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Abstract: Polytope range searching is a central problem in multimensional searching, with ap-
plications to computer graphics, robotics, and database design. In its most elementary form, the
problem can be stated as follows: Given a collection P of n weighted points in Euclidean d-space
and a simplex ¢, compute the cumulative weight of P Ng. The points are given once and for all
and can be preprocessed. The simplex ¢, however, forms a query which must be answered on-line.
We assume that the weights are chosen in a commutative semigroup and that the time to answer a
query includes only the number of arithmetic operations performed by the algorithm. We prove that
if m units of storage are available then the worst-case query time is Q(n/ Vm ) in 2-space, and more
generally, Q((n/logn)/m'/9) in d-space, if d > 3. These bounds also hold with high probability for
a random set of points (drawn uniformly in the d-cube) and remains true if the queries are restricted
to congruent copies of a fixed simplex. In the course of our investigation we also establish results of
independent interest regarding a generalization of Heilbronn’s problem.

A preliminary version of this work has appeared in the proceedings of the 28th Annual IEEE Sym-
posium on Foundations of Computer Science (1987), 1-10.
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1. Introduction

Orthogonal range searching and simplex range searching have received a great amount of attention
recently. But whereas the former problem is nearing a definitive solution, the complexity of simplex
range searching has remained elusive. To state the problem simply, suppose that we are given
n points in Euclidean d-space and m units of computer memory. How should we organize the
memory to be in a position to answer the following type of queries efficiently: Given an arbitrary
simplex, how many points lie inside? Natural variants of the problem call for reporting the points
in question, or more generally, computing some useful function defined on their power-set. There is
abundant practical application to motivate research on this problem [5,7,11,12,16,19,21,23]. Also of
great interest is the central theoretical question lying underneath: What is the most efficient way of
organizing information to support a given class of queries? What takes this question apart from the
classical problem of searching a linear list is the power of redundancy. While oversupply of memory
space is usually of marginal interest when searching a linear list, it is often the key to efficiency in
multidimensional searching. For this reason, the main research activity in that area has been the

investigation of space-time tradeoffs.

The main result of this paper is a family of lower bounds on the space-time complexity of
simplex range searching. We prove that the worst-case query time is 2(n/\/m), for 2-space, and
more generally, Q((n/logn)/m'/4) in d-space, for d > 3. Recall that n is the number of points
and m is the amount of storage available. These bounds hold with high probability for a random
point-set (from a uniform distribution in the d-cube) and thus are valid in the worst case as well
as on the average. Interestingly, they still hold if the queries are restricted to congruent copies of a
fixed simplex or even a fixed slab.

What is the practical significance of these lower bounds? It appears that little gain in query
time can be expected unless the storage is enormous. In practice, therefore, the naive algorithm—
which involves checking each of the n points individually—is probably the method of choice. To
make our point a little more evident, consider the complexity of simplex range searching in 11-space.
With only linear storage the worst-case query time is in Q(n®®). For a query time in O(y/n), one
would need Q(n®) storage, and a whopping Q(n'?), if a polylogarithmic query time were desired.
Furthermore, our average-case result shows that the lower bound is hardly determined by some
pathological input configuration but rather by random point-sets.

Our complexity results are established in the arithmetic model for range searching (Fredman
[10,11], Yao [20], Chazelle [4]). The assumptions of the model are very weak and any lower bound
in it can be trusted to hold on any reasonable sequential machine (which, in particular, allows buck-
eting, hashing, etc.) How close do our lower bounds come to meeting known upper bounds? It has
been shown in (Chazelle and Welzl [5]) that simplex range searching on n points in d-space can be
performed in O(n'~/9a(n)) query time and O(n) storage, where « is a functional inverse of Ack-
ermann’s function. This upper bound matches our lower bound very closely. It must be mentioned,
however, that the upper bound holds in the arithmetic model. Its main interest, therefore, is to tell
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us that to obtain significantly higher lower bounds one will have to change the model of computa-
tion. On a random access machine [2] supplied with linear storage, the best upper bound on the
query time to date is O(y/nlogn) in 2-space (Chazelle and Welzl [5]) and O (n#(d-1/(d(d=1)+1)+¢) jp
d-space, for any d > 3 and any fixed ¢ > 0 (Haussler and Welzl [12]). Earlier results were obtained in
(Willard [19], Edelsbrunner and Welzl [7]). See also (Cole and Yap [6]) for variants of the problem.

Our results constitute the first (nontrivial) family of lower bounds for simplex range searching
in the static case. These complement an earlier lower bound for the dynamic version of the problem:
Fredman [11] established that a sequence of n insertions, deletions, and halfplane range queries may
require Q(n‘*’ 3) time. His ingenious proof technique rests on the fact that a single deletion may
invalidate a large segment of the data structure: indeed, any precomputed cumulative weight which
involves a point to be deleted becomes useless after the deletion since a semigroup has no inverse
and no quick update is therefore possible. Obviously, we must use a different line of reasoning.t

The main novelty of our approach is to reduce space-time tradeoffs for range searching to fun-
damental inequalities in integral geometry. To achieve this goal we need a fairly heavy machinery
which we build in three principal stages: first, we define a model for static range searching (section 2)
which places the problem within the scope of bipartite Ramsey theory (section 3). The complexity
of a given problem is then fully described by certain properties of its so-called characteristic graph.
This involves two distinct tasks: proving integral-geometric inequalities about the query space (sec-
tion 4.2) and studying various uniformity criteria for random point-sets (section 4.3). Incidentally,
these investigations lead to results of independent interest regarding an intriguing generalization of
Heilbronn’s problem (Moser [17]). The lower bounds for simplex range searching are established in
section 4.4.

2. A Combinatorial Framework

We describe a graph-theoretic model for range searching. The emphasis of this model is the
arithmetic complexity of a problem, that is, the maximum number of operations needed to answer
any query. The model purposely ignores the cost of searching the memory for the information
needed during the computation. In this way, lower bounds can be trusted to hold on any sequential
computer. Of course, from a practical viewpoint, upper bounds set in that model may not necessarily
have much meaning, except to indicate how good or how bad a certain lower bound might be. The
arithmetic model—as it is customarily called—originates in (Fredman [10,11]) for the dynamic case
and (Yao [20]) for the static case.

T Interestingly, we can use our lower bound to strengthen Fredman's result by removing the use of deletions. We
can prove that a sequence of n insertions, followed by n queries may require on the order of n*/? time in the worst
case. To see this, insert the n points used to prove our static lower bound and then ask the hardest query repeatedly,
n times. If less than n*/® time is required for all these operations then the storage used (in the model chosen) is

O(n*/?), therefore from our lower bound each query takes ©(n/V/n/3) time, hence a total of Q(n*/3) time. g
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The main purpose of this section is to introduce a general technique for proving lower bounds
(the Core Lemma). The basic idea is to relate the static complexity of a range searching problem
to the existence of large complete bipartite subgraphs in its characteristic graph. This graph is
similar (although not identical) to what Burkhard et al. [3] call the semantic graph: it provides a
combinatorial characterization of any range searching problem.

A. Some terminology. In the following, N will denote the set of natural numbers {0,1,2,...},
and for any integer n > 0, [1...n] will be the set {1,2,...,n}. We use C; to denote the d-cube
[0,1]%. As a shorthand, we say that a finite set of points P in a compact set K is random in K if
each of its points has been drawn randomly from a uniform distribution in K (we assume mutual
independence). In general, K will be C4. Finally, we introduce the notion of a faithful semigroup
(Yao [20]). Let (S,+) be a commutative semigroup with an operation denoted +. We say that
(S,+) is faithful if for each n > 0,0 C 71,75 C [1...n], T1 # Ty, and every sequence of integers
a;, fB; >0 (i € Th, j € Ty), the equation

Z ;8 = E ,33;33'

ieT, JjET:

is not an identity (that is, cannot be satisfied for all assignments of the variables s,,...,s,). Note
that this definition does not prohibit idempotence or identities of the form s; + 2s2 = 3s; + 4s5. For
example, (N, +), (N, max), and ({0,1},0r) are faithful, but ({0},0r) and ({0, 1}, ezclusive or) are

not.

