AN IMPLEMENTATION OF RELIABLE BROADCAST
USING AN UNRELIABLE MULTICAST FACILITY

Hector Garcia-Molina
Boris Kogan

CS-TR-170-88

August 1988

AN IMPLEMENTATION OF RELIABLE BROADCAST
USING AN UNRELIABLE MULTICAST FACILITY'

Hector Gareia-Molina
Boris Kogan

Department of Computer Science
Princeton University
Princeton, NJ 08544

ABSTRACT

Some computer communication networks provide a multicast facil-
ity for their users. This means that a host can hand a message to its
server with more than one destination address. The network then tries to
deliver the message to all specified destinations in an efficient way. How-
ever, it does not guarantee a reliable delivery. In this paper the problem
of reliable broadcast on top of such a network is considered. The solu-
tion proposed makes use of the multicast facility to achieve efficiency.

August 3, 1988

AN IMPLEMENTATION OF RELIABLE BROADCAST
USING AN UNRELIABLE MULTICAST FACILITY'

Hector Garecia-Molina
Boris Kogan

Department of Computer Science
Princeton University
Princeton, NJ 08544

1. Introduction.

In a reliable broadcast a sequence of messages must be transmitted to a set of com-
puters over a communication network. All messages must be eventually delivered to all
participating computers. In addition, it is essential that the mechanism designed to
achieve this goal be efficient.

In this paper we consider the problem of reliable broadcast in a point-to-point
asynchronous network. Such a network consists of host computers and a communication
subnetwork. The latter, in turn, is a collection of switches (special purpose computers
that have the ability to store and forward messages), interconnected by point-to-point
bidirectional communication links. The subnetwork is unreliable, i.e., a message is never
guaranteed to be delivered in a finite interval of time. Broadcast is to be implemented
among the hosts of the network.

There has been a significant amount of research done in the area of reliable broad-
cast in such networks [AwEv84, Deme87, Garc87, McQu80, Peac80, Rose80, SeAw83].
What makes the present work different are three requirements and one assumption that
we have:

(a) We require "epidemic" propagation of messages. This means that a broadcast mes-
sage must be delivered to a destination as fast as possible. A destination will not
get a message only if there is no path to a node with a copy.

(b) We require efficient recovery from network failures. The network should not be
flooded with retransmission attempts and control messages (e.g., acknowledgments)
when a partition is repaired.

(¢) We require that the broadcast algorithm not involve programming the network
switches. As a consequence, the algorithm has to be implemented at the host level.

(d) We assume that the network provides an efficient but unreliable multicast
mechanism for use by hosts. This mechanism can be used to build a reliable broad-
cast.}

T This work has been supported by NSF Grants DMC-8351616 and DMC-8505194, New Jersey Governor’s
Commission on Science and Technology Contract 85-990660-6, and grants from DEC, IBM, NCR, and Con-
current Computer corporations.

¥ Reliable broadcast, which is the subject of this paper, can be easily generalized to reliable multi-
cast. However, to prevent any confusion between the multicast facility provided by the network
and the algorithm that we intend to build on top of that facility, we will use the word "multicast”
to refer to the former and "broadcast,” to the latter.

a8

In Section 2.1 we justify requirements (a) and (b) by describing environments
where they arise. In Section 2.2 we argue that non-programmable switches (requirement
(c)) are a reality, but that it is reasonable to expect an unreliable multicast facility
(assumption (d)). Having done this, we will proceed to describe our algorithm, starting
in Section 3.

2. System Setting.

In this section we focus on the assumptions about the kind of distributed systems
we consider and on the requirements we would like our algorithm to satisfy.

2.1. The Environment.

We require here, unlike other approaches to the problem, that messages be pro-
pagated as fast as possible, even if this means delivering them out of order. So if mes-
sage ¢ cannot be delivered due to a failure, but for some reason message ¢ + 1 can be,
then the application should get 7 + 1. Our justification is that there are applications
that need this type of service, so the broadcast should provide it. If other applications
require ordered delivery, they can easily delay out of order messages. Thus, our broad-
cast will provide the most flexible and general type of delivery, that can be tailored to
satisfy all applications. To illustrate applications that need out of order delivery, con-
sider the problem of managing highly available replicated databases. There are some
approaches to this problem that sacrifice serializability of transaction execution for the
sake of unrestricted data availability in the face of communication failures (e.g., Data-
Patch [Garc83], log transformation [BIKa85, Sari86]). This means that arbitrary tran-
sactions can run independently at distributed sites, even when the network is parti-
tioned. To maintain mutual consistency of replicas, updates are propagated to remote
sites whenever possible (hence the need for reliable broadcast). In such a system it
would no longer be crucial that a site install remote updates in the same order they
were generated. Thus, out of order messages are acceptable and allow the database to
reflect the latest information available.

As another example, consider a real-time distributed application which requires a
reliable efficient broadcast. Broadcast messages sent in such a system might have
different priorities. A high priority message should not be delayed just because it is out
of order. For instance, suppose that in a military command and control application an
update on the maneuvers planned for next month was broadcast by the HQ. It was
then followed by a red alert message. Even if some hosts have not yet received the
maneuvers update, it seems unreasonable to require that the red alert message be
withheld from them. Note that the assumption of out-of-order messages implies that
our broadcast is nonatomic.

