characterized by an acyclic RAG is serializ-

able.

Note that acyclicity of G was not used explicitly in the proof of the lemmas. This
property is essential, however, in order to guarantee the existence of a topological ord-

ering.
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3.3. A Special Case: t{-RAGs.

The topological protocol of Section 3.2 may be too restrictive in some cases. In
particular, if the RAG is a tree, possibly with forward edges [Aho74a], then a protocol
that propagates updates up the tree can be constructed. It performs better than the

topological protocol and still guarantees serializability.

Definition 3.2. Let G = (V, E) be a directed graph. If G has a depth-first search
(DFS) tree (forest) that contains tree and forward edges only, then G is called a tf-
graph.

Figure 3.2(a) shows an example of a tf-graph. The nodes are numbered in a DFS

order.

Let G be the given RAG, which is a tf-graph. Let D be a DFS forest of G with no
cross or back edges [Aho74a]. Without loss of generality, we can assume that D is a
tree, for if it is not, it must consist of disconnected trees, in which case each of them
can be treated independently. Then define the propagation functions as follows:

R(#) = {y: 7 is a child of ¢ in D} (3.3a)
S(1) = {s: 5 is the parent of ¢ in D} (3.3b)

Definition 3.3. Let r be the root of D. Then T; <y T; if U(T;) is installed at node r
before U(Ty).
Lemma 3.3. If for every edge (T;, T;) in the serialization graph T; <, Tj, then the

serialization graph is acyclic.
Proof. Similar to Lemma 3.1. O

Lemma 3.4. Let G be a tf-RAG. Let R and S be the propagation functions defined
in (3.3a) and (3.3b). Let (T;, T;) be an edge in the global serialization graph. Then

T,' <tf TJ‘.
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Proof. Let T; be local to node v and T} to node w.

Case 1. Transactions T; and T; are local to the same node (v = w). Since (T}, T})
is an edge in the serialization graph, T; must be serialized before T; at v. Therefore,

U(T;) is effectively installed in the local copy before U(T;). The same order of installa-

tion is preserved at all nodes that are ancestors of v in D, including r.

Case 2. (v, w) is an edge in D (either tree or forward). Clearly, at node v, U(T}) is
installed before U(T;). The same order of installation must hold for any ancestor of v
because U(T;) is appended to UPDATES(v) before U(T;), and the only way that U(T;)
can get to v’s ancestors is through v itself (propagation occurs along tree edges only).

Thus at node r U(T;) is installed before U(Tj).
Case 8. (w, v) is an edge in D. Similar to Case 2.
Cases 1, 2, and 3 exhaust all possibilities. Thus T; <, T;. D

Theorem 3.3. Let G = (V, E) be a t{-RAG. Let R and S be the propagation func-
tions defined in (3.3a) and (3.3b). Then any execution characterized by G, R and S is

serializable.
Proof. Follows trivially from Lemmas 3.4 and 3.3. O

To illustrate the advantage of the protocol presented in this section over the topo-
logical protocol, consider the example of Figure 3.2. We are interested in the length of
characteristic paths (lcp) between four pairs of nodes (one for very edge in the RAG of
Figure 3.2(a)). From Figures 3.2(b) and 3.2(c) we see that the tf-propagation results in
all but one of these paths being of length 1, while the topological propagation yields two
characteristic paths of length greater than 1. Consider, for example, how updates pro-
duced by node 4 get to node 2. In Figure 3.2(b) they have to flow through node 3,
whereas in Figure 3.2(c) they can be sent directly to 2. If a partition occurs that leaves

3 isolated from both 2 and 4, then the topological protocol cannot enact delivery of the
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1 1 1
3 3 4
lep(2,1) =1 lep(2,1) =1
lep(3,1) =2 lep(3,1) =2
lep(3,2) =1 lep(3,2) =1
lep(4,2) =2 lep(4,2) =1
(a) (b) (c)

Figure 3.2. (a) RAG; (b) propagation graph
for topological protocol; (¢) propagation graph
for tf-protocol.

updates to 2 until 3 is reconnected, even though 2 and 4 might still be able to communi-
cate directly with each other. The t{-propagation, on the other hand, avoids this situa-
tion. It is not hard to see that, in general, the tf-propagation can always do at least as

well as the topological propagation (for tf-RAGs).

3.4. A Special Case: Loopless RAGs.

For some RAGs we can devise an even more efficient protocol than the one in Sec-
tion 3.3. These RAGs are ones without any "loops," i.e., without undirected cycles. In
this case we can propagate updates along all RAG edges, obtaining the best possible
performance. Although the result can be expressed simply, and even may appear intui-

tive, the proof is substantially harder than the ones presented above.

Definition 3.4. Let G = (V, E) be a RAG. The local serialization graph of node
v € Vis a directed graph whose vertex set contains all transactions local to v or to any

node w such that (v, w) € E. Its edges are computed according to the following rules:
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(i) For any two transactions local to v, it is determined whether there is a directed
edge between them according to the standard dependency rules for centralized

databases [Eswa76a).

(ii) Let transaction T; be local to node v, transaction T} local to some node w, and
(v, w) € E. Then if there is a data item d in the fragment controlled by w that is
read by T; and updated by 7T; , and the update to d produced by 7j is installed at
node v before T; reads d, put in an edge (T}, T;); if the update is installed after T;
reads d, put in an edge (T}, T}).

(ili) For a pair of transactions T; and T; local to the same node w ((v, w) € E), put in
an edge (T;, T;) if T; is installed by v before T; , an edge (T}, T;) otherwise.

(iv) There is no edge between two transactions local to different nodes both of which

are distinct from wv.

Definition 3.5. A legal transaction schedule is the one for which all local serializa-

tion graphs are acyclic.

Definitions 3.4 and 3.5 formalize the workings of the local concurrency control
mechanisms at every computer node. Note that rule (ii) of Definition 3.4 corresponds to
the requirement that updates from nonlocal transactions be installed atomically and in

the order in which they arrive.

Definition 3.6. Let G = (V, E) be a (global) serialization graph. Let (7}, T;) be an
edge in it such that T; and T; are local to (distinct) nodes v and w of the corresponding
RAG, respectively. Then we say that edge (T;, T;) in G spans edge (v, w) or (w, v),

whichever is present in the RAG.

Definition 3.7. Let G = (V, E) be a (global) serialization graph and let C be a

! Note that one of these two edges must be in the RAG for edge (T}, T}) to be present in G.
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cycle in it. Let G¢ be the subgraph of the corresponding RAG that contains all the edges

that are spanned by edges on C. Then C is said to be based on subgraph Ge.

Definition 3.8. Let G = (V, E) be a directed graph. A subgraph L of G is called a

loop if, when the directions on its edges are ignored, it forms a simple cycle.

Theorem 3.4. A loopless RAG guarantees a serializable transaction execution

schedule with any choice of functions R and § in the update propagation protocol.

Proof. As before G = (V, E) is the RAG. Let C be a cycle in the (global) seriali-
zation graph. Let G = (Vg, E¢) be the subgraph of G on which C is based. We will
show, by induction on k, the cardinality of Vg, that C cannot exist. For k = 1 it is obvi-
ously true. Suppose it is also true for all k < I. Now let k = I. Since G is loopless, so is
Gec, and there must be some node v € Vo which is the head or the tail of only one edge.
The general strategy of the proof will be to arrive at a contradiction by transforming C
into a new cycle which still corresponds to a legal schedule but is based on a smaller
subgraph of the RAG (with the cardinality of the vertex set equal to / — 1). Consider

the following two cases.

Case 1. vis the tail of an edge. Let w be the head of this edge, i. e., (v, w) € Eg. Let
u be the number of paths on cycle C that consist exclusively of transactions local to v.
(In Figure 3.3, v = 3. These paths are represented by solid lines. For our purposes, a
single node can be considered a path.) For j=1, ..., u, let T, be the vertex on C that
immediately precedes the j~th path, and Tm,, the vertex that immediately follows it.
Since w is the only node in S that shares an edge with v, one can conclude that transac-

tions T; and T, , for all j =1, ..., 4, are local to w. Finally let P denote the collection

of (disjoint paths) on C that consist of transactions local to nodes other than v.

Let L, denote the local serialization graph of node w. We will show, by induction

on u, that P cannot be totally contained in L,,. First, let « = 1. In this case P consists of
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() transaction local to v
-—o—-- pathin P W) transaction local to w
(O transaction local to
node other than »

Figure 3.3. Cycle C (v = 3).

just one path, a path from T,,, to 7). Suppose that P is totally contained in L,. This
implies that T,, must have been executed at node w before T;,. But since the order of
installation of these transactions’ updates at v must be the same, there is an edge
(Tw,, Ty,) in L,, the local serialization graph of node v. There is also a path from T, to
T, in L,. Hence, L, contains a cycle, which is impossible for a legal schedule. Thus, for
u = 1, P cannot be totally contained in L,.

Proceeding by induction, suppose that for some u — 1, P cannot be totally con-
tained in L,. Assume C has u paths on it consisting exclusively of transactions local to v.
Let X be one such path (from Tj, to T,,). Let us introduce a new data item d into the
fragment controlled by w. This new item will be read only by transaction 7; and

overwritten only by T,,, (in that order). This creates an edge (7},, T,,,) in the (global)
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serialization graph as well as in L, (if it was not there before). Let us call the tech-
nique of artificially creating a precedence edge shortcutting. Note that when we shortcut
from T, to T,,, no cycle is created in L, (otherwise there would have been a cycle in
the (global) serialization graph with P of size 1, which was shown not to be possible).
Thus the modified schedule is still legal. However, we end up with a cycle in the (glo-
bal) serialization graph with P of size v — 1, which contradicts the induction hypothesis.

Thus, we conclude that C cannot exist.

Now we are forced to assume that if a cycle C does exist, P is not totally con-
tained in L,. This implies that if we shortcut from T, to T, , for all 7, the result will be
a cycle in the serialization graph that is based on a subgraph of G with | — 1 nodes.
However, L, will remain acyclic, and hence, the schedule will still be legal. (Note that
other local serialization graphs are unaffected by shortcutting since the newly intro-
duced data items can be read and overwritten only by transactions local to w.) This
contradicts the induction hypothesis (induction on k). Thus the serialization graph must

be acyclic.