B. Range searching. Let (S,+) be a faithful commutative semigroup. We define a query space
Q to be any collection (finite or infinite) of subsets ¢ C R¢, called queries. For example, Q might
be the set of all hyperrectangles, simplices, balls in Euclidean d-space, etc. Let P = {py,..., Pn} be
a set of n points in Cq4, and let { be an assignment of each point p to a semigroup value in S. We
define a function answ: Q@ — S as follows:

answ(q) = Z ¢(p).

pPEPNg

If PNgq is empty then we write answ(q) = null, which is a special symbol not in S. In practice, the
semigroup can be chosen as (N, +) for counting the number of points in the desired query, (27, U)
for reporting the points in question, ({0,1},0r) for testing if there are any points in the query, etc.
To summarize, a range searching problem P is specified by a quadruple (S, @, P,({) consisting of a
semigroup, a query space, a finite set of points, and a weight function. We say that P is of size
(n,p),if |[P|=nand [{PNqlg€ Q} =p.
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C. The model of computation. Let s,...,5, be n variables with values in S. A generator
9(s1,...,8,) is a linear form 3", .; ., @is;, where the a;’s are nonnegative integers (not all 0). For
example, 2s; + 0s2 + s3 stands for _sl + s1 + s3. A storage scheme T' for P of size m is a collection
of m generators {g1,...,9m} satisfying the following property: for any ¢ € Q such that PNgq # 0,
there exist K C [1...m] and a set of labeled integers { #x > 0|k € K } such that the relation

answ(g) = Y Brgr(C(p1); ---,<(pn)) (2.1)
keK
holds for any weight function { over P. This means that a storage scheme can be dependent on
the particular semigroup under consideration and also take advantage of any property which P may
enjoy: however, it must hold for any assignment of semigroup values to P.

Ideally, we would like S to be rich enough to simulate (i.e., to map homomorphically onto)
the semigroup (P*,U) of all nonempty subsets of P. But this would exclude too many important
semigroups, so we move this requirement over to the storage scheme. By insisting that a scheme
should work for all weight assignments, we are in effect no longer dealing with S itself but with the
additive semigroup of n-variate linear forms over S. Faithfulness can then be called upon to ensure
that the semigroup of linear forms is, indeed, rich enough. Given a linear form 3, .;.,, @is, call the
set of points {p; | a; # 0} its cluster.f By means of this correspondence, the sen;jg-roup generated
by the elementary forms (sy,...,8,) — s; (1 < i < n) maps homomorphically onto the semigroup
(P*,U). Thus, the meaning of (2.1) is that any set of the form P N¢q can be expressed as a union of
clusters. Note that this union need not be disjoint. Of course, the irrelevance of the weight function
allows us to say that a storage scheme is defined not only for P, but more generally, for (S, @, P).

Next, we define the complexity of a storage scheme. Given ¢ € Q, let K be the smallest set
such that (2.1) is true. We define #(P,T,q) = |K|, and we say that I is a (¢, m)-scheme for P, if
t > max e t(P, T, q). If P is now considered as one element in an infinite family (as P and n vary),
we define the time complexity of this family as the function ¢(n,m), where

#(n, m) = i {(P,T,q).
(m,m) = . Bodn, g HAT)

By abuse of notation, we will refer to ¢(n,m) as the time complexity of P (when the notion of a
family is understood). We also define the expected time complexity of P as

f(ﬂ,,m) = E|p[=,,, I;‘II]‘lzlil’n [;‘éa.é{ t(P,T,q),

where P is random in Cq. We do not average over @ because the query space cannot always be
assumed to admit a natural probability measure.

T To make this definition independent of the fact that S is faithful, we should regard a cluster as being associated
with a formal linear form (no pun intended). Otherwise, problems arise if S is not faithful and a linear form can be
expressed over two different sets of variables.
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D. The Graph model. We begin with some terminology. Let H C V x W be a bipartite

graph. We denote the number of edges of H by |H|. For any w € W, let Ng(w) denote the set

{v € V|(v,w) € H}. By extension, if U C W then Ng(U) = {J, ey Nu(w). A bipartite graph

C C V x Z is called a cover of H if for every w € W there exists a subset Z,, C Z such that

Np(w) = Ng(Zy). A subset Z,, of minimum size is called a min-cover of w. If the cardinality

of no min-cover exceeds ¢, we say that C is a (t,|Z|)-cover of H. The graph C is called a disjoint

(t,|Z])-cover if

(i) for each w € W, there exists Z,, C Z such that all the sets in { No(z) |z € Z,, } are pairwise
disjoint, and

(i) the maximum value, over all w € W, of the size of the smallest Z, satisfying (i) does not
exceed 1.

In light of our discussion of generators and clusters the meaning of all this should be obvious. We
can use H to model a range searching problem, with the V-nodes acting as points and the W-nodes
as queries. A cover C corresponds to a storage scheme, with the Z-nodes acting as generators and
the N¢(z)’s (z € Z) as clusters. To conclude this string of definitions, we refer to a rectangle of H as
any complete bipartite subgraph V’/ x W’ C H: the width and height of the rectangle are respectively
|[V’'| and |W’|.

Given a range searching problem P = (S, Q, P, () of size (n, p), the set { PNgq|q € Q } partitions
Q into p equivalence classes. Let ¢y,...,qp be representatives of each class. We define the charac-
teristic graph of P as a bipartite graph H C V x W, where V = {v1,...,vp} and W = {wy,..., wp },
and an edge connects v; and w; if and only if p; € ¢;. The graph fully describes the combinatorial
nature of the range searching problem in question. Conversely, it is easily seen that any bipartite
graph can be regarded as the characteristic graph of some range searching problem: for example, P
may consist of n distinct points in the plane and Q is chosen as the set of polygonal curves. We are
now in a position to formalize the relationship between schemes and covers, and present a method-
ology for proving space-time tradeoffs. Generators are to schemes what clusters are to covers. The
following lemma uses faithfulness to establish that link.

Lemma 2.1. Let P be a range searching problem and let H be its characteristic graph. If P admils
a (t,m)-scheme then H admits a (t,m)-cover. Conversely, if H admits a disjoint (1, m)-cover
then P admits a (t,m)-scheme.

Proof: Suppose that P admits a (t,m)-scheme, and let T' = {g1,...,gm} be the storage scheme in
question. If g(s1,...,8,) = ZISiSH @ ;5;, we can rewrite this linear form as Es‘eNr. ag,is;, where
Ny = {i|axi > 0}. We define a bipartite graph C C V x Z, where Z = {z1,...,zm}, by placing
an edge between v; and z; if and only if i € N;. We now show that C is a (¢, m)-cover of H. Let
wj be an arbitrary vertex of W and let A; = {i|p; € g; }. It suffices to establish the existence of
Z; C Z, where |Z;| <t and

Ng(w;) = Ne(Z;). (2.2)
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Since I' is a (t, m)-scheme for P we have

answ(g;) = D Brgr(C(p1),---,¢(Pn)),
keB;
where B; is a subset of [1...m] of size < {. Since the equality above holds for any weight function

and S is a commutative semigroup, we can write

dosi= D Begrlss,..o,8n) = Y sk,

i€A; kEB; keC;

where C; = ;¢ B; NVi. Because of faithfulness we have A; = Cj, therefore

Nu(wj) ={ulied;j}= [J{ulieNe}= | Ne(=n),
keB; kEB;
which establishes (2.2), since |B;j| < t. The first part of the lemma is now proven. We omit the

second part, which is straightforward. g

Now that range searching problems have been couched as combinatorial questions about bi-
partite graphs, we are ready to describe the lower bound proof technique which underlies much of
what follows. Although the technique tends to weaken somewhat on problems of low complexity
(e.g., orthogonal range queries), it is, we believe, a powerful tool for determining the complexity
of “hard” problems, such as simplex range searching or problems defined by random characteristic
graphs. The starting point is the observation that, informally, clusters are “good” if they are big
and can be used by many representative queries. Translated in the language of covers, this means
that the characteristic graph contains big rectangles: their widths tell us how big the clusters can
be and their heights indicate how many representative queries they can help to answer.

The following result formalizes the relationship between the space complexity of a range search-
ing problem P and the presence of large rectangles in its characteristic graph H. We define A(z) to
be the largest “area” of a rectangle of H whose width is no less than z > 0:

A(z) = max { h | H has a rectangle of width > z and height k }.