In our approach, we require that recovery from network partitions be efficient. In
many systems partitions can be quite protracted. In fact, rather than being a failure
condition, they can even be a normal functional mode of the system. For example, in
the UUCP network computers operate autonomously, in isolation, most of the time.
Once in a while they dial up one another to perform message exchange. A similar situa-
tion exists in a system which uses satellites for communications among geographically
dispersed computer nodes (or clusters of such). Communication between a pair of nodes
(clusters) is possible only for a relatively brief period of time when the satellite is in the
right position within its orbit allowing it to have radio contact with both nodes (clus-
ters).

s =

While a partition lasts, the source can continue generating broadcast messages.
The longer the time till reconnection, the more messages will have accumulated for
delivery to those hosts that were disconnected from the source of broadcast. If the sys-
tem can stay connected for only a short time (as in the examples of the previous para-
graph), it is imperative that the (low bandwidth) link (links) providing the connection
be utilized as efficiently as possible. Thus, the message traffic needed to transmit the
broadcast messages across the connection should be kept to a minimum. Note that this
is true even for systems in which partitions occur only rarely. For it is undesirable to
flood the newly repaired link (links) with high message traffic because the resulting
congestion can bring this link (links) down, thereby partitioning the network again and
breeding a vicious circle.

In this paper we only consider the problem of single-source broadcast. However,
multiple sources can be accommodated by replicating the same protocol for every
source.

2.2. The Network.

Hosts, switches, and links were already mentioned in the introduction as the main
components of the network. We assume that every host is connected to a switch, called
this host’s server. A switch can be the server for more than one host, just as there can
be switches with no hosts attached to them. Figure 2.1 shows an example network.
The squares represent the hosts h; through hj, while the circles represent the switches.
The eleven communication links are labeled /; through /y;. In all future references to
this example we assume that host h; is the source of broadcast.

[
I}
Is %] Is e

Figure 2.1.

Note that in real networks (e.g., the UUCP network) a server, rather than being a
separate piece of hardware connected to the corresponding host by a link, can be a pro-
cess running on that host. In such an environment, the host computer is directly con-
nected to the communications subnetwork. For the purposes of this paper, however, this
distinction is not essential, and the model we present can be a valid abstraction for any
type of point-to-point network.

Failure properties of the described network are characterized by the following set
of assumptions. Sites (hosts and switches) can exibit omission failures, i.e., they can fail
to send a message when prescribed to do so. Note that omission failures cover the case
of site crashes. It is assumed, however, that no malicious failures occur, i.e., messages
are not altered or generated when they are not supposed to in order to disrupt the
correct functioning of the system.

Communication links can fail at any time and can come back up at any time.
Messages can be lost, and delays can be arbitrarily long. Note that the loss of a mes-
sage due to a buffer overflow can be more easily modeled by a link failure than a site
failure (when a message arrives at a site but fails to be processed, it is as if it never was
delivered).

o

We assume that the communication subnetwork provides a multicast facility to
the hosts. This means that a host can hand to its server a message with a list of more
than one address. It is then the responsibility of the communications subnetwork to
expedite the (efficient) delivery of the message to all the addresses listed. The multicast
mechanism, however, gives no guarantees that every single message will successfully
reach every specified destination. (Such a mechanism could be implemented, for exam-
ple, on the basis of the ERPF algorithm suggested by Dalal and Metcalfe [DaMe78],
which is efficient but not reliable).

The solution to the problem of reliable broadcast proposed here will consist of the
existing multicast mechanism in combination with an algorithm, to be implemented on
the hosts, whose goal is to fill "holes" in the potentially unreliable multicast mechanism.
The justifications for such an approach, as opposed to implementing a reliable broad-
cast on the switches, are twofold. First, in many instances the users of networks will
not have administrative control over the switches and, thus, will not be able to create
or modify the code that the switches run. For instance, users of ARPANET do not have
access to the code running on the IMPs. The only alternative in this case is to program
the hosts. Second, even when the switches are programmable, it may be less costly to
build a package of reliability provisions on top of an already existing efficient (but
unreliable) mechanism than to design a reliable broadcast from scratch (even though
the latter option may result in a more efficient broadcast mechanism). Following the
first justification we assume that the switches are indeed nonprogrammable.

Why is it reasonable to assume that an unreliable multicast facility is available?
Although many networks do not currently provide a multicast facility, it is the only
way to achieve trully efficient broadcast. For example, in the network of Figure 2.1,
suppose that a message is to be sent from hy to hjz, hy, hs. A multicast facility makes
it possible to send a single copy of the message over link /5. Thus, since our goal is to
study the most efficient way to perform reliable broadcast, it is reasonable to assume
that adequate facilities are provided. (There have been concrete proposals for a multi-
cast facility in the DARPA Internet [Agui84, DeCh85]. Moreover, one of them [DeCh85]
has been implemented in parts of the Internet.)

But why not assume that a reliable multicast facility is provided by the network
(and then there would be no problem for us to solve)? The answer is that this would not
be a realistic assumption. First of all, reliable multicast is substantially more complex
than the unreliable version, so it is difficult to envision it as a network service. Second,
applications would probably implement end-to-end checks anyway, so much of the effort
expended by the reliable multicast would be duplicated. Third, as we will see, there are
several conflicting goals in reliable multicast (e.g., efficiency, reliability). It would be
difficult for a general purpose network layer to give the right balance for all applica-
tions. If the reliability provisions are implemented at the application level, then the
algorithm can be easily tuned.

3. Basic Ideas.

In Section 1 we mentioned some of the work done on the problem of reliable broad-
cast in asynchronous point-to-point networks. However, as far as we can tell, our algo-
rithm is the first to consider non-programmable switches (a very realistic assumption
we believe) and to take advantage of an underlying multicast facility, when one exists.

A simple and obvious way to perform a reliable broadcast of a message is to send
a separately addressed copy of it to every host involved. The process is repeated until
an acknowledgement is received from each destination. The algorithm we present here

.

has an improved performance compared to the basic algorithm. The former has the fol-
lowing features that favorably set it apart from the latter.