Case 2. Assume that v is the head of an edge ((w, v) € E). Let C be a cycle in the
serialization graph, and let P be as before. Since in this case L, contains all transac-
tions local to v, P cannot be totally contained in L, (otherwise P plus transactions local
to v would form a cycle within L,, rendering the corresponding schedule illegal). Thus,
we can shortcut from T to T, , for all j, without violating the legality of the schedule
and, at the same time, creating a cycle based on a subgraph of G with ! — 1 nodes,

which is in contradiction with the induction hypothesis. O

Since loopless RAGs permit the choice of any propagation functions, we can
always achieve the perfect propagation graph. Thus, we can, clearly, do better than

with either topological or tf-propagation.
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3.5. The Extended Topological Protocol.

In this subsection we combine the results of Sections 3.1 and 3.2 to derive a more
powerful propagation protocol for the general case of acyclic RAGs. Let G = (V, E) be
an acyclic RAG. Let L = (V; , E;) be the subgraph of G consisting of all the edges that
lie on a loop. Let L, =(V;,, EL,), ..., Lm = (V1,, , E1,) be the weakly connected com-

ponents of L [Chri75a]. For each i=1,..,m, let 1|VLi||=k.A, and let

ordi: Vi, — {1, 2, ..., k;} be a topological order on the vertices of L;. Then define the pro-

pagation functions as follows:

Ry(v) = {ord; (ordi(v)+1)} |y {w: w € V=V, and (v,w) € E}
Ry(v) = {w: w € V-V, and (v,w) € E}
R3(v) = {w: w € V and (v,w) € E}

Ry(v) if v € V}, and ordy(v)<Kk;
R(v) = {Ry(v) if v € V;, and ord(v)=F; (3.4a)
Rs(v) ifve V-V

Sy(v) = {ordi!(ord(v)-1)} | {w: w € V=V} and (v,w) € E}
So(v) = {w: w € V-V and (w,v) € E}
Sg(v) = {w: w € V and (w,v) € E}

Sy(v) if v € Vi, and ord(v)>1
S(v) = {Sy(v) ifve V., and ord{v)=1 (3.4b)
Ss(v) ifve V-V,

Informally, the above definition of functions R and S means that the nodes of each
subgraph L; propagate updates among themselves strictly in a topological order. In
addition, propagation takes place along every edge not in E; (in reverse direction of the

edge).

We redefine relation < of Section 3.1 to apply to a pair of transactions that are
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local to nodes in the same weakly connected component of L. Thus, T; < T; iff T; and T;
are local to nodes v and w respectively, v, w € V;, for some r, 1 < r < m, and U(T}) is

installed at node ord;'(1) before U(Tj).

Lemma 3.5. If functions R and S are defined as in (3.4a) and (3.4b), then for every
edge (T;, T;) in the serialization graph where T; and T; are local to nodes v and w

respectively and v, w € V;, for some r, 1 < r < m, we have T; < Tj.

Proof. The proof is very similar to that of Lemma 3.2, except that now we have
to consider the possibility of U(T;) reaching node ord;'(1) via nodes not in L,. However,
that would imply the existence of an undirected path between w and ord;*(1) with nodes
not in L,, which, in turn, means that those nodes must be in the same weakly connected

component of L as w and ord; (1), a contradiction. O

Lemma 3.6. Let G, be a global serialization graph that contains a cycle C. Let
G, be the corresponding RAG. Finally, let C be based on G, a subgraph of G,. Then G,

must contain a loop.

Proof. Suppose G does not contain a loop. Consider a new database that consists
of just those fragments that are vertices of Gy and whose read access patterns are
defined by Gg. Suppose that only those transactions that are vertices on C are exe-
cuted, and the resulting schedule is the one defined by C. Then C is the global serializa-
tion graph for the described execution and, as such, must be acyclic by Theorem 3.4, a

contradiction. O

Theorem 3.5. An execution characterized by an acyclic RAG G = (V, E) and the

propagation functions of (3.4a) and (3.4b) is guaranteed to be serializable.

Proof. Suppose to the contrary. Let C be a cycle in the serialization graph. We
show that C cannot exist. The proof is by induction on ¢, the number of loops that are

in the subgraph of G on which C is based.
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From Lemma 3.6 it follows that for ¢t = 0 C cannot exist. So let us assume that no
cycle can exist in the serialization graph that is based on a subgraph of G with fewer

than ¢ loops, and consider cycle C that is based on a subgraph with t loops, ¢t > 0.

Let L, be one of the weakly connected components of L that contribute loops to
the subgraph on which C'is based. (At least one such component must exist since ¢ > 0.)
Let T}, ..., Tt be all transactions on C that are local to nodes in L, and such that if
edge (T3, T) is on C, then T is local to a node not in L,, for all 4, 1 < i < s. Further, let
Q: be a transaction on C local to a node in L, and such that all transactions on the
path from T% to @} that is part of C are local to nodes outside of L,, for all i, 1 < i < s.
That is, all 7%s are points at which C exits L, and all Qi’s are points at which C enters
L.t

If for every i, Ti < Qi, then we can shortcut from 7% to Qi (as in the proof of
Theorem 3.4). Therefore we end up with a new cycle in the serialization graph that is
based totally within L,. It follows trivially from Lemma 4.5, however, that no such cycle
can exist. So assume that @} < T}, for some i. Then by shortcutting from Qi to T% we
get a new cycle, based on a subgraph of G with fewer than ¢ loops. (It consists of the
path from Tj to @f that goes exclusively through the nodes not in L,, except for its end-
points, and the artificial edge (@}, T3).) But by the induction hypothesis this is not possi-

ble. O

While it is obvious that the extended topological protocol is, in general, superior to
the topological protocol, the relationship between the former and the tf-protocol is not
as obvious. To compare them, consider the RAG in Figure 3.4(a). This is a tf-graph.

Therefore, the tf-protocol is applicable. The resulting propagation graph is shown in

! Note that words enter and ezit are used somewhat loosely here because Cis a cycle not in G but
in the serialization graph.
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Figure 3.4(c). If, however, we were to apply the extended topological protocol, we would
get the propagation graph of Figure 3.4(b). (Note that in this case there is no difference
between the extended topological and topological protocols since every edge of the RAG
lies on a loop.) We can see that the tf-protocol does better in this example. In general,
the tf-protocol always propagates along every tree edge. That is the best that the
extended topological protocol can ever achieve because propagating along a forward
edge would violate the reverse topological order (by skipping a number of intermediate
nodes). We conclude from the above that for tf-graphs the tf-protocol is superior to the

extended topological protocol.

1 1 1
3 4
lep(2,1) =1 lep(2,1) =1
lep(3,1) =2 lep(3,1) =2
lep(3,2) =1 lep(3,2) =1
lep(4,2) =2 lep(4,2) =1

(a) (b) (c)
Figure 3.4. (a) RAG; (b) propagation graph

for extended topological protocol; (c) propagation graph
for tf-protocol.

3.6. Summary.

In this chapter we have exhibited four types of Bakunin data networks that
preserve one-copy serializability of transaction schedules. Each one of the four is
characterized by a specific trade-off between read-access restrictions and expediency of

update propagations. The Bakunin data network types in this chapter are designated
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S1 trough S4, as follows (S stands for serializability):

51:

S2:

83

S4:

Acyclic RAG + Topological Protocol. This type of Bakunin data network is
described by an arbitrary acyclic RAG and the propogation functions that define
what has been called the topological propagation protocol. A topological order is
imposed on the RAG, and the nodes send their updates down along the topological
"chain,” i.e., from successor to predecessor. The protocol is relatively simple and

easy to describe.

Acyclic RAG + Extended Topological Protocol. The extended topological protocol
differs from the protocol of S1 in that instead of defining a single topological order
for all the nodes of the RAG, a separate topological order is defined for every
weakly connected component of the graph. In addition to propagating updates
along topological chains in every component, updates can also be propagated
between two nodes in different components provided the nodes are connected by an
edge. In general this protocol yields a better propagation graph than the topologi-

cal protocol.

tf-RAG + tf-Protocol. Bakunin data networks characterized by tf-RAGs, a special
form of acyclic RAGs that can be represented as trees with forward edges, can
guarantee one-copy serializability if coupled with the protocol that allows propa-

gation of updates along every tree edge in the tree representation of the graph.

Loopless RAG + Unrestricted Protocol. If RAGs are further restricted not to have
any undirected cycles, then an arbitrary choice of propagation functions can

guarantee one-copy serializability.

Bakunin data network type $2 supersedes type S1 in the sense of providing a more

expedient propagation protocol for the same type of RAG. Thus S1 does not have a

practical value, but it was introduced for methodological purposes since it facilitates
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the presentation and understanding of §2.

Types 52, §3, and S4 are arranged in the order of increasing expediency of update
propagation, culminating in the unrestricted protocol of S4 that introduces no artificial
impediments for propagation paths in the network. At the same time, the allowable
read-access patterns for transactions grow progressively restrictive from S2 to S4,

starting with arbitrary acyclic RAGs and ending with loopless RAGs.



CHAPTER 4
VIRTUAL SERIALIZABILITY

4.1 Alternative Correctness Criteria.

One-copy serializability is a very powerful correctness criterion for replicated
databases. Just like regular serializability for nonreplicated databases, it is intuitive,
general, and semantically independent. Unfortunately, sometimes it may be too expen-
sive to maintain. For it relies either on exchanges of synchronizing messages among
nodes, which may imply high communication cost, long delays, and possible loss of avai-
lability during failures, or (as was the case in Chapter 3) on restrictions on transaction
classes and update propagation paths, which some applications may find too severe.
Advantages as well as the shortcomings of serializability (and one-copy serializability)
have been well understood for a long time. Some alternative correctness criteria have
been suggested. Most notable among these are the notion of degrees of consistency
introduced by Gray et al. [Gray76a], weak serializability for read-only transactions by
Garcia-Molina and Wiederhold [Garc82a], multilevel atomicity by Lynch [Lync83al,

and predicate-oriented criteria by Korth and Speegle [Kort88a].