Lemma 2.2. (The Core Lemma) — Let H be the characteristic graph of a range searching problem

of size (n,p). If H has a (t,m)-cover then m > }|H|/ A (%) )

Proof: Using the previous notation, let C C V' x Z be a (t,m)-cover of H and let {C,, C Z |w € W'}
be a complete collection of min-covers. Form the graph G by removing from H each edge in the set

U{ et x () | wewzecu, e < 1}

Since C'is a (t, m)-scheme and |W| = p, the resulting graph G contains at least half the edges of H.
But to cover the sets Ng(w) (w € W) only subsets N¢(z) of size > 12%‘1 are now used. Therefore Z
must have at least |G|/A (Jﬁl) vertices.

2pt
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3. How Hard Can Range Searching Be?

Any range searching problem of size (n,p) admits two trivial solutions: an (n,n)-scheme and
a (1,p)-scheme. Two natural questions arise: (1) Is it always possible to improve over the two
naive solutions? (2) What is the complexity of the hardest range searching problem? Answering
these questions will help us assess the relative position of other range searching problems on the
complexity ladder. Theorem 3.1 says that a small speed-up in query time can always be achieved
with an amount of storage almost but not quite maximum: in other words, the worst of all possible
worlds. Surprisingly, this result is in fact optimal, as a Ramsey-type argument (Theorem 3.2) can
be used to show.

Theorem 3.1. For any range searching problem of size (n,p), with p > n, there ezists a (t,m)-
scheme, where t = O (n/ [log 2])t and m = O (p/ [log 2]).

Proof: We follow a strategy used in (Yao and Yao [22], Burkhard et al. [3]). Let a = [log 2] and,
as usual, let H C V' x W denote the characteristic graph of the range searching problem, with V =
{v1,...,vn}. For each i such that 0 < i < [(n—1)/a], define V; as the set {v;ai1,..., Ymin(n,(i+1)a)}-
We construct a cover C' C V x Z as follows. Originally, Z is empty: for each i between 0 and
[(n —1)/a], consider each nonempty subset A of V; in turn, and perform the following operations:
add a new vertex z to Z and augment C' with the edges of A x {z}. It is easily verified that C is a
disjoint (,m)-cover of H, where t <1+ |(n —1)/a], and

m < (2% = 1)(1+ [(n - 1)/a]).

Since p < 2" we easily derive that t = O (n/ [log £]) and m = O (p/ [log 2]). Lemma 2.1 completes
the proof. g

Theorem 3.2. There is a constant ¢ > 0 such that the following is true. Given any integer function
p=p(n) (n < p < 27) there exists a class of range searching problems of size (n,p) for which any
(t,m)-scheme with t < cn/log £ also satisfies m = Q(p).

Proof: Let 7 be a real (0 < m < 1), and let H C V x W be a random bipartite graph (|V| = n
and |W| = p), where each edge (v, w) is chosen independently with probability 7. A rectangle of H
is called wide if its width « is at least In(p/n) and its height is equal to [n/a]. To rid the graph
of wide rectangles we use a standard technique for removing forbidden subsystems [8]. Let y(H)
be the number of wide rectangles in H. We modify H by taking each wide rectangle in turn, and
removing exactly one edge from it (which one does not matter). After at most x(H) such operations

1 All logarithms in this paper are taken to the base 2, unless specified otherwise.
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we obtain a new graph G free of wide rectangles, with |G| > |H| — x(H). Taking expectations we

Blehzmr- ¥ (2)( 5 e

In(p/n)<a<n

derive

Using the inequalities (2) < (eb/a)?, for 0 < a < b, and (n/a)* < e/, for 1 < a < n, where
e =2.718..., we derive that for n large enough,

n p peln/al & (m)znla aheotin/al4n/e < e(4+(2/a)ln(p/n)+ln1r)n.
a/ \[n/a] n

If # = e~%, it then follows that for n large enough,
E(|G]) > npr — ne®+nmn 5 np/e?

so there exists a bipartite graph G C V x W, with at least np/e” edges and no wide rectangle. With
respect to this graph, we have A(z) < 2n, for # > In(p/n), so from the Core Lemma, any (t,m)-
cover such that ¢ < ¢(n/log2) will satisfy m > p/e®, for ¢ small enough. From Lemma 2.1 and
our earlier observation that a range searching problem can always be defined to have a prespecified
characteristic graph, the proof is now complete. g

The comparison between the last two theorems is a little startling. On the one hand, a time
speed-up is always possible without using maximum storage. However, trying to improve this speed-
up by even a constant factor will immediately force upon us the use of maximum storage (up to
within a constant factor). The conclusion to draw is that, in practice, hard range searching problems
do not offer any viable alternative to the two naive algorithms.

Remark: There is an intriguing parallel between this result and a general update/query time tradeoff
given in (Burkhard et al. [3]), where a similarly pessimistic result is proven optimal. The two
situations cannot really be compared, however, because of the difference in settings: storage vs.
query time here, as opposed to update time vs. query time in [3]. Without pursuing this digression
too far, let us just point out one major difference between the static and the dynamic models. In
the former, a cluster is charged unit cost, regardless of its size. In the dynamic model, however, a
large cluster, although still charged unit cost, is in effect more costly than a small one because it is
more exposed to enemy fire: if any of its points is updated the information provided by the cluster
must be thrown away.

4. The Complexity of Simplex Range Searching

We begin by stating the main result of this section: Simplex range searching on n points requires
Q(n//m) query time in two dimensions and Q((n/logn)/m!/ ) query time in any dimension d > 3.
These bounds hold for a random point-set (uniform distribution in the d-cube) with high probability,
and thus are valid in the worst case as well as on the average.
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For technical reasons, queries will be slabs of fixed width instead of simplices (since slabs can
always be clipped and triangulated, this will actually strengthen our results). The heart of the
argument comes from the Core Lemma: a generator can be very useful to a few queries or it can be
moderately useful to lots of queries, but it cannot be very useful to lots of queries. We assess the
“effectiveness” of a generator by the Lebesgue measure of the convex hull of its associated cluster.
Why? Suppose that we set our sights on a very low query time. Then, presumably, answering a
random query will require the use of big clusters. Since the points are uniformly distributed in Cg,
big clusters occupy a lot of space and therefore can be used by only few queries. This suggests a
tradeoff between the effectiveness of a generator and its ability to be used by many queries. One
will notice the similarity of this reasoning with the Core Lemma.

Our approach has two components. We begin with an integral-geometric analysis of the con-
tainment property between a convex body and a slab. The goal is to produce a continuous analog
of the discrete complexity tradeoff sought. To carry out the analogy we must argue that the size of
a set of points can be bounded below by the measure of its convex hull (up to within a constant fac-
tor). This entails a study of pseudo-uniform point-sets. The questions raised are akin to a classical
problem of Heilbronn (Moser [17]) to which we provide new answers.

In section 4.1 we define a measure for slab systems, and we prove its invariance under the
group of motions. This will give us a convenient probability measure for queries to work with. In
section 4.2 we argue that a large convex set cannot be moved too much within a given slab (in other
words, a big cluster cannot be used by too many queries). Two fundamental lemmas are derived
to formalize this concept. In section 4.3 we turn to the problem of approximating uniform point
distributions. Several criteria of uniformity are investigated, one of which leads to new results on a
generalization of Heilbronn’s problem. Finally, section 4.4 puts all the results above together and
derives the desired lower bounds.

4.1. Preliminaries

We begin with some geometric terminology. Let d be a fixed positive integer and let E¢ denote
Euclidean d-space. Unless specified otherwise, we will always assume that d > 1. We endow E¢
with a Cartesian system of reference (O, €, ...,€5), where (€, ...,¢éy) forms an orthonormal basis
(€5 - €5 = bi5). We define E_f_ = {(21)..s23) £ 0|2 2 051 < i< d). Bp=(2,..:,84) and
¢ = (¥1,.--,¥a4) are two points of E¢, then we let (p,q) denote the inner product 2 oi<i<a Tili-

Similarly, we put [p| = \/(p,p)-

The width (resp. diameter) of a compact convex set K is the smallest (resp. largest) distance
between two distinct hyperplanes of support parallel to each other. The diameter of K is denoted
D(K): it is also defined as the greatest distance between two points in K. Finally, if P is a finite
set of points in E4 then x(P) denotes its convex hull.
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Let a be a real value (0 < a < 1/12) to be considered a parameter in the following. We define
a slab as the closed region of E¢ between any pair of parallel hyperplanes distant of each other by
2a. For any q € E?\ {0}, let S, denote the slab

Se={peB?: l{p,q) - la*| < algl }-

Using the notation of the exterior calculus, it is well-known (Santal6 [18]) that the point-set density
dxy Adzg A -+ A dzg is invariant under the group of motions (i.e., isometries). Given X C E¥, the
integral

AJ(X)zLdzlA---AdEd

is the measure of X in E4 (provided that the integral exists in the Lebesgue sense). Next we define
the measure p of a set of slabs X:

dyr A---Adya
X /dS‘ —f
wx) = gEX |Q!d"

(again, provided that the integral exists). Since S, is not defined for ¢ = O, we assume that X does
not contain slabs whose bisecting hyperplanes pass through the origin. However, the integral

/ dyi A--- Adyq
o<lgl<1  lgld?

converges, so we can extend the measure X over the set of all slabs. (The set of slabs whose bisecting
planes pass through the origin has measure zero.)