(1)

(2)

(3)

(4)

()

Use of Multicast. Our algorithm takes advantage of the efficient multicast facility
whenever possible (see the example at the end of Section 2.2). The multicast facil-
ity can be used not only for regular message delivery but also at recovery time if
an entire subgroup of hosts have missed a message.

Efficient Failure Recovery. Some network failures can leave a group of nodes iso-
lated. (Such a group is called a partition.) The basic algorithm would recover
from the failure on a host by host basis. In our algorithm, however, the isolated
group will dynamically select a coordinator to handle the recovery more efficiently.
For instance, suppose that link /g fails. The isolated hosts will form a tree, with
hs as root and hy and hg as its children. Only hz would probe for host A; (and
maybe for hy too) in order to detect the end of the partition. When h; is finally
reached, hs will hand it the list of hosts in its group so that the transmission of
the missed broadcast messages can be done with the efficient multicast facility.
Selecting a coordinator is performed by a procedure that is itself fault-tolerant in
regard to network partitioning, i.e., when partitions split or fuse with other parti-
tions it makes sure that there always remains exactly one coordinator for every
partition. This procedures makes use of priorily lists — a central concept in our
algorithm.

Stream Communication. Broadcast applications usually operate on streams of
many messages rather than on a few isolated messages (e.g., broadcast of updates
in replicated databases). Our algorithm will take advantage of this fact. Broad-
cast messages will be numbered and these numbers will be used to efficiently
detect gaps in the stream and coordinate retransmissions.

Epidemic Propagation. Consider the case where the server for h; fails just after it
has sent a message m; to hy (along l3) but before it sends m; along I3 to the rest
of the hosts. With a simple algorithm, m; would not be received by the remaining
hosts until h; and its server recover. With our algorithm, on the other hand, m,
will propagate out of hy as long as there is a communication path to other nodes.
(In our case, the available path is l5, {4, lg, ...) Thus, messages go out as if they
were a "flu epidemic” along any possible "contagion” paths (as in [Deme87]). Epi-
demic propagation can also be viewed as sharing the responsibility for reliable
broadcast among all hosts as opposed to limiting it only to the source, as is the
case with the basic algorithm.

Use of Topological Information. If information on the network topology is avail-
able, our mechanism can take advantage of it to a certain extent. This is done
through priority lists. They specify the order in which hosts should probe the net-
work after a failure is detected. For example, when lg fails, it is better to have
host h3 be the root of the isolated subgroup. (If hy were the root, with hz and hg
as children, the probe messages sent by hy would take a longer route to hy. Simi-
larly, parent-child communications required on the tree would use indirect paths.)
The priority lists can ensure that a good tree structure is obtained after a failure.
(For instance, hy will be forced to ask hg if h3 can become a root. Only if ks does
not respond would %4 attempt to become a root.) The priority lists will also tell
selected root nodes in what order to probe outside the group for a connection. In
our example, a connection from hz to h; is more desirable than one to hy (recall
that h; is the source of the broadcast). However, if hy is unreachable, h3 should
also probe hy to try to form a larger tree (and to get any messages the latter may

have; see item (4) above).

4. The Algorithm.

The basic mode of operation for the proposed broadcast mechanism is the posting
by the source of multiply addressed data messages to be delivered to all participating
hosts, combined with a distributed redelivery algorithm that insures that those messages
that were lost in transit do eventually arrive at all intended destinations. That the
redelivery algorithm should be distributed reflects the notion of shared responsibility for
reliable broadcast discussed in the previous section.

Lost messages result from two types of communication failures: transient and per-
sistent. Transient failures cause isolated cases of lost messages only (e.g., because of a
buffer overflow). Persistent failures result in network partitions, when one or more
group of hosts get cut off from the rest of the network that contains the source of
broadcast. In such a case, these hosts will miss all the messages generated by the source
from the time the partition occurs until it is repaired.

We assume that all data messages are sequence numbered at the source. More-
over, there is a predetermined time parameter 6 (6 > 0) such that, when é units of time
elapse without a data message being generated at the source, the source broadcasts a
null message. The above two provisions together simplify the detection of gaps in the
stream of data messages received by any given host. Namely, if the host has not
received either a data or a null message from the source for over mé units of time
(where m > 1 is a parameter introduced to allow for possible discrepancy in delays for
two consecutive messages), a failure detection is declared and the redelivery algorithm
is initiated at that host. Similarly, the host sounds the alarm when it receives a data
message whose sequence number exceeds that of the immediately preceding data mes-
sage by more than one. The difference between the above two situations is that while
the latter always signals a transient failure, the former may also be a result of a per-
sistent failure — network partitioning.

Recovering from a persistent failure is more costly than recovering from a tran-
sient one because it requires a redelivery of multiple messages to multiple recipients.
Therefore efficient recovery from persistent failures is more essential for good perfor-
mance of our algorithm. For that reason, as well as for reasons of methodology, we con-
centrate first on this aspect of the algorithm. Later on it will be shown, using essen-
tially the same procedure as the one outlined in the rest of this section, how to recover
from transient failures.