Alternatives to serializability are usually less stringent and cheaper to maintain.
On the other hand, because they are also less general their applicability might be lim-

ited.

For Bakunin data networks, relaxation of correctness criteria could mean
improved trade-offs between access restrictions and update propagation constraints. In
particular, a relaxed criterion might allow more expedient propagation for the same
type of access restrictions. In the search for alternative criteria in the context of Baku-

nin data networks, the following two basic guidelines should be used. First, the
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alternative criterion must be meaningful at least for some important applications

Second, it must have a positive effect on the trade-offs above.

In this chapter we introduce a new correctness criterion for transaction processing
in replicated databases, called virtual serializability. It is less strict than one-copy seri-
alizability, i.e., all one-copy serializable schedules are also virtually serializable, but

some virtually serializable ones are not one-copy serializable.

4.2. Motivation and Definition.

Before giving a formal definition of the property, we will try to intuitively
motivate it. Note that among all non-serializable schedules, there are some that cannot
be identified as such by any legally allowable transaction, i.e., transaction obeying the
given RAG. In other words, every transaction in the schedule reads data that could be

produced by a serial schedule, even though the global schedule is not serializable.

Fy T,
Fy 3 T, Ty
Fy T,
(a) RAG (b) Observable cycle

Figure 4.1.

To illustrate let us consider some examples. Figure 4.1 shows a RAG and a
corresponding serialization graph with a cycle that could be produced in the following
way (assuming that the protocols of Chapter 3 were not followed). Transaction T

updates fragment F; and propagates the new values to nodes 2 and 3. T, executes
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before the updates from T, reach node 2. T, reads (the old version of) F, and udpates
F3. Ts, on the other hand, executes after its home node receives the updates generated
by Ty. T reads (the new version of) F, and updates F5. At node 1 the sequence of
events is as folllows. Updates generated by T are received; T, runs, reading F, and F,
and writing F;; updates from T, are received. Thus T, gets to read the new version of

F3 but the old version of Fj.

The fact that the schedule is nonserializable can be detected at node 1 since tran-
saction T; reads inconsistent values of data items from fragments F, and Fs. These
values are inconsistent because they depend on different versions of fragment F,, before

and after transaction T, ran.

In the example of Figure 4.2, however, the nonserializable behavior cannot be seen
by any of the transactions. The cycle in the serialization graph is produced as follows.
Transactions T, and T3 update fragments F, and F; respectively and propagate the
new values to nodes 1 and 4. At node 1, transaction T, runs after the arrival of the
update from node 3 but before the arrival of the update from node 2. T, reads (the new
version of) Fy and (the old version) of F, before updating F,. At node 4, the arrival
order of updates from nodes 2 and 3 is reversed, and as a result, transaction 7, reads

the old version of F but the new version of F, before updating F,.

Since nodes 2 and 3 do not read data outside of their respective fragments, the
fragments cannot become inconsistent (in the sense of the previous example). Thus nei-
ther node 1 nor 4 can detect the anomaly. Moreover, the cycle in Figure 4.2(b) was
formed because node 1 saw the effects of transaction T, before those of T; and node 4
saw the reverse. Thus fragment F, may now be inconsistent with fragment F,. However,
since there is no legal transaction that can read both of these two fragments, this situa-

tion will go undetected, at least as far as any transactions are concerned. It might, of
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course, be possible for a user to query F, and F, (one at a time) and recognize the data
in them as mutually inconsistent. However, this is quite different from the situation
wherein a transaction is allowed to read mutually inconsistent data. For in the latter
case the problems could grow if based on inconsistent values it reads the transaction

produces inconsistent updates.

Fy T,
Fy 3 Ty Ty
Fy T,
(a) RAG (b) Nonobservable cycle

Figure 4.2.

Definition 4.1. A cycle Cin the serialization graph is called observable if it can be
split into two edge-disjoint paths such that one of them consists solely of dependency
edges and the other, solely of precedence edges. (An edge (T}, T;) is a dependency edge
if T; reads the value of a data item written by Tj; it is a precedence edge if T; reads the

value of a data item overwritten by 7; [Bern79aj. )

The cycle in Figure 4.1(b) is observable (edges (T;, T:) and (T, T,) are precedence
edges; (T4, Ts) and (T3, T,) are dependency edges), whereas the cycle in Figure 4.2 is

not observable.

The significance of an observable cycle is that there is a transaction on it, T,, that
may read inconsistent data (see Figure 4.3). T, is the first transaction on the pre-
cedence path and the last transaction on the dependency path. When it executes, it

reads the new version of fragment F; but the old version of fragment F,. Since the
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former depends on the state of fragment F,, after the execution of T,, and the latter
depends on the state of F,, before the execution of T, they are inconsistent. The con-

clusion that we can draw from this is that observable cycles justify their name.

T,

qu bTm
\U:__-- sesssssnane <...._.Ok’
Ty

- ---> dependency edge
—— precedence edge

Figure 4.3. Observable cycle. Transaction T}
is local to N(F;), for all «.

Definition 4.2. A transaction schedule is called virtually serializable if the

corresponding serialization graph has no observable cycles.

4.3. Applicability.

Before studying Bakunin data networks that guarantee virtual serializability for
all legal schedules (Section 4.4 and 4.5), we examine possible use and applicability of

this new correctness criterion through an example.

Consider a hypothetical (simplified) banking database. It consists of four frag-
ments. Suppose that there are only two types of accounts that customers can maintain:
money market and certificate of deposit. Fragments MM and CD contain the current
money market and CD interest rates that the bank offers, repsectively. Fragments EC
and WC have the information on the balances of the customer accounts (both money
market and CD) in the East Coast and West Coast branches of the bank, respectively.

As before, each fragment is controlled by a unique node.
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The following types of activity can take place in this database. The new money
market rate is recorded in fragment MM by node N(MM). This is done by transaction
Ty Similarly, the new CD rate is recorded by Tgp at N(CD). Account balances in the
two branches are periodically updated to reflect accrual of interest based on the
appropriate rate. We assume that all accounts in the same branch are updated by the
same transaction. Thus, transaction Tgc reads the current rates from MM and CD and
updates the balances of the accounts stored in EC (money market accounts using the
money market rate, and CD accounts using the CD rate). Transaction Ty performs
the same activity for fragment WC. The RAG in Figure 4.4 defines the read access pat-
terns of the transactions. Of course, there can be other types of activity in our data-
base, such as withdrawing and depositing funds to the customer accounts, reading the
balances, reading the rates, etc. These will not be of interest to us in this example, how-
ever, because they do not interact with nonlocal transactions (by issuing conflicting

read or write operations).

Figure 4.4. RAG for the banking application.

Consider the following sequence of events in this distributed database. Both the
money market and CD rates are updated by Ty and Tgp, respectively. The updates

are propagated throughout the network (assume for now that no restrictions are placed
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on propagation paths) and eventually reach N(MM) and N(CD). U(T¢p) reaches N(EC)
in time for transaction Tgc to read the new value of the CD rate, but arrives at N(WC)
only after Tyc has been executed there. The opposite happens to U(Tyy), i.e., it arrives
at N(WC) before the running of Ty but at N(EC), after the running of Tz;. Based on
this schedule the corresponding serialization graph is shown in Figure 4.5. It has a cycle,
therefore the schedule is nonserializable. But the cycle is not observable since the two
dependency edges, (T¢op, Tee) and (Tam, Twe), are interspersed with the two precedence
edges, (Tge, Tan) and (Twe, Top), and therefore, Definition 4.1 cannot be satisfied.
Thus, the schedule described above is virtually serializable.

Tge

TWG'

Figure 4.5. Serialization graph for the virtually serializable schedule.

The fact that no transaction can read both fragments EC and WC indicates that
there is a degree of independence between them. This may imply that certain kinds of
mutual inconsistencies can be tolerated. Let us examine the anomaly in the perceived
order of updates above more closely. The anomaly implies that the amount of interest
added to the money market accounts in the East Coast branch of the bank is computed
on the basis of the old money market rate, while the interest for the CD account is
computed on the basis of the new CD rate. The opposite is true for the accounts in the
West Coast branch. This may entail a degree of "unfairness” to either the East or

West Coast customers, depending on how exactly the rates changed. However, because
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of the high fluidity of rates and probable high frequency of interest compounding, it
may be too costly (and therefore undesirable) to ensure that total fairness is always
maintained, i.e., that the interest compounding transactions (Tgc and Tye) always see
the same order of changes in the interest rates. Moreover, even serializable schedules
do not guarantee that. For example, consider the schedule defined by the serialization
graph of Figure 4.6. In this schedule, Tg; operates with the old rates for both types of
accounts, while Ty, operates with the new rates for both. It is true, of course, that this
schedule, unlike the one of Figure 4.5, enforces a serial order on the transactions, but
since it does not guarantee fairness either (e.g., the new interest rates might be higher),
it is not obvious at all what its advantages are over the other. Thus, if the bank deems
total fairness absolutely essential, it would require a mechanism separate from serial-
izability for enforcing it. On the other hand, if occasional "unfairness” can be tolerated,

than having virtual serializablity instead of serializability does not appear detrimental.

Tge

Ty Tep

Twe

Figure 4.6. Serialization graph for the serializable schedule.

One should bear in mind that the example presented in this section is necessarily
simplified and is not intended to convince the reader that virtual serialzability always
makes sense. But, while further research is needed to determine the full importance of
this correctness criterion, it seems evident that in some cases it can present an interest-

ing and viable alternative to serializability.
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4.4. A Protocol for a Restricted Class of Acyclic RAGs.

While the previous section was intended to demonstrate the possible applicability
of virtual serializability as a correctness criterion for some database systems, the next

two sections study the Bakunin data networks that guarantee this property.

Definition 4.3. Let L =(Vy, E;) be a RAG loop (see Definition 3.8). Let vertex
s € V,, be such that no edge in E is incident upon it. Let vertex ¢t € V;, be such that no

edge in Ey is incident from it. Then s is called a loop source of L, and ¢, a loop sink of L.

Clearly, if a loop doesn’t have loop sources or loop sinks, it is a (directed) cycle.
Also, it is easy to see that the number of loop sources in a loop is always equal to the

number of loop sinks.