Lemma 4.1. The measure p is invariant under the group of isometries in E9.

Proof: Note that the lemma can be easily checked directly for small values of d (obviously, a rather
tedious task). Instead of checking the validity of the lemma, we will derive it by using Cartan’s
method of moving frames (Santalé [18]). Let P, = {p € E?|(p,q) = |g|*} be the bisecting
hyperplane of S, and let @y, ..., #;_, be an orthonormal basis for P,. We define #; as a unit vector
normal to P, such that det(#,...,%4) = 1. Let M be the group of motions in E¢ and let < be the
subgroup of motions that leave invariant the hyperplane P,. We have a one-to-one correspondence
between the hyperplanes of E4 and the elements of the homogeneous space M/S = { ¢S |g e M }:
to each coset of the form g (¢ € M) corresponds the hyperplane gP,, and conversely, to each
hyperplane P, corresponds the coset g<, where g is a motion that carries P, to P,. Following [18],
finding an invariant density of hyperplanes is then reduced to finding an invariant density for M/S.
Because M /S is unimodular, it is guaranteed to admit an invariant density. This will be the desired
density dL4—; for the hyperplanes P,, and hence for the slabs S;. The theory of moving frames
gives us the Pfaffian system dg - #g = 0 and diy - 4; = 0 (1 < i < d —1). Therefore dL;z_1 can be
chosen as the differential exterior d-form

N\ dita - i Adg - .
i<d
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Let ¢ = (y1,...,Ya); since iig = q/|q|, we have diig = dg/|q| + d(1/|¢|)q. From @; - @j = &;; we derive

1 - . 1 o . A
dLi.1 = /\(ﬂdq.u‘.)AdQIud:'lT/\ Z: dyj(u.--ej):HTdyd\---Adyd,
i<d U1 icd1<5<d 1
where
(@, -€1) (d2-€1) ... (idg-€1)
’ul-é'z ﬁg-gz ﬁdg
Al @B @a) o @ea)|
(i -€q) (d2-€q) ... (iq-é€q)

This establishes that dLi_; = m%_—ldyl A -+ A dyg, which is precisely the differential form claimed
for p. 1

Now that we have the appropriate tools to handle random queries, we need some machinery to
study the convex hulls of clusters. Arbitrary convex subsets of C; are a little unwieldy. Fortunately,
they can be approximated quite well by rectangular objects. We need some additional terminology.
A hyperrectangle is the Cartesian product of d closed intervals in #. If each interval is of the same
length then we have a hypercube. A parallelotope is the image of a hyperrectangle under an isometric
mapping. Two parallelotopes are said to be parallel to each other if they are congruent modulo
a homothetic transformation. It seems that the following equivalence result has been rediscovered
many times over the years. (I thank J. Pach for pointing out this 1951 reference (Macbeath [15]) to

me.)

Lemma 4.2. (Macbeath, 1951) — Given a compact convez set K in E9, there ezxist two parallelotopes
II; and I3, such that Iy C K C Iy and Ag(Ily)/d! < Ag(K) < d¥X4(I0,).

4.2. Two Fundamental Lemmas on the Measure of Slabs

Let K be an arbitrary compact convex subset of E4. Our main concern in this section is to show
that the set of slabs
H(K)={S, | ¢ E°\{O}and K C S, }

shrinks fast enough as K grows. We will distinguish between the general case (Lemma 4.5) and a
rather special case (Lemma 4.6) to be used later for simplex range searching in 2-space. The reason
for this distinction is that we can obtain sharper lower bounds in the two-dimensional case by using
more refined tools.

We start off our investigation by assuming that K is a hyperrectangle of the form [T, «;,[1, %],
where 71,...,7q are d reals > 1. We will actually find it more convenient to trade H(K) for the
smaller set

H*(K) = H(K) ({19 € B4 }.

This substitution is fairly innocuous, as the following result shows.
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Lemma 4.3. For any hyperrectangle K = ]_[15,-5&[1,7.-], where 4; > 1, we have the inequality
p(H(K)) < 2¢u(H*(K)).

Proof: The idea is to consider the symmetry group of the polytope K, and identify a subset of 2¢
automorphisms which allow any point of E¢ to be mapped to a point with nonnegative coordinates.
The proof will immediately follow from the fact that these automorphisms carry K into itself and
the measure y is invariant under the group of isometries. Let j = (jy,...,jq) € {—1,1}¢ and let g;
be the isometry mapping p = (21,...,%q4) € E? to g;(p) = (z1,..., 24), where

jl 0 0 _11;1'_1. llil
"“_031...0)(“_2 . :
oo, - e
4 0 0 T jd Td — ] 2

The transformations g; are each the composition of a particular subset of plane symmetries. Since
K is centrally symmetric about (11./_-',&, e 1¢2L1), each transformation g; carries K into itself. Given
a point ¢ = (y1,...,ya) € E?\ {0}, let o(qg) be the sign vector (ji,...,ja), where j; = 1 (resp.
ji = —=1) if y; > 0 (resp. y; < 0). To complete the proof, we will show that g,(,) maps S, into Sy,
where 7 € E_‘f_. The inverse transformation g;(lq) maps a point (z;,...,24) into (z1,...,24), where
zi = Jizi + (1 = 5i)(1 + 7:)/2.
Consequently, the slab S; is the set of points (2,...,24) € E4 such that
. 1 ;

| > Jizith + 35 PR EEA T y.z' <a [ W

1<i<d 1<i<d 1<i<d 1<i<d
We obtain an equivalent expression by noticing that

p= ( > (1—j,-)(1+7.-)y,-) /X <o,
1<i<d 1<i<d

and multiplying the previous equation by 1 — /2. This shows that §= (%1,..., %), where
Ui = (1-B/2)jiyi > 0.
Noticing that [g] = (1 — 8/2)|g| > 0, we can conclude that § € E{.

Throughout this section the term “constant” refers to a quantity which may depend only on
d, and not on « or any other parameter later defined. We will use ¢ as a generic symbol to denote
a constant, avoiding subscripts whenever we can. Sometimes, however, we will have to resort to

subscripts to be able to distinguish between different constants.

Lemma 4.4. For any dimension d > 1, there exists a constant ¢ > 0 such that any hyperrectangle
K =Tli<icq[1,7:], where y; > 1, satisfies the inequality Ag(K) - p(H*(K)) < ca®tl.
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Proof: We will assume throughout this proof that ¢ = (y1,...,y4) € Ej'{_ and K C 5;. To begin
with, observe that |¢| can be neither too large nor too small. Indeed, we have

| 2= vi—ldl’| < elgl. (4.1)

1<i<d

Since z < 1+ ?/2 for all 2, this implies that

o> —algl < > w<d+]g*/2,
1<i<d

from which we derive

la] < a + Va? + 2d.