4.1. Priority Lists.

At the heart of the proposed algorithm is a set of structures called priority lists.
PL (h;), the priority list of host h;, is an ordered set of hosts that should be probed by #;
as possible coordinators when h; discovers that it is missing some data messages. We
assume that PL(h;) = (ZJ whenever h; is the source, since in that case h; can never be
missing any messages. Otherwise, suppose PL(h;) = {h;,, hi,, ..., h;,}. Then h; tries to
contact the hosts starting from h; through h; until one is found, say kj, 1 < j <4,
that it can communicate with. If h; has all the messages that h; is missing, it sends
them to h;. Otherwise h; starts probing its own priority list (if it has not been doing so
already) on behalf of h; and any other hosts that may have contacted it for missing
messages. In this way a coordinator tree is formed. When h; gets in touch with some
other host from its priority list, it delegates to that host the responsibility of the (tem-
porary) coordinator for h; and all its descendants in the coordinator tree. This process

r

is halted when the new (temporary) coordinator either can satisfy the demands of all of
its descendants for missing messages or is unable to contact any host on its priority list.
When the latter is true the host at the root of the coordinator tree remains the coordi-
nator for the group (tree) for the duration of the partition. Periodically, it sends I-AM-
COORDINATOR messages to all its descendants in the tree. This helps the descendants
to detect when the coordinator gets cut-off from them or goes down, in which case the
election process is repeated. When the partition is repaired, the root is finally able to
contact one or more hosts that can supply the missing messages. These hosts, in turn,
send the messages to the members of the group using the multicast facility. Note that
while a partition lasts, there is nothing that should prevent us to allow message
redelivery within the partition not only down the coordinator tree but also up the tree.
As a result, if at least one host within a partition has a certain broadcast message, all
hosts within that partion will eventually have the same message even before reconnec-
tion takes place, a situation quite unlike the basic algorithm for reliable broadcast dis-
cussed in Section 3. For a detailed specification of the redelivery algorithm see Appen-
dix I.

The same mechanism can be applied for transient failure recovery, as was men-
tioned above. The host that has discovered a gap in its broadcast message stream
(although there is no network partition at the time) can get in touch with one of the
hosts on its priority list and request it to retransmit the message in question. If that
host does not have the message, it goes to its own priority list to make a request on
behalf of the original host. Note that in the case of a transient failure it is unlikely that
too many hosts in a row will be missing the same broadcast message, therefore the
redelivery should not take long.

4.2, Correctness.

For the algorithm to operate correctly the lists have to satisfy certain conditions.
These are joint completeness and acyclicity. The priority lists for the set of hosts
hy, ha, ..., h, are jointly complete if for any ¢ and j such that 1 < j < n, either A
€ PL(h;) or hj € PL(h;). Let R be a relation defined as follows: h;Rh; iff h; € PL(h;).
Then a collection of Priority lists is said to be acyclic if there is no 7, 1 < i < n, such
that h,-R*h,;, where R’ is the transitive closure of R.

We define correctness as the ability of an algorithm to ensure that in any
sufficiently long lasting partition there will be exactly one coordinator. (Note that this
is equivalent to having a single coordinator tree involving all hosts in the partition.)
We need at least one coordinator to assume the responsibility for recovery. On the
other hand, we do not want more than one coordinator because otherwise recovery will
not be efficient.

Theorem 4.1. Let G = {hy, ..., h;} be the set of hosts that form a partition that
excludes the source of broadcast. Then all hosts in G will eventually configure them-
selves into a coordinator tree if and only if the priority list assignment is acyclic and
jointly complete (provided that the partition is stable for a sufficiently long time).

Proof. See Appendix II.

To illustrate the use of priority lists and their properties, we show one possible
way to assign priority lists for the case of the sample network of Figure 2.1. Note that
we may or may not know the topology of the network. Let

T Note that for jointly complete and acyclic lists R is a total order.

PL(hy) = (7,
PL(h3) = {h1},
PL(h3) = {h1, hs},
PL(hy) = {hs, hs, hg, h1},
PL(hs) = {hq, hs, ha}.
It is fairly straightforward to verify that the lists are jointly complete and acyclic.

Suppose that a partition occurs that leaves the source, hy, isolated from the rest
of the hosts. Detecting the interruption in the stream of messages (by timing out after
mé units of time since the last data or null message), host hs will try to contact the
first host on its priority list, h;. Failing to do that, it will go to the next host, k3. Since
it is in the same partition with hs, hs will be successful this time around, and will
become a child of k3 in the coordinator tree. Similarly, host hy will choose k3 to be its
parent in the coordinator tree. Being contacted by hosts hg and hy (or possibly even
before that), host hy will start its own search for a potential coordinator. Failing to
reach hy, it will settle for ho, which is in the same partition with it. Finally, ho will not
be able to pass on the coordinating responsibility to any other host because the only
host on its priority list, Ay, is in a different partition. Thus hy becomes the coordinator
for its partition. The resulting coordinator tree is shown in Figure 4.1,

hy
hs3
h4 h5

Figure 4.1.

Note that the tree can adjust when the partition boundaries in the network
change. For example, if hosts hy and hy get cut off from hs and hg, thereby forming
their own partition, h4 will attach to hs (hs is next on its priority list). Thus a new tree
is formed, and hj becomes the coordinator for this new partition.

Consider the effect on the redelivery algorithm in the case when the lists are not
jointly complete or acyclic. Suppose that A is not on the priority list of hy (that would
make the lists not jointly complete). Then hy never attempts to contact hs and ask it
to be the coordinator. As a result, both hosts remain on their own, despite the fact that
they are in the same partition, and the redelivery of data messages will take place
separately to each of them, which is inefficient.

Suppose that hg is returned to PL(hy4), but hy is now inserted into PL(hs) after
hy. Now the lists are jointly complete but not acyclic. When the first partition occurs
(the one that isolates h; from the rest of the hosts), ks, after unsuccessful attempts at
comunicating with A, contacts host hy, which is next on its list. Now a cycle is formed
in the coordinator tree. As a result, every host in the partition thinks that somebody
else is the coordinator, and no host will be probing h; to see when it is reconnected to

the rest of the system.