Definition 4.4. L is a single-source (single-sink) loop if it contains exactly one

source (sink). It is a multi-source (multi-sink) loop otherwise.

Theorem 4.1. (Acyclic) RAGs with no single-source loops guarantee virtually seri-

alizable schedules regardless of the choice of propagation functions.

Proof. Let G, be an acyclic RAG with no single-source loops. Suppose that Cis an
observable cycle in the serialization graph. First of all, note that a precedence edge
between two transactions that are local to different nodes always repeats the direction
of the RAG edge between those nodes, whereas a dependency edge always goes in the

opposite direction.

Since G, has no single-source loops (or cycles), C must be based on a subgraph of
G, that includes a multi-source loop. But then C cannot be split in two paths as
required by Definition 4.1 because the direction of edges along the loop changes more

than twice (see Figure 4.2(a)). Therefore C is not observable. O

Since cycles in RAGs can cause the creation of cycles in serialization graphs
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(including observable cycles) regardless of how propagation functions are defined, we

still restrict ourselves to acyclic RAGs, just as we did in Chapter 4.

Replacing serializability with virtual serializability as correctness criterion helps
make update propagation less restrictive. For RAGs with no single-source loops, for
instance, update propagation can be totally unrestricted (even in the presence of multi-
source loops). Recall for comparison, however, that to acheive serializability, we had to

use restricted protocols for update propagation in the presence of any kind of loops.

4.5. A Protocol for Arbitrary Acyclic RAGs.

For general acyclic RAGs, we can also make an improvement in the efficiency of
the protocols, provided we can be satisfied with virtual serializability. Let G = (V, E)
be a RAG. Let Gs = (Vs, Es) be a subgraph that contains all the edges of G that lie on
single-source loops. Let ord: Vg — {1, ..., k}, where k is the cardinality of Vg, be a topo-

logical order on the vertices of Gs. Define the propagation functions as follows:

Ry(i) = {ord™(ord (i) + 1)} |Y{s: s € V= Vsand (i, j) € E}
Ro(t)={j:j€ V= Vsand (4, 5) € E}
Ry(?) ={j: j € Vand (¢, j) € E}

Ry(7) if { € Vs and ord(v) < k
R(7) = {Ro(t) if { € Vs and ord(¢) = k (4.1a)
Ry(i) f i€ V= Vs

$1(4) = {ord™(ord(i) — 1)} |y{s: s € V- Vsand (5, i) € E}
So(i) ={j: j € V— Vsand (4, i) € E}
Ss(i) = {j: j € V and (4, i) € E}
S1(7) if 1 € Vs and ord(¢) > 1
S(1) = {84(¥) if { € Vs and ord(i) =1 (4.1b)
Sa(f) if i€ V= Vg

In simple terms, this means that the nodes of subgraph Gs enact among themselves
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a topological propagation protocol, whereas the nodes not in Gs propagate updates
along all edges in E — Es (in reverse direction of the edges). In addition, propagation

occurs along every edge connecting a node in Gs and a node not in Gj.

Theorem 4.2. Propagation functions R and S defined in (4.1a) and (4.1b) guaran-

tee virtual serializability for schedules characterized by arbitrary acyclic RAGs.

Proof. Suppose this is not true. Let C be an observable cycle in the global serial-
ization graph. From Definition 4.1 and the observation in the proof of Theorem 4.1, it
follows that the subgraph on which C is based must be a single-source loop. Therefore,

C'is based on a subgraph of Gs. (Gs contains all edges on single-source loops.)

The nodes of Gg, according to (4.1a) and (4.1b), engage in a topological propaga-
tion. In the absence of nodes outside G5, Lemma 3.2 (and hence Theorem 3.1) would be
valid and there could be no cycles like C. However, it could be the case that update
propagations by nodes outside Gs invalidate Lemma 3.2. We now show that this is not

the case.

Consider the edge (T;,T;) in C. If T; and T, are local to the same node, or if the
edge is a dependency edge, then whatever node receives U(T;) must receive U(T;) first.
(U(T;) is added to UPDATES(i) before U(T;); see Section 2.4.) Therefore, T; < T;. How-
ever, if (T;,T;) is a precedence edge, U(T;) is sent out of node ¢ without U(T;). If U(T))
were only transmitted along the topological propagation chain, then U(T;) would arrive
first at all nodes, including the last one, I (I = ord™*(1)). However, by following a path
outside Gs, U(T;) can conceivably skip ahead of U(T}) and arrive at [ first. For this to
happen, there must be a RAG path leading to the node where T; executed, say v, and
originating at some other node in Gg, call it w. (Actually, ord(w) < ord(v).) As men-
tioned earlier, the path (except the endpoints) must be outside G, else U(T;) could not

skip ahead.
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However, any (unidirectional) path connecting two vertices in a single-source loop
creates another single-source loop. (Recall that the RAG is acyclic.) Therefore, the

path must also be in Gg, a contradiction. O

4.6. Summary.

In this chapter we have introduced a new correctness criterion for replicated data-
bases — virtual serializability. Virtual serializability is less strict than one-copy serial-
izability — the traditional criterion for replicated databases — yet strict enough to be
a satisfactory alternative to the latter in some cases.

Relaxation of correctness requirements enables us to introduce Bakunin data net-
works with better trade-off properties than their counterparts for the case of one-copy
serializability. Namely, two types of Bakunin data networks have been studied in this

chapter (Vstands for virtual serializability):

V1: Acyclic RAGs + Single-Source Topological Protocol. This type of Bakunin data
network is described by an arbitrary acyclic RAG and the propagation functions
defined in (4.1a) and (4.1b). The resulting protocol is refered to as the single-source
topological protocol because it enacts strict topological propagation for the
"dangerous” parts of the RAG — single-source loops; in the rest of the RAG propa-

gation along every edge can be employed.

V2: Acyclic RAGs with no Single-Source Loops + Unrestricted Propagation. In Bakunin
data networks of this type no restrictions on propagation paths are placed. A res-

tricted class of RAGs is required, however.

Compared to type V1, type V2 exhibits a superior expediency of update propaga-

tion but a more restrictive read-access pattern for transactions.

In Chapter 3 we introduced Bakunin networks of type S2 (acyclic RAGs +
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extended topological protocol), which guaranteed one-copy serializability. With the
same class of RAGs but with a less strict correctness criterion, type V1 of this chapter
provides a better expediency of propagation. This is not hard to see if we compare the
corresponding protocols. The two are similar in that they excersize special care only for
a "portion” of the corresponding RAG. In the case of 52, this is the union of all weakly
connected components of the RAG. In the case of V1, this is all the edges that lie on a
single-source loop. It is easy to see that the latter is a subgraph of the former for any
RAG. Therefore, for Bakunin data networks of type V1 the special-care portion of the
RAG is no greater than for $2. Thus, in general, V1 has to exhibit less restrain in

update propagation than §2.

Among the Bakunin data networks that preserve one-copy serializability, the
counterpart of type V2 is S4. Like V2, S4 allows unrestricted propagation. However,
because it has to satisfy a stricter criterion of correctness, S4 can only have a RAG
with no loops. Clearly this is a subclass of RAGs with no single-source loops allowed by

V2.



CHAPTER 5
FRAGMENTWISE SERIALIZABILITY

In this chapter the exploration of alternatives to one-copy serializability continues.
We motivate and define fragmentwise serializability. This correctness criterion is even
less strict than virtual serializability of Chapter 4, i.e., the set of all fragmentwise seri-

alizable schedules is a proper subset of the set of virtually serializable schedules.

5.1. Unrestricted Bakunin Data Networks.

We will concentrate our attention on the following question. Is there anything use-
ful about the properties of transaction schedules that arise in unrestricted Bakunin
data networks? An unrestricted Bakunin network is described by an arbitrary RAG
(possibly containing directed cycles) and unrestricted propagation functions, i.e., func-

tions allowing propagation of updates along every edge of the RAG.

First of all, it is not hard to see that any Bakunin network guarantees mutual con-
sistency of replicas of the same data (in the dynamic sense). Let us consider a fragment
F;. Since all updates to F; originate at N(F;) and are installed eventually in all remote
copies of F; in the same order, all copies of fragment F; will be identical after the sys-
tem becomes quiescent. To be precise, if at time ¢ the processing of new transactions is
halted, and it takes time &t for all updates to propagate throughout the network, the

copies will become identical at time ¢ 4 §t.

Let us now consider the subset of transactions that update the contents of frag-
ment F;. We denote this subset of transactions W(F;). Thus, a transaction T € W(F;) if

and only if T updates F;.

Definition 5.1. Let A be a set of transactions. Let S be a schedule of transactions
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in A. Let B be a subset of A. Let P be the schedule that is obtained from § by deleting

all actions pertaining to transactions in A — B. P is called the projection of S on B.

Definition 5.2. Let S be a transaction schedule. S is said to be fragmentwise serial-
izable if and only if (1) the projection of S on W(F;), for any i, is serializable; and (2) no
transaction in S that reads the contents of F}, for any i, ever sees a partial effect of a

transaction in W(F;).

The following theorem states that all Bakunin data networks guarantee fragment-
wise serializability.
Theorem 5.1. An arbitrary acyclic RAG in combination with unrestricted propa-

gation functions guarantee fragmentwise serializable transaction execution.

Proof. First, we prove that condition (1) of Definition 5.2 is satisfied. All tran-
sactions in W(F;) are initiated by the same agent, A(F;), and, hence, are executed origi-
nally at the same node. Therefore, they are subject to the same local concurrency con-
trol mechanism, which insures the serializability of their schedule at the originating
node. Transactions in W(F;) generate the lists of updates that are dispatched to other
nodes in the network for update propagation. The lists of updates are installed at
remote sites in the same serial order in which the transactions that generated them
were executed at N(F;). Thus the schedule is the same at all nodes. (All this is true

regardless of the type of RAG and propagation functions used.)