Since @ < 1/12 and d > 1, it follows (conservatively) that |¢| < 3d. Similarly, from (4.1) and the
fact that ¢ € Ei it follows that

gl +algl > > v >ldl,
1<i<d

hence |g| > 1—a > 11/12 > 1/2. To summarize, we have shown that
1/2 < |q| < 3d. (4.2)

Let
1
Ai(K) = {q=(y1,...,yd)eE’i I KQS'q and y; > m}

From (4.2) it follows that ¢ belongs to at least one of the sets A;(K) (1 < i < d), therefore

p(HY(K)) < Y Mi(K), (4.3)
1<i<d

where
dyi A---Adyg

M;(K =j
(K) A(K) lgl4-1

To estimate the value of M;(K), we set i = 1 without loss of generality, in order to avoid overbur-
dening the notation. Let us consider the following change of variables: given ¢ = (y1,...,ya), let
uy = 6 = |q|, and for i > 1, let u; = y;/8. Note that the transformation acts bijectively between

{(v,---,9a) e B\ {0} | ;» >0}

and

{ (ug,...,uq) l u; > 0 and Z u <1}
1<i<d



PoLYTOPE RANGE SEARCHING 15

To compute its Jacobian, J,, we notice that

yil6 ifi=1;
dui _ 1/6 —y2/6® ifi>1andi=j
6yj
—yy; /6% ifi>1landi#j.
It follows that
n/6 w/s ... /b
Ju= ~Yay /8 1/6—y3/8 ... —yapa/6°
—yayr /8 —yaya/8® ... 1/6—y3/6®
We derive
2 +1 +1 +1
(Hlsfsd y") -1 (6/y)*-1 ... -1
Ju:'—"‘-‘—yl‘sad_z * : :
= ok oo (6/ya)* -1

The determinant above is made triangular by subtracting the first column from the others, which
gives J, =y /64 If T = fqul(K) duy A --- A dug, we immediately derive

U1
T= dyy A - Adyg.
(Y1, ,¥a)EAL(K) (yf it yc%)dlz

From (4.2) and the definition of A;(K), we have

1
T > li(K) (4.4)

If g € Ay(K) then we have |(p,q) — |¢|?| < alq], for both p = (1,...,1) and p = (71,...,74). Since
q € E_‘f_ this implies that

—algl < D w—leF < Y ww—laf* < aldl,
1<i<d 1<i<d
and from (4.2)

3" (3 = Dy < 20| < 6da.
1<i<d

Because v; > 1, for each i (1 < i < d), we have

6da
0<y < :
7i—1

(4.5)

and hence from (4.2),
12d
0<u; < ~ ,
%=1
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for i > 1. When us,...,uq are fixed, u; always varies in an interval of length no greater than 2«. It

easily follows that
(12da)?

H1<igd(‘)’i 1)
Note that the integration domain of T assumes that y; > ;\1/-3. From (4.5) we also have y; <
6de /(1 — 1), therefore

T (4.6)

y — 1< 12dVda.
From (4.4) and (4.6) it then follows that

M,(K) < 6d%(12d)** a1 /2 4(K).

Of course, the same inequality holds for any M;(K), so in view of (4.3) the proof is now complete.
|

Lemmas 4.3 and 4.4 give us a tradeoff between the volume of a hyperrectangle and the measure
of the slabs that contain it. We can call upon Lemma 4.2 to generalize this tradeoff to any compact

convex set.

Lemma 4.5. For any dimension d > 1, there exisis a constant ¢ > 0 such that, given any compact
convez set K, we have Ag(K) - p(H(K)) < cadt?.

Proof: We can assume that Ag(K) > 0, otherwise the lemma is obvious. Lemma 4.2 shows the
existence of a parallelotope II C K such that

Ad(K) < dd,\d(ﬂ). (47)

Since II is not of measure zero, it is congruent to a hyperrectangle of the form K’ = [],c;c4[1, 7],
where 7; > 1. Obviously, the two sets H(IT) and H(K") have the same measure. Note that the two
sets might not be congruent, because S, is defined for ¢ # O, and E?\ {O} is not closed under the
group of isometries. The difference, however, is simply a set of slabs whose bisecting hyperplanes
pass through the origin, and thus has measure zero. From Lemmas 4.3 and 4.4, it follows that for
some constant ¢ > 0,

(T - p(H(I)) < 2%t

From (4.7) we derive
Aa(K) - p(H(I)) < ¢(2d)%adt?.

Since IT C K the proof is now complete. |

We now turn to the special case where K is of measure 0. While Lemma 4.3 is still meaningful,
Lemma 4.5 becomes trivial and must be modified a little. Recall that D(K) denotes the diameter
of the point-set K.
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Lemma 4.6. For any dimension d > 1, there exists a constant ¢ > 0 such that given any compact
convez set K we have D(K) - p(H(K)) < ca®.

Proof: We follow the proof of Lemma 4.4, assuming that K is a hyperrectangle of the form
[Ti<icq [1,7%], where 1 > 1 and %; =1, for ¢ > 1. It suffices to show that (y1 — 1)u(H(K)) < ca?.
From (4.5) we have 0 < g < 6da/(71 — 1), and from (4.2) we derive that 0 < y; < 3d, for 1 < j < d.
Consider the case of M;(K), for i > 1. We have 0 < uy < 12da/(y1 — 1), u; = |g|, and for j > 1 and
J # 1, we have 0 < u; < 6d. This shows that

T < (20)(12da)(6d)4—2
a1

;)

and from (4.4)

4/d(6d)%a®
it

If we assume that 6da/(y; — 1) < 1/(2V/d) then A;(K) is empty, and hence M;(K) = 0. From

(4.3) and (4.8) we find

M;i(K) < (4.8)

u(H*(K)) < (620 /(7, ~ 1). (49)
Is this inequality still true if we relax the assumption on ;7 If 6da /(71 — 1) > 1/(2v/d) then using
the previous reasoning, we find u; = |¢|, and 0 < u; < 6d (1 < j < d), from which it follows that
Mi(K) < 6dVd(22)(6d)*! < (6d)%2a?/(7; — 1).
From (4.9) we derive that
p(H*(K)) < 2(6)*%* /(11 - 1),

for all values of 4; > 1. Lemma 4.3 completes the proof. j

4.3. Approximating Uniform Point-Set Distributions

4.3.1. Introduction

We study the following discrepancy problem: Can we place n points in C4 = [0,1]¢ so that every
subset of k > d points has a convex hull of measure at least proportional to k/n? This is the kind
of result we need in order to argue that big clusters occupy a lot of space. Let us consider the case
d =2 and k = 3 for a moment. This is known as Heilbronn’s problem: what is the largest area, over
all point-sets P of size n, of the smallest triangle formed by points in P ?
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This problem has a rich history. If we look at the one-dimensional case for inspiration, we
might expect the max-min area to be proportional to 1/n. However, it has been shown by Komlds,
Pintz, and Szemerédi [13] that any set of n points in Cy always contains a triangle of area less than
1/n8/ 7=¢ for any € > 0. On the other hand, Komlés, Pintz, and Szemerédi [14] have shown the
existence of point-sets with all (3) triangles of area Q((logn)/n?). See (Moser [17]) for a chronology
of results on Heilbronn’s problem.

At the other extreme—the case £ = Q(n)—we certainly have what we expect: the max-min
area of the convex hull of any subset of k distinct points is ©(k/n): take the vertices of the largest
regular n-gon inscribed in Cz. A natural question is thus to determine a small function k(n) for
which the max-min area is © (k(n)/n). More generally, let

Ag(n, k) = max min Aa(k(S)),

CCa SC
|Pl=n |ST>k

where d < k < n; recall that £(5) denotes the convex hull of S. We know that Ag(n,n) = ©(n/n),
but also that As(n,3) = o(3/n). We will use a probabilistic argument to prove that Ag(n, k) =
©(k/n), for any k such that logn < k < n.

4.3.2. On a generalization of Heilbronn’s problem

We begin with some terminology. Let v be a positive integer. We say that a set P of n points in
E? is v-scattered if, for every subset S C P of size k > v, we have Az(x(S)) > (1/77d)k/n. As it
turns out, a weaker version of this definition will allow us to sharpen our lower bounds for range
searching in the case d = 2. Given any positive real ¢, the set P is weakly e-scattered if there exists
a subset @@ of P such that

(i) 1Ql = €|Py;
(ii) for every subset S C Q of size k > d, we have Ay(k(S)) > ek/(10n).

Let R be a parallelotope in E? of nonzero measure; the k-faces of R are called vertices if k = 0, and
edges if k = 1. By edge-length, we refer to the Euclidean distance between the two vertices at the
endpoints of an edge. There are at most d distinct edge-lengths, a;,...,as: the minimum value of a;
is the width of R, while m is its diameter. Let @ be a positive real: we define the §-pads
of R as a collection of 2¢ parallelotopes parallel to R, of edge-length @, attached to each vertex of R.
More precisely, let g be an isometry (not necessarily unique) carrying R into some hyperrectangle
[li<i<q0,ai] (a;i > 0). Each vertex v of the hyperrectangle is of the form v = (jyay,...,jsaq),
where (41,- -+, Ja) is a bit-vector in {0,1}4. We define the f-pad of the vertex g~1(v) of R as the
image under g~ of the hypercube of edge-length @ centered at the point

(Jra1 — (=1)16/2,...,jaaq — (—1)40/2).