There is an obvious algorithm for constructing collections of priority lists that are
acyclic and jointly complete. Start with any host. Include in its priority list all the rest
of hosts (in any order). For each host h; after that take the priority list of the previous
host minus A; (the order of the list can be changed arbitrarily). Thus with each step the
size of the list is decreased by one. Complete the algorithm with the source, in which
case it is guaranteed to get assigned (/5. This algorithm runs in O(n?) time!.

The reader may have noticed that the relative order of hosts on a priority list did
not play any role in terms of the correctness of the redelivery algorithm. In fact, the
algorithm for constructing priority lists above does not even control that order. In
other words, until now priority lists were treated as if they were sets rather than
ordered sets. When it comes to performance, however, the order becomes important. In
the next section we will show how to control the performance of the redelivery algo-
rithm by properly ordering the lists.

5. Using Priority Lists to Encode Topological Information.

Given different possible priority list assignments that satisfy the properties of acy-
clicity and joint completeness, are there any reasons to favor one over another? If we
assume that nothing is known about the topology of the network, then the answer to
the question we have posed is no. However, if topology information is available (perhaps
even including the cost of using particular communication links), the answer will be yes.

To illustrate consider once again the example of Figure 2.1, but with the following
addition. Suppose that link /g has a small bandwidth, while all other links have sub-
stantially higher bandwidths. Thus, the cost of transmitting over lg is higher than over
other links. Consider two alternative assignments of priority lists, A and B.

Assignment A:
PL(hy =
PL(hg) = {h;}
PL(h3) = {hy, ho}
PL(hy) = {hs, hy, hy}
PL(hs) = {hs, hy, hy, hs}
Assignment B:
PL(hyy =@
PL(hg) = {hy, hy, hs}
PL(h3) = {hy, ho, hy, hs}
PL(hy) = {h1, hs}
PL(hs) = {h1}

 Note that the running time of the algorithm is not of great importance because the assignment is
static and has to be done only once.

-10 -

Suppose link /; goes down. This will leave the source isolated from the rest of the
hosts. The redelivery algorithm will be started in the resulting partition, and nodes ho
through hs will organize themselves into a coordinator tree. Using assignment A, they
will arrive at the tree shown in Figure 4.1. Assignment B, on the other hand, will result
in the tree of Figure 5.1.1

hg

]13

.’14

hs

Figure 5.1.

Let us compare the two trees from the point of view of relative cost of recovery
that they entail. First, we notice that the construction of the second tree would require
more message transmissions over the expensive link (/g) than would the first. For there
are two child—parent connections in the tree of Figure 5.1 (h3 — hy and hy — hy)
that traverse /g, compared to only one in the tree of Figure 4.1. Furthermore, assign-
ment A will result in electing ho as coordinator, and assignment B in electing hs. In
both cases, the coordinator will be responsible for periodically probing the source, ky, to
determine when the source is reconnected so that the retransmission of messages can
take place. This probing can be done less expensively when hy acts as coordinator since
ho is much "closer” to h; than hjs is.

Thus, in the example above, one priority list assignment (A) turns out to be more
cost efficient than the other (B). Therefore, we would like to have an algorithm that
produces not just a correct but also an efficcient assignment for a given network. Unfor-
tunately, the problem of finding an optimal assignment given the topology of the net-
work appears to be very difficult. In fact, it is not even quite clear how to define pre-
cisely what constitutes an optimal solution. Among the factors influencing the solution
that were not mentioned above are (i) possible overloading of servers when too many
hosts are trying to attach to the same parent (the parent’s server becomes overloaded);
(42) the necessity to consider all possible ways in which the network can partition, when
optimizing the priority list assignment (the knowledge of probability with which each
partition can occur becomes essential here because one would like to have hosts that
are more likely to end up in the same partition with the given host to be near the
beginning of the priority list for that host); (iii) the possibility that some links may fail
within a partition, but without causing the partition to split further, thereby possibly

T 'We have implicitly assumed that if hosts z and y are in the same partition, then z will not fail to
respond to probing by y. Thus, if z precedes all other hosts in that partition on the priority list of
y, z will become y’s parent. In reality, due to a transient failure, this might not always be the case
(then y would have start probing the next host on its priority list). We disregard this not very
likely possibility for now (given the assumption of low frequency of transient failures).

« ¥ «

increasing the cost of communication between some pairs of hosts.

In the rest of this section, we describe a heuristic that produces good priority list
assignments, when supplied with the full information on the topology of the network
and bandwidths of (or costs associated with) every link.

5.1. A Heuristic Algorithm.

A communication distance between a pair of hosts is defined as the sum of the
costs of all links on the shortest path between them. For example, if the cost of every
link in Figure 2.1 were 1, then the communication distance between hosts hy and hg
would equal 4.

The priority lists are assigned to hosts one by one, i.e., the algorithm does not
start assigning a list to the next host before the previous host’s list is completed. The
hosts are considered for assignments in the decreasing order of their distance from the
source, with ties broken arbitrarily. Thus, we start with the most remote host and
finish with the source (which gets an (7§ assignment). The hosts to be included in the
lists are determined as in the assignment algorithm of Section 4, i.e., all hosts are
included in the first list; from every succeding list we exclude only those hosts that have
already received their priority lists. That will guarantee that the resulting lists are acy-
clic and jointly complete. In this new algorithm, however, we should also concern our-
selves with the order of hosts within every list. That order is determined according to
the proximity of the hosts on the list to the owner of the list, with the closest host being
in the first position. Ties are broken in favor of the host that is at the shortest distance
from the source. We call this the Shortest-Distance-First algorithm, or SDF (see Figure
5.2).