Condition (2) is satisfied in any Bakunin data network due to the fact that every
node has a local concurrency control mechanism that ensures a serializable schedule for

local transactions and lists of nonlocal updates. O

5.2. The Significance of Fragmentwise Serializability.

To analyze the significance of fragmentwise serializability, let us examine frag-
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ment F; and how it relates to other fragments and the entire database. Fragment F;
enjoys a certain degree of autonomy within the database. This autonomy is manifested
on two levels: structural and procedural. On the structural level, fragment F; represents
a semantic unit of information (such as an airline company flight schedules or informa-
tion on the inventory stock at a local warehouse of a wholesale distributor). On the pro-
cedural level, modifications of its content are handled exclusively by the designated
agent. Consequently, fragment F; appears to be a more or less self-contained collection
of data. The above notion of autonomy serves as justification for the following concep-
tual view. Instead of one "large” database divided into several fragments, we have a
somewhat different arrangement, namely a group of separate, "small" databases with
ongoing communications among them. Update transactions operate on a single small
database (a transaction updating fragment F; is said to be a transaction on database
F;). A read-only transaction that accesses multiple fragments is conceptually replaced
by several transactions each of which accesses a corresponding "small” database. As far
as a particular database (fragment) F; is concerned, all other databases (fragments)
constitute the "outside world." Thus, when a transaction updating F; reads from
another fragment, the value (values) read can be interpreted as input to this transac-
tion from the outside world. Fragmentwise serializability for the "large" database thus

translates into serializability for each constituent database.

To understand the precise nature of inconsistencies that may arise as a result of
replacing global serializability with fragmentwise serializability, we turn to the notion
of consistency predicates. A predicate P(v(zy), ...,v(z,)), where z;, 1< i< r, is a data
object and v(z,) is the value of z;, is said to be a single-fragment predicate if 2; € Fy, for
some j and for all ¢ € {1, ..., r}; it is a multi-fragment predicate otherwise, i.e., a single-

fragment predicate spans just one fragment whereas a multi-fragment predicate spans
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several fragments. When global serializability is enforced, consistency predicates are
never violated. Fragmentwise serializability does not guarantee, in general, that all con-
sistency predicates hold. However, it is an immediate consequence of this correctness

criterion that single-fragment predicates are never violated.

Another way to look at fragmentwise serializability is by considering how indivi-
dual nodes may perceive the same global schedule. Let us consider an example of a
fragmentwise serializable schedule that is neither serializable nor virtually serializable.
Suppose the database consists of three fragments: F,, Fy, and F3. Suppose further that
transactions initiated by A(F,) read from F,, F;, and Fy; A(F;), from F,; and F3; and
A(Fs), from Fg only. The corresponding read-access graph is shown in Figure 5.1.

Fy

Figure 5.1. RAG.

Let o, b and ¢ be data objects, and let a € Fy, b € Fy, ¢ € F5. Suppose A(F,) ini-
tiates transaction Ty: [T, v e), (T 0. 8Ty, w; 6)); A(F,) initiates
To: [(Tg, 1, ), (Ta, w, b)); and A(F3) initiates Ty: [(Ts, r, ¢), (T, w, ¢)].! Suppose further
that update (T3, w, b) reaches node N(F,) and is installed in its local copy before action
(Ty, r, b) is executed (generating dependency T, — T;); action (Ty, r, c) is executed
before update (T3, w, ¢) is installed in the copy of N(F,) (generating T, — T3); and

finally, (T3, w, ¢) is installed at N(F,) before (Tq, r, ¢) is executed (T3 — T,). This

tA parenthesized triplet denotes an atomic action, with the first element identifying the transac-
tion it is part of, the second element specifying the type of action (read or write), and the third
element identifying the data object on which the action is preformed. The entire expression in
brackets denotes the ordered sequence of actions comprising the transaction.
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sequence of events can also be presented in a tabular form (time moves down):

T, T, Ty
READ ¢ READ ¢
WRITE ¢
READ ¢
WRITE &
READ b
WRITE «
T,
T, T

Figure 5.2. Serialization graph.

The above schedule yields a serialization graph with a cycle (Figure 5.2) and,
therefore, a non-serializable schedule. Since edges (Ts, T5) and (T, T,) form a depen-
dency path, and (T, T3) forms a precedence path, the cycle in Figure 5.2 is observable.
Hence the schedule is not virtually serializable. But it is fragmentwise serializable, by

Theorem 5.1.

In general, some nodes may not be able to observe the entire schedule. In the
example above, since N(F3) is not allowed to read fragments F; and F,, the nonlocal
updates received at this node do not conflict with transaction T, i.e., Ts’s read set and
the write sets of transactions T; and T, do not intersect. Hence, N(F3) cannot tell what

order of execution transactions T, T;, and T, followed.

Further, those parts of the schedule that different nodes can observe may not be
consistent. Thus, at node N(F,), the update to Fy is installed before the local transac-
tion T, reads Fj. Therefore, from the point of view of fragment Fs, transaction Tj pre-

ceded T,. At node N(F,), however, the serialized order is T followed by T, followed by
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Ts. So, as far as N(F)) is concerned, transaction T, preceded T3, and not vice versa.

In general, fragmentwise serializability allows serialized but inconsistent views of
the relative order of transactions in the execution schedule, as seen at different nodes in
the distributed database system. Note that, unlike virtual serializability, fragmentwise
serializability does not mask nonserializable anomalies from the participating transac-
tions. In the example above, when transaction T, executes, it reads the old version of
fragment F3 but, at the same time, the new version of Fy, which in turn depends on the

new version of F.

5.3. Applicability.

As was done in Chapter 4, we resort to an example to illustrate possible applica-
bility of fragmentwise serializability to real database systems. Consider a simplified ver-
sion of the airline reservations example in Chapter 2, Section 2.5. It has three frag-
ments: F (flight schedules), R (reservations), and S (seat assignments). For simplicity, we
assume that flights originate from one airport only (as opposed to three airports in the
original example in Chapter 2) and that there is only one travel agency that handles

flight reservations (as opposed to two in the original example).

At the node that controls fragment F (the airline headquaters) transactions of
type Tr update schedules. These transactions have no need to read the current reserva-
tion or seat assignment information.! Flight reservations are made by transaction T
initiated at the node controlled by the travel agency. This transaction will read data

from F to verify that the flight for which the reservation has been requested actually

T In reality, flight changes are probably made taking into account the demand, which can be
measured by the number of reservations. Thus fragment R is relevant to transactions Tp. Howev-
er, the demand would most likely be gauged by statistical information collected over a relatively
long period of time, using data from K. The decision to update schedules would be based on such
information. Therefore, updating instructions are coded into T unconditionally, so there is still
no need for Tp to read outside of fragment F'
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exists. Finally, seat assignments are made by the airport node, when the passenger
shows up there to board the flight. This is done by transaction Ts, which, apart from
the locally controlled fragment (S) has to read fragment F to ascertain the existence of
the flight in question, and fragment R to confirm the reservation (presumably a seat
assignment is granted only if the passenger has a reservation). The corresponding RAG

is shown in Figure 5.3.

Figure 5.3. RAG for airline reservation example.

Let us consider the following scenario that could occur if we allowed unrestricted
update propagation. Suppose a new flight is created, and transaction Ty makes an
appropriate entry into fragment F. After receiving and installing this update, transac-
tion Ty reserves a seat on this flight for a customer of the travel agency. This
passenger, then, goes to the airport and requests a seat assignment. Transaction Tg is
then initiated. Suppose that by this time node S has received the update produced by
Tg, but the one produced by T still has not arrived (due to some communication prob-
lems). The resulting schedule is shown in Figure 5.4. It is easy to see that it is fragment-

wise serializable but not virtually serializable.

Transaction Ts gets to observe an inconsistent database state (which could not be
the case in any virtually serializable schedule). Since the updates from Ty are reflected

in the local copy at N(S), but those from T are not, it appears as if a reservation has
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Figure 5.4. Serialization graph for airline reservation example.

been made for a nonexisting flight. Tra,nsa,ctfion Ts could deal with this type of situation
in two different ways. It could either abort and be retried later when, hopefully, the
inconsistency has been eliminated; or it could proceed to assign a seat for the passenger
on a "nonexisting" flight, under the assumption that the data in the local copy of F is

out-of date.

The situation described above might create certain inconveniences for the airline
company and, more importantly, for the passengers. However, even one-copy serializa-
bility is not a safeguard against this sort of inconveniences. Consider, for example, the
above scenario with the creation of a new flight, but assume also that the network par-
titions and N(S), the airport node, becomes isolated before the updates from either
N(R) or N(F) can reach it. When the passenger arrives at the airport and requests a
seat on the flight for which he thinks he has a reservation, not only does the local com-

puter not show the new flight, but the reservation itself is not shown either.

5.4. Summary.

A new type of Bakunin data network has been introduced in this chapter. Desig-
nated F1 (F for fragmentwise serializability), it combines arbitrary RAGs (cycles are
allowed) and unrestricted propagation of updates. Clearly, F1 is the most powerful

Bakunin network, in the sense of having least restrictions on data access patterns and
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propagation paths. F1 guarantees fragmentwise serializability, the least strict of the

correctness criteria discussed in this dissertation.



CHAPTER 6

EXTENSIONS TO THE BASIC FRAMEWORK

In this chapter we discuss some possible generalizations and extensions to the basic
Bakunin data network model outlined in Chapter 2 and studied in Chapters 3, 4, and 5.
The goal is to present the wide scope of ideas rather than study any particular exten-

sion in great detail.

6.1. Nodes Controlling Multiple Fragments.

Until now a one-to-one correspondence between fragments and computer nodes
was assumed. However, as was pointed out before, there was no reason for this restric-
tion other than to make the exposition simpler. In this section we consider how to
integrate into our model the case of several fragments being controlled by the same

node.!

There are two ways to deal with multiple fragments at one node. One way is to
replace conceptually the entire collection of such fragments by a new superfragment
that is the union of them. In particular, this implies that instead of there being several
types of transactions, with different access privileges, that could run at the given node,
there will be just one type with wider privileges. Namely, suppose that fragments
F,, Fy, ..., Fy are all controlled by node N = N(F,) = N(F;)= --- = N(F}). Let G be the
RAG of the given Bakunin data network. Then any transaction initiated at N will be
allowed to write into superfragment F = F, | JF; |J - |JFi and read from any frag-
ment F; such that (F}, Fy) is an edge in G for some 4, 1 < ¢ < I. We could view this as col-

lapsing nodes F,, F,, ..., F;, of G into one supernode F. Furthermore, agents

! Note that generalization to the case of no fragment at a node is trivial. We can simply assume
that the node in question controls an empty fragment.
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A(F,), A(Fy), ..., A(F)) are replaced by a single agent A(F).