The notion of #-pads is useful for approximating the set of all convex subsets of C; by a finite number

of canonical polytopes. We begin by listing a few interesting properties of #-pads.
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Lemma 4.7. Let R be a parallelotope in E% and let 0 be a positive real. If S is a point-set which
has at least one point in each 8-pad of R, then the convex hull of S contains R.

Proof: Without loss of generality, we may assume that R is a hyperrectangle of the form [T, ;. [0, a].
Let s1,...,80a be representative points of S in each @-pad of R, with s; the point in the E—pad of
O. Any (closed) halfspace that contains O also contains at least one s;. To see this, consider the
hyperplanes

Po={peE?| (pg)=lal*},

and notice that for each sign assignment of the coordinates of ¢ there is at least one desirable s;. This
shows that O € fc({sl, e sd}). By symmetry, the same is true of all the other vertices, therefore
their convex hull, R, lies inside ({s1,...,s4}). ¥

Lemma 4.8. For any d > 1 and any real p (0 < p < 1), there ezxisls a collection S of convez sets
such that (i) |S| < 55°/p®°, (ii) for each C € S, we have C C C4 and Ag(C) < 5%°p, (iii)
gwen any convez set K in Cq of measure p, there exists some C' € § which contains K.

Proof: Let B = p/d*5™, and let G be the grid of points
G ={xiB|i>0}n [-2d,2d]°.
We define & as follows:
S={r(S)NCs | S CGand|S|=2%and \y(k(S)) < 3%lp}.

We have |G| = (2|2d/8] + 1)°, which implies that |G| < 52d34(d+1)/2/pd since p < 1 < d, and
hence (i). Note that (ii) follows directly from the definition of S, so let us turn our attention to (iii).

Let K be a convex set in Cq of measure p, and let R (resp. r) be the circumscribed (resp.
inscribed) parallelotope of least (resp. greatest) measure. From Lemma 4.2, it follows that

Xa(R)/d! < p < dAa(r). (4.10)

Let ¥ be the set of (ﬁ\/c_i )-pa.ds of R. It is not difficult to show that each pad 1 of ¥ contains a
grid point. Let £ be the center of ¥ and let G* be the infinite grid { £i3|i > 0}9. There is a point
¥ € G* within a distance x/(?ﬂ/? of &, therefore ¥ lies within the pad . We must now show that
is actually a point of G. By construction, no edge-length of R can exceed the diameter of K. Since
K lies in Cy its diameter is at most v/d. This implies that the diameter of R is at most d. Because
the diameter of 1 is equal to dp, it follows that the distance from v to O is at most d + v/d + dB,
which is less than 2d, since p < 1 and d > 2. This proves that v belongs to [—2d, 2d]¢, and hence to

g.
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We thus have established the existence of a set S of 2¢ points in G, each of which lies in a
distinct (ﬂ\/a )-pad of R. Since r lies inside Cy4, its maximum edge-length is at most \V/d, therefore
the width of r, and hence the width of R, is at least A4(r) /dd_;l. From (4.10) it then follows that
the width of R is at least pv/d/d®#2. Let I, ...,z be the edge-lengths of R; we have

l; > pVd/d? > B4,

therefore
Xa(5(8) < T (4 +28Vd) < 3%xa(R).
1<i<d
From (4.10) we derive

Aa(x(S)) < 3%dlp.
This proves that £(S)NCy € ¥. Lemma 4.7 shows that R lies within &(S), therefore K C x(S)NCy.
E]

The previous lemma provides a polynomial-size approximation of the set of all convex subsets of
Cgq of measure p. This enables us to use discrete probabilistic techniques to study certain uniformity

criteria for point-sets.

Lemma 4.9. For any d > 1 and n sufficiently large, a random set of n points in Cy is (logn)-
scattered with probability greater than 1 — 1/n.

Proof: Let c =1 / (2436), where b = 5% is the constant used in Lemma 4.8. Note that ¢ >l / e,
Throughout the proof, we will use the notation of Lemma 4.8, with the value of p set to 3c(logn)/n.
(Note that this assignment is valid, since for n > 1 we have 0 < p < 1.) We shall also assume that n
is larger than some appropriate constant. Let P be a random set of n points in C4, and let m be the
probability that there exists a convex set K C C4 such that k = |[K N P| > logn and A\4(K) < ck/n.
We can assume that the n points of P are distinct since this happens with probability 1. It is then
possible to subdivide K into convex sets, each containing between log n and 2logn+ 1 points. To do
80, choose a line L which is not normal to any of the hyperplanes passing through a pair of points in
K N P, and sort the projection of the points of K N P onto L. Since there are no identical elements
in the resulting list, we can partition it into sublists of size [logn]| (except for the last one, which
might be of lesser size). For each pair of adjacent sublists, find a point on L separating them and
cut K by the hyperplane normal to L passing through the point. Of the pieces of K thus created,

let K* be the one of smallest measure. We have

1
() <2680,
therefore we can always enclose K* inside a convex set C C; of measure p. From Lemma 4.8, it

follows that the collection & contains at least one set C' which encloses K*, where
logn

Xa(C) < Bbe=>=. (4.11)
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Clearly, the set C' contains at least logn points of P, therefore

<> ¥ (’Jf’))\{,(c)(1_xd(0))""' :

CeS jzlogn

From (4.11) we have nA4(C) < logn, therefore we can use the Chernoff bound [8] to approximate
the tail of the binomial distribution. This yields

d2¢ n—logn logn
n n(1-24(0)) nXa(C)\ ¢
Al (3clog n) x ( n—logn x logn ' (412)

Using Taylor’s expansion, we have
In(1 — (logn)/n) > —(log n)/n — (log n)?/n?,

for n large enough, therefore
(= log p)*FER 5 ph=logn, (4.13)

On the other hand, it follows from (4.11) that
(nAa(C)/logn)'®" < 1/n%*-2, (4.14)
Putting (4.12-4.14) together, we find the desired (conservative) upper bound = < 1/n. §

As an immediate corollary, we obtain this new result on the generalization of Heilbronn’s prob-
lem. Whether logn can be replaced by anything smaller (asymptotically) is a very intriguing open
problem.

Theorem 4.10. The function Ag(n,k) is in ©(k/n), for any k such thatlogn < k < n.

Proof: Because of Lemma 4.9 it suffices to show that Ag(n,k) = O(k/n). Given any set P of n
points in Cy, partition Cy into convex sets, each containing between k and 2k + 1 points (using, for
example, the method given in Lemma 4.9). Now, consider the convex hull of the set of smallest

measure. This set contains at least [k] points and its measure is O(k/n). §

Again, simplex range searching in 2-space requires a special treatment. What we need now is a

result about uniform point distributions over the real line.

Lemma 4.11. There exists a posilive real g < 1 such that for any € (0 < £ < &) and any n > 2,
a random set of n points in Cy is weakly c-scattered with probability greater than 1 —¢.
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Proof: Consider the inequalities
1-¢e/2<(1-6%)e? <1-0/2<1-2/9. (4.15)

We claim that there exists some real g¢ (0 < €9 < 1/2) such that for any &, where 0 < € < g, there
exists § which satisfies (4.15). To see this it suffices to notice that if 1 —¢/2 = (1 — 62)e~? then
0 =¢/2+ O(e?), and

1-0/2— (1-6%)e™?=0/2+0(0%) =¢/4+0(c?).

Let P be a random set of n > 2 numbers in [0, 1]. We say that € P is isolated if there is no other
number of P in [z —60/(2n),z+ 6/(2n)]. Let v be the expected number of isolated points and let =
be the probability that at least £n points of P are isolated. We have

v<(1—m)en+mn. (4.16)

On the other hand, we have v > n(1 — 0/n)"~!. Since # < ¢ < 1 < n, we have (Abramowitz and
Stegun [1], pp.68)
v > n(I -— G/n)“ — ne“ln(l-gln) > ne—ﬂ/(l—ﬂfn)‘

Using the inequalities e > 1+ z and n > 26, we derive
v > ne~?(+20/n) 5 pe=f(1 _ 202 /n).
Using (4.15-4.16) and the inequalities n > 2 and ¢ < 1/2, we have

—e (1—0Me?—¢ 1-
vin £>( )e £ 3e/2

>
T2 T g —

>1-—c¢.