Two of the criteria of the efficient failure recovery (which were used to compare
two alternative priority list assignments in the beginning of this section) are the cost of
the coordinator tree, defined as the sum of communication distances between every
child—parent pair, and the proximity of the coordinator to the source of broadcast.
The SDF algorithm exibits good (although suboptimal behavior) with respect to both
criteria. Note, for example, that assignment A above can be produced using this algo-
rithm.

It is intuitively clear that the cost of the tree is kept low by SDF because hosts at
a close distance are favored for parent selection over those that are far away. Simi-
larly, a host closest to the source is more likely to become the coordinator. In fact,
when communication distances are static, the coordinator is always the closest host to
the source among all the hosts in the same partition. This is so because because the
closest host to the source will be the last among the hosts from its partition to be
assigned a priority list by SDF. Therefore, none of those hosts will appear on its list,
which implies that it has to be the root of the coordinator tree.

Priority lists produced by SDF do not have any control over the number of chil-
dren that a node in the coordinator tree may have. Thus, there are no provisions in
SDF, as it is presented, to prevent potential overloading of servers during the execution
of the redelivery algorithm. Note that SDF can be extended to take this problem into
consideration by modifying the defenition of the coordinator tree cost so that it includes
additional penalties for a node with too many children. However, such enhancements
are not considered here.

The heurisitic algorithm we have presented works best when communication dis-
tances are static. However, the assumption of static distances may not be true to

=19 =

begin
H—{hy, ..., hy};
for i =1to ndo
PL(7) +— empty;
@ +— queue built of hosts in H in
decreasing order of communication
distance from h; (source);

while @ is not empty do

begin
h; <= next host from @;
H «— H —{h;};

g; +— queue built of hosts in H in
increasing order of
communication distance from /h;;

while ¢; is not empty do

begin
h; +— next host from g¢;;
append h; to PL(3);

end

end
end

Figure 5.2. The SDF algorithm.

reality in many networks. Communication distnaces may change dynamically due to
changes in topology. Moreover, even when they remain the same according to our
definition, the real cost of communication between a pair of hosts may change, due to
changing loads, for example. Any algorithm that assigns priority lists statically has no
hope of optimizing efficiency under such conditions. Therefore, it is worthwhile exploring
possibilities for dynamic reassignment of lists, or at least dynamic reordering of hosts
within a list. One approach is to maintain the hosts in the increasing order of the cost
of communication with the owner of the list. This will be essentially a dynamic version
of SDF. The situation is analogous to that of dynamic routing versus static routing of
messages in networks.

6. Performance.

As was mentioned above, the algorithm proposed here is the only known alterna-
tive (given our requirements and assumptions) to the obvious basic solution described in
Section 3. Therefore, it is natural to compare the performance of our algorithm to that
of the basic one. Rigorous performance analysis, however, appears to be very difficult in
this case and could easily constitute a subject for a separate study. Hence, we limit
this section to a qualitative discussion of the performance issues.

In the absence of any failures, our algorithm performs with the highest efficiency
and lowest delays possible because it uses the efficient multicast facility to dispatch
messages. In comparison, transmitting broadcast messages from the source separately

= 19 =

to every recipient host, as done by the basic algorithm, would be far inferior.

When a transient, i.e. isolated, failure occurs, the basic algorithm recovers from it
by having the source retransmit the message to the host that lost it. In our algorithm
the redelivery takes place not necessarily from the source. The host that redelivers the
message is on the recipient host’s priority list and probably has a high priority on that
list. If the list assignment is done by the algorithm in Section 5, then in all likelihood
that will be a "near-by" host. Thus, our algorithm is better at minimizing the cost of
redelivery of isolated lost messages.

In Section 2.1 it was argued that handling of network partitions by the reliable
broadcast algorithm is of great importance. First, let us compare the two algorithms in
terms of their behavior during partitions. Since, in general, there is no reliable way to
detect partitions, the basic algorithm will continue sending broadcast messages to all
hosts even while the partition lasts (obviously, with no success). Since new messages
might be generated during that interval, and each of them might be sent out repeatedly
(because acknowledgments do not arrive), this can be rather wasteful. In the proposed
algorithm, however, the source never retransmits a message unless explicitly requested
to do so, and therefore, no unnecessary traffic results. Instead, the hosts that are iso-
lated from the source select a coordinator, and only the coordinator periodically probes
the network to detect when the partition is repaired.

Recovery from partitions is also handled by our algorithm more efficiently. For
simplicity, suppose that two partitions are reconnected by one link only (e.g., in Figure
2.1 link /g could fail, partitioning the network, and then come back up). Then, if there
were k hosts in the partition not containing the host, and m broadcast messages that
were generated while the partition lasted, it would take at least km transmissions over
the critical link to recover from the partition using the basic algorithm. In contrast,
our algorithm would need only m transmission because it uses the underlying efficient
multicast, which is presumably clever enough to make k copies of each broadcast mes-
sage only after the message crosses the link in question. Moreover, as in the case of
transient failures, it is very likely that the redelivery will take place from a host in
close proximity, not necessarily from the source.

Since, when the basic algorithm is used, every broadcast message goes out from
the source separately to every host, congestion of the source’s server is possible. This is
less likely to occur when our algorithm is used because an efficient multicast facility can
be designed to avoid congestions.

It should be pointed out that our algorithm relies more heavily on the use of con-
trol messages, i.e., messages other than those containing broadcast data. (A null mes-
sage sent by the source is an example of such a message. The basic algorithm uses con-
trol messages in the form of acknowledgments.) However, in the basic algorithm there is
always one control message (acknowledgment) per broadcast message per host, whereas
the amount of traffic generated by control messages in our algorithm is totally indepen-
dent of the number of broadcast messages. Moreover, the amount of such traffic can be
adjusted according to the needs of the application at hand, fine-tuning the desired
trade-off between cost and recovery speed. For instance, keeping the frequency of null
messages down (large 6) will also keep down the cost of the broadcast algorithm. On the
other hand, increasing the frequency will allow the hosts to detect missing messages fas-
ter and, as a consequence, will result in faster recovery.