F4 5

(a) Before (b) After

Figure 6.1. Collapsing two nodes of the
RAG into one.

To illustrate consider the RAG shown in Figure 6.1. Suppose that fragments F,
and Fy are controlled by the same computer node (Figure 6.1(a)). The result of collaps-

ing the corresponding nodes of the RAG into one is shown in Figure 6.1(b).

Clearly, the technique described above changes transaction access patterns. In the
above example, for instance, according to the old RAG (Figure 6.1(a)), a transaction
updating fragment Fy could not read data from F,. After collapsing nodes F, and F,
into one, however, this becomes possible (see the RAG in Figure 6.1(b)). Changing tran-
saction access patterns may sometimes be undesirable. For example, if the resulting
RAG is acyclic, as in Figure 6.2, then one-copy serializability cannot be preserved (see
Chapter 3). If that is one of the goals of the system, then such a transformation is

clearly unacceptable.

The alternative to the above approach to dealing with multiple fragments at a
single node is maintaining logical separation of such fragments (and corresponding

agents). Transactions initiated by one agent cannot update fragments controlled by
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F=F1UF4

(a) Before (b) After

Figure 6.2. Collapsing of nodes introduces
a cycle in the RAG.

another. As far as the update propagation protocol is concerned, it should treat the
node with multiple fragments as several distinct virtual nodes. Thus, an update sent to
the virtual home node of one of the fragments cannot, in general, be shared with other

virtual nodes located at the same physical node.

6.2. Distributed Agents.

In Chapter 2 an agent was defined as a process running at the node that con-
trolled a given fragment. The agent was, in fact, a concrete entity for implementing the
controlling functions (such as granting a transaction’s request to update data in the
fragment on its behalf, enforcing the read access restrictions imposed by the RAG, etc.).
It was, however, implicit in our scheme that an agent is a local process implemented at

a single node.

This notion of agent can be generalized as follows. Suppose that the semantics of
the system are such that some fragment cannot be controlled by any single node. This
can be the case, for example, if no node in the system can be entrusted with the author-
ity to make unilateral decisions on updating the fragment in question. To enforce such
a restriction we have to assign the controlling privileges for this fragment to a consor-

tium of nodes, rather than a single node, as we have normally done throughout this
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work. (It is immediately clear that such an arrangement sacrifices a measure of data
availability in the face of communication failures since the fragment can be updated
only when all the members of the consortium are in the same partition group. Note
that this situation is similar to using the technique of weighted voting and assigning the
votes in such a way that any majority includes the given subset of nodes.) One way of
implementing this is to make the agent — the fragment-controlling process — distri-
buted over the member-nodes of the consortium. Using any of the traditional con-
currency control techniques for replicated data (see [Bern8la] ) among these nodes, we
can make it appear to all the outside nodes as if the control were centralized.

For update propagation purposes this collection of nodes is treated as one, which
means that sending updates to the outside nodes should be done in a coordinated
fashion (e.g., by electing a unique node and entrusting it with the responsibility for
this). Similarly, updates received by one node must be atomically installed at all of the
nodes of the group. Hence, commit protocols must be used within the group not only to
process transactions that update the locally controlled fragment but also to install
updates produced by nodes outside the group. The case of a distributed agent can be

viewed as having a number of computer sites simulate one node of the RAG.

6.3. Lifting the Full Replication Assumption.

In Chapter 2 we assumed that data replication in Bakunin networks is complete,
i.e., if there are n nodes in the system, then the degree of replication of every data item
is n. While full replication is clearly a feasible alternative for relatively small database
systems, such as a network routing table database, for instance, it is often prohibitively
expensive for large systems. However, the Bakunin network approach can be generalized

to deal with replication of arbitrary realms and degrees.
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First, let us consider the simplest case of partial replication, namely when the
realm of replication of every fragment matches the corresponding RAG exactly. This
means that whenever a fragment is allowed to be read by a locally initiated transac-
tion, it turns out that a copy of this fragment is stored at the node in question. Let
G = (V, E) be a RAG. Let RR(F) be the realm of replication of fragment F. Then for
every F; € V and all F; such that (F;, F;) € E, N(F;) € RR(F;).! Let us call this type of

partial replication sufficient replication.

Clearly, sufficient replication does not necessitate any significant changes in our
framework.? Since every legal (in the sense of the RAG restrictions) transaction can
always find a local copy of a data item it needs to read, node autonomy can be fully
preserved. Updates received at a node that does not have a local copy of the data con-
cerned are simply disregarded or forwarded to other nodes specified by the propagation

functions.

When the replication is not sufficient, node autonomy is (partially) compromised
because a transaction might have to read a nonlocal copy of data if there is no local
copy available.!! It is clear that in this type of scenario transactions cannot always run
to completion and commit locally. In order to handle nonlocal reads a remote locking
mechanism should be implemented. Such a mechanism would request that a lock be set
on the copy of the data item located at the node that controls the fragment containing
the item. That would insure one-copy (or virtual, or fragmentwise) serializability. We

leave out the details of this mechanism, which should be similar to any of the variety of

! This expression reads "node that controls fragment F} has a copy of fragment Fy©

! This is not true if we consider some other extensions discussed below in combination with partial
replication. For example, in the case of moving agents (Section 6.4), it may be desirable to have a
copy of a fragment at a node even if this fragment is unreadable by any of the agents currently
residing at this node. For it is possible that in the future there will be an agent at this node capa-
ble of reading the given fragment.

' Writing data nonlocally will be discussed in Section 6.6.
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locking techniques for distributed data (surveyed in [Bern8la] ).

Note that curtailed autonomy in the face of insufficient replication is not a draw-
back of Bakunin data networks but rather an inherent limitation imposed by the

absence of full replication.

When full (or sufficient) replication is not feasible or too costly, the logical thing to
do is replicate only the most essential and most frequently accessed data. For example,
in a database used for air traffic control the information on the current positions of the
aircraft in the area might be fully replicated, while the statistical information on the
traffic load over a certain period of time could be kept only at one node (or a few
nodes). That would lead to relatively infrequent nonlocal reads — clearly a desirable
situation. (Compare this policy with the one for page replacement in main memory that
tends to keep around the more frequently used pages and flush out to disk those that

are not referred to as often.)

6.4. Moving Agents.

Until now we have assumed that agents were stationary, i.e., fixed at their respec-
tive nodes. Thus every fragment was always controlled by the same node. In some cases,
however, it might be desirable to shift control of a fragment from one node to another.
For example, a bank customer would certainly like to be able to use the automatic
teller machines at more than just one location. That would require creating an agent
(locally) every time the customer correctly identifies himself to the computer by means
of a magnetic card, and killing the agent as soon as the card is withdrawn. Note that in

this example the card serves as a token.

As another example, consider an airline database where there is a special fragment

for seat assignments on a flight. Suppose there is a computer node at every airport and
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consider a flight which has stop-overs. (Some passengers can be discharged and others
taken at each stop.) Initially the agent for the seat-assignment fragment resides at the
airport where the flight originates. It would be desirable, for maximum availability, to
make the computer at the airport where the flight is making a stop the current agent
for the seat-assignment fragment. That would allow seat assignments to be processed
directly at the airport node. Note that in this example the plane can be viewed as a

token for the seat-assignment fragment.

Another reason for moving agents is node failure. When the agent’s home node
goes down, it may be a good policy to regenerate the agent at some other node in the

network rather than wait until its home node comes back up.

Figure 6.3. Moving agent.

Allowing agents to move, however, may endanger one-copy serializability (or one
of the other correctness criteria). Moreover, in some cases, this can even compromise
the mutual consistency of replicas. Let A be an agent that decides to move from node X
to node Y (Figure 6.3). Let T, be the last update transaction initiated by A at X, T,
the first update transaction initiated by A at Y after the move has been completed. In

the absence of any special provisions, it is possible for T, to be initiated before U(T))
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has a chance to reach Y (if, for example, there was a break in communications between
X and Y). It is also possible for U(T,) to be received at some other node, say Z, before
U(T,) is received there. It is easy to see that such events may lead to violations of
correctness criteria. In both cases, the updates generated by transaction T; were
delivered late (out of order). Therefore we refer to this as the problem of missing tran-
sactions. It is impossible, generally speaking, to circumvent this problem without pay-
ing a price in availability.

Abandoning the assumption of stationary agents forces us to reaxamine update
propagation protocols. They are defined in terms of the corresponding RAGs, which are
in turn defined in terms of fragments. But now that the association between fragments
and nodes is no longer fixed, the protocols become dynamic in the sense of adjusting the
flow of updates in accordance with the current location of relevant agents. To be more
specific suppose that F; € S(F;). That means that node N(F;) is supposed to forward
updates to node X = N(F;). When A(F;) moves to another node, say Y, X = N(F;) no
longers holds. Instead, we have Y = N(F;). Therefore, now N(F;) has to forward updates
tp Y instead of X. Thus N(F;) has to maintain the directory of all agents A(F;) such
that F; € S(F;). We leave out the details of a possible algorithm for performing this
task and making sure that the correct sequence of installation of updates is preserved.
However, the basic idea of such an algorithm is as follows. Updates that are received
at node X and meant for installation at node N(F;) should be installed at X only if
X = N(F;) currently holds, i.e., if A(F;) currently resides at X. Otherwise, they should be
forwarded to what X believes is the current home of A(F;). A(F;) should promptly notify

the nodes of the system of its moves.

There are a number of ways to cope with missing transactions. They fall into

three main categories. In the first category, certain actions are taken by the system on
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a permanent basis, allowing agents to complete their moves "smoothly." The second
category provides for some special actions by the system only at the time of the move.
Finally, in the third category, agents are allowed to move without any preparatory
actions; however, some actions might be taken after the move to rectify possible incon-
sistencies. There can be a very large number of actual protocols for moving agents. We
do not attempt here to be complete, nor do we strive for presenting the most efficient
protocols. What follows is just a sample of possibilities, which hopefully gives a flavor of

the issues involved.