On the other hand, the convex hull of any k > 1 isolated points is an interval of length at least
3(k — 1)0/n, which from (4.15) is at least ek/(10n). g

4.4. The Lower Bounds on Simplex Range Searching

We are now in a position to attack our original problem. Let us recall our assumptions. The
dimension d is at least 2, and the parameter o is a positive real less than 1/12. Let m and n be two
positive integers, and let I' be a function mapping any set P of n points in C4 to a storage scheme
for P of size m > 0. When P and I'(P) are understood, we write ¢ to denote the worst-case time
complexity max ,eg t(P,I'(P), ). It will be important to keep in mind later on that ¢ is actually a
parameter depending on P and I'. Ironically, the higher-dimensional case (d > 3) is easier to handle,
so this is where we begin our investigation.
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4.4.1. Range searching in 3-space and above

Assume that d > 3. Let By(p) be the d-dimensional ball of radius p centered at (1/2,...,1/2). We
define the query space Q to be the set of slabs { S, | ¢ € Ba(1/4) }. We begin our investigation with
a technical lemma saying that every query grabs a reasonable chunk of the d-cube: neither too big
nor too small.

Lemma 4.12. For any d > 1 there exists a constant 0 < ¢y < 1 such that, for any S; € Q, we have
c1a < /\d(Sq ﬂcd) < (I/C]_.

Proof: Because S;NB4(1/2) C S;NC4 we have Ag(S4NCq) > 2arg—1(B’), where B’ is the intersection
of B4(1/2) with a hyperplane at distance 1/4 + o from the center of B4(1/2). This implies that
B’ is a ball in E4_; of radius r = /1/4 — (1/4 4 a)?: its (d — 1)-dimensional measure is therefore
(Santalé [18])

9(d=1)/2,d-1
@- Dr(@-172)’
where T' is the gamma function. Using simple approximations we easily verify that, since o < 1/12,
we have A4(S; NC4q) > ca, where

)ld_]_(Bf) =

- 2(d-1)/2
©T @-13T([d-1D)/2)

Conversely, the diameter of Cg is equal to v/d, therefore Aa(Sy NCa) < 2arg_1(B*), where B* is a
(d — 1)-dimensional ball of radius v/d/2. We derive

aqr(d-l)lzd(d“ 1)/2
(@- 127 (d-1D/2)’

Aa(SyNCy) <

Given a set P of n points in C4, we say that a slab S, is heavy if S, € Q and |S;N P| > ¢;an/2.
We focus on heavy query slabs because they are both well positioned and reasonably filled with
points of P. Our next result says that this focusing is legitimate when dealing with a random
point-set P: a random query of Q is heavy with high probability.

Lemma 4.13. There exists a constant ¢ > 0, such that for any fized reale (0 < &€ < 1) and a random
set of n points in C4 (d > 1), the measure of the set of heavy slabs ezceeds (1—c/(aen))u(Q) with
probability greater than 1 —¢.

Proof: Let P be a random set of n points in Cq and let Sy be a slab of Q. Put x = |§, N P| and
o = Sy NCq. The mean and variance of x are respectively nAs(¢) and ndy(o)(1 — Ay(c)). Let
7(g) be the probability that S, is heavy with respect to a random P. Combining Lemma 4.12 and
Chebyshev’s inequality (Feller [9]), we find

4nAq(o)(1 = Aa(o))

1—7(q) < Prob(|x — nAy(o)| > cran/2) < =
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Again from Lemma 4.12 it follows that

4
P 4.17
W(Q) > C?an ( )

By Fubini’s theorem, the expected value E of the measure of the set of heavy slabs is equal to
quEQ 7(gq) dS,, which from (4.17) gives

4
E> (1 - c‘fan) 1(Q). (4.18)
On the other hand, we have
F<(-) (1- 32 ) Q) + (@),

where p is the probability that the measure of the set of heavy slabs is at least (1—5/(ciaen))u(Q).
This inequality, combined with (4.18), shows that p > 1 — ¢, which completes the proof. g

Let pi,...,pn be the points of P. Recall that each generator g of T'(P) is a linear form
Y i<i<n @is; and that its cluster is the set {p; |@; # 0}. By abuse of notation we will refer to
the clusters of T(P). From the equivalence result of Lemma 2.1 we know that, for each S, € Q,
the set S, N P can be expressed as the union of at most ¢ clusters. A heavy query contains Q(an)
points of P. To be answered in time ¢ therefore requires the use of clusters of size Q(an/t). Just as
we chose to focus on heavy queries we will restrict our analysis to those “fat” clusters. Specifically,
we say that a cluster is fat if it contains at least {}clan/t points. For any S, € Q, let v(g) be equal
to the number of points in S, N P which belong to at least one fat cluster lying entirely within Sq.
(Note that these clusters may not necessarily be used in answering the query S;.) Our next result
says that with a random point-set P the average value of v(g) (over all S; € Q) is Q(an).

Lemma 4.14. There erists a constant ¢ > 0 such that, for any fized real ¢ (0 < £ < 1) and a
random set of n points in Cq (d > 1), the inequality

/Q v(q) dS, > (anfc - ¢/e)u(Q)

holds true with probability greater than 1 —¢.

Proof: Given a random set P and S, € Q, let Cy,...,Cy be a set of clusters such that u < t and
8¢ NP = y<icy Ci- By the pigeon-hole principle, the number of points of S; N P that belong to
at least one cluster C; such that |Ci| > |S, N P|/(2u) exceeds |S, N P|/2. Suppose that S, is heavy.
Then because u < t, we have v(gq) > cian/4. From Lemma 4.13 it follows that with probability
greater than 1 — ¢ we have

1
/Qy(q) dS, > chan(

where ¢ is the constant of Lemma 4.13. §

),u(Q) > (an/(4/cl +eie/4) — (4)er + clc/4)/s)p(Q),

c
aen
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Suppose now that P is (log n)-scattered, with n > 29, and let S be a subset of P of size at least
log n. By definition, we have A4(x(S)) > (1/771)]S|/n. From Lemma 4.5 we derive that for some

constant a; > 0,

S| - p(H(k(S))) < ara®'n. (4.19)

Put ( Q) )1/d

3ayjem
where ¢ is the constant of Lemma 4.14, and assume that we have the following inequality:
d
14 M_ 4.90
e a1c(8log n)? (420)
Observe that since m > n the condition @ < 1/12 is satisfied for any n large enough. Let Cy,...,Cpg
be the fat clusters of I'( P). From (4.20) we find that any fat cluster contains more than log n points.
Using the idea behind the Core Lemma, we have the following key inequality

fQ v@)ds, < 3 [Cilu(H((C)).

12i<p
From (4.19) it follows that
/ v(q) dS, < a;a®!pn.
Q

Assume that (en) (Q)
en)p
Ty e 4.21
< a(opent (4.21)
Then Lemmas 4.9 and 4.14 imply that for any n large enough and any £ (0 < £ < 1) a random set
P satisfies

%p(@) < aja**'mn

with probability greater than 1 —& —1/n. But this leads to a contradiction, so (4.20) or (4.21) must
be false. Since p(Q) is larger than some positive constant (independent of €), we immediately derive
the following result:

Lemma 4.15. For any d > 1 and any ¢ (0 < € < 1) there ezists a constant ¢ > 0, such that for any
n > 1/c, a random set of n points in Cg satisfies mt® > ¢(n/logn)? with probability greater than
1—e.

4.4.2. Range searching in 2-space

We use the notation of the previous section. A parallelotope is now simply called a rectangle. Given
aslab S, we define R, as the largest rectangle in S, NC; with two sides collinear with the bounding
lines of S;. Since o < 1/12, R, is well-defined and unique. As before the query space Q is the set
of slabs { S, |q¢ € B2(1/4)}. The proof of the following result is almost identical to that of Lemma
4.12, so we omit it.
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Lemma 4.16. There exists a constant 0 < ¢z < 1 such that, for any S; € Q, we have cso <
As(Ry) < afes.

We must strengthen the concept of heaviness by bringing into play the notion of weak scattering.
Given a set P of n points in Cs, we now say that a slab S, is e-favorable if

(i) S, €Q,
(i) esan/2 < |RyN P| < 2an/cs, and

(iii) the orthogonal projection of the points of R, N P on either bounding line of S, is weakly
(c2e?/2)-scattered in E*.