Finally, as was already pointed out in Section 3, by distributing the responsibility
for reliable broadcast among all hosts we are able to achieve better reliability, in addi-
tion to improved performance, compared to the basic algorithm (see Section 3, Epidemic

= =

Propagation).

7. Acknowledgments.

We would like to thank Barbara Blaustein, Charles Kaufman, Nancy Lynch, Sunil
Sarin, and Oded Shmueli for their helpful comments. Some of the ideas developed here
were originally introduced in [Garc85].

8. Bibliography.

[Agui84|

[AWEv84|

[BIKa85]

[DaMe78]

[DeCh85|

[Deme87]

[Garc83]

[Garc85]
McQu80|

[Garc87]

[Peac80]
[Rose80]

[Sari86]

[SeAw83]

Aguilar, L., "Datagram Routing for Internet Multicasting," Proc. ACM
SIGCOMM Symp. on Communicalions Architectures and Protocols, 1984, pp.
58-63.

Awerbuch, B., and S. Even, "Efficient and Reliable Broadcast is Achievable
in an Eventually Connected Network,” Proc. 8rd Symp. Principles of Distri-
buted Computing, 1984, pp. 278-281.

Blaustein, B.T., and C.W. Kaufman, "Updating Replicated Data During
Communications Failures," Proc. 11th VLDB, 1985, pp. 1-10.

Dalal, Y.K., and R.M. Metcalfe, "Reverse Path Forwarding of Broadcast
Packets,” Communications of the ACM, 1978, Vol. 21, Num. 12, pp. 1040-
1048.

Deering, S.E., and D.R. Cheriton, "Host Groups: A Multicast Extension for
Datagram Internetworks," Proc. 9th Data Communications Symp., 1985, pp.
172-179.

Demers, A., et.al., "Epidemic Algorithms for Replicated Database Manage-
ment," Proc. 6th ACM Symp. on Principles of Distributed Computing, 1987,
pp. 1-12.

Garcia-Molina, H., et. al., "Data-Patch: Integrating Inconsistent Copies of a
Database after a Partition," Proc. 8rd Symp. Reliability in Distributed
Software and Database Systems, 1983.

Garcia-Molina, H., et. al., "Notes on a Reliable Broadcast Protocol," Com-
puter Corporation of America, Technical Report CCA-85-08, July 1985.

McQuillan, J. M., et. al., "The New Routing Algorithm for the ARPANET,"
IEEFE Trans. on Communications, 1980, Vol. COM-28, Num. 5, pp. 711-719.

Garcia-Molina, H., Boris Kogan, and Nancy Lynch, "Reliable Broadcast in
Networks with Nonprogrammable Servers," Technical Report CS-TR-123-87,
Princeton University, November 1987.

Peacock, JI. et. al., "Synchronization of Distributed Simulation Using
Broadcast Algorithms," Computer Networks, 1980, Vol. 4, Num. 1, pp. 3-10.
Rosen, E.C., "The Updating Protocol of Arpanet’s New Routing Algorithm,"
Computer Networks, 1980, Vol. 4, Num. 1, pp. 11-19.

Sarin, S.K., "Robust Application Design in Highly Available Distributed
Databases," Proc. 5th Symp. on Reliability in Distributed Software and Data-
base Systems, pp. 87-94, January 1986.

Segall, A., and B. Awerbuch, "A Reliable Broadcast Protocol,” IEEE Trans.
on Communications, 1983, Vol. COM-31, Num. 7, pp. 895-901.

2 1k

9. Appendix L

The redelivery algorithm is specified as a collection of event—action pairs such
that each action is triggered when the occurrence of the corresponding event has been
detected. The same code runs at every host i In addition there are two procedures
that are invoked as part of some actions: fill() and probe(). probe() is a concurrent pro-
cedure, i.e., it runs concurrently with the code in which it is invoked. For example, in
Action 4 the end statement that follows the invocation of probe() executes without
waiting for the latter to complete.

When invoked at host i, fill(DESC(j)) causes i to send the broadcast messages
available to it to fill the gaps in the streams received by hosts in DESC(j). For exam-
ple, let DESC(j) = {M;, M;}, where M) = <5,2,4> and M; = <4,3>, ie., host k has
received messages numbered 1, 3, 5 and host j messages 1, 2, 4. Also, suppose that host 7
has received messages 1, 2, 3, 5, 6. Now, if statement fill(DESC(j)) is executed at host 1,
¢ will end up sending messages 2 and 6 to k, and messages 3, 5, and 6 to j. DESC(y) will
be updated accordingly. This procedure, of course, uses multicast whenever possible.

Call probe(PL(1)) results in host ¢ sending a probing message to the first host on
its priority list. If a response is not received promptly, a probing message is sent to the
next host on the priority list, etc. The procedure is terminated when one of the hosts
responds to the probe. Note that a wrap-around on the list is allowed. This guarantees
that eventually contact will be established if at least one of the hosts in PL(%) is in the
same network partition as ¢, even if some probes are lost. As was mentioned above, the
probing process does not block the execution of any code that may follow the probe()
call in the body of an action.