6.4.1. Permanent Preparatory Actions.

The following method is suitable for those cases when an agent has to leave its
home node, for whatever reason, and it is not particularly important exactly which
node it is going to move to. This method uses a majority commit protocol. Before a
transaction can commit at the agent’s home node, the updates it has produced are sent
out to the rest of the nodes, and acknowledgments are requested. The transaction com-
mits only after acknowledgments have been received from a majority of the nodes.
Then a command is broadcast to commit the updates at remote nodes.! When the
agent needs to move, a new home node is selected. The agent must then contact a
majority of nodes and request an identifier for all previously executed transactions that
updated the fragment. If the new home node had missed any of these, it requests them
from the nodes that have them and runs them. This procedure ensures that the home
node has seen all transactions previously executed on the fragment. (Each old transac-

tion was seen by a majority of nodes. This guarantees that at least one node in the

t To satisfy the requirments of update propagation we must carry out the broadcast of this com-
mand using the propagation protocol. That would insure the proper sequence of update installa-
tions. However, the broadcast of updates prior to the transaction commit does not have to be done
in strict adherence to the protocol because installation does not occur at that time.
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current majority has seen it and gives it to the new home node.) Now the agent is ready
to execute new update transactions. The first of these receives the sequence number
that follows the last transaction’s number, and so on, so that there is a single, uninter-

rupted sequence of transactions.

It is not difficult to see that any standing correctness criterion (one-copy, virtual,
or fragmentwise serializability) is preserved with this method.! However, the communi-
cation overhead can be significant, and of course, availability is reduced. Specifically,
update transactions can only be processed with the cooperation of a majority group of

nodes.

6.4.2. Actions at the Time of the Move.
A. Moving with data.

Let A be the agent that moves from node X to node Y. Let T; be the last update
transaction initiated by A at X, T, the first update transaction at Y. We require that A
transport (by any means available) a copy of the fragment stored at X to store it in
place of the copy of the fragment at site Y before resuming processing. In addition, all
other sites are requested not to install updates from transaction T, until those from T,

have been installed.

The requirement concerning transportation of data by the agent is not as difficult
as it may sound at first. Consider the following example. A military command post is to
be evacuated to avoid the threat of an enemy attack. The data from the fragment con-
trolled by it can be dumped on tape and transported to a new location. This guarantees
that the copy of the fragment at the new command post is now up-to-date. As another

example, identification cards with magnetic strips are now becoming common. The

! Provided that the propagation protocol is appropriately adjusted after the move, as discussed in
the beginning of Section 6.4.
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strips in many cases can carry, not just an identifying code, but also real data (read-
able and writable). For instance, subway cards record the amount of money a user has
available; copier cards store the number of copies a person is authorized to make. These
cards fit our model exactly. They serve not only as a token for the corresponding frag-
ment but also as a transporter of data contained in that fragment. The procedure of

transporting data preserves fragmentwise serializability.

If the transactions that update a fragment must also read it, it is important that
the agent has access to the most up-to-date version of the fragment, in order to
preserve fragmentwise serializability. However, in those cases when all transactions are
write-only, there is no need to transport data. Moreover, when these transactions are
commutative (such as incrementing or decrementing some values, or creating new data
items), copies of the fragment at different nodes will be mutually consistent regardless
of the order in which they receive these updates. Hence, fragmentwise serializability is

preserved. See Section 6.7 for examples.
B. Moving with the sequence number.

With this approach, only the sequence number of the last transaction to run at the
old home node is given to the new home node. Let A, X, ¥, Ty, and T, be as above.
Before A can execute T, at Y, it must receive the sequence number of T; from X. This
number can either be explicitly requested after the move or can be carried by external
means (e.g., in the magnetic strip of a card). Before A executes T, it must wait until
the updates of all previous transactions performed on the fragment in question are

received at Y. New transactions are given sequence numbers that follow that of 7).

This method, just as moving with data, preserves fragmentwise serializability. It
may result, however, in decreased availability due to the waiting for old transactions.

On the other hand, it may be easier to implement.
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6.4.3. Omitting Preparatory Actions.

In those cases where the previous approaches are infeasible, the only option left is
to do the best we can after the move in order to minimize the effects of missing transac-
tions. As before agent A moves from node X to node Y. Let Ty, ..., T, be the transac-
tions initiated by A at X, and Ty, ..., T,, the transactions initiated by A at Y, after the
move. We assume that it is imperative that A start processing new transactions as soon
as it arrives at Y. In such a situation, fragmentwise serializability can be compromised.
However, at least we can guarantee that mutual data consistency is preserved, by

enacting the following protocol.

Let T; (¢ < r) be the last transaction from X installed at Y before A initiates T,.
Let Z denote any node in the system different from X and Y. Further, let us assume,

that transactions and data items are timestamped.
At node Y:

(1) Before broadcasting T,: Broadcast a special message My = (T}, ..., T;) (con-

taining all transactions from X installed at Y thus far).

(2) Upon receipt of U(T,) for transaction T;(¢ <1< r) (T, is a transaction that
was missing): Remove from U(T;) those updates that have already been
overwritten by more recent transactions. Package the remaining updates
into a new transaction T;, where k is the next sequence number. Install the
updates of T, locally and send U(T;) out. If this missing transaction causes
an anomaly that can be detected, then issue the necessary corrective
actions. (For example, if after T, runs, a flight is overbooked, then cancel

one or more reservations.)

At node Z:
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(1) Upon receipt of My: (Let T; (5 < r) be the last transaction from X installed
at Y). If j <4, install transactions T4y, ..., T:.

(2) Upon receipt of U(T,) (maz(s, j) < ¢ < r) after My was received (T, is a miss-
ing transaction). Do not install U(T,). Instead, forward it to Y, so it can

take corrective actions.
(3) Upon receipt of U(T,) (¢ > 1): Process it as usual, after installing U(T,_;).

It is not hard to verify that all copies of data will eventually converge. This
method for moving agents is somewhat similar to the free-for-all systems, in that it
gives high availability (the agent can start processing transactions as soon as it arrives
at the new home node), and the correctness criterion is weak. The advantage of this
method over free-for-all systems is that all decisions concerning corrective actions for a

fragment are centralized (at the current home node of the fragment concerned).

6.5. Read-Only Transactions.

In some cases Bakunin data networks can treat read-only transactions differently
from other transactions. In particular read-only transactions might not be required to
obey the access pattern restrictions that are imposed by RAGs. These transactions

may, then, see inconsistent data, but the database itself cannot become inconsistent.

The general rule for deciding whether to allow a read-only transaction to read a
fragment inaccessible to transactions of the general type is to determine whether the
transaction is sensitive to reading possibly inconsistent data. For example, a transac-
tion that reads the balances of two bank accounts between which a transfer of funds is
taking place is sensitive to this type of inconsistencies. It should read the values either
before or after the transfer has taken place, but not while the funds are "in transit.”

Otherwise, it may appear that the transfered funds have dissappeared. On the other
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hand, consider a transaction that tries to estimate the average salary of the company’s
employees. Suppose that an employee is transfered from department A to department B.
Further, suppose that the above transaction runs after the old record (in the fragment
listing the employees of A and their related data, including salaries) is deleted but
before the new record (for department B) is inserted. This inconsistency of view will
result in omitting one employee from the statistical sample. But assuming that the
number of employees at the company is large, the outcome will not be affected very
significantly.

Garcia-Molina and Wiederhold [Garc82a] showed that, in general, holding read-
only transactions to lower standards of correctness provides better concurrency in dis-
tributed databases. In the case of Bakunin data networks, the benefit of such a relaxa-
tion is wider access privileges for read-only transactions than for transactions of the

general type.

6.6. Updates to Multiple Fragments and Violations of the RAG.

One of the underlying assumptions in our scheme was that every transaction can
update at most one fragment — the fragment controlled by the agent initiating the
transaction. Although we argued (with the help of examples) that in many cases this
restriction is not as limiting as it might seem at first, there still are some cases where it
will be necessary to execute a transaction that updates more than one fragment. To
that end, the following exception-handling provision can be incorporated into the Baku-

nin data networks, albeit at some cost in availability whenever it is used.

To update a fragment which it is normally not allowed to write into, a transaction
must obtain exclusive locks on the copy of this fragment (or the part of it to be
modified) at every node that can read the fragment. Then the transaction proceeds to

install the update atomically at all those nodes. After that the locks can be released.
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Note that this mechanism is very similar to a number of commonly used concurrency

control algorithms for distributed systems.

The described provision guarantees that the correctness criteria are satisfied.

However, it entails partial loss of autonomy and, therefore, data availability.

Just as it may be necessary to run transactions that update more than one frag-
ment, sometimes it may also be necessary to run transactions that would violate the
restrictions imposed by the RAG. Again, the solution here is to use conventional lock-
ing to run these special transactions. Failures during the execution of such transactions
could cause blocking and decrease availability.

It is important to be able to handle within out framework the special transactions
of the type described in this section. However, such transactions should be relatively

rare, otherwise the benefits of the Bakunin networks approach will be minimal.

6.7. Localizing Consistency Predicates.

As was established in Chapter 5, fragmentwise serializability implies that single-
fragment consistency predicates, i.e., consistency predicates involving data items from
the same fragment, are never violated. The only type of consistency predicates that can
be violated by fragmentwise serializability are multi-fragment predicates. Conse-
quently, a good database design using the Bakunin network model would keep the

number of such predicates as small as possible, and preferably zero.