We now have the analog of Lemma 4.13, saying that if we have a random point-set P, then a random
query is e-favorable with high probability.

Lemma 4.17. There exist two positive constants ¢ and €y, such that for any reale (0 < & < 1)
and a random set of n points in C3 (an > c), the measure of the set of e-favorable slabs exceeds
(1 =€ —c/(cen)) u(Q) with probability greater than 1 —¢.

Proof: Let w(q) be the probability that S, is e-favorable, conditioned on S, € Q. We have 7(q) =
m1(g)m2(g), where my(q) is the probability that esan/2 < |R, N P| < 2an/c, and my(q) is the
conditional probability that the points of R, N P projected onto a bounding line of S, are weakly
(cae?[2)-scattered, given that coan/2 < |R,N P| < 2an/cs. Using Chebyshev’s inequality we derive

m(g) 21— 34 (4.22)

can’
On the other hand, since the point distribution is uniform in Cs, given a fixed subset S of P in R,,
the projection of S onto a bounding line of S, is uniformly distributed along the corresponding side
s of R;. From Lemma 4.16, the length of s is at least ¢3/2 < 1, so it follows from Lemma 4.11
that if |[Rg N P| > coan/2, then for € < £ (¢; > 0) and an > 4/c,, the projection of R, N P is
weakly (cpe? /2)-scattered with probability greater than 1— 2. From (4.22) we then derive that the
expected value @ of the measure of the set of e-favorable slabs satisfies

22 (1= (1- 0 ) @ (423)

3
chan

But we also have

&< (1-p) (1-—5— )u(Q)+pn(Q),

3
chaEn

where p is the probability that the measure of the set of s-favorable slabs is at least (1 — & —
5/(c3aen)) p(Q). Combining this inequality with (4.23), the lemma follows readily. g
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Let P be a set of n points in Cs, and let S; be e-favorable with respect to P. Then S, contains
a subset Q C P of size > ¢pe?|R, N P|/2, with the following properties: let Q' be the orthogonal
projection of () onto a bounding line of Sy; then for every subset S C @’ of at least two points, we

have
0282 |S|

20|R, N P|’
Since |R, N P| < 2an/c,, this implies that given any subset C of @ of at least two points, the

/\1(&2(.5')) >

diameter of C satisfies 5 2|C'|
c5e
i Sl bl I} 4.
D(C) > v (4.24)

The subset @ is called the prime subset of S;. Since S, is e-favorable, we have
Q| > cic?an/4. (4.25)

Although @ is not necessarily unique we can always use a canonical ordering to make the prime
subset unambiguously defined.

Next, we replace v(g) by the function £(e, ¢), defined as follows: if S, is e-favorable then (e, g)
is the number of points in the prime subset of S, which share a cluster with at least another point.
More precisely, let F be the set of clusters which lie entirely within S, and contain at least two
points in the prime subset of Sy; then

4= | U (C N prime subset of.S'q)|.
CeF

If S, is not e-favorable then &(e,¢) = 0.

Lemma 4.18. There exist two positive constanis ¢ and €1, such that for any reale (0 < &€ < 1)
and a random set of n points in Ca, with an/t > 1/(ce?), the inequality

)u(@)

c2aen

/ é(e,q)dS, > cszcm(l —&—
Q

holds true with probability greater than 1 — €.

Proof: Let S, be an e-favorable slab, let @ be its prime subset, and let C1, ..., Cy be a set of clusters
such that u < ¢ and S, NP = |J, ¢;<, Ci- All but at most u points of @ belong to clusters C; each
of which contains at least two points of Q. From (4.25) we derive that for an/t > 8/(c3c?),

(e, q) > C§szan/4 —t> cgszan/&
Consequently, Lemma 4.17 shows that with probability greater than 1 — ¢ a random set P satisfies
1 ¢
/;E(E,Q) dS; > gcgezan (1 —e— ;E_n) w(Q),

provided that an > ¢ and an/t > 8/(c2c?). Since t > 1 the lemma follows directly. g
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Let C1,...,Cm be the clusters of I'(P), and for each i (1 < i < m), let 7; be the maximum
number of points in C; to be in the prime subset of the same e-favorable slab Sy. If this number is
strictly less than 2, then we set 7; = 0. Clearly,

[g Ee,q)dS < S mu(H(5(C))).

1<i<m

Using (4.24) for each i such that 7; > 0, as well as Lemma 4.6, we derive

40
/ ¢(e,q) dS, < (—ﬁ) 3= D(R(C))u(H(K(CY))) < csa®mn/e?, (4.26)
Q £35° 1 yeiom
for some constant ¢z > 0.
Finally, put
2
i 1))
2 c3m

where c is the constant of Lemma 4.18. Note that o < 1/12 for any n large enough (since n < m).

Assume now that
63 58 I ( Q) n'2
4(23

2

mt? < (4.27)

and SeBu(Q)n?

483 '
From (4.27) we have an/t > 1/(ce?), therefore Lemma 4.18 and (4.26) show that with probability
greater than 1 — ¢,

m < (4.28)

celan (1 —£—

3 2
czasn)u(g) < cga”mn/fe*,

for n large enough. From (4.28) we derive
2 3 2
ce“an(l — 2e)p(Q) < esa’mn/e®,

which gives a contradiction if, say, ¢ < min{e;,1/4}. This implies that (4.27) or (4.28) has to be
false. Since pu(Q) is bounded below by a positive constant, with probability greater than 1 — & we
have mt?® > ¢4¢%n?, for ¢4 > 0 and n large enough. Note that the condition & < min{e;,1/4} can
be relaxed by choosing ¢4 small enough.

Lemma 4.19. There ezists a constant ¢ > 0, such that for any e (0 < e < 1) and n > 1/c, a
random set of n points in Cy satisfies mt® > ce®n? with probability greater than 1 — ¢.

4.4.3. Summary of results and closing remarks

Let us recap the main results of this section (Lemmas 4.15 and 4.19) and state some immediate
corollaries.
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Lemma 4.20. Let S be a faithful commutative semigroup; let d > 1 be a positive integer and € any
real (0 < € < 1). There ezists a constant ¢ > 0 such that the following is true. Let P be a random
set of n poinis in Cq and let I be any storage scheme of size m for the range searching problem
(S,Q,P), where Q is the set of all slabs of fized (appropriately chosen) width in E®. Then if
n is large enough, with probability greater than 1 — ¢, the time complezity t = max,egt(P,T,q)
satisfies the inequality mt® > cn?, for d = 2, and mt? > ¢(n/logn)?, for d > 2. As a corollary,
the worsi-case and average-case time complexities satisfy

t(n,m) > f(n,m) = Q(n/v/m)

ford=2, and

t(n,m) > {(n,m) = Q(lo:n/mlld)

ford > 3.

Of course, these lower bounds also apply to simplex range searching, since a slab can always
be clipped into a parallelotope without changing the nature of the problem, and a d-dimensional
parallelotope can always be triangulated into at most d! simplices. We can therefore state our result

in a more illustrative manner.

Theorem 4.21. Simplex range searching on n points requires Q(n/ﬁ) query time in two dimen-
sions and Q((n/logn)/m'/9) query time in any dimension d > 3, where m denotes the amount of
storage available. These bounds hold for a random point-set, and therefore are valid in the worst

case as well as on the average.

As we mentioned in the introduction, simplex range searching on n points in d-space can be
performed in O (n'~*/9a(n)) query time and O(n) storage, where o is a functional inverse of Ack-
ermann’s function (Chazelle [5]). This upper bound, which holds in the arithmetic model, matches
our lower bound very closely. On a random access machine supplied with linear storage, the best
upper bound on the query time to date is O(y/nlogn) in 2-space (Chazelle and Welzl [5]) and
O (n¥(@-1)/(d(d=1)+1)+¢) in d.gpace, for any d > 3 and any fixed € > 0 (Haussler and Welzl [12]). An
interesting open problem is to bridge the gap in higher dimensions and generalize the upper bounds to
general space-time tradeoffs. Another intriguing question is to determine whether halfspace queries
are as hard as simplex queries.

Acknowledgments: I would like to thank F.K. Chung, P. Erdos, R.L. Graham, A.M. Odlyzko,
and E. Szemerédi for helpful discussions about Heilbronn’s problem.
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