COORD(?) is the current coordinator of host i Initially COORD(i) = NIL.
DESC(7) is defined as follows. Let h; be the highest sequence number of all messages
received by host j. Let g; be the set of all the "gaps" in the message stream received by
Jy ie, gj={m:m <h; message m has not been received by j}. Finally, let
M; = <h;, g;>. Then DESC(i) = {M;: j is a descendant of ¢ in the coordinator tree}.
Thus DESC(7) contains the identities of all descendants of 7 (including ¢ itself). It also
tells us which messages each host is missing and/or at which point it has stopped
receiving any new broadcast messages(/;). Before the redelivery algorithm is initiated,

DESC(i) = {M;}.

Event 1: failure detection or timing out on coordinator
Action 1: if COORD(3) # i then COORD(i) + ;
probe(PL (7))

Event 2: probed by host 7
Action 2: if COORD(¢) = NIL then COORD(i) « i
send "coordinator is COORD (i)" to j

= 16 =

Event 3: message "coordinator is 2" received from host j
Action 3: if COORD(i) =i and 2 # i then
begin COORD(i) + z,
send DESC(i) to
end

Event 4: DESC(j) received
Action 4: DESC(i) « DESC(i) U DESC(j);
fill(DESC())
if COORD (i) = NIL then
if DESC(¢) not completely filled then
begin COORD (1) + i
probe(PL(1))
end
else if COORD (i) # i then send DESC(j) to COORD(1)

Event 5: expiration of timer
Action 5: if COORD (%) = i then send "I AM COORDINATOR" to each host in DESC(7)

Event 6: message "I AM COORDINATOR" received from host j
Action 6: if 7 # COORD (i) then COORD(i) « j

When host ¢ detects a failure, i.e., an out of sequence broadcast message or no
messages for a long period of time (m6 time units), it initiates the redelivery procedure
by setting COORD(1) to i (recall that originally COORD(¢) = NIL) and probing the
hosts on its priority list (PL(¢)). Similarly, when timing out on #s current coordinator
occurs, which indicates a probable communication failure or a failure of the coordinator
itself, 7 starts looking for a new coordinator. This is accomplished by event—action pair
1.

When probed by another host searching for a coordinator (Event 2), host ¢ joins
the redelivery procedure in progress (unless it already has been participating, in which
case COORD(7) # NIL). Then it sends back to j the identity of its current coordinator
(which is ¢ itself, if ¢ has just joined the redelivery procedure).

Action 3 is prompted by the arrival of a message specifying the indentity of the
current coordinator. Host ¢ sets its coordinator pointer accordingly, unless it already
had a non-trivial coordinator (COORD(i) #), in which case the message can be
ignored. Then ¢ proceeds to send to COORD (i) set DESC(7) to inform the coordinator
of new nodes in the coordinator tree and their message redelivery needs.

When host ¢ receives a message containing DESC(j) (Event 4), it is a sign that a
group of hosts (7 and its descendants) wants to join the tree of which, they think, 7 is
the root (coordinator), or wants 7 to become the root of their tree. Another possibility is
that a network partition has been repaired, and a previously isolated group of hosts,
headed by j as coordinator, requests redeliver of missing messages. In either case ¢

- 17 -

attempts to fill the message gaps of those hosts as best it can, using the messages it has
seen. If ¢ has been inactive until now (COORD (i) = NIL) and did not have all the mes-
sages wanted by the hosts, it joins the process and starts probing its priority list on
behalf of the hosts on DESC(j). If, on the other hand, 7 is already a node in a coordina-
tor tree and it has a non-trivial coordinator, then it will forward DESC(j) (properly
updated after a dispatch of the missing message) to COORD (7).

DESC(j) from a remote host can serve still another purpose. Namely, from this
message the recipient can figure out whether any of the hosts in DESC(j) have some of
the messages that it is missing. If so, those hosts can be asked to deliver them.

Every host that is currently a coordinator periodically sends "I AM COORDINA-
TOR" to all its descendants, using the multicast facility. A timer is used for this pur-
pose, whose expiration is Event 5. The timer is reset after the message is dispatched.

Arrival of message "I AM COORDINATOR" (Event 5) is intended to reassure host
¢ that it still has connection to its coordinator. If, however, this message is received
from a host other than COORD(7), it must mean that the former coordinator has
relegated its responsibilities to a new one. In that case the pointer should be reset
accordingly.

10. Appendix IL

Theorem 4.1. Let G = {hy, ..., bt} be the set of hosts that form a partition that
excludes the source of broadcast. Then all hosts in G will eventually configure them-
selves into a coordinator tree if and only if the priority list assignment is acyclic and
jointly complete (provided that the partition is stable for a sufficiently long time).

Proof. Let PL(h;) for each j, 1 < j < n, be an acyclic and jointly complete assign-
ment of priority lists. First we show that the parent—child structure that we call a
coordinator tree indeed has no cycles. Suppose to the contrary and let h, be a node on a
cycle. Let h, be the parent of h,, which is, of course, on the same cycle. Since a host can
attach to another host only if the latter is on the priority list of the former, we must
have h,Rh,. Furthermore, singe h, is on a cycle, it must be its own (non-trivial) descen-
dant. Therefore, we have h,R h,, which contradicts the acyclicity assumption.

Now we show that the parent—child coordinator structure eventually becomes a
single tree (as opposed to a forest of trees). As before, suppose to the contrary. Let h,
and Ay be any two roots in the forest. They become roots some time after the partition
is formed and remain such as long as the partition is stable. Since the priority lists are
jointly complete, by our assumption, one of the roots must be on the priority list of the
other, say h. € PL(h;). Since both are in the same partition, h; will eventually respond
to probing by h,. At that point h, will attach to h;, which contradicts the assumption
that h, will remain a root for the duration of the partition.

If the priority list assignment is not acyclic or jointly complete, we might have
either cycles or multiple roots (coordinators), which is demonstrated by the examples at
the end of Section 4. O