In this section we are going to examine a technique that allows us to avoid (at
least in some cases) the use of multi-fragment consistency predicates. The main idea is
to transform a multi-fragment predicate into a single-fragment one by means of intro-
ducing auxiliary fragments and modifying the semantics of some update operations, but

without restructuring the existing fragments.
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Let P(v(z,), v(zs), ..., v(z,)) be a multi-fragment consistency predicate, ie., z, € F,
2z, € Fy, ..., 2,, € F,,, and for some ¢ and j, 1 <+, j < m, F; # F;. We redesign the data-
base in the following manner. Let us create a new fragment, F, with an arbitrary non-
empty realm of replication, and assign one of the existing nodes to control it. F will con-

sist of duplicates of data objects z;, z3, ..., z,,. Let us rename the original objects

!
x‘i, Toy ooy xlm-

An update to object z; (authorized at N(F;)) under the old database design will be
translated into the following procedure under the new design. The update will first be
performed on 2} (at node N(F;)). When the update is propagated and installed in the
copy of the fragment at node N(F), a monitoring mechanism (another necessary com-
ponent of the new design) will detect the change and alert agent A(F). A(F) will try to
reproduce the update on z; (in F). The attempt will succeed if this does not cause a vio-

lation of the consistency predicate P. It will be aborted, otherwise. Note that the predi-

cate has become single-fragment — it involves objects z;, zy, ..., zn, all of them in frag-
ment F, rather than 2}, 2}, ..., 2},.
Objects 2}, b, ..., 2\, are called request objects. An update performed on one of

them is understood as an expression of intent to update the corresponding "real” object,
rather than an actual update. This change in the semantics of update permits us not to
enforce a consistency predicate on request objects — after all intentions do not have to

be consistent, only the real updates do.

To illustrate the notion of localizing consistency predicates, we turn to the already
familiar airline reservation example. Suppose that fragments F,, Fy, ..., F,, above are
reservations fragments controlled by different travel agencies. Let z; (z; € F}, as before)
be the total number of seats reserved on a certain flight by the +th travel agency. Our

predicate P will take the following form:
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P(zy, 23, ..., Tp): ia‘,- < MAX
i=1
where MAX is the maximum number of seats allowed by the airline to be booked on this
flight (MAX might be the seat capacity of the plane plus a certain margin to account
for an expected number of cancelations by customers). P is a multi-fragment predicate.
Suppose that the correctness criterion chosen for our system is fragmentwise serializa-
bility. Therefore there is no guarantee that P will not be vioalted. By introducing a
new fragment F consisting of z;, z,, ..., z,,, and replacing the old z,, z,, ..., z,, by request
objects i, 4, ..., 7,,, we make P single-fragment. Now P is guaranteed to be safe-
guarded by fragmentwise serializability. Incrementing z; will imply that a new reserva-
tion request has been recorded. This is not an assured reservation, however. Only N(F)
(e.g., this could be the computer node at the airline headquarters) will make the final
decision whether to grant the request. Thus there is bound to be a delay between the
time a reservation is requested and the time it is confirmed, which, incidentally, is no
different from the way airline reservation systems operate today, i.e., even when the
customer thinks that he has a reservation, it may turn out later that there was an
overbooking and the reservation had to be cancelled. In a Bakunin data network with
fragmentwise serializability and localized consistency predicates this type of

phenomenon is incorporated into the semantics of the database, and is, therefore, dealt

with automatically in a systematic way.

It should be emphasized that updates to request objects and updates to "real”
objects are performed by separate transactions (the former at node N(F;), for some i,
the latter at N(F)). Thus all transactions are still able to run and commit locally, and

the property of node autonomy is not compromised.






CHAPTER 7
CONCLUDING REMARKS

7.1. Summary and Conclusions.

The main contribution of this thesis is a new methodology for designing highly
available replicated databases. As has been pointed out, communication failures, espe-
cially network partitions, may cause a conflict between the goals of high data availabil-
ity and correctness in replicated databases. Because of this inherent conflict, there can
be no general solution that satisfies both goals without a price. The Bakunin network
model is no exception. While it provides a number of viable alternatives for many possi-
ble database applications, it is by no means a panacea. It is in this light that our

approach should be evaluated.

Bakunin data networks are characterized by the ability to guarantee the same
amount of data availability during communication failures, including partitions, as dur-
ing normal operations. At the same time meaningful correctness criteria are also
guaranteed. The novelty of the approach lies precisely in this duality. The price for
preserving both availability and correctness (however the latter might be defined) is
that Bakunin data networks do not support arbitrary transactions. Only certain types
of transactions are permitted, defined by the their write and read sets. In addition to
that, special update propagation protocols are employed, which may sometimes inhibit
the rate of propagation and result in reading of stale data. Nevertheless, this price
may be acceptable for applications which require high availability and some meaningful

correctness guarantees.

The notion of node autonomy is central to our approach. A node can always ini-

tiate transactions unilaterally and then schedule, execute, and commit them locally
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without exchanging messages with other nodes. (The only type of message exchange
that takes place in a Bakunin data network is update propagation.) Autonomy helps
improve efficiency and robustness of the system to a significant extent. Moreover, just
as distributed computer systems of the general kind reflect the decentralized structure
of organizations that own and operate them, distributed systems with highly auto-
nomous nodes reflect the loose administrative links among the constituent departments
(or individuals) that are in control of the nodes, a situation typical of many such organ-

izations.

The framework gives rise to a number of specific Bakunin data networks by vary-
ing the three main characteristics: read-access patterns, update propagation protocols,
and correctness criteria. We have identified several types of Bakunin data networks
each of which possesses a particular mix of these characteristics. Thus a database

designer can make a choice that is best suited to the given application.

We have introduced two new correctness criteria that can serve as substitutes for
one-copy serializability in some cases. These are virtual serializability and fragmentwise
serializability. While allowing more freedom in either transaction read-access patterns
or update propagation protocols (or both), they provide some formal guarantees of
correctness that, albeit are not as strict as one-copy serializability, still can be useful in
analyzing the behavior of the given system. For the sake of comparison, it can be noted
that both virtual serializability and fragmentwise serializability are stricter than level
2 consistency on the scale of Gray et al. [Gray76a| (level 3 being traditional serializa-
bility).

Table 7.1 summarizes all the options studied in Chapters 3 through 5. The
columns in this table correspond to different types of RAGs, while the rows correspond

to different update propagation protocols. The columns are arranged from left to right
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in the increasing order of restrictions on RAGs. The exception is the tf~-RAGs and RAGs

with no single-source cycles. These two categories cannot be ordered with respect to

each other, i.e., neither set of graphs is a subset of the other. The rows are arranged

from top to bottom in the increasing order of expediency of update propagation proto-

cols.
Arbitrary Acyclic tf-RAG RAG with no Loopless
RAG RAG single-source RAG
cycles
Topological
protocol fs S1 lcs lcs lcs
Extended
topological fs Sl lecs lcs lcs
protocol
tf-protocol fs fs So lcs lcs
Single-source
topological fs Vi Vs Vs Vs
protocol
Unrestricted
protocol Fy fs fs Vo Sy

Table 7.1.

lcs: one-copy serializability
vs: virtual serializability
fs: fragmentwise serializability

Entries in Table 7.1 denoted by the subscripted letters S, V, and F' correspond to

the specific Bakunin data networks studied in Chapters 3 through 5. For example, V2

is a network characterized by a RAG with no single-source cycles and by the unres-

tricted update propagation protocol. Vo guarantees virtual serializability for all possi-

ble schedules. Other entries correspond to other possible options and are labeled "lcs"
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(for one-copy serializability), "vs" (for virtual serializability), or "fs" (for fragmentwise
serializability) to indicate which correctness criterion they enforce. These options are
not of any significant interest, however, since each of them is superseded by one of the
investigated Bakunin data networks. For example, entries in the Extended Topological
Protocol row to the right of entry Sy trivially guarantee one-copy serializability. That
is because they correspond to restricted types of acyclic RAGs, and we know that S

guarantees the same criterion for any acyclic RAG.

Flexibility of the Bakunin network model is manifested in how easily it can be
extended and generalized (see Chapter 6). In fact, this can be pursued to the point
where general types of transactions are supported and the synchronization mechanisms
used resemble the traditional ones. Needless to say, it does not make much sense to use
our approach as a substitute for any of these traditional schemes. However, the pro-
perty of extensibility may be quite useful for designing "hybrid" systems, i.e., systems
that consist of parts that have different characteristics. For example, we could have a
database that guaranteed virtual serializability for transactions accessing a certain
subset of fragments and one-copy serializability for transactions accessing another sub-
set. Moreover, movement of agents could be permitted among some nodes but not oth-
ers. Finally, in the same database, there could be a subset of fragments that allowed
arbitrary types of transactions (in terms of their read and write sets) as long as these
transactions accessed fragments only in this subset. All this could be achieved using the

same model — Bakunin data networks — thereby significantly simplifying the design.

7.2. Directions for Future Work.

One of the most interesting issues that have not been fully explored in this disser-
tation is the integration of Bakunin data networks with more traditional mechanisms

for managing replicated data. Examples of such integration are provisions that allow
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transactions (as an exception rather than a rule) to update more than one fragment
and violate read-access restrictions imposed on them by the RAG. In Chapter 6 some
ideas for doing this were suggested. However, many unanswered questions still remain.
For instance, it was suggested that a transaction that wants to write a fragment that
is not controlled by its home node obtain locks on all copies of that fragment stored at
nodes that can read them. An interesting open question is whether it is possible, using
the properties of RAGs and update propagation protocols, to lock only some of these
copies and still preserve correctness. More generally, is there a more efficient
integrated mechanism (not necessarily based on locking) for handling exceptions? These

and similar questions present an interesting possibility for future research.

An obvious extension of the work presented in this dissertation would be an imple-
mentation of a simple system (probably on a network of workstations) for experiment-
ing with different types of Bakunin data networks. Building a physical Bakunin data
network has not been of high priority in this research until now because the fundamen-
tal questions of correctness, applicability, and performance of our model (at least in its
basic form, i.e., as presented in Chapters 2 through 5) can be addressed on the purely
conceptual level. However, implementation can still be useful because it is likely to pro-
vide some additional insight into the problem of high data availability as well as into
the specific solution proposed here. This point is particularly relevant to extensions dis-

cussed in Chapter 6.

The work on Bakunin data networks also gives rise to some interesting theoretical
problems. One of them is finding an optimal topological order on the nodes of an acyclic
directed graph. Recall that many of our update propagation protocols were based on
topologically ordering the nodes (of a subgraph) of a RAG. While the choice of a specific

order does not affect the correctness of the protocol, it can affect its expediency, as
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determined by characteristic paths of the propagation graph (see Chapter 2). Thus, it
is desirable to have an efficient algorithm for finding a topological order that is optimal
in some expediency metric. For example, we might choose to minimize the maximum (or

the average) length of a characteristic path.
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